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ABSTRACT 

There are hundreds of non-protein amino acids whose importance in food and biological 

matrices is still unknown. Many of these compounds mainly exist in food as products 

formed during food processing, as metabolic intermediates or as additives to increase 

nutritional and functional properties of food. Moreover, they have also demonstrated to 

play an important role in the pharmaceutical and clinical fields since they may be used 

therapeutically in the treatment of some pathologies and their levels may be related with 

some diseases. For this reason, the analysis of non-protein amino acids may provide 

relevant information in the food and biological fields.   

This article reviews the most recent advances in the development of analytical 

methodologies employing capillary electrophoresis for the achiral and chiral analysis of 

non-protein amino acids in food and biological samples. With this aim, the most 

relevant information concerning the separation and detection of these compounds by 

capillary electrophoresis is discussed and detailed experimental conditions under which 

their determination was achieved in food and biological samples are given covering the 

period of time from 2015 to 2018.  
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INTRODUCTION 

Hundreds of amino acids are known, but only 20 of them are part of proteins. These 

20 proteinogenic amino acids have been widely studied; however, there are other amino 

acids that are not found in protein main chain either for lack of a specific transfer RNA 

and codon triplet or because they do not arise from protein amino acids by post-

translational modifications [1, 2]. Many of these non-protein amino acids (NPAAs) 

present an unknown origin and function, so it is difficult to attribute them a direct effect 

in the organism. Others have demonstrated to play an important role in the 

pharmaceutical and clinical fields since they may be used therapeutically for the 

treatment of some pathologies or have been related with some diseases. For instance, 

dihydroxyphenylalanine is used in Parkinson´s disease treatment, norleucine is related 

with the oxidative stress associated with Alzheimer’s disease (AD) and other amino 

acids such as -aminobutyric acid (GABA) and taurine have demonstrated to act as 

neurotransmitters that regulate synaptic transmission and memory [3, 4, 5]. Moreover, 

NPAAs can provide relevant information on food quality and safety since some of them 

are present in food as products formed during processing or as additives in foods to 

increase their nutritional value [6, 7]. Therefore, the determination of NPAAs 

constitutes an interesting tool to obtain information useful in the food, pharmaceutical 

and clinical fields. Consequently, there is a need to develop analytical methods capable 

to accurately determine NPAAs in real samples. Numerous works employing different 

techniques have been published reporting the determination of NPAAs. The most 

employed analytical techniques to face this challenge are High Performance Liquid 

Chromatography, Gas Chromatography and Capillary Electrophoresis. Among these 

techniques, capillary electrophoresis (CE) has emerged in the last decades as a powerful 

separation technique due to its versatility, high efficiency and the low reagent and 
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sample consumption required, among other advantages. In addition, CE has already 

demonstrated its potential in the analysis of NPAAs. The most employed CE modes to 

analyze NPAAs are Capillary Zone Electrophoresis (CZE) (based on the different 

mobility of the analyte in a conductive solution under the application of an electric 

field) and Micellar Electrokinetic Chromatography (MEKC) (whose separation is based 

on the different mobility of the analytes in a conductive solution that contains a 

micelle). Moreover, Electrokinetic Chromatography (EKC) and Capillary 

Electrochromatography (CEC) are the most employed modes to carry out the 

enantioseparation of chiral NPAAs since they are based on the interaction of each 

enantiomer with a chiral selector present in the mobile phase (EKC) or with a chiral 

stationary phase (CEC). Recently, the use of microchip electrophoresis (MCE) in the 

analysis of NPAAs has also become attractive. It presents some advantages over 

conventional systems such as the automatization, the lower sample and reagent 

consumption and its high efficiency [5].  

The most common detection approach used in CE is the UV-Vis detector, although it 

requires a derivatization step since most amino acids do not have sufficient UV 

absorption to be detected [8]. Fluorescence detection has also been widely employed for 

the analysis of NPAAs due to its high sensitivity; however, a derivatization procedure is 

also needed due to the lack of fluorescence of most amino acids. Many derivatization 

reagents such as 2,3-naphthalenedicarboxaldehyde (NDA) [9, 10, 11, 12, 13, 14], 4-

fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) [15, 16, 17, 18], fluorescein 

isothiocyanate (FITC) [19], 9-fluorenylmethyl chloroformate (FMOC-Cl) [20], benzoyl 

chloride, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC), dansyl chloride 

(DNS-Cl) [21] and o-phthaldialdehyde (OPA) [16] have been employed. An interesting 

alternative to these detection approaches is mass spectrometry (MS) that presents higher 
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sensitivity and selectivity than other systems [5] and provides structural information 

being not necessary a derivatization step although sometimes it is also employed.  

The present article reviews the most recent advances achieved in the development of 

analytical methodologies for the determination of NPAAs in foods and biological 

samples by CE (including CZE, MEKC, EKC, and CEC modes). Articles published in 

the period of time comprised between 2015 and 2018 have been considered following 

the previous review of the authors on the CE determination of NPAAs in food [22]. 

Tables 1 and 2 summarize the main characteristics (including CE mode, separation and 

detection conditions, sample treatment, LODs, and applications) of the different CE 

approaches developed for the analysis of NPAAs in different samples.  

 

DETERMINATION OF NON-PROTEIN AMINO ACIDS IN FOODS BY CE 

The determination of NPAAs in food provides relevant information about food quality 

and safety. Different works have demonstrated the importance of analyzing NPAAs in 

food to detect adulterations [21], to evaluate nutritional quality of foods [24, 26] or to 

detect toxic effects [15, 19], among others. When the NPAAs of interest are chiral, their 

enantiomeric determination can also be a powerful tool to obtain valuable information 

on the effects of food processing or storage or on the presence of adulterations [42]. 

Table 1 shows that a wide variety of food matrices were analyzed including beverages 

(juice, milk, beer, water or functional drinks), vegetables, fermented products or 

shellfish. The analysis of NPAAs was mainly achieved using CZE and MEKC, although 

CEC and MCE were also employed. The detection systems most frequently used were 

UV and LIF detectors, despite of being necessary the use of a derivatization step. Other 

detectors less employed were mass spectrometry (MS) and capacitively coupled 

contactless conductivity (C4D). Li et al. [21] developed a MEKC methodology enabling 
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to carry out the simultaneous determination of hydroxyproline and hydroxylysine in 

different food samples (see Table 1). Both NPAAs are relevant components of protein 

collagen and they may be present in numerous food products. The developed MEKC 

methodology was applied to find out differences between authentic and fake plastron-

derived functional food product based on their amino acids profiles since this product 

can be adulterated with some low-priced materials. The MEKC-UV method based on 

the use of Dns-Cl as labeling reagent and 20 mM sodium tetraborate (pH 8.7) 

containing 0.1 M SDS and 6% methanol as BGE enabled the simultaneous separation of 

18 protein amino acids, hydroxyproline and hydroxylysine, and their by-products 

formed during derivatization. Also, by using principal component analysis (PCA), 

hydroxyproline and hydroxylysine were selected as markers to discriminate between the 

authentic plastron and the adulterated one since these amino acids were not present in 

the other low-priced materials as it can be seen in Figure 1 [21]. Moreover, the 

determination of hydroxyproline along with the 20 protein amino acids and cysteine in 

passion fruit juices was also performed by Passos et al. [20]. In this case, they proposed 

a MEKC approach with UV detection, using a 60 mM sodium tetraborate buffer (pH 

10.1) containing 30 mM SDS and 5 % methanol, and FMOC as labeling reagent. The 

combination of the electrophoretic approach with PCA allowed to provide the 

characterization of different types of juices showing the potential to detect adulterations 

on industrial juice samples. 

 Other group of NPAAs analyzed by CE in the last years are betaines. Betaines are a 

group of amino acids derivatives whose structure presents a quaternary ammonium 

group with a permanent positive charge and a carboxylic group. These compounds are 

known to present osmoregulating properties in many plants to protect them from the 

environmental stress [43]. L-carnitine and its main ester, acetyl-L-carnitine were the 
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betaines analyzed in the period covered by this review. They are found in different 

mammalian tissues, plants and microorganisms and they play an important role in fatty 

acid metabolism. Carnitine is produced in low levels in humans, so it may be supplied 

from diet [23]. Therefore, the development of analytical strategies capable of determine 

the content of these compounds in foods is required.  Kong et al. [23] developed a new 

CZE method with indirect UV detection using 3.0 mM melamine and 10 % MeOH (pH 

2.1) as BGE to quantify L-carnitine and acetyl-L-carnitine in liquid milk samples. An 

orthogonal experimental design (53) was employed to investigate and optimize the BGE 

pH and composition (melamine concentration and percentage of methanol). The LODs 

achieved for carnitine and acetyl-L-carnitine were 3.0 y 5.0 µM, respectively. As it can 

be seen in Figure 2 the method was applied to the analysis of milk using the indirect 

UV detection since under normal CZE conditions with direct UV detection, carnitine 

cannot be detected. Thus, 14 kinds of milks were analyzed showing carnitine contents 

from 43.6 to 121.5 µM and acetyl-L-carnitine contents from 17.5 to 68.5 µM.  

