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Abstract: In this contribution, we propose an algorithm to compute holonomic second-order differential
equations satisfied by some families of orthogonal polynomials. Such algorithm is based in three
properties that orthogonal polynomials satisfy: a recurrence relation, a structure formula, and a
connection formula. This approach is used to obtain second-order differential equations whose solutions
are orthogonal polynomials associated with some spectral transformations of a measure on the unit circle,
as well as orthogonal polynomials associated with coherent pairs of measures on the unit circle.
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1. Introduction

A sequence of polynomials {pn}n≥0 is said to be orthogonal if∫
E

pn(x)pm(x)dµ(x) = Knδm,n, Kn > 0, m, n ≥ 0,

where µ is a nontrivial probability measure with support on some interval E ⊂ R and δm,n is the Kronecker
delta. The so-called classical sequences of orthogonal polynomials (Bessel, Hermite, Jacobi, and Laguerre,
with the first family corresponding to an orthogonality measure that is not positive) constitute the most
broadly applied and thoroughly studied systems of orthogonal polynomials.

The classical families satisfy many properties and were first characterized by E. Routh [1]. Later,
S. Bochner [2] focused on the second-order linear differential equation

a2(x)y′′ + a1(x)y′ + a0(x)y + λy = 0, (1)

where a0(x), a1(x), and a2(x) are polynomials, and determined all of its possible polynomial solutions.
S. Bochner arrived to the conclusion that the polynomials a0(x), a1(x) and a2(x) must have degrees at
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most 0, 1, and 2, respectively. He also found that the Hermite, Jacobi, and Laguerre families are the only
polynomial solutions for (1) with a corresponding measure that is positive. Moreover, such sequences
satisfy the so-called Hahn’s property: their derivatives also constitute an orthogonal family. It is interesting
that some of these families have been studied in the context of symmetry Lie algebras. For instance, in [3–6],
the authors studied how the differential equations satisfied by the classical families can be obtained from
the second-order Casimir elements of the corresponding symmetry algebra and of some of its subalgebras.
Furthermore, some operators defined on Lie algebras are used in [7] to obtain differential properties of
some special functions, including the Jacobi polynomials.

On the other hand, in the last decades, some canonical examples of spectral transformations of
orthogonality measures have been studied in the literature: the Christoffel transformation, consisting
in a polynomial modification of the measure; the Uvarov transformation, defined by the addition
of a Dirac’s delta measure; and the Geronimus transformation, where the orthogonality measure is
divided by a polynomial, and a Dirac’s delta measure is added. For instance, in [8], the author is
interested in the relations between the associated Stieltjes functions. Furthermore, he shows that all
linear spectral transformations of Stieltjes functions can be obtained as a finite product of the three
canonical transformations mentioned above. On the other hand, in [9], the authors consider the relations
between these perturbations and LU factorizations of the corresponding Jacobi matrices, in the more
general framework of orthogonality with respect to linear functionals. The study of differential equations
of higher order satisfied by orthogonal polynomials was initiated by H. L. Krall in [10] and later on
A. M. Krall (see [11]) showed that the sequences orthogonal with respect to an Uvarov perturbation of the
classical families satisfy a fourth order differential equation. The orthogonal families associated with these
perturbations are often called classical-type orthogonal polynomials. It is important to notice that they are
not longer classical, and the polynomial coefficients in the corresponding differential equations (which are
called holonomic equations) can even depend on the degree n (see [12]), in sharp contrast with the classical
case. More recently, the study of holonomic equations for classical-type orthogonal polynomials, as well
as their application for developing electrostatic models for the corresponding zeros, has been developed
in [13–17], among many others.

The study of differential equations whose solutions are orthogonal polynomials on the unit circle
(OPUC) has not drawn equal attention as in the real case. One possible reason for this is that the only
classical family (i.e., the only sequence of orthogonal polynomials whose derivatives are also orthogonal)
is {zn}n≥0, orthogonal with respect to the Lebesgue measure (see [18]). Some differential properties
for OPUC, however, are known in the literature. For instance, in [19,20], a differential relation for
OPUC is obtained under certain conditions on the orthogonality measure, and it is later used to obtain a
second-order differential equation with degree-depending rational functions as coefficients. Differential
properties for semi-classical orthogonal polynomials have also been analyzed in the literature (see [21] and
references therein). More recently, some examples of OPUC satisfying second-order differential equations
with varying polynomial coefficients were studied in [22], and differential equations for para-orthogonal
polynomials on the unit circle, along with an electrostatic interpretation of their zeros, were obtained
in [23].

The study of differential equations for spectral transformations of OPUC remains an open problem.
This contribution is oriented in that direction. The manuscript is organized as follows. In Section 2, we
present an algorithmic procedure to obtain second-order differential equations for arbitrary sequences of
polynomials, by using an approach considered in [19] that utilizes three main ingredientes: a recurrence
relation, a structure relation, and a connection formula. Later on, this procedure is applied to obtain
second-order differential equations whose solutions are orthogonal polynomials associated with spectral
transformations of OPUC in Section 3, and also for orthogonal polynomials associated with coherent pairs
of measures supported on the unit circle in Section 4.
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2. A General Approach to Obtain Second Order Differential Equations

Assume {Φn}n>0 is a sequence of polynomials satisfying the structure relation

[Φn(z)]′ = a(z; n)Φn(z) + b(z; n)Φn−1(z), n ≥ 1, (2)

and the three term recurrence formula

Φn+1(z) = β(z; n)Φn(z) + γ(z; n)Φn−1(z), n ≥ 1, (3)

where a(z; n), b(z; n), β(z; n), and γ(z; n) are some rational functions. In this section, we present a model to
obtain (holonomic) second-order differential equations satisfied by a sequence of polynomials constructed
in terms of {Φn}n>0. We will denote such a sequence by {Ψn}n>0, and it can be constructed via

