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Linear Combinations of Harmonic Univalent
Mappings

By Dennis Nguyen

Abstract. Many properties are known about analytic functions, however the class of
harmonic functions which are the sum of an analytic function and the conjugate of
an analytic function is less understood. We wish to find conditions such that linear
combinations of univalent harmonic functions are univalent. We focus on functions
whose image is convex in one direction i.e. each line segment in that direction between
points in the image is contained in the image. M. Dorff proved sufficient conditions
such that the linear combination of univalent harmonic functions will be univalent on
the unit disk. The conditions are: the mappings must be locally univalent, their images
must be convex in the imaginary direction and they must satisfy a normalization which
states that the right and left extremes of the image are the image of 1 and -1 respectively.
In this paper we generalize this existing theorem. The conditions of this theorem are
geometric, and we would like to maintain this feature in the generalization. We show
that the image may be convex in any direction and that any points on the boundary of
the domain, which no longer must be the unit disk, can be the points that are mapped
to the extrema, which now must be in the direction perpendicular to the direction of
convexity.

1 Introduction

A function f (z) = u + i v is complex harmonic, where z = x + i y is a complex variable, if
it satisfies Laplace’s equation:

∂2 f

∂x2
+ ∂2 f

∂y2
= 0.

A function is complex analytic at a point if it is differentiable at that point and an open
neighborhood around that point. For the remainder of this article analytic will be un-
derstood to mean complex analytic, and the word “complex” will be dropped. Since any
function that is analytic satisfies the Cauchy-Riemann equations, all analytic functions
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2 Linear Combinations of Harmonic Univalent Mappings

satisfy Laplace’s equation. So the analysis of harmonic functions is a natural extension
of the study of analytic functions. Harmonic functions show up in many branches of
physics where Laplace’s equation appears, which include electricity and magnetism, and
quantum mechanics. Therefore, mathematical research into these functions is moti-
vated not only by their mathematical relevance but also their applications to physical
systems. Any harmonic function f is of the form f = h + g where h and g are analytic.
A function is univalent in domain D if for all z1, z2 ∈ D such that z1 6= z2, f (z1) 6= f (z2).
Univalent functions are also known as one to one, injective, or schlicht. A bijection is a
function that relates each point in the domain to a single point in the co-domain and
vice versa. A function is locally univalent at a point if there exists a neighborhood of
that point that f is univalent on. Note that a locally univalent function is not necessarily
(globally) univalent; it is in general much easier to show local univalence at every point
in a domain than to show univalence in that domain. The unit disk {z | |z| < 1} will be
notatedD. One technique for solving Laplace’s equation with given boundary conditions
is to form a linear combination of other known solutions to Laplace’s equation (harmonic
functions); the linear combination of harmonic functions is always harmonic. A linear
combination of two complex functions f1 and f2 is f3 = t f1 + (1− t) f2 where 0 ≤ t ≤ 1.
If we do this, it will be helpful to know the conditions under which various properties
are preserved. In this paper we seek to generalize a theorem which gives sufficient
conditions for a linear combination of harmonic univalent functions to be univalent.
This gives us a way to generate new univalent harmonic functions which could provide
valuable insight into their behavior, along with the insight we gain from the theorems
themselves. To limit the scope of our work–and to provide a useful result–we will restrict
our research to functions with the unit disk as their domain. We will also restrict the
image of the function by convexity.

A region is convex if the line segment connecting any two points in that region is
contained within the region. A region is convex in the θ direction if any line segment
parallel to the ray r e iθ between two points in the region is contained in the region.
Specifically a region is convex in the real or imaginary direction if it is convex in the θ
= 0 or π/2 directions respectively. It is obvious that a convex region is convex in every
direction. Finally, a function f on a domain E is convex in the θ direction if its image,
f (E) is convex in the θ direction.

Part of our motivation for focusing on functions convex in one direction is the
following result.

Theorem 1.1. Every function convex in one direction is univalent.

