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ABSTRACT
We present a deterministic algorithm for deciding if a polynomial

ideal, with coefficients in an algebraically closed field K of charac-

teristic zero, of which we know just some very limited data, namely:

the number n of variables, and some upper bound for the geometric

degree of its zero set in Kn , is or not the zero ideal. The algorithm

performs just a finite number of decisions to check whether a point

is or not in the zero set of the ideal. Moreover, we extend this

technique to test, in the same fashion, if the elimination of some

variables in the given ideal yields or not the zero ideal. Finally, the

role of this technique in the context of automated theorem proving

of elementary geometry statements, is presented, with references

to recent documents describing the excellent performance of the

already existing prototype version, implemented in GeoGebra.
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1 INTRODUCTION
Let us suppose we are given, as a query, an ideal I ⊂ K[x1, . . . ,xn ],
with coefficients in an algebraically closed field K of characteristic

zero, of which we know just some very limited data: the number n
of variables, and some upper bound for the geometric degree (in the

sense of [6], see Definition 2.1 below) of its zero set in Kn , whether

∗
Authors supported by the Spanish Ministerio de Economía y Competitividad , and

by the European Regional Development Fund (ERDF), under the Project MTM2017-

88796-P.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ISSAC ’18, July 16–19, 2018, New York, NY, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5550-6/18/07. . . $15.00

https://doi.org/10.1145/3208976.3208981

the ideal is not zero. Moreover, we have an oracle that allows us to

check, given a point in Kn , whether this point is or not in the zero

set of I. Our first goal is to present an algorithm to conclude, by just

using this protocol, whether I is the identically zero ideal or not.

As a trivial example, suppose that we deal with some unknown

ideal I ⊆ K[x], i.e. n = 1, and assume that we know that, if the

given ideal is not zero, the cardinal of its roots (that is, in the one

variable case, the geometric degree) will be bounded by d . Then,
choose d + 1 different points in K and, for each of them, check if it

is a root of I. If it is so in all cases, it is obvious that we are going

beyond the given number of roots bound, so the ideal I must be

identically zero. Else, if we have found a point in K which is not a

zero of I, it is also obvious to conclude that I can not be zero.

The problem of detecting, by evaluation on a finite number of

instances, whether a polynomial is or not zero, is a classical issue

in computer algebra and complexity theory. It is impossible to sum-

marize in a few references the state of the art. We can just mention

the classical, purely algebraic, statement bounding the number of

the required instances for zero-testing in [24]; the probabilistic

approach in the Schwartz-Zippel Lemma [26], [22], with a curious

history behind [16] that shows the wide interest of the scientific

community concerning this problem; the research on questor set
related to the BPP (Bounded error Probability Polynomial) time, as

in [7], see also [18] and [19] for a historical account, etc.

It must be clarified that in most of these contributions the rig-
urous or deterministic approach to zero testing is not the relevant

goal, since it is considered both well known (in classical references

as [24]) and unpractical, for the involved exponential number of

required tests. Instead, their objective is to find some feasible strate-

gies for zero-testing with high probability.

Our contribution here goes in a different direction. First of all,

a relative novelty could be the extension of the exact zero-testing

protocol, from polynomials to ideals in polynomial rings of several

variables (see [5], Section 2, and [17], Section 4, for related results).

Let us remark that our goal is to find a kind of universal zero-testing

set, i.e. we are looking for a single set to perform the test to all ideals

of given bounded degree and embedded in the same polynomial

ring.

In Section 2 we have accomplished this goal by introducing the

notion of test-sets (playing a similar role to a fixed collection of d+1
points on a line, for testing the vanishing of degree d univariate

polynomials), proving that this property can be reduced to testing

hypersurfaces (Theorem 2.3), that it is kept under bijective affine

transformations (Theorem 2.8), and providing a general example

of test-sets with minimal cardinality (see Theorem 2.7). Moreover,

for technical reasons, we have extended this concept to sets such

that any subset of a certain cardinality is also a test-set (what we
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have called “disjunctive test-sets", c.f. Definition 2.9). Let us remark

that the terminology of “test-sets" comes from the attempts to

mechanizing inductive reasonings [15].

