
Rose-Hulman Undergraduate Mathematics Journal Rose-Hulman Undergraduate Mathematics Journal 

Volume 21 Issue 2 Article 7 

Numerical Integration Through Concavity Analysis Numerical Integration Through Concavity Analysis 

Daniel J. Pietz 
Embry-Riddle Aeronautical University, pietzd@my.erau.edu 

Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj 

 Part of the Analysis Commons, Numerical Analysis and Computation Commons, and the Other 

Mathematics Commons 

Recommended Citation Recommended Citation 
Pietz, Daniel J. (2020) "Numerical Integration Through Concavity Analysis," Rose-Hulman Undergraduate 
Mathematics Journal: Vol. 21 : Iss. 2 , Article 7. 
Available at: https://scholar.rose-hulman.edu/rhumj/vol21/iss2/7 

https://scholar.rose-hulman.edu/rhumj
https://scholar.rose-hulman.edu/rhumj/vol21
https://scholar.rose-hulman.edu/rhumj/vol21/iss2
https://scholar.rose-hulman.edu/rhumj/vol21/iss2/7
https://scholar.rose-hulman.edu/rhumj?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol21%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/177?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol21%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol21%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol21%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol21%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/rhumj/vol21/iss2/7?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol21%2Fiss2%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages


Rose-Hulman Undergraduate Mathematics Journal
VOLUME 21, ISSUE 2, 2020

Numerical Integration Through Concavity
Analysis

By Daniel J. Pietz

Abstract. We introduce a relationship between the concavity of a C2 function and the
area bounded by its graph and secant line. We utilize this relationship to develop a
method of numerical integration. We then bound the error of the approximation, and
compare to known methods, finding an improvement in error bound over methods of
comparable computational complexity.

1 Introduction

Calculating the area underneath a curve is the motivating problem of integral calculus.
Even as far back as 50 BC, the Babylonians did this numerically to approximate planetary
orbits, using data collected on the planets’ velocities [1]. Much later, Newton and Leibniz
independently developed theorems for performing this task analytically to achieve an
exact result [2]. These powerful theorems are useful for a variety of basic functions,
however, most functions do not have closed form antiderivatives. Some well-known
examples of these include the Gaussian distribution, Fresnel functions, and certain
exponential functions [3]. Similarly, real-world applications often involve measurements
in the form of discrete points rather than continuous functions that can be integrated
analytically. Thus, some mathematicians began to put more focus on the development
of numerical methods.

We develop a numerical method that uses derivative information about the function to
improve accuracy. In Section 2 we review existing numerical integration methods. In
Section 3 we present the foundation for how our novel rule was initially discovered. In
Section 4 we show how this foundation can be used to create a numerical integration
rule. In Section 5 we show some examples of this rule in practice, as well as compare it
to other methods. Lastly, Section 6 will outline the author’s planned future work on this
topic.
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2 Numerical Integration Through Concavity Analysis

2 Existing Quadrature Methods

A quadrature rule is a method of approximating a definite integral, typically expressed as
a weighted summation. When performing this summation, the interval [a,b] may be
broken into n subintervals, and the function f (x) is sampled at various {xi ∈R | a ≤ xi ≤
b}, and combined with weights wi such that∫ b

a
f (x)d x ≈

n∑
i=0

wi f (xi ).

Placement of xi can vary between methods, but a common choice is to equally space
them throughout [a,b]. Undergraduate students are typically introduced to quadrature
rules in their second semester of Calculus through various well known numerical inte-
gration algorithms such as:

The Trapezoid Rule:

xi = a + i

(
b −a

n

)

wi =


b−a
2n i = 0

b−a
n 0 < i < n

b−a
2n i = n

This rule was used by the Babylonians too, in one of the earliest known instances of
numerical integration [1]. Other well-known methods include the Midpoint Rule and
Simpson’s Rule [4]. We state the weights for these rules now.

The Midpoint Rule

xi = a + b −a

2n
+ i

(
b −a

n

)

wi = b −a

2n

Simpson’s Rule

xi = a + i

(
b −a

n

)
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Daniel J. Pietz 3

wi =


b−a
3n i = 0

4(b−a)
3n 0 < i < n, i is odd

2(b−a)
3n 0 < i < n, i is even

b−a
3n i = n

In many cases there will be some error in these approximations as portions of the curve
are either overestimated or underestimated. The error for each of these methods over a
single interval of with R can be bounded by the following:

Method |E|
Trapezoid R3/12

Midpoint R3/24

Simpsons R5/180

Table 1: Error for Numerical Methods

If a more accurate result is needed for a given method, one can generally be achieved by
increasing the number of subdivisions. For each method mentioned thus far, we have∫ b

a
f (x)d x = lim

n→∞

n∑
i=0

wi f (xi ).

