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Abstract. This paper deals with the stability in the sense of Hyers�Ulam�Rassias of constant step

size linear di�erence equation ∆hx(t)− ax(t) = 0, where a ∈ R. In particular, we establish stability

results of this equation under the assumption that h > 0 is small step size: a ̸= 0 and a > −1/h.

Keywords: Hyers�Ulam�Rassias stability; Hyers�Ulam stability; linear di�erence equation; constant step size;

small step size.

1 Introduction

The problem of Hyers�Ulam stability (HUS) was posed by Ulam [25] in 1940. A year later, Hyers [10]

gave a partial answer to this problem. After that, it has been investigated and generalized by many

researchers. It is well known that Hyers�Ulam�Rassias stability (HURS) is a generalization of HUS.

These problems were �rst addressed in the �eld of functional equations. The reader see the books

written by Brzd¦k, Popa, Ra³a and Xu [8], and Jung [11] for historical backgrounds on Hyers�Ulam

stability and Hyers�Ulam�Rassias stability. For recent references on HURS of functional equations,

see [12, 26]. In 1998, Alsina and Ger [1] studied HUS for the simple di�erential equation

x′ − x = 0.

This study has been improved and extended recently, and is ongoing (see, [18, 23]). In addition, this

problem has spread to the other areas. For example, we can �nd it in the �eld of di�erence equations,

dynamic equations on time scales, delay di�erential equations (see, [2, 3, 4, 6, 7, 15, 16, 17, 20, 21, 22]). In

recent years, Hyers�Ulam�Rassias stability has also been considered in the �eld of di�erential equations.

For example, see [5, 9, 13, 14, 19, 21, 24].

It is well known that the derivative x′ can be approximated by the following di�erence:

∆hx(t) :=
x(t+ h)− x(t)

h

for h > 0. ∆hx(t) and h > 0 are so called the �forward di�erence operator� and the �step size�. De�ne

hZ := {hk| k ∈ Z}
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for h > 0. In 2017, Onitsuka [16] studied HUS of the �rst-order homogeneous linear di�erence equation

∆hx(t)− ax(t) = 0, t ∈ hZ, (1.1)

where a ∈ R \ {−1/h}. Note that we no longer have a di�erence equation when a = −1/h. For this

reason, we assume a ̸= −1/h. Before giving a de�nition of the stability, we will give some sets. Let I be a

nonempty open interval of R, and let T := hZ∩I. If the maximum of T exists, de�ne Tκ := T\{maxT};
otherwise, Tκ := T. Now we will give a de�nition of stability. (1.1) is �Hyers�Ulam stable (HUS)� on T
if and only if there exists a constant K > 0 such that the following holds:

Let ε > 0 be a given constant. If for any function ξ : T → R satisfying |∆hξ(t) − aξ(t)| ≤ ε for all

t ∈ Tκ, there exists a solution x : T → R of (1.1) such that |ξ(t)− x(t)| ≤ Kε for all t ∈ T.
In [16], the following result was given.

Theorem A ([16], Theorem 1.5). Suppose that a ̸= 0 and a > −1/h. Let ε > 0 be a given constant.

Suppose also that a function ξ : T → R satis�es |∆hξ(t)− aξ(t)| ≤ ε for all t ∈ Tκ. Then the following

hold:

(i) if a > 0 and t := maxT exists, then any solution x(t) of (1.1) with |ξ(t)−x(t)| < ε/a satis�es that

|ξ(t)− x(t)| < ε/a for all t ∈ T;

(ii) if a > 0 and maxT does not exist, then limt→∞ ξ(t)(ah + 1)−t/h exists, and there exists a unique

solution

x(t) =
{
lim
t→∞

ξ(t)(ah+ 1)−
t
h

}
(ah+ 1)

t
h

of (1.1) such that |ξ(t)− x(t)| ≤ ε/a for all t ∈ T;