But the final goal of our work is not exactly finding zero-test

protocols for given ideals of a certain degree. It is something closely

related, but more general. Assume we are given a certain ideal

I ⊂ K[x1, . . . ,xn ] of which we just know a bound of the degree

d of its zero set, and the number of variables n. Then we want to

decide if the result of eliminating some variables in the ideal I, say,

if Ir = I ∩ K[x1, . . . ,xr ], yields or not to the zero ideal. And this

zero-checking for Ir is to be performed only through a number of

tests that, like in the previous situation, will consist in choosing

some points (a1, . . . ,ar ) ∈ K
r
, and then verifying, with an oracle,

if they can be (or not) lifted to a point (a1, . . . ,an ) in the zero-set

defined by I. See Section 3.1 for details, but let us illustrate here both

the goal and the method we have developed, through the following

example.

Example 1.1. Imagine we are given an ideal I (of whatever dimen-

sion) in K[x1,x2,x3], and we just know that the degree of its zero

set is bounded by 2. Then we would like to check if the elimination

I2 = I ∩ K[x1,x2] is zero. Roughly speaking, we could argue like

this: this elimination varietyV(I2) is, surely, also of degree bounded
by 2, as the degree bound is preserved under affine mappings [6].

And the same happens for the Zariski closure of V(I2) minus the

projection π of V(I) over the (x1,x2)-plane (c.f. proof of Theorem
3.1 at Section 3).

Then, take 11 points on the plane (what we will call a “disjunctive

test-set" for degree two varieties over the plane), arranged in such

a way that no subset of six points lies on a conic. Next, consider

each one of these 11 points and verify if they can be lifted to a zero

of I in K3, that is, for each of these points (a1,a2), check if there is

a a3 ∈ K so that (a1,a2,a3) ∈ V(I) ⊂ K
3
. Let A be the subset of the

11 points that can be lifted and let B its complementary. Obviously,

either the cardinal of A or the cardinal of B must be strictly greater

than 5.

Thus, if cardinal of A is 6 or more, we are sure that V(I2), since
it is either of degree 2 or the whole plane, and it contains A, it must

be the whole plane, so I2 is zero. Assume, on the contrary, that B
has cardinal greater than 6. Now we consider the partition of the

plane in three different sets of points: those in the projection of

V(I), those in V(I2) but not in this projection, those not in V(I2).
By definition, B is outside the projection, so it must be included

in the union of V(I2) \π (V(I)) with K
2 \V(I2). Now it happens that

not all the points in B can be within V(I2) \ π (V(I)), since it will
imply that its Zariski closure, also of degree bounded by 2, is the

whole plane. But this Zariski closure must be strictly contained in

V(I2) (c.f. [2]), which will be impossible in this case.

It follows that B cannot be fully contained in V(I2) \ π (V(I)).
Thus there must be points in B that are neither in the ‘bad set" (i.e.

V(I2) \ π (V(I))), nor in the projection, so outside of V(I2), and we

conclude that this variety can not be the whole plane, achieving in

this way a complete decision protocol.

Thus, in the last Section of this paper we will describe an algo-

rithm for achieving such a test of the nullity of elimination ideals.

Although we estimate that the theoretical foundations we have

developped are already interesting, we will summarily present, as

well, a concrete application of this technique, in the context of

automated reasoning for geometry statements. It has been already

implemented in the popular dynamic geometry and computer al-

gebra program GeoGebra
1
(see [1] for a condensed presentation

of this feature in a prototype version, although without technical

details; see also [14], column “Recio").

We expect to be able to present in a near future, to the scientific

community, complete results concerning the already promising

performance of theorem proving algorithms using this particular

approach.

2 TEST-SETS
In this section, we introduce the notion of test-set and we state its

main properties. The concept of test-set will depend on two positive

integer numbers (d, r ). d will denote the degree of the variety to be

tested and r the dimension of the affine space where the test set, or

the tested variety, is included; or equivalently, r is the number of

variables of the polynomial ring.

Definition 2.1. We recall that the geometric degree of an irre-

ducible affine variety U ⊂ Kk is the number of intersections of U

with a generic affine linear variety of codimension dim(U). When

the variety is reducible, the degree is defined as the sum of the

degrees of the reducible components; for further details we refer to

Def. 1. and Remark 2 in [6].

Definition 2.2. A finite subset A ⊆ Kr is a (d, r )-test set, with
d > 0, if no proper variety W of Kr of geometric degree less or

equal than d contains A.