In the period of time covered by this review, only one work reported the use of CE to 

determine GABA and citrulline in food samples. Besides being an important 

neurotransmitter in mammalians, GABA has also demonstrated to present other 

physiological functions as regulator of cells, hormones and blood pressure, among 

others [44]. Citrulline is precursor of the protein amino acid arginine and it is known to 

be involved in urea and NO cycles [45]. As it can be seen in Table 1, a MEKC 

methodology with LIF detection was developed by Qingfu et al. [9] using a flow-gated 

CE coupled with alternate injections (electrokinetic injection -5kV for 0.3 s) in a micro-

fabricated switch to carry out the simultaneous determination of 17 protein amino acids, 

GABA, citrulline, phosphoryl ethanolamine (PEA) and ethanolamine (ETA) in beers. 

The use of NDA as labeling reagent and 40 mM sodium tetraborate containing 60 mM 
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SDS and 2 mM HP-β-CD as running buffer (pH 9.2) allowed a high separation 

efficiency for all these compounds within 90 s using a capillary length of 10 cm. The 

LODs obtained for amino acids, PEA and ETA with the proposed methodology were 

from 2.0 to 5.0 nM. The quantitative results obtained in eight different brands of beer 

showed that GABA, alanine and valine were the most abundant amino acids in all 

samples whereas citrulline, glutamine and methionine were the less abundant (indeed, 

the content of citrulline was lower than 40 M in all beer brands analyzed). These 

differences in amino acids composition were in agreement with the differences among 

the characteristics of the samples (i.e. differences in flavor, raw materials, processing or 

enzyme activity) [9].  

Sacristán et al. [24] developed a CZE methodology to analyze homoarginine and -

N-Oxalyl-L-,-diaminopropionic acid, that are the main NPAAs in grass pea seeds 

(Lathyrus species). Lathyrus species are a rich source of proteins and are cultivated for 

human consumption. However, a high consumption of these species may produce a 

disease known as “lathyrism” responsible for humans and animal’s paralysis. The 

scientific committee of the Spanish Agency for Food safety and Nutrition recommends 

an occasional consumption of Lathyrus being the safe consumption lower than 1.5 mg/g 

for humans, but further research needs to be performed to ensure these safety values 

[46]. The developed CZE method was based on the use of a BGE (pH 9.2) containing 

25 mM sodium borate and 5 mM sodium sulfate, and UV detection, and enabled the 

simultaneous determination and quantification of homoarginine and -N-Oxalyl-L-,-

diaminopropionic acid in L. sativus (grass pea) and L.cicera (red pea). Sample 

preparation was carried out by two different extraction protocols based on the use of a 

rotating shaker (24 h) and an Ultra-Turrax (1 min) with ethanol:water (60:40 v/v) as 

extraction solvent. Despite of the fact that no significant differences were found 



9 
 

between the two extraction protocols, the Ultra-Turrax method, which is simpler and 

faster, and demonstrated to provide higher yield results than the rotating shaking 

method, was selected to analyze all samples. Different Lathyrus cicero and Lathyrus 

sativus species were analyzed to evaluate the levels of homoarginine and -N-Oxalyl-L-

,-diaminopropionic acid showing that homoarginine contents (from 8.08 mg/g to 

12.44 mg/g) were higher than the contents of -N-Oxalyl-L-,-diaminopropionic acid 

(from 0.79 to 5.05 mg/g) in all samples. Moreover, the results obtained showed that  -

N-Oxalyl-L-,-diaminopropionic acid levels for L.cicera species were lower than the 

recommended ones but this was not the case for L.sativus species, whose values 

exceeded those recommended [24].  

Taurine is the only sulfur-containing amino acid analyzed in food by CE in the 

reviewed period. This NPAA can be found in mammalian tissues in high concentration 

levels and it presents important physiological and therapeutic functions such as bile acid 

conjugation, maintenance of calcium homeostasis, [47], liver protection, and 

treatment of low blood pressure [48]. Taurine is the most employed component in the 

formulation of energy and sport drinks that have gained popularity among athletes as a 

consequence of their energetic properties. However, the consumption of these beverages 

is not recommended for people with heart diseases or high blood pressure, and high 

levels of taurine intake may produce undesirable effects also in healthy people [49]. 

Therefore, the development of analytical strategies enabling the determination of taurine 

in foods is needed. As it can be seen in Table 1, taurine was determined using different 

modes of CE such as CZE, MEKC and MCE. A CZE method with C4D was employed 

to determine taurine in energy drinks. The results obtained with an instrument with a 

coaxial flow-gating interface (FGI) were compared with those obtained with an Agilent 

commercial equipment showing similar LODs (14.4 mg/mL and 8.2 mg/mL, 
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respectively). Both methods were able to determine lower percentages of taurine than 

the declared value (4000 mg/L). The coaxial FGI presents some characteristics 

comparable with common commercial CE instrument such as repeatable sample 

injection and improved total analysis time (73 s and 225 s, respectively). As Table 1 

shows, the separation was achieved using 20 mM CHES and 10 mM NaOH (pH 9.5) as 

separation buffer and only a 40-fold dilution step of samples was needed to analyze 

them by CE [26]. Wu et al. [27] developed a methodology using MCE with LIF 

detection to determine two amino acids (taurine and lysine) and vitamin B3 in functional 

drinks. The use of an on-line preconcentration strategy combining field-amplified 

sample stacking (FASS) and reverse-field stacking allowed to improve the sensitivity 

and the separation efficiency in comparison with conventional MCE-LIF method. After 

optimizing different electrophoretic and derivatization variables, the use of 100 mM 

sodium borate (pH 9.88) as running buffer and sulfoindocyanine succinimidyl ester 

(Cy5) as derivatization reagent enabled the quantification of lysine, taurine and vitamin 

B3 (within 4 min) in eight functional drinks showing a lower concentration of taurine in 

one of them than the values declared in the label.  

Pyroglutamic acid is an interesting cyclical NPAA that may be produced as an 

intermediate in amino acid metabolic and transport pathways, or during protein 

biosynthesis during which it becomes the amino-terminal residue of many biologically 

peptides and proteins [50] and it can be found as a free acid or bound at the N terminal 

group of proteins and peptides [51]. This NPAA is usually found in urine, plasma, 

bones and other tissues, and it can also be present naturally in food or can be employed 

in beauty or dietary formulations [52]. The only article published in the reviewed period 

reporting the separation of pyroglutamic acid by CE was aimed to determine lactic acid 

and its organic impurities in fermented products. Among these impurities, taurine and 
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pyroglutamic acid were the NPPAs identified [25]. The MEKC methodology developed 

consisted of using a 25 mM sodium tetraborate buffer containing 50 mM SDS (pH 9.1) 

and UV detection (200 nm). Sample treatment including an enzyme-assisted extraction 

procedure and a fermentation process was accomplished. Thus, ten organic acids, 

thirteen protein amino acids, cysteine, tryptamine, taurine and pyroglutamic acid were 

identified and separated from lactic acid in fermentation broth of different renewable 

resources. It was observed a major unknown component before the lactic acid peak in 

some samples and it was identified as pyroglutamic acid using MS spectra followed by 

the standard confirmation. The methodology enabled to detect 0.3 ppm of pyroglutamic 

acid in presence of 718,400 ppm of lactic acid [25].  

The NPAA β-N-methylamino-L-alanine is a toxin present in nature which is related 

to many neurodegenerative pathologies such as the amyotrophic lateral sclerosis, 

Alzheimer’s dementia, or Parkinson’s disease [53]. This NPAA presents some relevant 

structural isomers. Three of them, namely 2,4-diaminobutyric acid (2,4-DAB), N-

2(aminoethyl)glycine (AEG) and β-amino-N-methyl-alanine have been found in food 

matrices (e.g. microalgae and mollusks). The major exposure pathway to β-N-

methylamino-L-alanine is the dietary intake so the development of high selective 

methods able to separate the isomers of this NPAA is crucial [54]. However, β-N-

methylamino-L-alanine analysis may be a hard task since all its isomers present the 

same monoisotopic mass and similar physicochemical properties making difficult their 

discrimination. Recently, two different methodologies based on the use of CZE with 

UV and MS detection were developed by Kerrin et al. [28] enabling the separation of β-

N-methylamino-L-alanine and four of its isomers in a mussel tissue reference material. 

A simple sample treatment based on protein hydrolysis in acid conditions followed by 

Oasis-MCX cartridge cleanup procedure without any derivatization step was employed. 
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To develop the CZE-UV methodology, the effect of different separation variables, such 

as the running buffer composition, buffer concentration, organic modifiers and pH, and 

some instrumental CE parameters, such as temperature and voltage, were evaluated. 