(iii) if −1/h < a < 0 and t := minT exists, then any solution x(t) of (1.1) with |ξ(t) − x(t)| < ε/|a|
satis�es that |ξ(t)− x(t)| < ε/|a| for all t ∈ T;

(iv) if −1/h < a < 0 and minT does not exist, then limt→−∞ ξ(t)(ah+ 1)−t/h exists, and there exists

a unique solution

x(t) =

{
lim

t→−∞
ξ(t)(ah+ 1)−

t
h

}
(ah+ 1)

t
h

of (1.1) such that |ξ(t)− x(t)| ≤ ε/|a| for all t ∈ T.

This result implies the following.

Corollary B ([16], Corollary 4.1). If a ̸= 0 and a > −1/h, then (1.1) is HUS on T.

If the step size h > 0 is su�ciently small, then a ̸= 0 and a > −1/h hold. We call this case �small step

size� case. Note here that Theorem A and Corollary B were obtained under the assumption that h > 0

is small step size, but the other cases were also discussed in [16]. Recently, the results obtained in [16]

have already been extended to various general equations (see, [2, 3, 4, 17]). Moreover, (1.1) corresponds

to the di�erential equation x′ − ax = 0 when h → 0, so that, (1.1) is called an approximate equation

of the di�erential equation x′ − ax = 0. HUS of x′ − ax = 0 was studied by Onitsuka and Shoji [18] in

2017. Namely, small step size case means that an approximation problem for di�erential equations.

The purpose of this study is to extend the results obtained above to more general stability results.

(1.1) is said to be �Hyers�Ulam�Rassias stable (HURS)� or �Aoki�Rassias stable� on T if allowing ε > 0

and K > 0 in HUS to depend on t ∈ hZ, that is, if there exists a positive function ψ : T → R such that

the following holds:

Let ϕ : Tκ → R be a given positive function. If for any function ξ : T → R satisfying |∆hξ(t)−aξ(t)| ≤
ϕ(t) for all t ∈ Tκ, there exists a solution x : T → R of (1.1) such that |ξ(t)− x(t)| ≤ ψ(t) for all t ∈ T.

In the next section, we will discuss some properties for nonhomogeneous linear di�erence equations.

In section 3, we will give the main theorem and its proof.
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2 Nonhomogeneous linear di�erence equations

In this section, we present some properties of the solutions of the �rst-order nonhomogeneous linear

di�erence equation

∆hx(t)− ax(t) = f(t) (2.1)

on hZ, where a is a real number and f(t) is a real-valued function on hZ. Let

F (t; t0,Φ0, f) :=



Φ0 + h

(t−t0)/h∑
i=1

f(t0 + (i− 1)h)(ah+ 1)−
t0
h −i, if t ≥ t0 + h,

Φ0, if t = t0,

Φ0 − h

(t0−t)/h∑
i=1

f(t0 − ih)(ah+ 1)−
t0
h +i−1, if t ≤ t0 − h

(2.2)

for t ∈ hZ, where t0 ∈ hZ and Φ0 ∈ R are arbitrary constants. Then the following is known (see [17,

Lemma 3.3]).

Lemma 2.1. Let t0 ∈ hZ and x0 ∈ R. If a ̸= −1/h then the solution of the initial-value problem (2.1)

with x(t0) = x0 is

x(t) = F
(
t; t0, x0(ah+ 1)−

t0
h , f

)
(ah+ 1)

t
h

for t ∈ hZ, where F is the function given by (2.2).