Let us show a couple of trivial and typical examples of (d, r )-test
sets. First example: d + 1 different points on a line K are a (d, 1)-test
set, since there is no non-zero polynomial in one variable, of degree

less or equal than d , with d + 1 roots. Another easy one: r + 1 points
inKr , affinely independent, are a (1, r )-test set, since no hyperplane
in Kr contains them.

Remark. Given a constructible setC ⊆ Kr , let us say it is a proper
constructible set if its closure C is a proper algebraic variety, i.e.,

if C , Kr . Then, an equivalent definition for (d, r )-test sets can
be stated replacing in the above definition the word “variety" by

“constructible set". In fact, it is enough to recall that the degree of

a constructible set is, by definition, that of its Zariski closure (see

[6]).

The next theorem shows that (d, r )-test set candidates need to be
verified just for hypersurfaces, i.e., for single polynomials of degree

up to d and r variables.

Theorem 2.3. Let A ⊆ Kr and d ∈ Z>0. Then A is a (d, r )-test
set if and only if no hypersurface of Kr , of geometric degree less or
equal than d , contains A.

Proof. LetA ⊆ Kr be a (d, r )-test set. Then, obviously, no proper
hypersurfaceW of Kr defined by a polynomial of degree less or

equal than d contains A. Conversely, assume that A ⊆ Kr is such
that no proper hypersurface {F = 0} ⊆ Kr defined by a polynomial

F (x1, . . . ,xr ), of degree less or equal than d , contains A. Then,

1
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given any proper variety W of Kr , of degree at most d , let us
show that it can not contain A. In fact, W is always contained in a

hypersurface of degree bounded byd : considerW =W1∪· · ·∪Wm
be the irreducible decomposition of W. Let deg(Wi ) ≤ di . Then,
d1+ · · ·+dm ≤ d . By [6], Prop. 3, pp. 256, eachWi can be defined as

the zero-set of a finite family of polynomials with degree bounded

by di . Let F = f1 · · · fm , taking each fi , 0 in the generator set of

Wi . Then it is clear thatW ⊆ {F = 0}.

In the next part of the section, we will describe a test-set of

minimal cardinality. In the following, form1,m2 ∈ Z>0, we denote
by

Supp(m1,m2) ⊆ Z
m2

>0

the set of exponents on the support of a generic polynomial of

degreem1 inm2 variables. We recall that its cardinal is

#(Supp(m1,m2)) =

(
m1 +m2

m2

)
.

We start with some technical lemmas

Lemma 2.4. Let Π : Kr → Kr−1,Π(x1, . . . ,xr ) = (x2, . . . ,xr ). If
A is a (d, r )-test set then Π(A) is a (d, r − 1)-test set.

Proof. Let W∗
be a variety of Kr−1 with deg(W∗) ≤ d and

such thatΠ(A) ⊆ W∗
. We consider the varietyW = K×W∗ ⊆ Kr .

We observe that

A ⊆ K × Π(A) ⊆ W ⊆ Kr

and deg(W) ≤ d . Since A is a (d, r )-test set, W = Kr . Therefore,
W∗ = Kr−1. So, one concludes that Π(A) is a (d, r − 1)-test set.

Lemma 2.5. Let Π : Nr → Nr−1,Π(x1, . . . ,xr ) = (x2, . . . ,xr ).
Then, Π(Supp(d, r )) = Supp(d, r − 1)

Proof. Let u ∈ Supp(d, r − 1), then (0,u) ∈ Supp(d, r ). Con-
versely, it is obvious that ifv ∈ Supp(d, r ) thenΠ(v) ∈ Supp(d, r−1).

Lemma 2.6. If P ∈ K[x1, . . . ,xr ] has degree less or equal than d
and vanishes on Supp(d, r ), then P is the zero polynomial.

Proof. We prove the statement by induction on r . For r = 1, it

follows from the hypothesis that P(x1) vanishes over Supp(d, 1),
of cardinal d + 1, and thus it has d + 1 different roots; hence it is
identically zero. Let us assume that the lemma is true for r = s − 1,

and that P ∈ K[x1, . . . ,xs ] is such that deg(P) ≤ d and P(u) = 0

for all u ∈ Supp(d, r ). We consider the linear polynomials Lk (x1) =
x1 − k , with k ∈ {0, . . . ,d}. Then, dividing w.r.t. x1 we get that

P(x1, . . . ,xs ) = Q(x1, . . . ,xs )Lk (x1) +M(x2, . . . ,xs ).