Under the optimized conditions (see Table 1) β-N-methylamino-L-alanine and its 

isomers could be separated. However, the LOD (20 mg/g, dry mass) obtained for β-N-

methylamino-L-alanine using this method was much higher than the reported content in 

cyanobacteria and mussels (300 g/g and 10 g/g, respectively). Afterwards, in order to 

improve the sensitivity, these authors developed a new methodology by CZE-MS. First, 

to select compatible CE-MS conditions, the phosphate BGE was replaced by 5 M 

formic acid containing 10 % acetonitrile and a custom interface was built with a straight 

tube enclosing the CE capillary which eliminated the plugging problems previously 

obtained. A 50 % aqueous MeOH containing 0.1 % formic acid was used as sheath 

liquid. Before the analysis by CZE-MS, a strong cation exchange solid-phase extraction 

(SPE) sample cleanup procedure to lower the conductivity of the extract enabling FASS 

was achieved with a final step of redissolution in a low conductivity solvent. This 

approach allowed to achieve a LOD of 16 ng/g (dry mass) for β-N-methylamino-L-

alanine enabling the quantification of this NPAA in real samples (cycad leaves, lobster 

tail meat and lobster tomalley) [28].  

Domoic acid is other neurotoxic water soluble tricarboxylic acid which is present in 

numerous types of shellfish and seafoods usually consumed as part of the human diet. 

The consumption of high levels of domoic acid may be responsible for Amnesic 

Shellfish Poisoning (ASP), a disease whose symptoms are cardiac arrhythmias, 

abdominal cramps and neurological dysfunction, among others. Therefore, analytical 

methods are needed to asses a safe content of this compound in food [55]. A CEC 

method, based on the use of a packed capillary column with octadecyl silica (ODS) 
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particles (using a supplementary pressure) and LIF detection, was employed to analyze 

traces of domoic acid in shellfish samples. As it can be seen in Table 1, this is the only 

work in which CEC was applied to the analysis of NPAAs in the period of time 

reviewed in this article. A solid-liquid extraction followed by a clean-up procedure and 

a derivatization step with NBD-F was achieved before CEC analysis that was carried 

out in positive and negative voltage using 5 mM phosphate buffer containing 60 % 

acetonitrile (pH 2.5), enabling a LOD for domoic acid as low as 10 ng/mL [15]. The 

developed methodology was compared with a HPLC-MS/MS method showing similar 

LODs and RSD results, and better recoveries in the case of CEC.  MCE was also 

employed to determine domoic acid in shellfish tissues. The use of a 5 mM sodium 

tetraborate buffer (pH 9.2), FITC as derivatizing reagent, and LIF detection, allowed the 

determination of domoic acid within 60 s with a LOD of 2.8 x 10-10 M which enabled to 

assess the accomplishment of the official regulatory limit of 20 g domoic acid /g wet 

tissue. The method constitutes a powerful alternative for toxin detection since it presents 

some advantages such as simplicity, sensitivity and high separation speed [19].  

Chiral analysis of NPAAs in food is of high interest to guarantee food quality, 

authenticity and safety. Although the L-enantiomer is the natural form, D-enantiomers 

of NPAAs can be found in food as a consequence of racemization during food 

processing, microbiological processes, or the fraudulent addition of racemic mixtures in 

the particular case of supplemented foodstuffs [56], for which regulations establish the 

use of the L-enantiomer. Due to the different properties and biological activity that the 

enantiomers may have, their individual determination in foods present a high interest. In 

fact, the enantioselective determination of NPAAs has demonstrated to play an 

important role to detect food adulterations [42] or to evaluate manufacturing processes 

[57]. During the period of time covered by this review, only one work has been 
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published reporting the enantiomeric separation of NPAAs by CE in food [29]. New 

analytical methodologies were developed enabling the enantiomeric separation of eight 

NPAAs by EKC. After FMOC derivatization, the optimized separation conditions 

consisted of the use of a 100 mM formate buffer (pH 2.0) and an anionic cyclodextrin 

(sulfated--CD or sulfated--CD depending on the amino acid). Figure 3 shows the 

electropherograms corresponding to the enantiomeric separation of the NPAAs 

investigated under the optimized conditions. The analytical characteristics of the 

developed method were shown to be adequate for the determination of L-citrulline and 

its enantiomeric impurity in food supplements. LODs of 2.1 x 10-7 M and 1.8 x 10-7 M 

were achieved for D- and L-citrulline, respectively. L-citrulline was quantified in six 

samples (three new and three submitted to a long storage time) where D-citrulline was 

not detected in any case. No racemization process took place in samples submitted to a 

long storage time. 

 

DETERMINATION OF NON-PROTEIN AMINO ACIDS IN BIOLOGICAL 

SAMPLES BY CE 

From a biological point of view, the determination of NPAAs has a special relevance 

since many of them are key compounds in metabolic pathways or are related with 

different pathologies. In fact, several diseases have shown to be related with metabolic 

dysfunctions which provide abnormal quantities of amino acids in body fluids. Thus, 

the determination of NPAAs in different biological fluids can be used for the early 

detection of different cancer types [58, 34], as diagnostic tool to inspect vesicoureteral 

reflux samples [31], to detect an immature enzymatic system in preterm neonates [32], 

as indicator of ocular surface diseases [59], to assess the embryo viability in assisted 

reproduction [11, 10], as indicator of pathologies such as coronary artery disease, 
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diabetes renal insufficiency, or Alzheimer´s disease [60], or even for clinical toxicology 

laboratory diagnostics [39]. These examples show the relevance of the determination of 

NPAAs in biological fluids and the imperative need to develop high sensitive 

methodologies able to detect these compounds at the low levels at which they are 

present in biological samples. Table 2 summarizes the main characteristics of the CE 

methodologies developed for the analysis of NPAAs in the period of time reviewed in 

this article. As it can be observed in this table, the preferred detection mode was LIF 

followed by MS2 and UV. The CE approaches developed have been applied to analyze a 

broad range of samples: urine, plasma, serum, tear fluid, saliva, human embryos, or 

human colon cancer and breast cells, among others (see Table 2).  

Some of the developed CE methodologies have been applied to the simultaneous 

analysis of different NPAAs, being CE coupled to LIF the approach mainly used in this 

kind of analysis [30, 18, 14]. For instance, Liang et al., developed a MEKC-LIF 

methodology to achieve the simultaneous determination of homocysteine, homoarginine 

and five related metabolites (including ornithine and citrulline) after derivatization with 

5-carboxyfluorescein succinimidyl ester (CFSE) [30]. Complete baseline separation was 

possible in 10 min using as BGE a 50 mM borate buffer at pH 9.5 containing 30 mM 

SDS and 30 % MeOH. LODs reached were between 0.12 and 1.70 nM which are much 

lower than other previously reported in the literature for the determination of some of 

the analyzed compounds by fluorescence (sensitivity was improved from 5 to 600 fold 

times). This methodology was fully validated using plasma and urine samples from type 

2 diabetics with peptic ulcer bleeding. Also, an interesting CE-LIF method for the high-

speed monitoring of branched chain amino acids uptake in 3T3-L1 cells was developed 

by Harstad and Bowser [18]. The interest in the measurement of these amino acids and 

their downstream metabolites (where GABA, ornithine, citrulline and taurine can be 
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included) is related to the fact that they play key roles in the tricarboxylic acid cycle and 

adipocyte lipogenesis. To carry out the analysis, analytes were sampled using 

microdialysis, on-line derivatized with a fluorescent reagent, separated by CE and 

detected by LIF using the device shown in Figure 4A. Under optimal conditions, the 

separation was achieved in less than 30 s as it can be seen in Figures 4B and 4C. Other 

CE-LIF methodology developed within the time covered in this review has been 

proposed to achieve the simultaneous analysis of different NPAAs (ornithine, citrulline, 

norvaline and norleucine) along with 17 protein amino acids in plasma [14]. This was a 

polymer-based separation method in the presence of mixed micelles and the analytes 

were derivatized with naphthalene-2,3-dicarboxaldehyde (NDA). In spite of the fact that 

the analysis time was too high (180 min), the high level of resolution obtained using this 

methodology allowed the accurate quantitation of amino acids in plasma without the 

need for protein filtration. Taking in mind that it has been demonstrated that free amino 

acids in plasma could be used for the early detection of different cancer types [59], this 

methodology will be suitable for clinical diagnosis using amino acids as biomarkers.  

The simultaneous analysis of several NPAAs not only was performed by CE with LIF 

detection but also using the hyphenation of CE with MS. Thus, the targeted assessment 

of amino acids in urine, including 20 protein amino acids, -alanine, the dipeptide 

carnosine and 5 NPAAs (GABA, ornithine, citrulline, hydroxyproline and 

alloisoleucine) was carried out by CE-MS2 [31]. After optimizing the experimental 

parameters related to the CE-MS interface, BGE and MS settings, the method, based on 

the use of 0.8 M formic acid at pH 1.96 containing 15 % MeOH and a pH stacking 

procedure implemented to enhance the sensitivity (a plug of 12.5 % ammonium solution 

was injected before the sample), enabled the separation of the 27 analyzed compounds 

in less than 30 min with LODs ranging from 0.63 to 29 M. Once the method was 
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validated according to FDA and ICH guidelines, its feasibility was demonstrated by 

analyzing urine samples from children with vesicoureteral reflux which proved that the 

developed CE-MS2 method could be considered as a potential auxiliary diagnostic tool 

to inspect vesicoureteral reflux samples.  