Lemma 2.2. Suppose that a ̸= 0 and a > −1/h, and there exists an L > 0 such that 0 < f(t) ≤ L for

all t ∈ hZ. Let t0 ∈ hZ and x0 ∈ R. Then F
(
t; t0, x0(ah+ 1)−t0/h, f

)
is an increasing function on hZ,

where F is the function given by (2.2), and the following hold:

(i) if a > 0 and x0 ≤ −L/a, then limt→∞ F
(
t; t0, x0(ah+ 1)−t0/h, f

)
exists and

F
(
t; t0, x0(ah+ 1)−

t0
h , f

)
< lim

t→∞
F
(
t; t0, x0(ah+ 1)−t0/h, f

)
≤ 0

for all t ∈ hZ;

(ii) if −1/h < a < 0 and x0 ≥ −L/a, then limt→−∞ F
(
t; t0, x0(ah+ 1)−t0/h, f

)
exists and

F
(
t; t0, x0(ah+ 1)−

t0
h , f

)
> lim

t→−∞
F
(
t; t0, x0(ah+ 1)−t0/h, f

)
≥ 0

for all t ∈ hZ.

Proof. For the simplicity, let G(t) := F
(
t; t0, x0(ah+ 1)−t0/h, f

)
on hZ. Since ah+ 1 > 0 and f(t) is a

positive function, G(t) is an increasing function on hZ.
First we prove the case a > 0 and x0 ≤ −L/a. Since G(t) is increasing on hZ, we have only to prove

that G(t) < 0 for all t ≥ t0 + h. Using a > 0 and x0 ≤ −L/a, we obtain

G(t) ≤ x0(ah+ 1)−
t0
h + hL

(t−t0)/h∑
i=1

(ah+ 1)−
t0
h −i =

(
x0 +

L

a

)
(ah+ 1)−

t0
h − L

a
(ah+ 1)−

t
h < 0

for all t ≥ t0 + h, and thus,

G(t) < lim
t→∞

G(t) ≤ 0

for all t ∈ hZ.
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Next we prove the case −1/h < a < 0 and x0 ≥ −L/a. We have only to prove that G(t) > 0 for all

t ≤ t0 − h. Using −1/h < a < 0 and x0 ≥ −L/a, we obtain

G(t) ≥ x0(ah+ 1)−
t0
h − hL

(t0−t)/h∑
i=1

(ah+ 1)−
t0
h +i−1 =

(
x0 +

L

a

)
(ah+ 1)−

t0
h − L

a
(ah+ 1)−

t
h > 0

for all t ≤ t0 − h, and thus,

G(t) > lim
t→−∞

G(t) ≥ 0

for all t ∈ hZ.

Lemma 2.3. Suppose that a > −1/h, and f(t) > 0 for all t ∈ hZ. Let x(t) be any solution of (2.1).

Then a real-valued function ξ : T → R satis�es |∆hξ(t)− aξ(t)| ≤ f(t) for all t ∈ Tκ if and only if

0 ≤ ∆h

{
(ξ(t) + x(t))(ah+ 1)−

t
h

}
≤ 2f(t)(ah+ 1)−

t+h
h = 2∆hx(t)(ah+ 1)−

t
h

for all t ∈ Tκ.

Proof. The inequalities in Lemma 2.3 is true since ah+ 1 > 0 and the equality

∆h

{
(ξ(t) + x(t))(ah+ 1)−

t
h

}
=

1

h
{(ξ(t+ h) + x(t+ h))− (ah+ 1)(ξ(t) + x(t))} (ah+ 1)−

t+h
h

= (∆hξ(t)− aξ(t) + ∆hx(t)− ax(t))(ah+ 1)−
t+h
h

= (∆hξ(t)− aξ(t) + f(t))(ah+ 1)−
t+h
h

holds for all t ∈ Tκ. If ξ(t) ≡ 0 then we have ∆hx(t)(ah + 1)−
t
h = f(t)(ah + 1)−

t+h
h from the equality

above, and thus, this completes the proof.

Proposition 2.4. Suppose that a ̸= 0 and a > −1/h, and there exists an L > 0 such that 0 < f(t) ≤ L

for all t ∈ hZ. Suppose also that a function ξ : T → R satis�es |∆hξ(t) − aξ(t)| ≤ f(t) for all t ∈ Tκ.