Since , P(u) = 0 for allu ∈ Supp(d, s), thenM(Π(u)) = 0. By Lemma

2.5, we get that M(v) = 0 for all v ∈ Supp(d, s − 1). So, by the

induction hypothesis, M is identically 0. Thus,

∏d
k=0 Lk divides P ,

which has degree at most d . Hence, P is also identically zero.

In this situation, we are ready to prove the theorem.

Theorem 2.7. Supp(d, r ) is a (d, r )-test set of minimum cardinal-
ity.

Proof. The fact that Supp(d, r ) is a (d, r )-test set follows from
Lemma 2.6 and Theorem 2.3. Let us prove the minimality. Let N =
#(Supp(d, r )), and let us assume that there exists a (d, r )-test set
A with #(A) = N ∗ < N . A generic polynomial P in K[x1, . . . ,xr ]
of degree d has as many undetermined coefficients as elements in

Supp(d, r ); let us call them {ai }. Now, since A is a (d, r )-test set,
evaluating P at each element of A, we get an homogenous linear

system {P(u) = 0}u ∈A in the undetermined coefficients {ai }. Since
the rank of this system is at most N ∗

, that is smaller than N , there

exists a nontrivial solution; in contradiction with the property of

being a test set.

Remark. As a consequence of this theorem it follows that, asymp-

totically, (d, r )-test sets have cardinality with lower bound O(dr ) (if

we consider d growing and r fixed) or O(rd ) (if we rather consider
r growing and d fixed). Thus, the result in Theorem 2.7 is, in some

sense, not too different from the naive approach yielding (d + 1)r

points (the cartesian product of sets of d + 1 points over each axis

in Kr ), except if one is interested in the case of growing dimension

and bounded degree, which, by the way, could be quite useful in

automatic geometric reasoning (see, for example, the results in

[12]), since statements therein involve several points (and, thus,

many coordinates) but, generally, construction steps of low degree

(involving several simple, linear or quadratic, operations such as

building a line through two given points or intersecting a line and

a circle, etc); note that

lim

r→∞

(d+rr )

(d + 1)r
= 0.

The following theorem states that the property of being test-set

is invariant under bijective affine transformations.

Theorem 2.8. Let A be a (d, r )-test set, and φ a bijective affine
transformation of Kr . Then φ(A) is a (d, r )-test set.

Proof. Let us assume that φ(A) is not a (d, r )-test set. Then, by
Theorem 2.3, there exists a hypersurface V = V(H ), where H (x) =
H (x1, . . . ,xr ) ∈ K[x], of degree ≤ d such that φ(A) ⊂ V . Let F =
H (φ−1(x)), and letW = V(F ). Since φ is an affine transformation,

deg(F ) = deg(H ), and A ⊂ W, which is a contradiction.

In some cases it would be interesting to construct sets having

stronger properties than that of being a test set, namely, such that

any subset of cardinal greater than a fixed size is also a test set.

More precisely, we introduce the following definition:

Definition 2.9. Let d, r ∈ Z>0, and N = #(Supp(d, r )). We say

that a finite set A, with #(A) ≥ N , is a (d, r )-disjunctive test set if
any subset of A of cardinal N is a (d, r )-test set.

The motivation of this notion is the following. Assume that A is

disjunctive and #(A) ≥ 2N − 1 and B ⊆ A, then either B or A \ B
is a (d, r )-test set. Indeed, if #(B) ≥ N , the statement holds by the

definition of disjunctive test set. Else, #(A \ B) ≥ N , and thus A \ B
is a (d, r )-test set.

In this context, the following holds.

Lemma 2.10. For any given d, r ∈ Z>0, and N = #(Supp(d, r )),
the following algorithm derives a (d, r )-disjunctive test set of any
given cardinalM greater or equal to N .