Even though it is possible to find in the literature different works in which CE was used 

for the simultaneous analysis of several NPAAs (as it has been described till now), the 

truth is that in most of the cases, CE analysis was focused on the determination of one 

or two NPAAs, normally along with other protein amino acids. In this line, citrulline 

and arginine levels were determined by CE-LIF in blood samples from preterm 

newborns and mature neonates [32]. Based on the levels measured under the best 

separation conditions (see Table 2), it was possible to differentiate both groups of 

samples since significantly lower levels of both NPAAs were found in preterm neonates 

which implies an immature enzymatic system in these neonates [32]. Citrulline has also 

been used along with taurine and other four neuroactive amines commonly found in 

brain dialysate samples as model compounds to design a portable microchip 

electrophoresis (MCE) with LIF detection [12]. The LODs achieved ranged from 250 

nM to 1.3 M (being 0.36 and 0.42 M for citrulline and taurine, respectively) and were 

adequate for the detection of the investigated analytes at physiologically relevant 

concentrations.     

The relation of taurine levels in biological fluids with different diseases has been 

pointed out by different works. For instance, it was found that it has a close relationship 

with the ocular surface disease so that it can be used as a useful indicator of this 

pathology [59]. For this reason, Du et al., optimized a CE method with indirect 

amperometric detection to carry out the determination of taurine in tear fluid [33]. The 

methodology was based on the use of a 20 mM phosphate buffer containing 20 mM 
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SDS (pH 10.0) as BGE and a serial dual-electrode to conduct the detection. In this 

indirect detection mode, bromide is oxidized to bromine which reacts quantitatively and 

rapidly with taurine, so that the taurine concentration can be determined by the decrease 

of the current for bromine. Once optimized the principal experimental parameters 

governing the analytical performance (bromine concentration, dual-electrode potentials, 

and CE separation conditions), taurine was baseline separated from other interfering 

amino acids within 18 min. The LOD obtained for taurine by the proposed methodology 

(0.18 M) was compared with that obtained by other detection modes, being lower than 

the LOD obtained by pulse amperometric detection, comparative to direct amperometric 

detection, and higher than the LOD obtained by LIF detection (but it requires a 

derivatization step which makes the process more labor-intense) [33]. The successful 

application of the developed method to the determination of taurine in tear fluids makes 

the device attractive for clinical and biomedical applications. An interesting work 

recently published proposes an on-line microdialysis (MD)-CE method with LIF 

detection to measure the in-vivo dynamics of amino acids (taurine, GABA, and 10 

proteinogenic amino acids) biomarkers of metabolism in adipose tissue [17]. 

Microdialysis probes were implanted into the inguinal adipose tissue depot of mice and 

the MD-CE assay enabled to monitor small molecules dynamics in near real time (22 s). 

The LOD obtained for taurine (which represents the concentration of taurine outside the 

probe and prior to the labeling reaction with 4-fluoro-7-nitrobenzofurazan (NBD-F)) 

was 2.7 M. To demonstrate the potential of the developed strategy, in vivo changes 

were assessed after administering an insulin stimulation. In this way, it could be 

observed that taurine, alanine and valine levels increased within 5 min of insulin 

delivering before return to an elevated baseline level.  
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In addition to the two afore-mentioned works, in which CE strategies were employed to 

measure the level of taurine in biological fluids, there are other three articles in which 

taurine, among other compounds, is analyzed by CE. On the one hand, the use of a CE-

MS platform for the metabolomics analysis of saliva samples from patients with oral 

squamous cell carcinoma and healthy controls enabled to propose taurine along with 

other 24 metabolites as oral cancer specific markers [34], and on the other hand, 

MEKC-LIF was employed to obtain the amino acids profiles in the culture media used 

in embryo cultivation after in vitro fertilization in order to assess the embryo viability in 

assisted reproduction [10, 11]. In a first attempt, Celá et al., used the transverse 

diffusion of laminar flow profiles (TDLFP) methodology to achieve the on-line 

derivatization of amino acids with NDA [11]. Using a BGE composed of 35 mM borate, 

55 mM SDS, 2.7 M urea, 1 mM BIS-TRIS propane and 23 mM NaOH, the derivatives 

of 18 protein amino acids, taurine, cysteine and the dipeptide Ala-Gln were baseline 

resolved in 50 min. However, due to the limitations of this methodology, the method 

was subsequently modified to provide better separation conditions in terms of analysis 

time [10]. First, the BGE was changed to avoid urea and to decrease the pH of 9.8 since 

both effects contribute to the dissolution of carbon dioxide giving rise to a modification 

of the ionic strength of the BGE which increases the migration times due to an effect on 

the micelle-analyte distribution equilibrium. The optimum BGE, based on the use of 73 

mM SDS, 6.7 % 1-propanol (v/v) + 0.5 mM HP-β-CD + 135 mM boric acid/NaOH (pH 

9.0), enabled the baseline resolution of the analytes in 46 min. Regarding the on-line 

derivatization, it was accomplished using electrophoretically mediated microanalysis 

(EMMA) which improved the LODs (a LOD of 12 nM was reached for taurine). Thus, 

the improved MEKC-LIF methodology was applied to the non-invasive targeted 

metabolomics of human embryos to find a correlation between the embryo´s 
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developmental potential and amino acids turnover. Statistical analysis of the data 

showed that the discrimination between successfully and unsuccessfully implanted 

embryos was partial probably due to the small number of statistically significant 

samples [10].  

Homocysteine is a low molecular weight aminothiol of high relevance in biological 

processes since higher levels in plasma or serum have been related with different 

pathologies such as coronary artery disease, diabetes renal insufficiency, or Alzheimer´s 

disease, among others [60]. Along with homocysteine, it is also relevant to take into 

consideration the proteinogenic amino acid cysteine because the ratio 

cysteine/homocysteine reflects the bioavailability of homocysteine [61]. Ivanov et al., 

developed a CE-UV approach based on the use of 1,1’-thiocarbonyldiimidazole (TCDI) 

as derivatizing reagent for determining the levels of homocysteine and cysteine in 

plasma [35]. In this work, the use of an electrokinetic injection with pH mediated 

stacking enabled to reach a LOD for homocysteine of 0.8 M. Subsequently, the 

authors improved the methodology introducing several modifications which enabled to 

achieve a LOD of 0.2 M [36]. These modifications included the use of a liquid-liquid 

extraction with chloroform-ACN to purify the sample and determine homocysteine and 

cysteine levels in urine (the previous approach was not suitable for determining both 

analytes in matrices like urine in which salt levels vary considerable), a different 

composition of the running buffer (see Table 2), and an in-capillary preconcentration 

step based on the use of field amplified sample stacking and pH mediated stacking. In 

this way, homocysteine and cysteine levels were determined in human plasma and urine 

samples from healthy subjects and patients with kidney disorders (see Figure 5), 

observing a decrease in the homocysteine levels in urine from patients with kidney 

disorders [36]. Other detection modes different from UV were also hyphenated with CE 
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to perform the determination of homocysteine in biological samples. Thus, LIF was 

used as detection mode in a high-sensitive CE method developed for chemical 

cytometry of homocysteine and other thiol compounds (cysteine, glutathione, and γ-

glutamylcysteine) within human colon cancer (HCT-29) and breast (MCF-10A) single 

cells [37]. Here, 1,3,5,7-tetramethyl-8-phenyl-(2-maleimide)-difluoroboradiaza-s-

indacene (TMPAB-o-M) was employed as fluorogenic probe in a post-column sheath 

flow cuvette. On the other hand, MS detection has demonstrated to be a powerful 

technique to carry out the analysis of homocysteine, cysteine, methionine, and glutamic 

acid in plasma by CE [38]. Since the levels of these compounds are altered in plasma of 

amytrophic lateral sclerosis (ALS) patients, their determination is relevant because they 

could be pointed out as potential biomarkers of this disease. Prior to analyze these 

compounds by CE-MS2, the protein depletion of plasma samples was performed using 

DTT and cold acetone, and IAA was added to the sample to protect the thiol groups 

against oxidation. After validating the CE-MS2 methodology, it was applied to the 

analysis of plasma samples from healthy subjects and patients with ALS, showing a 

significantly higher concentration of glutamic acid and cysteine in the latter group.  