Ψn(z) = A1(z; n)Φn(z) + B1(z; n)Φn−1(z), n ≥ 0, (4)

where A1(z; n) and B1(z; n) are (in general) rational functions in z, and Φ−1 ≡ 0. It is important to notice
that such model has been already used in the case when the sequence {Φn}n>0 is orthogonal with respect
to a positive measure supported on the real line, as it is well known that it satisfies relations of the form
(2) and (3). Typically, {Ψn}n>0 is also an orthogonal sequence, associated with some perturbation of the
orthogonality measure. Indeed, this approach has been used to obtain electrostatic interpretations of the
zeros of polynomials orthogonal with respect to Sobolev-type perturbations of classical and semiclassical
orthogonal polynomials (see, for instance, [13–17]). We point out that, although we are interested in the
cases where the constructed sequence is again orthogonal with respect to some measure, this approach
remains valid even if the constructed sequence is not orthogonal.

The three main ingredients involved are the structure relation (2), the recurrence relation (3), and the
connection formula (4). Without loss of generality, both sequences {Φn}n≥0 and {Ψn}n≥0 can be assumed
to be monic. We begin by stating some lemmas that will be used to obtain the second-order ODE, satisfied
by the sequence {Ψn}n≥0. We first obtain [Ψn(z)]′, the derivative of the perturbed polynomials Ψn(z)
with respect to the variable z, in terms of two consecutive monic polynomials Φn(z) and Φn−1(z) from
{Φn}n≥0.

Lemma 1. For the monic sequences {Ψn}n≥0 and {Φn}n≥0 we have

[Ψn(z)]′ = C1(z; n)Φn(z) + D1(z; n)Φn−1(z), (5)

where

C1(z; n) = A′1(z; n) + A1(z; n)a(z; n) + B1(z; n)
b(z; n− 1)
γ(z; n− 1)

, (6)

D1(z; n) = B′1(z; n) + A1(z; n)b(z; n) + B1(z; n)
(

a(z; n− 1)− β(z; n− 1)
γ(z; n− 1)

)
.

Proof. First, we shift the index in (2) as n→ n− 1,

[Φn−1(z)]′ = a(z; n− 1)Φn−1(z) + b(z; n− 1)Φn−2(z)
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and we use (3) to obtain [Φn−1(z)]′ in terms of Φn(z) and Φn−1(z) as follows,

[Φn−1(z)]′ =
b(z; n− 1)
γ(z; n− 1)

Φn(z) +
(

a(z; n− 1)− β(z; n− 1)
γ(z; n− 1)

)
Φn−1(z). (7)

Next, taking derivatives in both sides of (4), we obtain

[Ψn(z)]′ = A′1(z; n)Φn(z) + A1(z; n)[Φn(z)]′

+B′1(z; n)Φn−1(z) + B1(z; n)[Φn−1(z)]′.

Finally, we replace (2) and (7) into the above formula, and after some easy computations,
the Lemma follows.

Next, we express Ψn−1(z) and [Ψn−1(z)]′ in terms of Φn(z) and Φn−1(z) as well.

Lemma 2. The sequences {Ψn}n≥0 and {Φn}n≥0 satisfy

Ψn−1(z) = A2(z; n)Φn(z) + B2(z; n)Φn−1(z), (8)

[Ψn−1(z)]′ = C2(z; n)Φn(z) + D2(z; n)Φn−1(z), (9)

where

A2(z; n) =
B1(z; n− 1)
γ(z; n− 1)

,

B2(z; n) = A1(z; n− 1)− B1(z; n− 1)
β(z; n− 1)
γ(z; n− 1)

, (10)

C2(z; n) =
D1(z; n− 1)
γ(z; n− 1)

,

D2(z; n) = C1(z; n− 1)− D1(z; n− 1)
β(z; n− 1)
γ(z; n− 1)

,

where C1(z; n− 1) and D1(z; n− 1) are given in (6).

Proof. (8) follows at once from (4) and (3). For (9), we use (5) and (3).

Remark 1. Note that the coefficients in (6) and (10) depend only on the following known quantities; the coefficients
A1(z; n), B1(z; n) in (4), the coefficients a(z; n), b(z; n) in (2) and β(z; n), and γ(z; n) of the three-term recurrence
formula (3) satisfied by {Φn}n≥0.

Notice that (4) and (8) define a linear system. Its solution implies the following Lemma.

Lemma 3.

Φn(z) =
B2(z; n)
Λ(z; n)

Ψn(z)−
B1(z; n)
Λ(z; n)

Ψn−1(z), (11)

Φn−1(z) =
−A2(z; n)

Λ(z; n)
Ψn(z) +

A1(z; n)
Λ(z; n)

Ψn−1(z), (12)
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where Λ(z; n) is the determinant

Λ(z; n) = A1(z; n)B2(z; n)− A2(z; n)B1(z; n).

Notice that the previous determinant Λ(z; n) may not be well defined (it could also be zero), so the
proposed algorithm fails in these cases. In what follows, we assume that all the expressions are well defined.