It is instructive to look at a simple example of these methods. Table 2 shows these
methods used to compute the integral of f (x) = sin(x) over the interval x ∈ (0,1) with n
subintervals. In this example, the exact solution is

∫ 1
0 sin(x)d x = 1−cos(1) ≈ 0.459697. . .

Method n = 1 n = 2 n = 4 n = 10
Trapezoid 0.4207 0.4501 0.4573 0.4593
Midpoint 0.4794 0.4645 0.4609 0.4599
Simpson’s N/A 0.4599 0.4597 0.4597

Table 2:
∫ 1

0 sin x d x computed using known numerical methods

All of these fall under the category of ‘Newton-Cotes’ methods [5, 6], and work by
“mimicking” the curve using polynomials over small intervals. The general strategy
for these methods is to increase the accuracy over each subinterval by taking a higher
order polynomial approximation of the curve. Figure 1 shows how this polynomial
approximation becomes more accurate on f (x) = xe−x over the interval x ∈ [1,5] for
polynomials of degree 1-4.

We see that as the number of points taken over the interval increases, the polynomial
more closely fits f (x), and thus our integral approximation becomes more accurate.
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4 Numerical Integration Through Concavity Analysis

Figure 1: Polynomial Interpolation of xe−x

In contrast to these methods, we develop an approach which augments the Trapezoid
Rule by incorporating information about the derivatives of the function. Such methods
have shown to provide more accurate results by accounting for curvature in the function
over the period of integration, such as the technique described by Burg in 2012 [7].
Unlike methods which look at derivative values at the integration bounds, we develop a
technique that instead requires concavity values at the center of the integration interval.

3 The Concavity-Area Connection

We begin with an observation: the area bounded by a parabola and its secant line over
some interval depends only on the width of the interval.

Proposition 1. Let f (x) denote a second degree polynomial in the form f (x) = ax2+bx+
c . Let A be the area bounded by y = f (x) and its secant line on the interval (x0−r, x0+r ).
Then A is independent of x0.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 2, 2020



Daniel J. Pietz 5

Proof. Let f (x) = ax2 +bx +c. Let I = (x0 − r, x0 + r ). The area of the region bounded by
y = f (x) and its secant line on I is∫ x0+r

x0−r

(
f (x0 + r )− f (x0 − r )

2r
(x − (x0 − r ))+ f (x0 − r )− f (x)

)
d x = 4r 3

3
a.

Another way of phrasing Proposition 1 is this: if A is the area bounded by the graph
of a quadratic and its secant line on an interval of positive radius r centered at x0, then

f ′′(x0) = 3

2r 3
A. (1)

Allowing r to approach 0, equation 1 is true of any function with continuous first and
second derivatives. We prove this result now. Recall that C 2 denotes the set of all
functions with continuous first and second derivatives.

Let r > 0, L(x) = f (x0+r )− f (x0−r )
2r (x−(x0−r ))+ f (x0−r ), and A = ∫ x0+r

x0−r

(
L(x)− f (x)

)
d x.

Figure 2: f (x), L(x), and A

Proposition 2. Suppose f is C 2 on the interval I = (x0 − r, x0 + r ). Then limr→0
3

2r 3 A =
f ′′(x0).

Proof. Let g (x) = f (x +x0). We compute A:

A = g (r )+ g (−r )

2
·2r −

∫ r

−r
g (x) d x

= r (g (r )+ g (−r ))−
[∫ r

0
g (x) d x +

∫ 0

−r
g (x) d x

]
= r (g (r )+ g (−r ))−

[∫ r

0
g (x) d x −

∫ −r

0
g (x) d x

]
= r (g (r )+ g (−r ))−G(r )+G(−r )
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6 Numerical Integration Through Concavity Analysis

where G(u) = ∫ u
0 f (x) d x. Now applying L’Hôpital’s rule we have

lim
r→0

A

r 3
= lim

r→0

r (g (r )+ g (−r ))−G(r )+G(−r )

r 3

= lim
r→0

g (r )+ g (−r )+ r g ′(r )− r g ′(−r )−G′(r )−G′(−r )

3r 2

= lim
r→0

g (r )+ g (−r )+ r g ′(r )− r g ′(−r )− g (r )− g (−r )

3r 2

= lim
r→0

r g ′(r )− r g ′(−r )

3r 2

= lim
r→0

g ′(r )− g ′(−r )

3r

= lim
r→0

g ′′(r )+ g ′′(−r )

3

= 2g ′′(0)

3

so that

lim
r→0

3

2r 3
A = g ′′(0) = f ′′(x0).