The analysis of other NPAAs such as GABA, hydroxyproline, pyroglutamic acid and 

betaine by CE was also performed. To analyze the first one, Wang et al., developed a 

MEKC-LIF method for measuring amino acid secretion from islets of Langerhans, an 

endocrine portion of pancreas responsible for helping to maintain glucose homeostasis, 

since they seem to play a critical role in cell functionality [13]. Under the optimized 

conditions for NDA derivatization and CZE separation (25 mM phosphate buffer 

containing 30 mM SDS at pH 8.3), GABA and other 17 proteinogenic amino acids were 

analyzed in 21 min allowing the quantitation of 14 of them with LODs ranging from 0.2 

to 7 nM (namely the LOD obtained for GABA was 3 nM). The developed methodology 
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permitted to quantify the secretion amounts of amino acids from islets incubated in low 

or high glucose. The effect of glucose and 2,4-dinitrophenol (a pharmacological agent) 

in these secretions was tested observing a suppression effect of glucose on GABA 

release likely acting through ATP inactivation of glutamate decarboxylase [13]. 4-

hydroxiproline and prolyl hydroxiproline in urine were suggested as biomarkers for 

bone turnover and osteoporosis, reason for why Zhang et al., proposed a flow-gated CE-

LIF method to carry out the rapid determination of 4-hydroxiproline and prolyl 

dipeptides in urine samples. The developed methodology included the treatment of 

urine samples with OPA to block primary amines followed by the derivatization of the 

secondary ones with 4-fluoro-7-nitro-2,1,3 benzoxadiazole. Then, using a mixture of 

borate, cholate and deoxycholate at 40 mM each (pH 9.2) as running buffer, proline, 4-

hydroxiproline and 4 propyl dipeptides were separated in just 30 s achieving LODs at 

the nM level [16]. An interesting investigation accomplished by Holzek et al. 

demonstrated the suitability of CE for clinical toxicology laboratory diagnostic [39]. 

High anion gap metabolic acidosis habitually complicates paracetamol poisoning and is 

normally attributed to lactic acidosis, renal failure or compromised hepatic function. 

But, it can also be produced by the accumulation of pyroglutamic acid (or 5-

oxoproline). Therefore, 5-oxoprolinemia could be considered to the diagnosis of 

patients presenting acidosis after acute paracetamol overdose. Then, to determine 

paracetamol and pyroglutamic acid levels in serum samples from patients after either 

intentional paracetamol ingestion or therapeutic misadventures, these authors developed 

a CE-UV method based on a simple sample treatment and the employ of 40 mM 

CHES/sodium hydroxide at pH 10.2 as BGE. By using this methodology, it was 

possible to carry out the quantification of pyroglutamic acid in case of paracetamol 

overdose. Finally, Forteschi et al., designed an isotope dilution CE-MS2 method to 
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detect, for the first time, betaine, choline and dimethylglycine simultaneously in plasma 

samples, since they provide relevant information related to the flow of methyl groups in 

key biological processes, particularly in folate deficiency stages [40]. Under the 

experimental conditions detailed in Table 2, the compounds were detected in 22 min 

achieving LODs of 0.43, 0.62, and 0.31 M for choline, betaine and dimethylglycine, 

respectively. Based on the concentration of the three analytes measured by the 

application of the developed CE-MS2, it was possible to find differences between the 

plasma samples of healthy controls and patients with chronic kidney disease.  

During the period of time covered in this review just a research work described the 

enantioselective determination of a chiral NPPA in a biological sample. Namely, 

Sánchez-Lopéz et al., developed a CE-MS2 methodology for the simultaneous 

enantioseparation of all the chiral constituents of the phenylalanine-tyrosine metabolic 

pathway; the protein amino acids phenylalanine and tyrosine, the catecholamines 

dopamine, norepinephrine and epinephrine, and the NPPA 3,4-dihydroxyphenylalanine 

(DOPA)) [41]. The method, consisting of the use of 180 mM methyl-β-cyclodextrin 

plus 40 mM 2-hydroxypropyl-β-CD in 2 M formic acid (pH 1.2) as BGE and a large 

volume sample stacking as in-capillary preconcentration step, enabled for the first time, 

the simultaneous enantiomeric separation of all the chiral compounds involved in this 

metabolic pathway, in 90 min with LODs from 40 to 150 nM. The applicability of this 

methodology was demonstrated through the successful analysis of some of the 

compounds investigated in rat plasma samples (Figure 6).  

 

CONCLUDING REMARKS 

This article reviews the works dealing with the determination of non-protein amino 

acids in food and biological samples published from 2015 to 2018. Non-protein amino 
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acids are related with the quality and safety of food and they have also been considered 

as biomarkers of some pathologies. For this reason, the determination of these 

compounds in real samples is relevant. During the period of time covered by this 

review, the analysis of non-protein amino acids by CE in food and biological samples 

was mainly achieved using MEKC and CZE modes. The most employed detection 

systems include direct and indirect UV absorption, LIF, capacitively coupled 

contactless conductivity, electrochemical detection and mass spectrometry. In most 

cases, a derivatization step is required to provide chromophore and fluorophore groups 

into non-protein amino acids in order to enable their determination or to improve the 

sensitivity. Thus, many labeling reagents were employed such as NDA, NBD-F, FITC, 

FMOC-Cl, AQC, DNS-Cl, or OPA.  CE and MCE are attractive strategies providing 

good sensitivity and selectivity to carry out the analysis of a great number of complex 

food samples such as beverages, vegetables, fermented products or shellfish and 

biological samples such as urine, plasma, serum, tear fluid, saliva, etc. Moreover, the 

chiral separation of non-protein amino acids in food and biological samples has also 

demonstrated to provide relevant information of these samples, but the number of 

publications in the last years is scarce. The use of a chiral selector in the separation 

buffer or a chiral stationary phase allow the separation of the enantiomers of non-

protein amino acids giving information about food quality and safety or about the 

diagnostic or treatment of some pathologies. Due to the high number of non-protein 

amino acids whose function has not been investigated yet and whose presence in real 

samples is still unknown, the interest of the development of analytical methodologies 

capable to analyze these compounds in real samples is of high interest for scientists.  
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FIGURE CAPTIONS 

Figure 1. Comparison of electropherograms of AAs profile of plastron with other 

amino acid-containing materials. Experimental conditions: BGE, 20 mM borate and 

phosphate containing 0.1 M SDS and 6% methanol (pH 8.74); voltage, 25 kV; 

temperature, 25ºC; injection, 9 kV for 9 s at 25ºC; UV detection at 214 nm. 

Reprinted from [21], copyright (2017) with permission from Elsevier. 

Figure 2. Electropherograms of milk sample and standard solution with established 

CZE indirect UV method. Sample information: A-B) real milk samples, C) standard 

mixture of carnitine (carn) and acetyl-carnitine (a-carn) (0.5 mmol/L), D) CZE with 

direct UV detection for sample (B) spiked with carnitine and acetyl-carnitine (4.0 

mmol/L). Experimental conditions: pH 2.1, 3.0 mmol/L of melamine solution (in 10% 

methanol), voltage 10 kV.  

Reprinted from [23], copyright (2017) with permission from Elsevier. 

Figure 3. A) Electropherograms corresponding to the enantiomeric separation of 

different FMOC-NPAAs (0.2 mM) obtained under the best separation conditions. 

Experimental conditions: BGE, 10 mM of the corresponding CD in 100 mM formate 

buffer (pH 2.0); uncoated fused-silica capillary, 58.5 cm (50 cm to the detector window) 

x 50 µm ID; UV detection at 210 nm (except for Pyro which was detected at 200 nm); 

voltage, -20 kV; injection by pressure in the cathodic end, 50 mbar for 4 s. * Indicates 

the derivatizing reagent (FMOC). B) Electropherogram obtained for (a) DL-FMOC-

citrulline standard (0.025 mM) and two food supplements at 0.2 mM L-Citrulline (b) 

FS1, spiked with D-citrulline and non spiked and (c) FS6, spiked with D-citrulline and 

non spiked. Experimental conditions: BGE, 10 mM sulfated γ-CD in 100 mM formate 

buffer (pH 3.0); uncoated fused-silica capillary, 48.5 cm (40 cm to the detector window) 
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x 50 µm ID; UV detection at 210 nm, applied voltage, -20 kV; temperature, 25 ºC; 

injection by pressure in the cathodic end, 50 mbar for 15 s. 

Reprinted from [29], copyright (2016) with permission from Elsevier. 

Figure 4. A) Schematic on the online MD-CE system. B) Full electropherogram and C) 

expanded one from an online analysis of CE analysis of 3T3-L1 cells supernatant after 

30 min of incubation with Ringer´solution, glucose, isoleucine, leucine and valine. 

Experimental conditions: BGE, 90 mM borate containing 35 mM α-CD (pH 9.8); 

capillary, 50 µm x 30 cm; voltage, 21 kV. Peaks: (1) lysine, (2) isoleucine, (3) leucine, 

(4) ornithine, (5) methionine, (6) phenylalanine, (7) valine, (8) ornithine, (9) GABA, 

(10) glutamine, (11) alanine, (12) threonine, (13) β-alanine, (14) glycine, (15) NBDOH, 

(16) taurine, (17) internal standard, (18) glutamate, and (19) aspartate.  