Theorem 1 (Ladder operators). Define bn and b†
n by

bn = Ξ(z; n, 2)I − Dz,

b†
n = Θ(z; n, 1)I + Dz,

where I and Dz denote the identity and z-derivative operators, respectively. Then,

bn[Ψn(z)] = Ξ(z; n, 1)Ψn−1(z),

b†
n[Ψn−1(z)] = Θ(z; n, 2)Ψn(z),

with Ξ(z; n, k) and Θ(z; n, k), k = 1, 2, given by

Ξ(z; n, k) =
1

Λ(z; n)

∣∣∣∣∣C1(z; n) Ak(z; n)
D1(z; n) Bk(z; n)

∣∣∣∣∣ , (13)

Θ(z; n, k) =
1

Λ(z; n)

∣∣∣∣∣C2(z; n) Ak(z; n)
D2(z; n) Bk(z; n)

∣∣∣∣∣ , (14)

Proof. Replacing (11) and (12) into (5) and (9), respectively, we get the ladder equations

[Ψn(z)]′ =

[
C1(z; n)B2(z; n)

Λ(z; n)
− D1(z; n)A2(z; n)

Λ(z; n)

]
Ψn(z)

+

[
A1(z; n)D1(z; n)

Λ(z; n)
− C1(z; n)B1(z; n)

Λ(z; n)

]
Ψn−1(z),

[Ψn−1(z)]′ =

[
C2(z; n)B2(z; n)

Λ(z; n)
− A2(z; n)D2(z; n)

Λ(z; n)

]
Ψn(z)

+

[
A1(z; n)D2(z; n)

Λ(z; n)
− C2(z; n)B1(z; n)

Λ(z; n)

]
Ψn−1(z).

Therefore, we have

Ξ(z; n, 2)Ψn(z)− [Ψn(z)]′ = Ξ(z; n, 1)Ψn−1(z), (15)

Θ(z; n, 1)Ψn−1(z) + [Ψn−1(z)]′ = Θ(z; n, 2)Ψn(z), (16)

and the result follows.

Theorem 2 (Holonomic equation). The sequence {Ψn}n≥0 satisfies the second-order differential equation

[Ψn(z)]′′ +R(z; n)[Ψn(z)]′ + S(z; n)Ψn(z) = 0, (17)
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where

R(z; n) = Θ(z; n, 1)− Ξ(z; n, 2)− [Ξ(z; n, 1)]′

Ξ(z; n, 1)
,

S(z; n) = Ξ(z; n, 2)
[
[Ξ(z; n, 1)]′

Ξ(z; n, 1)
−Θ(z; n, 1)

]
− [Ξ(z; n, 2)]′.

Proof. The proof is a consequence of the previous theorem. A well known procedure (see [19]) is to apply
b†

n to the equation satisfied by bn, i.e.,

b†
n

[
1

Ξ(z; n, 1)
bn[Ψn(z)]

]
= b†

n[Ψn−1(z)] = Θ(z; n, 2)Ψn(z).

Next, using the expression for b†
n, the left hand side becomes

b†
n

[
1

Ξ(z; n, 1)
bn[Ψn(z)]

]
=

Θ(z; n, 1)
Ξ(z; n, 1)

bn[Ψn(z)] + Dz

[
1

Ξ(z; n, 1)
bn[Ψn(z)]

]
=

Θ(z; n, 1)Ξ(z; n, 2)
Ξ(z; n, 1)

Ψn(z)−
Θ(z; n, 1)
Ξ(z; n, 1)

[Ψn(z)]′

− [Ξ(z; n, 1)]′Ξ(z; n, 2)
[Ξ(z; n, 1)]2

Ψn(z) +
[Ξ(z; n, 1)]′

[Ξ(z; n, 1)]2
[Ψn(z)]′

+
[Ξ(z; n, 2)]′

Ξ(z; n, 1)
Ψn(z) +

Ξ(z; n, 2)
Ξ(z; n, 1)

[Ψn(z)]′ −
1

Ξ(z; n, 1)
[Ψn(z)]′′

=
−1

Ξ(z; n, 1)
[Ψn(z)]′′

+

[
[Ξ(z; n, 1)]′

[Ξ(z; n, 1)]2
+

Ξ(z; n, 2)
Ξ(z; n, 1)

− Θ(z; n, 1)
Ξ(z; n, 1)

]
[Ψn(z)]′

+

[
Ξ(z; n, 2)Θ(z; n, 1)

Ξ(z; n, 1)
− Ξ(z; n, 2)[Ξ(z; n, 1)]′

[Ξ(z; n, 1)]2
+

[Ξ(z; n, 2)]′

Ξ(z; n, 1)

]
Ψn(z),

which is a second-order differential equation for Ψn. After some easy computations, the Theorem follows.

An Alternative Expression for the Differential Equation

The algorithmic approach considered before allows us to consider some interesting facts about the
way in which the operators and differential equations are obtained for a particular sequence. First, notice
that the resulting differential equation depends only on the functions β(z; n) and γ(z; n) in (3); a(z; n) and
b(z; n) in (2), which contain information about the sequence {Φn}n≥0; and A1(z; n) and B1(z; n) in (4),
which contain information concerning the relation between {Ψn}n≥0 and {Φn}n≥0.

The wide generality of the proposed algebraic process to obtain the second-order differential equations
for the sequence {Ψn(z)}n≥0 can be used to obtain the second-order differential equations satisfied
by the original sequence {Φn(z)}n≥0. Indeed, it is sufficient to take A1(z; n) = 1 and B1(z; n) = 0 in
(4). In this particular case, we see that (5) trivially reduces to (2), and therefore C1(z; n) = a(z; n) and
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D1(z; n) = b(z; n). Moreover, (8) forces us to take A2(z; n) = 0 and B2(z; n) = 1. Accordingly, we find that
(9) has now simpler coefficients

C2(z; n) =
b(z; n− 1)
γ(z; n− 1)

,

D2(z; n) = a(z; n− 1)− b(z; n− 1)
β(z; n− 1)
γ(z; n− 1)

.

Under these hypothesis, from Lemma 3 we have Λ(z; n) = 1, and therefore, for the original sequence
{Φn(z)}n≥0, we find

R(z; n) = −a(z; n− 1)− a(z; n) + b(z; n− 1)
β(z; n− 1)
γ(z; n− 1)

− b′(z; n)
bn(z; n)

,

S(z; n) = a(z; n)
[

b′(z; n)
b(z; n)

+ a(z; n− 1)
]

− b(z; n− 1) [a(z; n)β(z; n− 1) + b(z; n)]
γ(z; n− 1)

− a′(z; n).