Let G(t) := F (t; 0,−L/a, f), where F is the function given by (2.2). Then

G0 =

 lim
t→∞

G(t), if a > 0,

lim
t→−∞

G(t), if − 1

h
< a < 0

exists, and there exist a nondecreasing function u : T → R and a nonincreasing function v : T → R such

that

ξ(t) = (u(t) +G0 −G(t))(ah+ 1)
t
h = (v(t)−G0 +G(t))(ah+ 1)

t
h (2.3)

for all t ∈ T, and the following hold:

(i) if a > 0 and t := maxT exists, then the inequality u(t) ≤ u(t) < v(t) ≤ v(t) holds for all t ∈ T;

(ii) if a > 0 and maxT does not exist, then limt→∞ u(t) and limt→∞ v(t) exist, and u(t) ≤ limt→∞ u(t) =

limt→∞ v(t) ≤ v(t) holds for all t ∈ T;

(iii) if −1/h < a < 0 and t := minT exists, then the inequality v(t) ≤ v(t) < u(t) ≤ u(t) holds for all

t ∈ T;

(iv) if −1/h < a < 0 and minT does not exist, then limt→−∞ u(t) and limt→−∞ v(t) exist, and v(t) ≤
limt→−∞ v(t) = limt→−∞ u(t) ≤ u(t) holds for all t ∈ T.
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Proof. By means of Lemma 2.2, we see that G(t) := F (t; 0,−L/a, f) is an increasing function on hZ;
and limt→∞G(t) ≤ 0 exists if a > 0; limt→−∞G(t) ≥ 0 exists if −1/h < a < 0; and

G(t)−G0

< 0, if a > 0,

> 0, if − 1

h
< a < 0

(2.4)

for all t ∈ hZ. Let
x(t) = G(t)(ah+ 1)

t
h

for all t ∈ hZ. Then x(t) is the solution of the initial-value problem (2.1) with x(0) = −L/a, by
Lemma 2.1.

Now we consider the functions

u(t) = (ξ(t) + x(t))(ah+ 1)−
t
h −G0 and v(t) = (ξ(t)− x(t))(ah+ 1)−

t
h +G0

on T, where ξ : T → R satis�es |∆hξ(t) − aξ(t)| ≤ f(t) for all t ∈ Tκ. Then it is clear that (2.3) holds

on T. By (2.3), we have

u(t)− v(t) = 2x(t)(ah+ 1)−
t
h − 2G0 = 2(G(t)−G0) (2.5)

for all t ∈ T. From this and (2.4), we obtain

u(t)

< v(t), if a > 0,

> v(t), if − 1

h
< a < 0

(2.6)

for all t ∈ T. Note that u : T → R is a nondecreasing function and v : T → R is a nonincreasing function

on T by using Lemma 2.3.

First, we will prove (i). From the facts above with t = maxT, u(t) and v(t) become the maximum of

u(t) and the minimum of v(t) on T, respectively. Hence, together with (2.6), we see that the claim of (i)

is true. The argument for (iii) is similar to that given above for (i). Therefore we omit the proof of (iii).

Next, we prove (ii). Fix the constant s ∈ T. Since v : T → R is a nonincreasing function on T and

(2.6) holds on T, we have
u(t) < v(t) ≤ v(s) <∞

for t ≥ s and t ∈ T. That is, u(t) is bounded above for t ≥ s. Since u : T → R is a nondecreasing

function, we see that limt→∞ u(t) exists. By (2.5), we obtain the inequality in the claim of (ii). The

argument for (iv) is similar to that given above for (ii). Therefore we omit the proof of (iv). The proof

is now complete.

3 Main result

We will present the main theorem and its proof.