Reprinted from [18] copyright (2016) with permission from ACS publications. 

Figure 5. Electropherograms corresponding to the analysis of homocysteine and 

cysteine in blood plasma and urine by CE-UV. A) Plasma without additions, B) spiked 

with internal standard (penicillamine), C) spiked with internal standard, homocysteine 

and cysteine, D) urine. Experimental conditions: BGE, 0.1 M phosphate containing 30 

mM TEA, 25 M CTAB, 2.5 M SDS and 2.5% PGE-600 (pH 2); capillary, 50 µm x 23.5 

cm; voltage, -17 kV; temperature, 30 ºC; injection: 2250 mbar*s. Peaks: (1) cysteine, 

(2) penicillamine, (3) homocysteine.  

Reprinted from [36] copyright (2017) with permission from Wiley-VCH. 

Figure 6.  Extracted Ion Electropherograms obtained by CE-MS2 method of A) a rat 

plasma sample (the inserts show the MS2 spectra of L-Phe and L-Tyr peaks), and B) a 

spiked rat plasma sample.  Experimental conditions: BGE, 2 M formic acid containing 

180 mM M-β-CD and 40 mM HP-β-CD (pH 1.2); capillary, 50 µm x 120 cm; voltage, 

30 kV; temperature, 15 ºC; injection, 50 mbar x 250 s.   
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Reprinted from [41] copyright (2016) with permission from Elsevier.
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Table 1. Characteristics of the analytical methodologies developed for the determination of NPAAs in foods by CE. 
 

NPAA CE-mode/detection  Separation conditions* Separation from: Sample treatment Application LOD** Ref 
Hydroxyproline  
Hydroxylysine 

MEKC-UV (214 nm) 
 
 

20 mM sodium tetraborate 
and sodium phosphate + 0.1M 
SDS + 6% MeOH (pH 8.7); 
capillary, 50 µm x 50 cm; 25 
kV, 25ºC 
 

18 protein amino 
acids 

Plastron, fish skin, pig skin, 
chicken tendon, calf tendon, 
pork, chicken and fish: dried, 
pulverized,dilution, alkali 
digestion, filtration and 
neutralization with HCl 
before derivatization with 
Dns-Cl 
Egg and milk: acid 
hydrolysis, filtration, 
lyophilization,dilution,alkali 
digestion, filtration and 
neutralization with HCl 
before derivatization with 
Dns-Cl 

Potential of amino acids as 
markers of adulterations of 
plastron-derived functional 
foods 

Hydroxypro
line: 1.57 x 
10-4 mg/mL  
 
 
Hydroxylysi
ne: 6.65 x 
10-4 mg/mL 
 

[21] 

Hydroxyproline MEKC-UV (265 nm) 
 
 

60 mM sodium borate + 30 
mM SDS + 5% MeOH (pH 
10.1); capillary, 50 µm x 72 
cm; 25 kV, 23ºC 

20 protein amino 
acids and Cystine 
 

10-Fold water dilution 
(previously centrifuged and 
filtered), and derivatization 
with FMOC  

Characterization and 
quantification of amino acid 
profile in passion fruit 
juices  

- [20] 

Carnitine  
Acetyl-L-carnitine 

CZE-indirect UV (200 
nm) 
 
 

3.0 mM melamine + 10 % 
MeOH (pH 2.1); capillary, 75 
µm x 39 cm; 10 kV, 20ºC 

- Extraction with ACN:MeOH 
(4:1 v/v), centrifugation, 
evaporation and dilution in 
water 
 

Determination of L-
Carnitine and Acetyl-L-
carnitine in liquid milk 
samples 
 

L-carnitine: 
3.0 µM 
 
Acetyl-L-
carnitine: 
5.0 µM 

[23] 

γ-Aminobutyric 
acid  

Citrulline 

 

MEKC-LIF 
(λex 442 nm; λem 485 nm) 
 

40 mM sodium tetraborate + 
60 mM SDS + 2 mM HP-β-
CD (pH 9.2); capillary, 10 µm 
x 10 cm; -25 kV, 25ºC 

17 protein amino 
acids, phosphoryl 
ethanolamine and 
ethanolamine 

50-Fold dilution with water 
(previously degassed in 
ultrasonic bath) followed by 
NDA derivatization in 
presence of cyanide 

Quantitation of 19 amino 
acids, phosphoryl 
ethanolamine and 
ethanolamine in beers 

γ- 
Aminobutyr
ic acid and 
Citrulline: 
2.0-5.0 nM 

[9] 
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Table 1. Continued 

NPAA CE-mode/detection  Separation conditions* Separation 
from: Sample treatment Application LOD** Ref 

Homoarginine  
β-N-Oxalyl-L-
α,β-
diaminopropionic 
acid 

CZE-UV (195 nm) 
 
 

25 mM sodium borate +  5 mM 
sodium sulfate (pH 9.2); capillary, 
75 µm x 50 cm; 21 kV, 22ºC 

- Extraction with MeOH:water 
(60:40 v/v) (under Ultra-
Turrax), centrifugation, 
evaporation and dilution in 
sample buffer (10 mM sodium 
borate + 5 mM sodium sulfate + 
12.84 mM hippuric acid), 
filtration prior to the CE 
analysis. 
Extraction with ethanol:water 
(60:40 v/v) (under rotating 
shaking), centrifugation, 
evaporation and dilution in the 
sample buffer (10 mM sodium 
borate + 5 mM sodium sulfate + 
12.84 mM hippuric acid), 
filtration before CE analysis. 

Simultaneous analysis of 
β-N-Oxalyl-L-α,β-
diaminopropionic acid 
and Homoarginine in 
Lathyrus species 
 

- [24] 

Pyroglutamic acid 
Taurine  
 

MEKC-UV (200 nm)  
 
 

25 mM sodium tetraborate + 50 mM 
SDS (pH 9.1); capillary, 50 µm x 56 
cm; 30 kV, 35ºC 
 

Organic acids, 
13 protein 
amino acids, 
Cystine and 
Tryptamine 

Water solution, basic hydrolysis 
(with α-amylase), thermal 
sterilization, microfiltration and 
fermentation (tapioca starch and 
yeast) before CE analysis 

Simultaneous 
determination of lactic 
acid and its organic 
impurities in 
fermentatively products 

- [25] 

Taurine  CZE- C4D 
 
 
 
 
 

Commercial equipment: 20 mM 
CHES + 10 mM NaOH (pH 9.5); 
capillary, 25 µm x 11.5 cm; 10 kV 

Citrate and 
Carbonate 

Sonication (to remove dissolved 
gases) and 40-fold dilution for 
energy drink 

Determinationof Taurine 
in energy drink 
 

14.4 mg/L 
 
 
 

[26] 

Instrument with a coaxial flow-
gating interface: 20 mM CHES + 10 
mM NaOH (pH 9.5); capillary, 25 
µm x 18 cm; 20 kV, 25ºC 

 
8.2 mg/L 

MCE-LIF 
(λex 635 nm; λem 495 
nm) 

100 mM sodium borate (pH 9.9); 
glass microchip with a simple cross 
channel design; separation channel, 
(60 mm x 25 µm x 70 µm (length x 
depth x width)), 45 mm from 
injection to the detector 

Lysine and 
Vitamine B3 

2-Fold dilution with 40 mM 
sodium borate, pH adjustment 
(8.60), derivatization with Cy5 
and dilution with 10 mM 
sodium borate (pH 9.88) 
 

Analysis of amino acids 
(Lysine and Taurine) and 
vitamin B3 (NA) in 
functional drinks 

0.50 nM [27] 



40 
 

Table 1. Continued 

NPAA CE-mode/detection  Separation conditions* Separation from: Sample treatment Application LOD** Ref 

β-N-
Methylamino-L-
alanine 

 
 

CZE-UV (192 nm) 
 

250 mM sodium phosphate 
(pH 3.0); capillary, 50 µm x 
46 cm; 25 kV, 17ºC  
 

Four β-N-
Methylamino-L-
alanine isomers 
 
 

Acid hydrolysis, drying and 
dilution with HCl, clean-up, 
drying and re-dilution with 
HCl prior to CE analysis 

Separation of five β-N-
Methylamino-L-alanine 
isomers and quantification 
of β-N-Methylamino-L-
alanine in cycad, mussel 
and lobster samples 

0.25 µg/mL 
20 mg/ga 

[28] 

CZE-MS2 5 M formic acid + 10 % (v/v) 
ACN (pH 1.55); capillary, 50 
µm x 100 cm; 20 kV, 17ºC 

0.8 ng/mL 
16 ng/ga 

Domoic acid MCE-LIF 
(λex 475 nm; λem 535 nm) 

5 mM sodium tetraborate (pH 
9.2); glass microchipcross-
channel design; separation 
channel, (49 mmx 30 µm x 80 
µm (length x depth x width)), 
27 mm from injection to the 
detector; 400 V/cm 