This reasoning leads us to the following conclusion. As the four expressions a(z; n), b(z; n), β(z; n),
and γ(z; n) depend only on the sequence {Φn}n≥0, the use of the corresponding coefficients ã(z; n), b̃(z; n),
β̃(z; n), and γ̃(z; n), associated with the sequence {Ψn}n≥0 (when they exist), must lead us to an alternative
way to obtainR(z; n) and S(z; n) in Theorem 2. This also provides a compact form of the coefficients in
the corresponding second-order differential Equation (17). As a consequence, we have the following result.

Proposition 1 (Alternative expression forR(z; n) and S(z; n)). Assume that the sequence {Ψn}n≥0 satisfies

[Ψn(z)]′ = ã(z; n)Ψn(z) + b̃(z; n)Ψn−1(z),

Ψn+1(z) = β̃(z; n)Ψn(z) + γ̃(z; n)Ψn−1(z),

where ã(z; n), b̃(z; n), β̃(z; n), and γ̃(z; n) are rational functions on z. Then, {Ψn}n≥0 satisfies the second-order
differential equation

[Ψn(z)]′′ +R(z; n)[Ψn(z)]′ + S(z; n)Ψn(z) = 0,

whereR(z; n) and S(z; n) have the alternative general expressions

R(z; n) = −ã(z; n− 1)− ã(z; n) + b̃(z; n− 1)
β̃(z; n− 1)
γ̃(z; n− 1)

− b̃′(z; n)
b̃n(z; n)

,

S(z; n) = ã(z; n)
[

b̃′(z; n)
b̃(z; n)

+ ã(z; n− 1)
]

−
b̃(z; n− 1)

[
ã(z; n)β̃(z; n− 1) + b̃(z; n)

]
γ̃(z; n− 1)

− ã′(z; n).

If {Ψn}n≥0 satisfies (4), it is not difficult to obtain the corresponding pairs of coefficients ã(z; n)
and b̃(z; n), and β̃(z; n) and γ̃(z; n) in terms of the coefficients associated with {Φn}n≥0, by using the
computations in the proof of Theorem 2, as follows.
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First, Equation (15) constitutes itself the structure relation type-equation for the sequence {Ψn}n≥0,
because it relates the expression of the first z-derivative of the polinomial Ψn(z) with the two consecutive
polynomials Ψn(z) and Ψn−1(z). This leads to ã(z; n) = Ξ(z; n, 2) and b̃(z; n) = −Ξ(z; n, 1), or equivalently

ã(z; n) =
1

Λ(z; n)

∣∣∣∣∣C1(z; n) A2(z; n)
D1(z; n) B2(z; n)

∣∣∣∣∣ ,

b̃(z; n) =
−1

Λ(z; n)

∣∣∣∣∣C1(z; n) A1(z; n)
D1(z; n) B1(z; n)

∣∣∣∣∣ .

Moreover, we can express these quantities in terms of the three pairs of coefficients at the entry of the
algorithm. Denoting

D(z; n) = B1(z; n− 1) [A1(z; n)β(z; n− 1) + B1(z; n)]− A1(z; n− 1)A1(z; n)γ(z; n− 1),

we have the explicit formulas

ã(z; n) =
A1(z; n) [B1(z; n− 1) (a(z; n)β(z; n− 1) + b(z; n))− a(z; n)A1(z; n− 1)γ(z; n− 1)]

D(z; n)

−
A1(z; n− 1)

[
γ(z; n− 1)A′1(z; n) + b(z; n− 1)B1(z; n)

]
D(z; n)

+
B1(z; n− 1)

[
a(z; n− 1)B1(z; n) + β(z; n− 1)A′1(z; n) + B′1(z; n)

]
D(z; n)

,

and

b̃(z; n) =
b(z; n− 1)B1(z; n) [A1(z; n)β(z; n− 1) + B1(z; n)]

D(z; n)

−
γ(z; n− 1)

{
A1(z; n)

[
(a(z; n− 1)− a(z; n)) B1(z; n) + B′1(z; n)

]
+ A2

1(z; n)b(z; n)− B1(z; n)A′1(z; n)
}

D(z; n)
.

On the other hand, to obtain β̃(z; n) and γ̃(z; n), we use the ladder Equations (15) and (16) as well.
Shifting n→ n + 1 in (16), and adding the two equations yields

β̃(z; n) =
Θ(z; n + 1, 1) + Ξ(z; n, 2)

Θ(z; n + 1, 2)
,

γ̃(z; n) =
−Ξ(z; n, 1)

Θ(z; n + 1, 2)
,

or, equivalently,

Ψn+1(z) =
Θ(z; n + 1, 1) + Ξ(z; n, 2)

Θ(z; n + 1, 2)
Ψn(z)−

Ξ(z; n, 1)
Θ(z; n + 1, 2)

Ψn−1(z),

which constitutes a recurrence formula for {Ψn(z)}. More explicitly, in terms of the quantities at the entry
of the algorithm, we also have

β̃(z; n) =
A1(z; n + 1)B1(z; n− 1)γ(z; n)

D(z; n)

+
[A1(z; n + 1)β(z; n) + B1(z; n + 1)] [B1(z; n− 1)β(z; n− 1)− A1(z; n− 1)γ(z; n− 1)]

D(z; n)



Mathematics 2020, 8, 246 9 of 19

and

γ̃(z; n) =
γ(z; n− 1) {B1(z; n) [(A1(z; n + 1)β(z; n) + B1(z; n + 1))]− A1(z; n)A1(z; n + 1)γ(z; n)}

D(z; n)
.