Theorem 3.1. Suppose that a ̸= 0 and a > −1/h, and there exists an ε > 0 such that 0 < ϕ(t) ≤ ε for

all t ∈ hZ. Suppose also that a function ξ : T → R satis�es |∆hξ(t) − aξ(t)| ≤ ϕ(t) for all t ∈ Tκ. Let

G(t) := F (t; 0,−ε/a, ϕ), where F is the function given by (2.2). Then

G0 =

 lim
t→∞

G(t), if a > 0,

lim
t→−∞

G(t), if − 1

h
< a < 0

exists, and the following hold:
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(i) if a > 0 and t := maxT exists, then any solution x(t) of (1.1) with |ξ(t)−x(t)| < (G0−G(t))(ah+
1)t/h satis�es that |ξ(t)− x(t)| < (G0 −G(t))(ah+ 1)t/h for all t ∈ T;

(ii) if a > 0 and maxT does not exist, then limt→∞ ξ(t)(ah + 1)−t/h exists, and there exists a unique

solution

x(t) =
{
lim
t→∞

ξ(t)(ah+ 1)−
t
h

}
(ah+ 1)

t
h

of (1.1) such that |ξ(t)− x(t)| ≤ (G0 −G(t))(ah+ 1)t/h for all t ∈ T;

(iii) if −1/h < a < 0 and t := minT exists, then any solution x(t) of (1.1) with |ξ(t) − x(t)| <
(G(t)−G0)(ah+ 1)t/h satis�es that |ξ(t)− x(t)| < (G(t)−G0)(ah+ 1)t/h for all t ∈ T;

(iv) if −1/h < a < 0 and minT does not exist, then limt→−∞ ξ(t)(ah+ 1)−t/h exists, and there exists

a unique solution

x(t) =

{
lim

t→−∞
ξ(t)(ah+ 1)−

t
h

}
(ah+ 1)

t
h

of (1.1) such that |ξ(t)− x(t)| ≤ (G(t)−G0)(ah+ 1)t/h for all t ∈ T.

Proof. From Lemma 2.2, we see that G0 exists and

G(t)−G0 = F

(
t; 0,− ε

a
, ϕ

)
−G0

< 0, if a > 0,

> 0, if − 1

h
< a < 0

(3.1)

for all t ∈ hZ. By Proposition 2.4, we can �nd a nondecreasing function u : T → R and a nonincreasing

function v : T → R such that

ξ(t) = (u(t) +G0 −G(t))(ah+ 1)
t
h = (v(t)−G0 +G(t))(ah+ 1)

t
h (3.2)

for all t ∈ T.
First we prove case (i). We consider any solution x1(t) of (1.1) with

|ξ(t)− x1(t)| < (G0 −G(t))(ah+ 1)
t
h , (3.3)

where a > 0 and t := maxT. Note here that G0 −G(t) is positive by (3.1), and x1(t) is written as

x1(t) = x1(t)(ah+ 1)
t−t
h

for t ∈ T, so that this together with Proposition 2.4 (i), (3.2) and (3.3) implies that

u(t) ≤ u(t) < x1(t)(ah+ 1)−
t
h < v(t) ≤ v(t)

for t ∈ T. From this and (3.2), we obtain

(ξ(t)− x1(t))(ah+ 1)−
t
h = u(t) +G0 −G(t)− x1(t)(ah+ 1)−

t
h < G0 −G(t)

and

(ξ(t)− x1(t))(ah+ 1)−
t
h = v(t)−G0 +G(t)− x1(t)(ah+ 1)−

t
h > −(G0 −G(t))

for t ∈ T. Thus, the claim of (i) is true.