Much of the existing work on univalent harmonic mappings focuses on functions
convex in the horizontal direction. The most important theorem in this field is the
shearing theorem, which converts a harmonic function to an analytic function. This
allows us to use results on analytic functions, which are much better understood and
easier to work with. We state this theorem and a useful corollary.
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Theorem 1.2 (Clunie, Sheil-Small Shearing Theorem [1]). A harmonic function f = g +h
which is locally univalent in D is a univalent mapping of D onto a domain convex in the
horizontal direction if and only if, h − g is a conformal univalent mapping of D onto a
domain convex in the horizontal direction.

Corollary 1.3. A harmonic function f = g+h which is locally univalent inD is a univalent
mapping ofD onto a domain convex in the θ direction if and only if h−e2iθg is a conformal
univalent mapping of D onto a domain convex in the θ direction.

In order to use this powerful theorem we need to know whether f is locally univalent.
We can determine this by finding what is called the analytic dilation which is denoted
ω(z) = g ′(z)/h′(z). A function is sense preserving if, when you take the image of the
counterclockwise oriented boundary of the domain, the image will be on the left side of
the boundary of the image

Theorem 1.4 (Lewy [2]). A harmonic function f = g +h is locally univalent and sense
preserving in domain D if and only if |ω(z)| < 1 for all z ∈Dwhere ω(z) = g ′(z)/h′(z)

Finally we will make use of the following theorem by Hengartner and Schober [3].

Theorem 1.5. Suppose f is analytic and non-constant inD. Then Re{(1−z2) f ′(z)} ≥ 0, z ∈
D if and only if

1. f is univalent in D,

2. f is convex in the imaginary direction

3. f satisfies normalization 1.

Where normalization 1 is:

Normalization 1. Suppose f is complex-valued harmonic and non-constant inD. There
exists sequences z ′

n , and z ′′
n converging to z = 1, z =−1, respectively, such that

lim
n→∞Re{ f (z ′

n)} = sup{Re{ f (z)}|z ∈D}

lim
n→∞Re{ f (z ′′

n)} = inf{Re{ f (z)}|z ∈D}

This condition says that f maps the horizontal extremes 1, −1 in the input domain
to the horizontal extremes of the image; the limits and extrema are necessary for cases
when the image is unbounded or undefined at the boundary.

We can now state and prove the result by Dorff which we will seek to generalize [2].

Theorem 1.6. Let f1 = g 1 +h1, and f2 = g 2 +h2 be univalent harmonic mappings convex
in the imaginary direction. Let f3 = t f1 + (1− t) f2 and |ω3| < 1 on D. If f1, f2 satisfy
normalization 1 then f3 is convex in the imaginary direction and univalent (0 ≤ t ≤ 1)
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4 Linear Combinations of Harmonic Univalent Mappings

The conditions of this theorem are highly restrictive, especially in terms of direction-
ality. The convexity of the domain is confined to one direction and the normalization
forces two specific points in the domain to map to two specific points in the image. This
is the motivation for generalizing the theorem.

Proof. Since |ω3| < 1, f3 is locally univalent. By Corollary 1.3 with θ= π/2, h1 + g1 and
h2 + g2 are univalent and convex in the imaginary direction. h1 + g1 and h2 + g2 satisfy
normalization 1, since Re{h1 + g1}=Re{ f1} and Re{h2 + g2}=Re{ f2}.
So we can apply Theorem 1.5 to both, giving us:

Re{(1− z2)(g ′
1(z)+h′

1(z))} ≥ 0

Re{(1− z2)(g ′
2(z)+h′

2(z))} ≥ 0

Then,

Re{(1− z2)(g ′
3(z)+h′

3(z))}

= Re{(1− z2)(t (g ′
1(z)+h′

1(z))+ (1− t )(g ′
2(z)+h′

2(z)))}

= tRe{(1− z2)(g ′
1(z)+h′

1(z))}+ (1− t )Re{(1− z2)(g ′
2(z)+h′

2(z))}

≥ 0

By Theorem 1.5, h3 + g3 is univalent and convex in the imaginary direction. So by
Corollary 1.3, f3 is univalent.