3. Holonomic ODE for Spectral Perturbations of OPUC

3.1. OPUC and Canonical Spectral Transformations

Let µ be a nontrivial probability measure with support on the unit circle T = {z : |z| = 1}, and its
associated inner product

〈p(z), q(z)〉µ =
∫
T

p(z)q(z)dµ(z), p, q ∈ P, (18)

where P is the set of all complex polynomials. A (unique) sequence of polynomials {φn}n>0 of the form
φn(z) = κnzn + . . ., κn > 0, such that

〈φn, φm〉µ =
∫
T

φn(z)φm(z)dµ(z) = δm,n, (19)

can be obtained by applying the Gram–Schmidt orthonormalization process to {zn}n≥0. We say that
{φn}n>0 is orthonormal with respect to µ. The corresponding monic sequence will be denoted by {Φn}n>0.
The associated reproducing kernel is defined by

Kn(z, y) =
n

∑
k=0

Φk(z)Φk(y)
‖Φk‖2 ,

and it satisfies ∫
T

Kn(z, y)r(z)dµ(z) = r(y),

for any polynomial r(z) such that deg r ≤ n. On the other hand, the functions of the second kind associated
with µ are defined by

qn(z) =
∫
T

φn(t)
z− t

dµ(t), z /∈ T, n ≥ 0.

We also denote

Qn(z) =
∫
T

Φn(t)
z− t

dµ(t) = q(z)/κn, n ≥ 0.

The study of OPUC initiated with a series of papers by G. Szegő at the beginning of the twentieth
century (see [24]). More recently, the monograph [25,26] by B. Simon constitutes the most comprehensive
summary of the state of the art on this subject. We summarize some very well known results in the
following proposition. They will be useful in the following sections.

Proposition 2. Let {Φn (z)}n≥0 be a sequence of monic OPUC. Then, the following statements hold.

1. Forward and backward recurrence relations. For n ≥ 1 and Φ0(z) = 1 we have

Φn(z) = zΦn−1(z) + Φn(0)Φ∗n−1(z), (20)

Φn(z) =
(

1− |Φn(0)|2
)

zΦn−1(z) + Φn(0)Φ∗n(z), (21)

where
Φ∗n(z) = znΦn(z−1),
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is called the reciprocal (reversed) polynomial. Notice that from (21) we have

Φ∗n(z) =
1

Φn(0)
Φn(z)−

1− |Φn(0)|2
Φn(0)

zΦn−1(z), (22)

provided Φn(0) 6= 0.
2. Structure relation (see [19] (Th. 8.3.1)). For every n ∈ N,

[Φn(z)]′ = a(z; n)Φn(z) + b(z; n)Φn−1(z), (23)

where the coefficients a(z; n) and b(z; n) are given in [19] (Th. 8.3.1).
3. Three-term recurrence formula (see [25] (1.5.46)), which we will rewrite for convenience as

Φn+1(z) = β(z; n)Φn(z) + γ(z; n)Φn−1(z), (24)

where

β(z; n) = z +
Φn+1(0)

Φn(0)
, (25)

γ(z; n) =
−Φn+1(0)

Φn(0)

(
1− |Φn(0)|2

)
z, (26)

and Φn(0) 6= 0. It is well known that (24) comes after replacing (21) into (20) to eliminate Φ∗n−1.
4. Christoffel–Darboux formula

Kn−1(z, y) =
Φ∗n(z)Φ∗n(y)−Φn(z)Φn(y)

||Φn||2(1− ȳz)
, ȳz 6= 1. (27)

Notice that from (22) we obtain

Kn−1(z, y) = W1
n(z, y)Φn(z) + W2

n(z, y)Φn−1(z), (28)

with

W1
n(z, y) =

Φ∗n(y)
‖Φn‖2(1− ȳz)Φn(0)

− Φn(y)
‖Φn‖2(1− ȳz)

,

W2
n(z, y) =

−Φ∗n(y)(1− |Φn(0)|2)
‖Φn‖2(1− ȳz)Φn(0)

z,

for Φn(0) 6= 0.

Given a measure µ supported on T, the following perturbations have been studied in the literature.

(i) Christoffel transformation [27]
dµC = |z− α|2dµ, α ∈ C.

(ii) Uvarov transformation with one mass [27]

dµU = dµ + mδ(z− α), |α| = 1, m ∈ R.
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(iii) Uvarov transformation with two masses [27]

dµU = dµ + mδ(z− α) + m̄δ(z− ᾱ−1), |α| ∈ R+ \ {1, 0}, m ∈ C.

(iv) Geronimus transformation [28]

dµG =
1

|z− α|2 dµ + mδ(z− α) + m̄δ(z− ᾱ−1), |α| > 1, m ∈ C.

It is easy to see that an application of the Geronimus transformation followed by a Christoffel
transformation, yields the original measure. On the other hand, reversing the order, we will obtain the
Uvarov transformation. Furthermore, the Carathéodory function associated with µ is defined by

F(z) = c0 + 2
∞

∑
k=1

c−kzk,

where the constants cn =
∫
T z−ndµ(z) and n ∈ Z are called the moments associated with µ. We say that

another Carathéodory function F̃ is a linear spectral transformation of F if

F̃(z) =
A(z)F(z) + B(z)

D(z)
, (29)

for some polynomials A(z), B(z), and D(z). It turns out (see [29]) that the above perturbations can be
expressed in terms of the corresponding Carathéodory functions as in (29), where the explicit polynomials
A, B, and D are known for each case. As a consequence, these transformations are called linear.

An important aspect of the study of these transformations is the existence of connection formulas, i.e.,
expressions that relate the sequences of orthogonal polynomials associated with the perturbed and original
measures. We will restrict our attention to the particular case m = 0 for the Geronimus transformation.
In this regard, the following connection formulas appear in [27,28].