Proof. IfM = N then we can takeA = Supp(d, r ) (see Theorem
2.7). We assume by induction that we know how to build a disjunc-

tive test set, B of cardinalM ≥ N , and let us build another one of

cardinal M + 1. In fact, let us first remark that, for every subset

C of B, of N − 1 elements, there exists a unique hypersurface in

HC ⊂ Kr of degree d , through these elements. This hypersurface

can be constructed by solving a linear homogeneous system ofN −1

equations in N unknowns, each equation being the generic poly-

nomial of degree d in r variables, with undetermined coefficients,

evaluated at one of the elements of C .
Notice that the rank of this linear system is N − 1, and thus it

defines uniquely –except for multiplication by a common constant–

the coefficients of a hypersurface. In fact, would the rank be strictly

smaller than N − 1, we could add to C an extra point such that

the rank of the extended system with the new equation for the

extra point would be N − 1 or less and, therefore, it would have at

least one solution. But this is a contradiction to the fact that B is

disjunctive and all subsets of B with N elements (such as C plus

the added point) must be (d, r )-test sets, implying that there is no

hypersurface of degree d defined by these points.

Now consider all such hypersurfaces HC for all different choices

of C ⊂ B. Let P ∈ Kr be a point not in any of these hypersurfaces.

Then we claim that B⋆ = B ∪ {P} is also a (d, r )-disjunctive test set.
In fact, if A ⊆ B⋆ has cardinal N and is a subset of B, it is obviously
a (d, r )-test set, because B is disjunctive. On the other hand, if P ∈ A,
then A ∩ B ⊆ B is of cardinal N − 1. By construction point P does

not belong to the only hypersurface HA∩B of degree d defined by

A ∩ B, and therefore A is a (d, r )-test set.

The algorithm described in the proof of Lemma 2.10 can be

outlined as follows.

Algorithm 1. Given d, r ∈ Z>0, and N = #(Supp(d, r )), the fol-

lowing algorithm derives a (d, r )-disjunctive test set of any given

cardinalM greater or equal to N .

(1) IfM = N Return Supp(d, r ).
(2) Set B = Supp(d, r ).
(3) For i from 1 toM − N do

(a) For any subset C of B with #(C) = N − 1 determine the

unique hypersurface HC of Kr of degree d .
(b) Compute a point P ∈ Kr not in any of the hypersurfaces

obtained in the previous step.

(c) Set B = B ∪ {P}.
(4) Return B.

Example 2.11. We use the notation as in Algorithm 1. Let us

consider d = 2, r = 2 ∈ N, #(Supp(2, 2)) = 6 and letM = 7. Then a

(2, 2)-disjunctive test set of cardinal 7 can be build as follows.

Supp(2, 2) = {P1, P2, P3, P4, P5, P6}
= {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0)}.

Let Hi be the unique conic passing through Supp(2, 2) \ {Pi }. More

precisely, H1 = (x + y − 2)(x + y − 1),H2 = x(x + y − 2),H3 =

x(x − 1),H4 = y(x +y − 2),H5 = xy and H6 = y(y − 1). Then taking

P < ∪Hi , for instance, P = (2/3, 2/3), we have that Supp(2, 2) ∪ {P}
is a (2, 2)-disjunctive test set of cardinal 7.

Remark. Given a (d, r )-disjunctive test set A of cardinal M ≥

N = #(Supp(d, r )), we have remarked –after Definition 2.9– that, if

M ≥ 2N − 1, it is true that, for every subset of B ⊆ A, at least one
from B or its complementA \B, must be a (d, r )- test set. Obviously
2N − 1 is the minimum cardinal of sets A holding this property,

since forM < (2N − 1) we can always find subsets of A such that

both the subset and its complement have cardinal strictly smaller

than N . Now, since N is the minimum size of a (d, r )-test set (cf.
Theorem 2.7), it is obvious that in this case neither A nor A \ B can

be (d, r )-test sets.

3 AN APPLICATION: TESTING THE NULLITY
OF ELIMINATION IDEALS

In the sequel, wewill denote by xi = (x1, . . . ,xi )with i ∈ {1, . . . ,n}.
Let us consider the ideal I ⊂ K[xn] as well as its associated variety

V = V(I) ⊂ Kn. In addition, we also consider the projection

πr : V ⊆ Kn → Kr

xn 7→ xr
and let Ir be the xr -elimination ideal, that is Ir = I ∩ K[xr], and
Vr = V(Ir) ⊆ K

r
. By the Theorem of the Closure (see Theorem 3

pp. 125 in [2]) it holds that

Vr = πr (V).