- 
 

Extraction with 
MeOH:water (1:1 v/v), 
centrifugation, filtration and 
derivatization with FITC 

Determination of Domoic 
acid in shellfish tissues 
 

0.28 nM  [19] 

pCEC-LIF 
(λex 473 nm; λem 530 nm) 

5 mM phosphate:ACN (40:60 
v/v) (pH 2.5) at a flow rate of 
1.2 µL/min; packed capillary 
column, 100 µm x 55 cm 
(total length of which 20 cm 
was packed with ODS 
particles); 6 kV, 25ºC; 
supplementary pressure 7.2 
MPa 

- Extraction with 
MeOH:water (1:1 v/v), 
centrifugation, filtration, 
clean-up, purification and 
derivatization with NBD-F 
before CEC analysis 

Quantification of Domoic 
acid in shellfishsamples 
(oyster, mytilus edulis and 
ruditapes) 

10 ng/mLc 
15 ng/gb 

[15] 
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Table 1. Continued 

NPAA CE-mode/detection  Separation conditions* Separation from: Sample treatment Application LOD** Ref 
Norvaline  
Norleucine  
2-Aminoadipic 
acid  
Seleno-
methionine   
3,4-Dihydroxy-
phenylalanine 
Pyroglutamic acid 
Pipecolic acid  
Citrulline 
 

EKC-UV (210 nm) 
 
 
 
 
 
 
 

10 mM sulfated-CDs in 100 
mM formate (pH 2.0); 
capillary, 50 µm x 40 cm; -20 
kV,15-25ºC 
 

- 
 
 

Water solution (sonication), 
centrifugation, filtration, 
and derivatization with 
FMOC before CE analysis 

Individual enantiomeric 
separation of the 8 NPAAs 
studied and development of 
a method for the 
quantitation of L- and D-
Citrulline in food 
supplements 

D-
Citrulline: 
0.21 µM 
 
 
L-Citrulline: 
0.18 µM 

[29] 

 
ACN, acetonitrile; C4D, capacitively coupled contactless conductivity; CHES, 2-(N-cyclohexylamino)ethane sulfonic acid; Cy5, Sulfoindocyanine succinimidyl ester; CZE, capillary zone 
electrophoresis; Dns-Cl, dansyl chloride; FITC, fluorescein isothiocyanate; FMOC, 9-fluorenyl-methyloxycarbonyl; HP-β-CD, 2-hydroxypropyl-β-cyclodextrin; LIF, laser-induced fluorescence; 
MCE, microchip capillary electrophoresis; MEKC, micellar electrokinetic chromatography; MeOH: methanol; MS2, tandem mass spectrometry; NBD-F, 4-Fluoro-7-nitro-2,1,3-benzoxadiazole; 
NDA, 2,3-naphthalenedicarboxaldehyde; ODS, octadecyl silica; pCEC, pressurized capillary electrochromatography; SDS, sodium dodecyl sulfate. 
*Capillary dimensions expressed as internal diameter x effective length (cm to the detector).  
**LODs units expressed as in the original work. These LODs are referred to the concentration of injected standard solutions except for a) LODs referred to the dry sample mass, b) LODs 
referred to the wet sample weight, and c) LOD referred to the concentration of injected real sample solutions extracts. 
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Table 2. Characteristics of the analytical methodologies developed for the determination of NPAAs in biological samples by CE. 
 

NPPA CE-mode/detection Separation 
conditions* Separation from: Sample treatment Application LOD** Ref 

Homocysteine  
Homoarginine  
Ornithine  
Citrulline 

MEKC-LIF 
(λex 488 nm; λem 520 nm) 
 
 

50 mM borate + 30 
mM SDS + 30 % 
MeOH (pH 9.5); 
capillary, 50 µm x 50 
cm; 21 kV, 21 ºC 

Arginine, 
asymmetric 
dimethyl-L-
arginine, 
symmetric 
dimethyl-L-
arginine, and 
Monomethyl-L-
arginine  

Protein precipitation with 5-
sulfosalicylic, evaporation to 
dryness under vacuum, 
redisolution in BGE, and 
derivatization with CFSE before 
CE analysis.  

Determination of 
Homoarginine, 
Homocysteine and 
Arginine 
metabolic 
derivatives in 
fluids from Type 2 
diabetics with 
peptic ulcer 
bleeding 

Ornithine: 1.70 
nM 
 
Citrulline: 1.67  
nM 
 
Homoarginine:  
0.88 nM 
 
Homocysteine: 
0.12 nM 

[30] 

γ-Aminobutyric acid  
Ornithine  
Citrulline  
Taurine 

EKC-LIF 
(λex4 88 nm; λem 520 nm) 
 
 

90 mM borate + 35 
mM α-CD (pH 9.8); 
capillary, 50 µm x 30 
cm; 21 kV 

12 protein amino 
acids 

On-line derivatization with 20 
mM NBD-F/250 µM HCl in 
50% MeOH  

Measurement of 
branched chain 
amino acid uptake 
in 3T3-L1 cells 

- [18] 

Ornithine  
Citrulline  
Norvaline  
Norleucine 

CZE-LEDIF 
(λex 405 nm; λem 486 nm) 
 
 

1% PVP + 10 mM 
HEPES (pH 7.0); PVP 
coated capillary, 75 
µm x 28 cm; -20 kV 

 17 protein amino 
acids 

Protein precipitation by heating, 
derivatization with NDA before 
CE inyection.  

Separation of 
amino acids in 
human plasma 

- [14] 

γ-Aminobutyric acid  
Ornithine  
Citrulline  
Hydroxyproline  
Alloisoleucine 

CZE-(IT)MS2 

 

 

0.8 M formic acid + 
15 % MeOH (pH 
1.96); capillary, 50 
µm x 85 cm; 30 kV, 
20ºC 
 

20 protein amino 
acids, Carnosine 

Centrifugation and dilution prior 
to CE analysis 

Determination of 
amino acids in 
urine samples 

γ-Aminobutyric 
acid: 4 µM 
 
Ornithine: 4.8 
µM 
 
Citrulline: 7.7 
µM 
 
Hydroxyproline: 
3.7 µM 
 
Alloisoleucine: 
2.5 µM 

[31] 
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Table 2. Continued 

NPPA CE-mode/detection Separation 
conditions* Separation from: Sample treatment Application LOD** Ref 

Citrulline CZE-LIF 
(λex 488 nm; λem 510 nm) 

20 mM carbonate (pH 
10.0); capillary, not 
indicated, 27 kV 

Arginine Protein precipitation with ACN, 
derivatization with FITC and 
dilution before CE analysis.  

Determination of 
plasma levels of 
Arginine and 
Citrulline in 
preterm and full-
term neonates 

- [32] 

Citrulline + Taurine 
 

MCE-LIF 
(λex 445 nm; λem 480 nm) 
 

15 mM borate + 1.4 
mM SBEC + 10 % 
DMSO (pH 9.2); 10 
kV 

Arginine, 
Glutamic acid, 
Aspartic acid and 
Histamine 

Fluorogenic derivatization with 
NDA. 
 

Analysis of amino 
acid 
neurotransmitters 
in brain dialysis 
samples 

Citrulline: 
0.36 µM 
 
Taurine: 0.42 
µM 
 

[12] 

Taurine MEKC-SDED  
 

20 mM phosphate + 
20 mM SDS (pH 
10.0); capillary, 25 
µm x 40 cm; 12 kV  

20 protein amino 
acids 

Extraction with water, protein 
precipitation wih ACN, 
evaporation to dryness under 
nitrogen stream, redisolution in 
BGE.  

Determination of 
Taurine in human 
tear fluid 

0.18 µM [33] 

Taurine  
γ-Aminobutyric acid 

EKC-LIF (λex 488 nm) 90 mM borate + 35 
mM α-CD (pH 10.0); 
capillary, 5 µm x 6.2 
cm; -23 kV 

10 protein amino 
acids 

On-line derivatization with 20 
mM NBD-F/250 µM HCl in 50 % 
MeOH. 

Monitoring the in 
vivo dynamics of 
amino acids 
biomarkers of 
metabolism in 
adipose tissue 

2.7 µM [17] 
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Table 2. Continued 

NPPA CE-mode/detection Separation 
conditions* Separation from: Sample treatment Application LOD** Ref 

Taurine 
 

CZE-(TOF)MS Commercial 
electrophoresis buffer 
for anion and cation 
analysis; capillary, 50 
µm x 80 cm 

24 metabolites 
including 5 
protein amino 
acids 
 

Centrifugation, filtration and 
disolution in water. 