Proposition 3 ([27,28]). Let µ be a nontrivial probability measure supported on T, and denote its associated MOPS
by {Φn}n>0. Denote by {Cn}n>0, {Un}n>0, {Vn}n>0, and {Gn}n>0 the MOPS associated with the Christoffel,
Uvarov (one mass), Uvarov (two masses), and Geronimus (with m = 0) transformations of µ, respectively. Then,
we have

Cn(z) =
1

z− α

[
Φn+1(z)−

Φn+1(α)

Kn(α, α)
Kn(z, α)

]
, n > 1, (30)

Un(z) = Φn(z)−
mΦn(α)

1 + mKn−1(α, α)
Kn−1(z, α), n > 1, (31)

Vn(z) = Φn(z)−Mn(m, α)Kn−1(z, α)−Mn(m̄, ᾱ−1)Kn−1(z, ᾱ−1), n > 1, (32)

Gn(z) = (z− α)Φn−1(z) +
Qn−1(α)

εn−2(α)
Sn−1(z, α), n > 2, (33)

where

Mn(m, α) =
m̄Φn(ᾱ−1)

[
1 + mKn−1(α, ᾱ−1)

]
−mm̄Φn(α)Kn−1(ᾱ

−1, ᾱ−1)

[1 + mKn−1(α, ᾱ−1)] [1 + m̄Kn−1(ᾱ−1, α)]−mm̄Kn−1(α, α)Kn−1(ᾱ−1, ᾱ−1)
,
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Qn(z) and qn(z) are the associated functions of the second kind with respect to µ, εn−2 = ‖µG‖2 −
∑n−2

k=0 |qk(α)|2, and

Sn−1(z, α) =
∫
T

z− t
α− t

Kn−2(z, t)dµ(t).

Notice that expressions (30)–(33) are written here using the monic normalization. Also, (32) is written
in a slightly different form. In the following section, we will need some alternative connection formulas as
a tool to derive differential operators whose solutions are the perturbed orthogonal polynomials. Such
formulas are deduced in the following lemma.

Lemma 4. Let {Cn}n>0, {Un}n>0, {Vn}n>0, {Gn}n>0, and {Φn}n>0 be as in the previous proposition. Then, for
any n such that Φn(0) 6= 0, we have

(i) Christoffel transformation
Cn(z) = A1(z; n)Φn(z) + B1(z; n)Φn−1(z), (34)

where

A1(z; n) =
1

z− α

[
β(z; n)− Φn+1(α)

Kn(α, α)

(
W1

n+1(z, α)β(z; n) + W2
n+1(z, α)

)]
,

B1(z; n) =
γ(z; n)
z− α

[
1 +

Φn+1(α)

Kn(α, α)
W1

n+1(z, α)

]
.

(ii) Uvarov transformation with one mass

Un(z) = A1(z; n)Φn(z) + B1(z; n)Φn−1(z),

where

A1(z; n) = 1− mΦn(α)W1
n(z, α)

1 + mKn−1(α, α)
,

B1(z; n) = −mΦn(α)W2
n(z, α)

1 + mKn−1(α, α)
.

(iii) Uvarov transformation with two masses

Vn(z) = A1(z; n)Φn(z) + B1(z; n)Φn−1(z),

where

A1(z; n) = 1−Mn(α)W1
n(z, α)−Mn(ᾱ

−1)W1
n(z, ᾱ−1),

B1(z; n) = −Mn(α)W2
n(z, α)−Mn(ᾱ

−1)W2
n(z, ᾱ−1).

(iv) Geronimus transformation (m = 0)

Gn(z) = A1(z; n)Φn(z) + B1(z; n)Φn−1(z),
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where

A1(z; n) =
Sn−1,1(z, α)

Φn(0)
,

B1(z; n) = z− α− Qn−1(α)

εn−2(α)

(
Sn−1,1(z, α)

Φn(0)
z + Sn−1,2(z, α)

)
,

with

Sn−1,1(z, α) =
1

‖Φn−1‖2

∫
T

z− t
α− t

Φ∗n−1(t)
(1− t̄z)

dµ(t),

Sn−1,2(z, α) =
1

‖Φn−1‖2

∫
T

z− t
α− t

Φn−1(t)
(1− t̄z)

dµ(t).

Proof. The expressions follow easily by considering the connection formulas in Proposition 3,
and Equations (20), (22), (24), and (28).

Remark 2. Observe that the condition Φn(0) 6= 0 is required for the connection formulas presented on the previous
lemma, in order for β(z, n) and γ(z, n) in (24) to be well defined. Nevertheless, some well known examples of
measures in T do not satisfy that condition for an infinite number of values of n. However, from (20), it is clear that
we can take β(z, n) = z and γ(z, n) = 0 whenever Φn+1(0) = 0, and therefore it is possible to obtain connection
formulas for these cases. We present two examples for illustrative purposes.

• For the Lebesgue measure dµ = dθ
2π , we have (see [25]) Φn(z) = zn, n > 0, and therefore Φn(0) = 0 for

every n > 1. This means that we have Φn+1(z) = zΦn(z), and thus β(z, n) = z and γ(z, n) = 0 for every
n > 0. On the other hand, since Φ∗n(z) = 1, n > 0, we have that the connection formula for the Christoffel
transformation becomes

Cn(z) =
1

z− α

[
zΦn(z)−

αn+1

∑n
k=0 |α|2k

(
1− ᾱn+1zΦn(z)

1− ᾱz

)]
,

which means that in this particular case, we have

A1(z, n) =
z

z− α

(
1 +

|α|2n+2

(1− ᾱz)∑n
k=0 |α|2k

)
,

B1(z, n) = − αn+1

zn−1(z− α)(1− ᾱz)∑n
k=0 |α|2k .