4 Numerical Integration Using Concavity

We now utilize Proposition 2 in order to develop a method of numerically approximating
the definite integral of a function which is C 2 on the domain of integration.

Suppose f is C 2 on a neighborhood (−r,r ) of 0. Let L(x) be the secant line to f (x) on
(−r,r ). We have seen that 3

2r 3

∫ r
−r L(x)− f (x) d x ≈ f ′′(0) for small r . To approximate the

integral, we solve for
∫ r
−r f (x) d x.

Lemma 4.1. Let f be C 2 on I = (−r,r ). Then∫
I

f (x) d x ≈ r ( f (r )+ f (−r ))− 2r 3

3
f ′′(0).

Should | f (4)(x)| ≤ K on I, then the error E in the estimate is bounded by

|E| ≤ Kr 5

15
.

Proof. We apply integration by parts several times, choosing integration constants that
make odd derivative terms disappear from the final result. Because we are working
with indefinite integrals, this is acceptable as long as we include these terms in the new
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Daniel J. Pietz 7

integral at every step. When we finally switch to a definite integral, the end result of these
constants will not affect the final result.∫

f (x) d x = x f (x)−
∫

x f ′(x) d x

= x f (x)− 1

2
(x2 − r 2) f ′(x)+

∫ (
x2

2
− r 2

2

)
f ′′(x) d x

= x f (x)− 1

2
(x2 − r 2) f ′(x)+

(
x3

6
− r 2x

2

)
f ′′(x)

−
∫ (

x3

6
− r 2x

2

)
f ′′′(x) d x

= x f (x)− 1

2
(x2 − r 2) f ′(x)+

(
x3

6
− r 2x

2

)
f ′′(x)

−
(

x4

24
− r 2x2

4
+ 5r 4

24

)
f ′′′(x)+

∫ (
x4

24
− r 2x2

4
+ 5r 4

24

)
f (4)(x) d x.

Evaluating, ∫
I

f (x) d x = r ( f (r )+ f (−r ))− r 3

3
( f ′′(r )+ f ′′(−r ))

+
∫

I

(
x4

24
− r 2x2

4
+ 5r 4

24

)
f (4)(x) d x.

(2)

We now work with the second term on the right side of (2):

f ′′(r )+ f ′′(−r ) = 2 f ′′(0)+
∫ r

0
f ′′′(x) d x +

∫ −r

0
f ′′′(x) d x

= 2 f ′′(0)+ (x − r ) f ′′′(x)
∣∣∣r

0
−

∫ r

0
(x − r ) f (4)(x) d x

+ (x + r ) f ′′′(x)
∣∣∣−r

0
−

∫ −r

0
(x + r ) f (4)(x) d x

= 2 f ′′(0)−
∫ r

0
(x − r ) f (4)(x) d x −

∫ −r

0
(x + r ) f (4)(x) d x. (3)

Substituting (3) into (2), we have∫ r

−r
f (x) d x = r ( f (r )+ f (−r ))− 2r 3

3
f ′′(0)+E

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 2, 2020



8 Numerical Integration Through Concavity Analysis

where E = E1 +E2 +E3, and

E1 = r 3

3

∫ r

0
(x − r ) f (4)(x) d x

E2 = r 3

3

∫ −r

0
(x + r ) f (4)(x) d x

E3 =
∫

I

(
x4

24
− r 2x2

4
+ 5r 4

24

)
f (4)(x) d x.

Computing, |E| = |E1 +E2 +E3| ≤ Kr 5

15 .

Having the error bound on a single interval, we now split an interval of integration us-
ing a regular partition, that is a set of partitions of equal width, give our main estimation
result, and bound the error of our numerical estimate accordingly. It is a modification of
the Trapezoid Rule which improves accuracy by accounting for concavity information.