Metabolome 
analysis of saliva 
samples 

- [34] 

MEKC-LIF 
(λex 488 nm; λem 515 nm) 
 

35 mM borate + 55 
mM SDS + 2.7 M 
urea + 1 mM BIS-
TRIS propane + 23 
mM NaOH (pH 9.8); 
capillary, 50 µm x 50 
cm; 30 kV, 24ºC 

18 protein amino 
acids, Alanine-
Glutamine, 
Cystine 

Protein precipitation with MeOH.  
On-capillary derivatization by 
TDLFP: sequential injection of  
1.5 mM NDA in the reaction 
buffer with 50 % MeOH, sample, 
and 10 mM NaCN in the reaction 
buffer.  

Assessing 
developmental 
capacity of human 
embryos after in 
vitro fertilization 

0.02 µM [11] 

MEKC-LIF 
(λex 488 nm; λem 515 nm) 
 
 

73 mM SDS +  6.7 % 
(v/v) 1-propanol + 0.5 
mM HP-β-CD + 135 
mM boric acid/NaOH 
(pH 9.00); capillary, 
50 µm x 45 cm; 30 
kV, 25ºC 

18 protein amino 
acids 
Alanine-
Glutamine, 
Cystine 

Protein precipitation with 
MeOH:IPA (4:1) and dilution.  
On-capillary derivatization by  
EMMA: sequential injection of 1 
mM NDA in the reaction buffer 
with a 12.5 % MeOH/IPA (4:1) 
mixture, sample, 1 mM NDA in 
the reaction buffer with a 12.5 % 
MeOH/IPA (4:1) + 2.5 mM 
NaCN. Reaction products were on 
capillary preconcentrated by 
sweeping.  

Non-invasive 
targeted 
metabolomics of 
human embryos.  

12 nM 
 
 

[10] 
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Table 2. Continued 

NPPA CE-mode/detection Separation conditions* Separation from: Sample treatment Application LOD** Ref 

Homocysteine MEKC-UV 
(λabs 285 nm) 

0.1 M TEA + 0.15 M 
formic acid + 50 µM 
CTAB (pH 3.9); 
capillary, 50 µm x 21.5 
cm; -12 kV, 25ºC 

Cysteine, 
Cysteine-Glycine 

Reduction with DTT before TCDI 
derivation.  

Rapid detection of 
total 
Homocysteine and 
Cysteine in human 
plasma 

0.8 µM 
 

[35] 

MEKC-UV 
(λabs 285 nm) 

0.1 M phosphate + 30 
mM TEA + 25 M 
CTAB + 2.5 M SDS + 
2.5% PGE-600 (pH 2); 
capillary, 50 µm x 23.5 
cm; -17 kV, 30ºC 

Cysteine 
 

Derivatized with TCDI, extraction 
with chloroform-ACN. 

Determination of 
Homocysteine and 
Cysteine levels in 
human plasma and 
urine 

0.2 µM [36] 

CZE-LIF 
(λex 473 nm) 

10 mM sodium citrate 
(pH 7.5); capillary, 50 
µm x 50 cm; 15 kV, 
room temperature 

Glutation, 
Cysteine, γ- 
glutamylcysteine 

Cells lines were resuspended in 
PBS and incubated with NEM. 
Single cells were incubated with  
TMPAB-o-M and mixed with the 
runing buffer.  

Chemical 
cytometry of thiols 
in human colon 
cancer and breast  
cells  

13 pM [37] 

CZE-(QqQ)MS2  5 M acetic acid; 
capillary, 50 µm x 60 
cm; 25 kV, 20ºC 

Glutamic acid, 
Cysteine, 
Methionine 

Blood samples + EDTA, 
centrifugation. 
For analysis of aminothiols: Mix 
samples with DTT, IAA and 
ACN, centrifugation and analysis 
of the supernatant. 

Determination of 
Homocysteine as 
potential 
biomarkers of 
amyotrophic 
lateral sclerosis 

35 nM [38] 

γ-Aminobutyric acid MEKC-LIF 
(λex 450 nm; λem 480 nm) 

25 mM phosfate + 30 
mM SDS (pH 8.3); 
capillary, 25 µm x 50 
cm; 29 kV, 25ºC 

17 protein amino 
acids 

Derivatization with NDA, 
cyanide, and internal standard (D-
Nva) (9:1:1:1, 
sample:NDA:cyanide:D-
norvaline) 

Measuring amino 
acid secretions 
from islets of 
Langerhans 

3 nM [13] 

Hydroxyproline MEKC-LIF 
(λex 492 nm; λem 520 nm) 
 

40 mM cholate + 40 
mM deoxycholate + 40 
mM tetraborate (pH 
9.2); capillary, 10 µm x 
10 cm;  
-25 kV, room 
temperature 

Proline, 4 propyl 
dipeptides 

Acid Hydrolysis, 100-fold 
dilution, addition of EDTA, OPA 
and derivatization with NBD-F 
prior to CE analysis.  

Rapid 
determination of 
free prolyl 
dipeptides and 
Hydroxyproline in 
urine 

70 nM [16] 
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Table 2. Continued 

NPPA CE-mode/detection Separation 
conditions* Separation from: Sample treatment Application LOD** Ref 

Pyroglutamic acid CZE-UV 
(λabs 200 nm) 

40 mM CHES/NaOH 
(pH 10.2); capillary, 
25 µm x 23 cm; 30 
kV, 25ºC  

Paracetamol Protein precipitation with ACN 
and NH4OH, centrifugation and 
analysis of the supernatant. 
 

Quantification of 
Paracetamol and 
Pyroglutamic acid 
in serum 

1.3 µg/mL [39] 

Betaine CZE-(QqQ)MS2 10 % MeOH v/v + 5 
% formic acid v/v; 
capillary, 75 µm x 120 
cm; 28 kV, 20ºC, 
pressure assistance: 
40 mbar 

Choline, 
dimethylglycine 

Protein precipitation with ACN, 
evaporation to dryness under 
vacuum, redisolution in water. 

Simultaneous 
quantification of 
Choline, Betaine, 
and 
Dimethylglycine in 
human plasma 

0.62 µM [40] 

3,4-Dihydroxy-phenylalanine  EKC-ESI-MS2 
 
          

180 mM M-β-CD + 
40 mM HP-β-CD + 2 
M formic acid (pH 
1.2); capillary, 50 µm 
x 120 cm; 30 kV, 15 
ºC 
 

Phenyalanine, 
Tyrosine, 
Dopamine, 
Norepinephrine, 
and Epinephrine 

Precipitation of proteins with 
ACN (plasma/ACN, 1:2), 
cenntrifugation, dilution of the 
supernatant with formic acid, 
sonication and filtration. 
 

Simultaneous 
enantioseparation 
of all the chiral 
constituents of the 
Phenylalanine-
Tyrosine metabolic 
pathway 

L-3,4-
Dihydroxy-
phenylalanine: 
54 nM 

[41] 

 
α-CD, α-cyclodextrin; ACN, acetonitrile; BIS-TRIS propane, 1,3-bis[tris(hydroxymethyl)methylamino]propane; CFSE, 5-carboxyfluorescein succinimidyl ester; CHES, 2-(N-
cyclohexylamino)ethane sulfonic acid; CTAB, hexadecyltrimethylammonium bromide; CZE, capillary zone electrophoresis; DMSO, dimethyl sulfoxide; DTT, dithiotreitol; EDTA, tetrasodium 
salt of ethylenediaminetetraacetic acid; EMMA, electrophoretically mediated microanalysis; FITC, fluorescein isothiocyanate; HP-β-CD, 2-hydroxypropyl-β-cyclodextrin; HEPES, 4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid; IAA, iodoacetic acid; IPA, 2-propanol; (IT)MS, ion trap; LEDIF, light emitting diode induced fluorescence; LIF, laser-induced fluorescence; M-
β-CD, methyl-β-cyclodextrin; MEKC, micellar electrokinetic chromatography; MeOH, methanol; MS2, tandem mass spectrometry; NBD-F, 4-Fluoro-7-nitro-2,1,3-benzoxadiazole; NDA, 2,3-
naphthalenedicarboxaldehyde; NEM, N-ethylmaleimide; ODS, octadecyl silica; OPA, o-phthalaldehyde; PBS, phosphate buffered saline; PGE-600, polyethylene glycol 600; PVP, 
polyvinylpyrrolidone; (QqQ)MS2, triple quadrupole mass spectrometry; SBEC, sulfobutylether-β-cyclodextrin; SDED, serial dual-electrode detection; SDMA, symmetric dimethyl-L-arginine; 
SDS, sodium dodecyl sulfate; TCDI, 1,1-thiocarbonyldiimidazole; TDLFP, transverse diffusion of laminar flow profiles; TEA, triethanolamine; TMPAB-o-M, 1,3,5,7-tetramethyl-8-phenyl-(2-
maleimide)-difluoroboradiaza-s-indacene; (TOF)MS, time-of-flight mass spectrometry; UV, ultraviolet. 
*Capillary dimensions expressed as internal diameter x effective length (cm to the detector). 
**LODs units expressed as in the original work. 
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Figure 1.  
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Figure 2. 
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Figure 3. 
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Figure 4.  
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Figure 5.
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Figure 6.  
 
 
 

 

 