• For the normalized Bernstein–Szegő measure with parameter β, with |β| < 1, defined by dµ = 1−|β|2
|1−β̄z|2

dθ
2π , we

have (see [25]) Φn(z) = zn−1(z− β) for n > 1, so that Φn(0) = 0 for every n > 2. Notice that if we choose
β = α, where α is the parameter of the Christoffel transformation, then we have Φn(α) = 0 for every n > 1
and, as a consequence, we have in the corresponding connection formula

A1(z, n) =
z

z− α
, B1(z, n) = 0, n > 1,

directly from (30).
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Notice that, by using the algorithm presented in the preceding section, we can obtain a second-order
differential equation satisfied by the orthogonal polynomials {Ψn}n>0 associated with canonical
transformations of measures on the unit circle, as the corresponding MOPS {Φn}n>0 satisfies a three-term
recursion formula and a structure relation, and the previous Lemma provides connection formulas between
{Ψn}n>0 and {Φn}n>0. Next, we present two illustrative examples.

3.2. An Uvarov Perturbation of the Circular Jacobi Polynomials

Let {Φn}n≥0 be the monic circular Jacobi polynomials of parameter a, orthogonal with respect to the
measure (see [19] (Ex. 8.2.5))

dµ(θ) =
Γ2(a + 1)

2πΓ(2a + 1)
|1− eiθ |2adθ, a > −1.

We will denote by {Ψα
n}n≥0 the MOPS corresponding to an Uvarov modification of the above measure

µ(θ) with a unique mass point at z = α, with |α| = 1. For the sake of brevity, throughout this example, we
will only consider the particular case a = 1 and α = 1. In this situation, the n-th degree monic polynomial
is given by (see [19,25])

Φn(z) =
1

n + 1

n

∑
k=0

(k + 1)zk,

and its norm is given by ‖Φn(z)‖ =
√

n+2
2(n+1) . The reversed polynomial is given by

Φ∗n(z) =
1

n + 1

n

∑
k=0

(k + 1)zn−k.

As a consequence, we have Φn(0) = 1
n+1 and Φn(1) = Φ∗n(1) =

n+2
2 . Using the previous expressions

we can now compute the coefficients that we need to compute the second-order differential equation.
First, the coefficients in (28) are given by W1

n(z, 1) = n(n+1)
1−z and W2

n(z, 1) = − n(n+2)
1−z z, and Kn−1(1, 1) =

1
6 n(n + 1)(n + 2). Thus, from (ii) in Lemma 4, we obtain

A1(z, n) = 1− 3mn(n + 1)(n + 2)
[6 + mn(n + 1)(n + 2)](1− z)

and B1(z, n) =
3mn(n + 2)2z

[6 + mn(n + 1)(n + 2)](1− z)
.

On the other hand, for the coefficients in (3), using (25) and (26), we get

β(z; n) = z +
n + 1
n + 2

and γ(z; n) = − n
n + 1

z,

and, finally, the coefficients in the structure relation are (see [19], Ex. 8.3.2)

a(z; n) = − n
1− z

and b(z; n) =
n(n + 2)

(n + 1)(1− z)
.

Using Mathematicar we compute the coefficientsR(z; n) and S(z; n) in Theorem 2:

R(z; n) =
4

z− 1
− n

z
+

r1(m, n)
r2(m, n)− r1(m, n)z
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with r1(m, n) = −m2n6 − 9m2n5 − 31m2n4 − 51m2n3 − 40m2n2 − 12m2n− 3mn3 − 27mn2 − 60mn− 36m + 18 and
r2(m, n) = −m2n6 − 9m2n5 − 31m2n4 − 51m2n3 − 40m2n2 − 12m2n + 21mn + 18m + 18, and

S(z; n) =
n
(
2mn3 + 3mn2 − 5mn− 6m− 6

)
z (mn3 + 3mn2 + 2mn− 3)

+
−mn4 − 6mn3 − 11mn2 − 6mn− 24n

9(z− 1)

+
ns1(m, n)

9 (mn3 + 3mn2 + 2mn− 3) r2(m, n)− r1(m, n)z
.

with s1(m, n) = m4n12 + 18m4n11 + 143m4n10 + 660m4n9 + 1959m4n8 + 3906m4n7 + 5297m4n6 + 4824m4n5 +

2824m4n4 + 960m4n3 + 144m4n2 + 6m3n9 + 108m3n8 + 792m3n7 + 3132m3n6 + 7362m3n5 + 10584m3n4 + 9120m3n3 +

4320m3n2 + 864m3n − 27m2n6 − 162m2n5 − 27m2n4 + 1620m2n3 + 4104m2n2 + 3888m2n + 1296m2 − 108mn3 −
972mn2 − 2160mn− 1296m + 324.

It is easy to see that, when we take m = 0, we recover the differential equation satisfied by the
sequence {Φn(z)}n≥0 studied by Ismail in [19].

3.3. A Christoffel Transformation of the Bernstein–Szegő Polynomials

Following the Remark 2, we consider a Christoffel perturbation with parameter α of the
Bernstein–Szegő orthogonal polynomials, i.e., Φn(z) = zn−1(z − β), n ≥ 1 and Φ0(z) = 1 (see [25]).
If we take β = α, we clearly have Ψn(z) = zn, n ≥ 0, i.e., {Ψn}n≥0 is the MOPS associated with the
normalized Lebesgue measure. Then, for the connection and recurrence formulas we get

A1(z; n) =
z

z− α
and B1(z; n) = 0,

β(z; n) = z and γ(z; n) = 0,

and it is not difficult to show that taking

a(z; n) =
1

z− α
and b(z; n) = n− 1,

the structure relation (23) holds. Using Mathematicar we obtain the coefficients

R(z; n) =
1− n

z
and S(z; n) = 0,

for the second-order differential equation, which is clearly satisfied by {Ψn}n≥0.