Theorem 3. Let f (x) be C 2 on I = [a,b]. Let {ai }n
i=0 be a regular partition of I, with a = a0

and b = an , and let r = b−a
2n . Then∫ b

a
f (x) d x ≈

n−1∑
i=0

[
r ( f (ai )+ f (ai+1))− 2r 3

3
f ′′(ai + r )

]
.

Should | f (4)(x)| ≤ K on I, then the error E in the estimate is bounded by

|E| ≤ K(b −a)5

480n4
.

Proof. Using the partition of I and invoking Lemma 4.1, we have∣∣∣∣∣
∫

I
f (x) d x −

n−1∑
i=0

[
r ( f (ai )+ f (ai+1))− 2r 3

3
f ′′(ai + r )

]∣∣∣∣∣
≤

n−1∑
i=0

∣∣∣∣∫ ai+1

ai

f (x) d x −
[

r ( f (ai )+ f (ai+1))− 2r 3

3
f ′′(ai + r )

]∣∣∣∣
≤

n−1∑
i=0

∣∣∣∣Kr 5

15

∣∣∣∣= nK(b −a)5

15(2n)5
= K(b −a)5

480n4
.

It is instructive to compare the error bound to other well-known methods of numer-
ical approximation of definite integrals. The Midpoint Rule and Trapezoid Rule have

errors at most |EM| ≤ K(b−a)3

24n2 and |ET| ≤ K(b−a)3

12n2 respectively, where | f ′′(x)| ≤ |K| on (a,b)

[4]. Simpson’s Rule has error at most |ES | ≤ K(b−a)5

180n4 .
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5 Examples

We use Theorem 3 to estimate some definite integrals. We compare the errors arising
from the estimate of Theorem 3, to the errors arising from some methods of comparable
computational complexity; namely, the Midpoint, Trapezoid, and Simpson’s Rules. The
error for each of these four methods will be denotes as EC, EM, ET, and ES respectively.
The reader will recall that Simpson’s Rule requires evenly many subintervals.

n = 1 n = 2 n = 4 n = 10
EC 9.90 ·10−4 6.03 ·10−5 3.75 ·10−6 9.85 ·10−8

EM 0.02 ·10−2 4.82 ·10−3 1.20 ·10−3 1.92 ·10−4

ET 0.04 ·10−2 9.62 ·10−3 2.40 ·10−3 3.83 ·10−4

ES N/A 1.64 ·10−4 1.01 ·10−5 2.57 ·10−7

Table 3: Comparison of errors for
∫ 1

0 sin x d x using numerical methods

n = 1 n = 2 n = 4 n = 10
EC 4.49 ·10−2 4.96 ·10−3 3.97 ·10−4 1.12 ·10−5

EM 6.94 ·10−2 2.22 ·10−2 6.08 ·10−3 1.00 ·10−3

ET 1.63 ·10−1 4.69 ·10−2 1.24 ·10−2 2.01 ·10−3

ES N/A 8.14 ·10−3 8.54 ·10−4 2.84 ·10−5

Table 4: Comparison of errors for
∫ 1

0 tan x d x using numerical methods

n = 1 n = 2 n = 4 n = 10
EC 1.08 ·10−1 3.83 ·10−2 1.35 ·10−2 3.42 ·10−3

EM 4.04 ·10−2 1.64 ·10−2 6.31 ·10−3 1.71 ·10−3

ET 1.67 ·10−1 6.31 ·10−2 2.34 ·10−2 6.15 ·10−3

ES N/A 2.86 ·10−2 1.01 ·10−2 2.56 ·10−3

Table 5: Comparison of errors for
∫ 1

0

p
x d x using numerical methods

The concavity method performs comparatively well in cases where the 4th derivative
of the function is bounded over the interval. For contrast see the case of

p
x in which

the derivatives are unbounded near 0. In cases such as these, this method becomes less
attractive than methods based on polynomial interpolation. In addition to these cases,
the method can be more difficult to implement on real world numerical data where the
derivatives of the function are not explicitly known. Attempts to approximate derivatives
off of real world data can often times add significant noise to data [8], and as such it is
often more accurate to use methods that do not rely on derivatives.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 2, 2020



10 Numerical Integration Through Concavity Analysis

6 Future Work

The author plans on generalizing this rule, where additional even derivatives are taken at
the midpoint of each interval. A generalization for the coefficients in this rule has been
found and error bounds have been conjectured.
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