We provide an algorithm that decides whether Vr is Kr or, equiva-

lently, whether Ir =< 0 >.

It holds that Vr \ πr (V) is a constructible set. Let Wr be a

subvariety ofVr , of lower dimension, such thatVr \ πr (V) ⊂ Wr .

The existence of Wr is also guaranteed by the Closure Theorem.

The algorithm is as follows

Algorithm 2. Given a bound d for the geometric degree ofV , the

algorithm decides whether the ideal Ir is zero or not.

(1) Set N = (d+rr ).

(2) Apply Algorithm 1 to N and (d, r ) to get a (d, r )–disjunctive
test set of cardinality 2N − 1, say C .

(3) Using an oracle, decomposeC asC = A∪ B, where for every
P ∈ A it holds that P ∈ πr (V) and for every P ∈ B it holds

that P < πr (V)

(4) If #(A) ≥ N then Return Ir =< 0 > else Ir ,< 0 >.

Theorem 3.1. The previous algorithm is correct.

Proof. By Lemma 2 in [6], we know that d also bounds the

degree of Vr . Moreover
2
, the same bound applies to Wr , that is

to the closure of the “bad set" (i.e. the set of points that are inVr
but can not be lifted to V). Assume #(A) ≥ N . By definition of

disjunctive test set, A contains a (d, r )-test set. Now, since A ⊂ Vr
and the degree ofVr is bounded by d ,Vr must be Kr . Thus, Ir =<
0 >.

On the other hand if #(A) < N , we prove that Ir ,< 0 >. Let

us assume that Ir =< 0 >. Since #(A) < N , then #(B) ≥ N and B
contains a (d, r )-test set. Since B is included inWr and its degree

is also bounded by d , one concludes that Wr must be Kr . But this

2
Personal communication by prof. Martín Sombra, ICREA Research Professor at Uni-

versitat de Barcelona, Spain, to whom we would like to express our gratitude. Roughly,

the idea is to reduce the general case to the case of irreducible varieties, then to the

case in which both the given variety and the closure of its projection have the same

dimension and, finally, work in a projective setting, studying the intersection of the

variety with the hyperplane at infinity and project (yielding those points that can not

be affinely lifted). See related ideas at [3].



is impossible, because, by construction, its dimension is strictly

smaller than r .

Remark.

(1) In Step 3 of Algorithm 2 we need to check through an oracle

whether a point P is in the projection of the variety. This can

be done, for example, by substituting the variables x1, . . . ,xr
by the corresponding coordinates of P in the generators of

the ideal I to check afterwards whether the new variety in

Kn−r is non-empty; this can be done by elimination theory

techniques. In the context of the applications of these ideas

to automatic theorem proving, the fiber of almost all points P
is finite. Hence, the variety to be tested is zero-dimensional.

Thus, the decision is faster.

(2) Note that the disjoint test-set C , appearing in Step 2 of Al-

gorithm 2, only depends on d and r and not on the ideal

I. Therefore, one may have a pre-computed data basis, for

different values of d and r , to be used directly on Algorithm

2. Even, if one does not have at hand such a basis, one may

combine Algorithms 1 and 2 as follows: whenever a point

P ∈ C is computed, one decides whether P belongs or not to

πr (V). As soon as the cardinality of either A or B is greater

or equal N , the process can be stopped, and one does not

need to determine all elements in C .
A third option, probably the most efficient, is as follows. We

compute a test-set T , via the support, with N elements and

we apply a random linear transformation to T (see Theorem

2.8) to get T ∗
. In this situation, we check how many points

in T ∗
can be lifted to V . If this number is N , then we can

conclude that Ir =< 0 >. If not, we add to T ∗
a new point,

as explained in Algorithm 1, to get T ∗∗
and we repeat the

process.

Example 3.2. We illustrate Algorithm 2 by a toy example. We

consider the ideal I ⊂ C[x ,y, z,w] defined by the generators

I =< −w2x2 + 2wx3 − 2x3z + 2x2y2 + 2x2yz + x2z2 − 2xy2z
−2xyz2 + y4 + 2y3z + y2z2 + 2w2x − 2wx2 −w2,

w2x2 − 2wx3 + 2x4 − 2x3z + 2x2y2 + 2x2yz + x2z2−
2xy2z − 2xyz2 + y4 + 2y3z + y2z2 − 2w2x + 2wx2 +w2 > .