Next we will prove case (ii). Using Proposition 2.4 (ii), we see that limt→∞ u(t) and limt→∞ v(t)

exist, and

u(t) ≤ lim
t→∞

u(t) = lim
t→∞

v(t) ≤ v(t)

holds for all t ∈ T. From this and (3.2), we conclude that

lim
t→∞

ξ(t)(ah+ 1)−
t
h = lim

t→∞
(u(t) +G0 −G(t)) = lim

t→∞
u(t)
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exists and

u(t) ≤ lim
t→∞

ξ(t)(ah+ 1)−
t
h ≤ v(t)

for all t ∈ T. Now we consider the solution

x2(t) =
{
lim
t→∞

ξ(t)(ah+ 1)−
t
h

}
(ah+ 1)

t
h

of (1.1) on hZ. Using (3.2) and the inequality above, we have

(ξ(t)− x2(t))(ah+ 1)−
t
h = u(t) +G0 −G(t)− lim

t→∞
ξ(t)(ah+ 1)−

t
h ≤ G0 −G(t)

and

(ξ(t)− x2(t))(ah+ 1)−
t
h = v(t)−G0 +G(t)− lim

t→∞
ξ(t)(ah+ 1)−

t
h ≥ −(G0 −G(t))

for t ∈ T, and thus, |ξ(t)− x2(t)| ≤ (G0 −G(t))(ah+ 1)
t
h for all t ∈ T.

We next prove the uniqueness of x2(t). By way of contradiction, we consider a solution y(t) of (1.1)

such that y(t) ̸≡ x2(t) and |ξ(t) − y(t)| ≤ (G0 − G(t))(ah + 1)
t
h for all t ∈ T. Since the uniqueness of

solutions of (1.1) are guaranteed for the initial value problem, we can rewrite y(t) as

y(t) = c(ah+ 1)
t
h

for t ∈ hZ, where c ̸= limt→∞ ξ(t)(ah+ 1)−t/h. Therefore, we obtain

0 ̸=
∣∣∣c− lim

t→∞
ξ(t)(ah+ 1)−

t
h

∣∣∣ = |y(t)− x2(t)|(ah+ 1)−
t
h ≤ (|y(t)− ξ(t)|+ |ξ(t)− x2(t)|)(ah+ 1)−

t
h

≤ 2(G0 −G(t))

for all t ∈ T, however, this contradicts the fact that limt→∞G(t) = G0. Thus, the claim of (ii) is true.

Using the same arguments in (i) and (ii), we can conclude that the claims of (iii) and (iv) are also

true. The proof of Theorem 3.1 is now complete.

Theorem 3.1 implies the following result.

Corollary 3.2. Suppose that a ̸= 0 and a > −1/h, and there exists an ε > 0 such that 0 < ϕ(t) ≤ ε for

all t ∈ hZ. Suppose also that a function ξ : T → R satis�es |∆hξ(t)− aξ(t)| ≤ ϕ(t) for all t ∈ Tκ. Then

there exist a positive function ψ : T → R and a solution x : T → R of (1.1) such that |ξ(t)−x(t)| ≤ ψ(t)

for all t ∈ T.

Remark 3.1. The statement of Corollary 3.2 do not exactly match HURS because of the restriction

of the function ϕ(t). Therefore, the future subject is to consider whether the boundedness of ϕ(t) is

necessary. However, it can be seen that the above Theorem 3.1 and Corollary 3.2 include Theorem A

and Corollary B, respectively.

Now we will show that this claim. Consider the case where ϕ(t) ≡ ε and x0 = ε/a. Since

G(t) = F
(
t; 0,− ε

a
, ε
)
= − ε

a
+ hε

t/h∑
i=1

(ah+ 1)−i = − ε
a
(ah+ 1)−

t
h

holds if t ≥ t0 + h, and

G(t) = F
(
t; 0,− ε

a
, ε
)
= − ε

a
− hε

−t/h∑
i=1

(ah+ 1)i−1 = − ε
a
(ah+ 1)−

t
h

holds if t ≤ t0 − h, we see that

G(t) = − ε
a
(ah+ 1)−

t
h

for all t ∈ hZ. Then we have G0 = 0, so that

|G0 −G(t)|(ah+ 1)
t
h =

ε

|a|
for all t ∈ hZ. Therefore, we can conclude that Theorem 3.1 includes Theorem A. Obviously, Corollary B

implies Corollary 3.2.
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