This result makes sense in the context of our understanding of real functions; the
combination of two one-to-one real functions is one-to-one if they are both increasing
or both decreasing. This theorem corresponds to the case where both are ”increasing"
in the positive real direction. By symmetry we expect that univalence is preserved no
matter which direction the function is “increasing" in. Additionally we suspect that this
theorem should apply to functions convex in any direction, once again by symmetry.

2 New Results

We devised and proved a theorem that contains the aforementioned generalizations and
several others.

Theorem 2.1. Let f1 = g 1 +h1, and f2 = g 2 +h2 be univalent harmonic mappings convex
in the direction θ on a domain E, which can be analytically deformed to the unit disk.
f3 = t f1 + (1− t ) f2 is convex in the θ direction and univalent (0 ≤ t ≤ 1), if |ω3| < 1 on E, if
f1, f2 reach their unique extremes in the direction θ−π/2 at the same two points in E.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 2, 2020
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The proof relies on a generalization by Royster and Ziegler [4] of Theorem 1.5. We
will also use a Lemma which is itself a generalization of Theorem 1.6.

Theorem 2.2 (Royster and Ziegler). Suppose f is analytic and non-constant in D. Then f
maps D univalently onto a domain convex in the imaginary direction if and only if there
are numbers m and n, with 0 ≤ m < 2π and 0 ≤ n ≤π such that,

Re{−i e i m(1−2cos(n)e−i m z +e−2i m z2) f ′(z)} ≥ 0. z ∈D
Additionally, f (e i (m−n)) and f (e i (m+n)) are the right and left extremes, respectively of

the image.

Observe that, if we already know that f maps D univalently onto a domain convex
in the imaginary direction and we identify the values of m and n such that f (e i (m−n))
and f (e i (m+n)) are the unique right and left extremes, then those values for m and n
will necessarily satisfy the inequality given in Theorem 2.2. Further research ought to
attempt to remove the uniqueness condition. This observation is used several times.

Lemma 2.3. Let f1 = g 1 +h1, and f2 = g 2 +h2 be univalent harmonic mappings convex
in the imaginary direction. Let f3 = t f1 + (1− t) f2 and |ω3| < 1 on D. If f j (e i (m−n)) and
f j (e i (m+n)) , where 0 ≤ m < 2π and 0 ≤ n ≤ π, are the unique right and left extremes
respectively of the image of f j for j = 1,2, then f3 is convex in the imaginary direction and
univalent (0 ≤ t ≤ 1)

The proof of this lemma parallels the proof of Theorem 1.6.

Proof. Since |ω3| < 1, f3 is locally univalent. By Corollary 1.3 with θ = π/2, h1 + g1

and h2 + g2 are univalent and convex in the imaginary direction. h1 + g1 and h2 + g2

achieve their right and left extremes at f (e i (m−n)) and f (e i (m+n)) respectively, since
Re{h1 + g1}=Re{ f1} and Re{h2 + g2}=Re{ f2}.

We apply Theorem 2.2 to both functions, giving us:

Re{(−i e i m(1−2cos(n)e−i m z +e−2i m z2))(g ′
1(z)+h′

1(z))} ≥ 0

Re{(−i e i m(1−2cos(n)e−i m z +e−2i m z2))(g ′
2(z)+h′

2(z))} ≥ 0

Then we can manipulate these inequalities as was done in the proof of Theorem 1.6.