One may check thatV = V(I) ⊂ C4 has degree 4. Now, we consider
the projection π2 : V ⊂ C4 → C2; (x ,y, z,w) 7→ (x ,y). We want to

check whether π2(V) = C2 or, equivalently, whether I∩C[x ,y] =<
0 >. For this purpose, we apply Algorithm 2 with N = 15. So, we

need a (4, 2)-disjoint test set of cardinality 29. Applying Algorithm

1 one get the following disjoint test set

C = {(−18, 28), (−15,−30), (−6,−5), (−5, 28), (−2,−17),

(−2, 29), (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1), (1, 2),

(1, 3), (2, 0), (2, 1), (2, 2), (3,−13), (3, 0), (3, 1), (4, 0), (9, 6),

(11, 15), (12,−12), (13,−22), (16,−23), (19, 28), (21, 25)}.

Decomposing C = A ∪ B, as in Step 3, by using some of the ora-

cles described in the previous remark, we get that #(A) = 24 and

#(B) = 5; Indeed, B = {(1, 0), (1, 1), (1, 2), (1, 3), (2, 2)} ⊂ C2\π2(V).

Therefore, I ∩ K[x ,y] =< 0 >.

Now, we repeat the example but using the projection π2 : V ⊂

C4 → C2; (x ,y, z,w) 7→ (x ,w). So, C is as above but in this case

it decomposes as C = A ∪ B with #(A) = 1 and #(B) = 28, being

A = {(0, 0)}. Thus, in this case I ∩ C[y, z] ,< 0 >.

What could be the interest of having some test-by-examples of

the nullity of an elimination ideal? Obviously, such tests could help

computing the dimension of a polynomial ideal and selecting a

collection of independent variables modulo the ideal. But, although

our current work does not address this issue, the specific application

of the zero-testing method we have in mind –and also the initial

motivation for this work— is automated geometric theorem proving,

within the realm of the “proof by exhaustion" method
3
.

Without going into details, it happens that, for some approaches,

the truth of a certain type of geometric statements involves check-

ing that some multivariate polynomial is identically zero; and this is

accomplished by verifying that the polynomial is zero on some sort

of test set, where each element of the set corresponds to a geometric

instance of the given statement (say, a particular position of a vertex

on a triangle). Some attempts in this direction have been labeled as

the method of proving by examples. We can find early occurrences

of this approach in the works of [8],[9] and [25], while in [4] a

survey of these early procedures for automatic theorem proving in

geometry, till 1988, is presented. The dissertation of Kortenkamp

[10] or the paper [11] provide a fine analysis on the advantages and

limitations of this approach, in the context of Dynamic Geometry.

More recently, both the master dissertation of Weitzhofer [23]

and the doctoral dissertation of Kovács [12], reconsider, extend, im-

plement and test this technique in the popular program GeoGebra,

following the completely general theorem proving and discovery

approach of [21], that we can summarize as follows.

Let {H ⇒ T } be a geometric statement, whereH = {h1, . . . ,hℓ}
stands for the ideal of equations describing the geometric construc-

tion of the hypotheses and T = (f ) describes the thesis (or, more

generally, the theses). Both ideals lie on a polynomial ring K[X ],

where the variables X = {x1, . . . ,xn } refer to the coordinates in-

volved in the algebraic description of the hypotheses, over a base

field K. Fix a maximum-size set Y = {x1, . . . ,xm } of independent

variables for the hypotheses ideal H (i.e.m = dim(H )), and label as

“non-degenerate" the irreducible components ofH whereY remains

independent. Consider L, an algebraically closed extension on K
(for instance L = C and K = Q), and let the geometric instances

verifying the hypotheses (respectively, the thesis) of the statement

be the algebraic varietyV(H ) (respectively,V(T )) in the affine space

Ln .
We say that a statement is “generally true" iff T holds over all

non-degenerate components; and that it is “generally false" if it

does not hold over any of them. Then it is shown that

a) The statement {H ⇒ T } is generally true if and only if

I ∩ K[Y ] , ⟨0⟩ .

where I is the ideal I = ⟨h1, . . . ,hℓ , f · t − 1⟩ ⊂ K[X , t].
b) The statement {H ⇒ T } is generally false if and only if

I
∗ ∩ K[Y ] , ⟨0⟩ .

where I
∗
is the ideal I

∗ = ⟨h1, . . . ,hℓ , f ⟩ ⊂ K[X ].