4. Coherent Pairs of Measures on T

The notion of coherent pairs of orthogonality measures on the unit circle was introduced (in the more
general framework of linear functionals defined in the space of Laurent polynomials) in [30], where the
authors considered the Sobolev inner product

〈 f , g〉S =
∫

f (z)g(z)dµ0 + λ
∫

f ′(z)g′(z)dµ1, λ > 0, f , g ∈ P. (35)

If the monic sequences {Φn(z)}n≥0 and {Ψn(z)}n≥0, orthogonal with respect to µ0 and µ1,
respectively, satisfy

Ψn(z) =
Φ′n+1(z)

n + 1
+ cn

Φ′n(z)
n

, an 6= 0, n ≥ 1, (36)
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then (µ0, µ1) is said to be a (1,0)-coherent pair on the unit circle. It was shown in [30] that (36) constitutes a
sufficient condition for

Φn+1(z) + cn
n + 1

n
Φn(z) = Sn+1(z; λ) + νn,λSn(z; λ), n ≥ 1,

where {Sn(z; λ)}n≥0 is orthogonal with respect to (35) and the sequence {νn,λ}n≥1 is given by

νn,λ =
$n−1(λ)

$n(λ)
, n ≥ 1,

where the polynomials {$(λ)}n≥0 are orthogonal with respect to some measure supported in R. The cases
when either µ0 or µ1 is the Lebesgue measure were analyzed, showing that if (µ0, µ1) is an (1,0)-coherent
pair, we have

• if µ0 is the Lebesgue measure, then

dµ1 =
dθ

2π|z + α|2 , |α| < 1, z = eiθ ,

i.e., the Bernstein–Szegő measure;
• if µ1 is the Lebesgue measure, then

dµ0 = |z− α|2 dθ

2π
, z = eiθ ,

i.e., a Christoffel transformation of µ1, where α is given in terms of the first two moments of µ0.

Furthermore, they proved that if µ0 and µ1 constitute a (1,0)-coherent pair, then the linear functional
associated with µ1 must be a rational perturbation of the linear functional associated with µ0. This means
that there exists a connection formula between the orthogonal sequences associated with µ0 and µ1, and
therefore we can use the algorithm proposed in Section 2 to compute a second-order differential equation
satisfied by {Ψn(z)}n≥0. Such a connection formula can be obtained as follows.

From (2), we get

[Φn+1(z)]′ = a(z; n + 1)Φn+1(z) + b(z; n + 1)Φn(z),

[Φn(z)]′ = a(z; n)Φn(z) + b(z; n)Φn−1(z),

and thus from (36) we have

Ψn(z) =
a(z; n + 1)Φn+1(z) + b(z; n + 1)Φn(z)

n + 1
+ cn

a(z; n)Φn(z) + b(z; n)Φn−1(z)
n

and by using the recurrence relation we arrive at

Ψn(z) =
a(z; n + 1)β(z; n)Φn(z) + a(z; n + 1)γ(z; n)Φn−1(z) + b(z; n + 1)Φn(z)

n + 1

+ cn
a(z; n)Φn(z) + b(z; n)Φn−1(z)

n
.

As a consequence, we obtain

Ψn(z) = A1(z; n)Φn(z) + B1(z; n)Φn−1(z),
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with

A1(z; n) =
a(z; n + 1)β(z; n) + b(z; n + 1)

(n + 1)
+ cn

a(z; n)
n

,

B1(z; n) =
a(z; n + 1)γ(z; n)

(n + 1)
+ cn

b(z; n)
n

.

As an example, consider the case when µ0 is the Lebesgue measure, and thus µ1 is the Bernstein–Szegő
measure. In this case, from [19] (Ex. 8.2.5) (with a = 0), we have for the recurrence relation

β(z; n) =
n

n + 1
+ z and γ(z; n) = − nz

n + 1
,

and for the structure relation we get

a(z; n) =
n

z− 1
and b(z; n) = − n

z− 1
.

Thus, for these families we have

A1(z; n) =
(n + 1)α + nz + z− 1

(n + 1)(z− 1)
and B1(z; n) = − (n + 1)α + nz

(n + 1)(z− 1)
.

Using Mathematicar we obtain the coefficients

R(z; n) = −nz− n− 4z + 2
(z− 1)z

+
n (−α)− 2α− n

nα2 + α2 + nα− α + nzα + 2zα + nz
,

S(z; n) = −2(n− 1)
(z− 1)z

− 2 (−α + nzα + 2zα + nz)
(z− 1)z (nα2 + α2 + nα− α + nzα + 2zα + nz)

,

of the second-order differential equation satisfied by the Bernstein-Szegő polynomials.

5. Conclusions and Open Problems

We have generalized a known algorithm to compute second-order differential equations whose
solutions are some sequences of polynomials. This method has been used before in the literature,
especially in the framework of orthogonality in the real line, and it is based on some algebraic and
differential properties connecting two sequences of polynomials. This generalization allows us to deal
with more general frameworks of orthogonality, such as the so-called nonstandard orthogonality (the case
when the associated multiplication operator is not self-adjoint). As a consequence, we have obtained
differential equations whose solutions are orthogonal polynomials associated with spectral transformations
of measures supported on the unit circle, as well as orthogonal polynomials associated with coherent pairs
of measures on the unit circle. We point out that this approach could also be used to obtain differential
equations for para-orthogonal polynomials associated with spectral transformations of measures and
develop electrostatic models of their zeros, extending the results in [23]. This problem will be addressed in
a future contribution.
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