Re{(−i e i m(1−2cos(n)e−i m z +e−2i m z2))(g ′
3(z)+h′

3(z))}

= Re{(−i e i m(1−2cos(n)e−i m z +e−2i m z2))

· (t (g ′
1(z)+h′

1(z))+ (1− t )(g ′
2(z)+h′

2(z)))}

= tRe{(−i e i m(1−2cos(n)e−i m z +e−2i m z2))(g ′
1(z)+h′

1(z))}

+ (1− t )Re{(−i e i m(1−2cos(n)e−i m z +e−2i m z2))(g ′
2(z)+h′

2(z))}

≥ 0

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 2, 2020



6 Linear Combinations of Harmonic Univalent Mappings

By Theorem 2.2, h3 + g3 is univalent and convex in the imaginary direction. So by
Corollary 1.3, f3 is univalent.

Finally, we are able to prove Theorem 2.1.

Proof of Theorem 2.1. Since E can be analytically deformed to D, there exists σ(z) :D→
E such that σ is a analytic bijection. Consider f ∗

j (z) = e−i (θ−π/2) f j (σ(z)), for j = 1,2,
and f ∗

3 = t f ∗
1 + (1− t) f ∗

2 . All three of these are functions on the unit disk and f ∗
1 (z),

and f ∗
2 (z) are convex in the imaginary direction. Since f1(z), and f2(z) have the same

points in E which map to the image extrema in the direction θ−π/2 on E. If we apply
σ−1, which exists since σ is univalent, to each of these points, the two new points in D
will be the image extremes in the θ−π/2 direction of f1(σ(z)), and f2(σ(z)). Therefore,
those two points must map to the extrema in the horizontal direction of f ∗

1 (z) and f ∗
2 (z).

Since both these points are on the boundary of D, let us write the point which maps to
the right extreme as e iφ1 and the point which maps to the left extreme as e iφ2 where
0 ≤ φ1,φ2 ≤ 2π. Consider m = (φ1 +φ2)/2 and n = (φ2 −φ1)/2. Then φ1 = m −n and
φ2 = m +n.

We merely need to prove local univalence to apply Lemma 2.3.

ω∗
3 (z) = te−i (θ−π/2)σ′(z)g ′

1(σ(z))+ (1− t )e−i (θ−π/2)σ′(z)g ′
2(σ(z))

te−i (θ−π/2)σ′(z)h′
1(σ(z))+ (1− t )e−i (θ−π/2)σ′(z)h′

2(σ(z))

= t g ′
1(σ(z))+ (1− t )g ′

2(σ(z))

th′
1(σ(z))+ (1− t )h′

2(σ(z))

=ω3(σ(z))

Since σ(z) ∈D, |ω∗
3 (z)| = |ω3(σ(z))| < 1. We can now apply Lemma 2.3 which says that

f ∗
3 is convex in the imaginary direction and univalent. Then e i (θ−π/2) f ∗

3 (z) = f3(σ(z)) is
convex in the θ direction and univalent on D. Since the inner term does not affect the
image, and is a bijection, f3(z) is convex in the θ direction and univalent.

This new theorem is much broader than the original as we desired. It was true that
the functions could be convex in any direction. Moreover, we were able to generalize the
other conditions more than we expected. We can now use many more domains than just
the unit disk, and the conditions on the extrema have been generalized to allow their
pre-image to be any two points. The beauty of this theorem is that it provides geometric
conditions which can be quickly verified for any mappings.

For example, two functions that we can combine using this theorem but not the
previous theorem are f1(z) = z + i

2 z and f2(z) = z − 1
3 z3 on D. They both are convex in

the π/4 direction and map −π/4 and 3π/4 to their extremes in the −π/4 direction.
These two functions are fairly simple; our generalization applies to a broad swath of

functions which the original theorem misses.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 2, 2020
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It is likely possible to generalize this result to close-to-convex functions, which
contain the set of functions convex in one direction. A theorem for those functions could
help to subdivide the set of close-to-convex functions, similarly to how Theorem 2.1
divides functions convex in one direction into each individual direction. While that
subdivision is easy to see, a subdivision for close to convex functions is not immediately
obvious. It might also be generalizable to a wider class of domains, perhaps all simply
connected domains. These would be areas for future research.
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