3
“Proof by exhaustion, also known as proof by cases. . . is a method. . . in which the

statement to be proved is split into a finite number of cases and each case is checked

to see if the proposition in question holds". C.f. https://en.wikipedia.org/wiki/Proof_

by_exhaustion
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see [21].

Obviously, here the key tool is to decide –by dragging, on the Ge-

oGebra window, the construction to a suitable number of positions,

i.e. by considering some special values of (x1, . . . ,xn ) and verifying
if the statement is false or true in these cases– if the elimination

ideal of hypotheses and the negation of the theses or the ideal of

hypotheses and theses is or not zero. See the above mentioned

academic works for details of the excellent performance of this

technique in the prototype version already implemented. Moreover,

in [14], a detailed benchmark is presented on the comparative per-

formance of different proving methods implemented in GeoGebra.

The first column contains a list of ggb files describing geometric

statements, alphabetically ordered. Then, there is a series of blocks

(labeled as Recio, Botana, Botana D, BotanaGiac, etc.) referring to

the considered theorem proving method, each one containing two

columns: Result (true, false, empty, i.e. undefined for some reason)

and Speed (in milliseconds, t/o means time-out!). Details about the

different methods are provided in [13], although, concerning the

method we are dealing with here, the reference in [13] is very lim-

ited: only the two-variables case is sketched, with some hints about

its generalization for three variables. Notice that we are considering

just a prototype implementation, thus it happens that, in many in-

stances, some of the methods are not programmed to include some

types of input (for example, in [13] the so called Recio’s method –i.e.

the one described in the current paper– is not yet programmed to

deal with circles, thus it yields no answer in many cases!). Despite

all these limitations it is clear that, when applicable, our method is

much faster than any other one.

We finish with an example of the application of our algorithms

to a geometric problem.

Example 3.3. In this example we illustrate how the ideas de-

scribed above are applicable to prove that Simson’s Theorem is

generically true. The Theorem of Simson claims that

Given a triangle abc and a point d on its circumcircle, the
feet e, f ,д of the perpendiculars from d to the lines bc , ab,
and ac , respectively, are collinear.

We will follow the notation in [20] (subsections 1.4 and 1.5) but

adding, as a non-degeneracy hypothesis, the condition h6 below.
Thus, the variables in the construction are {r , s,m,n,q, t ,u,v,w},

c=(0,0) a=(1,0)

b=(r,s)d=(m,n)

f=(t,u)

e=(v,w)

g=(m,0)

Figure 1: Illustration of Simson’s Theorem

being {r , s,m} a maximum size set of independent variables (see

Fig. 1). The hypotheses are

h1 = s(t − 1) − u(r − 1) (f is on the line ab).
h2 = (t −m)(r − 1) + s(u − n) (d f is perpendicular to ab).
h3 = −rw + sv (e is on the line cb).
h4 = r (m −v) + s(n −w) (de is perpendicular to cb).
h5 = m2s − n2s + nr2 + ns2 +ms − nr (d is on the circumcircle).

h6 = qs − 1 (abc does not degenerate as a triangle).

And the thesis

F = (w − u)(m − t) + u(v − t).

Therefore, we consider the ideal

I =< h1, ...h6, zF − 1 >⊂ C[r , s,m,n,q, z, t ,u,v,w].

The varietyV = V(I) ⊂ C10 has degree d = 32. In order to decide

whether I ∩ C[r , s,m] =< 0 > we apply Algorithm 2 with the third

optimization approach described in the remark after the algorithm,

namely taking the support with N = (32+3
3

) = 6545, applying a

random bijective affine transformation and checking whether all

elements are liftable. For the random affine transformation we

have taken integers in {−10..10}, and we have consider an upper

triangular matrix. The precise transformation T is

Y =
©«

7 0 9

0 2 −3

0 0 6

ª®¬X + ©«
−5

9

6

ª®¬ .
The result is that none element in T(Supp(N )) can be lifted. There-

fore, the conclusion is that elimination ideal is non-zero, and hence

the theorem is generically true. The computation were performed

with Maple 2017 on a PC with i7-5500U CPU 240GHz, and the 6545

lifting checks took 1.3 seconds.
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