
      

 

 

 

 

BIBLIOTECA 

 

 

This work is licensed under a  

Creative Commons Attribution-NonCommercial-NoDerivatives  

4.0 International License. 

       

 

 
 

 

Document downloaded from the institutional repository of the University of 
Alcala: http://ebuah.uah.es/dspace/ 

 

This is a postprint version of the following published document: 

 

Jiménez, P., Nuevo, J., Bergasa, L.M. & Sotelo, M.A. 2009, "Face tracking and 

pose estimation with automatic three-dimensional model construction", IET 

Computer Vision, vol. 3, no. 2, pp. 93-102 

 

Available at http://dx.doi.org/10.1049/iet-cvi.2008.0057 

 

 

 

 © 2009 Institution of Engineering and Technology 

 

 

(Article begins on next page) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by e_Buah - Biblioteca Digital de la Universidad de Alcalá

https://core.ac.uk/display/386330697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ebuah.uah.es/dspace/
http://dx.doi.org/10.1049/iet-cvi.2008.0057


1

Face Tracking and Pose Estimation with Automatic

3D Model Construction
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Abstract—This paper presents a method for ro-

bustly tracking and estimating the face pose of

a person using stereo vision. The method is in-

variant to identity and does not require previous

training. A face model is automatically initialised

and constructed on-line: a fixed point distribution

is superposed over the face when it is frontal to

the cameras, and several appropriate points close

to those locations are chosen for tracking. Using

the stereo correspondence of the cameras, the 3D

coordinates of these points are extracted, and the

3D model is created. The 2D projections of the

model points are tracked separately on the left and

right images using SMAT. RANSAC and POSIT

are used for 3D pose estimation. Head rotations up

to ±45◦ are correctly estimated. The approach runs

in real time. The purpose of this method is to serve

as the basis of a driver monitoring system, and has

been tested on sequences recorded in a moving car.

I. Introduction

Face detection and tracking is a very active re-
search field in computer vision, and a comprehensive
number of methods have been developed [1]. Face de-
tection is also the first step in many other algorithms
in face recognition, tracing, expression analysis and
other areas of computer vision [2], [3], [4]. Face pose
estimation has attracted interest for its usefulness
in different applications. It is an important cue of
where the person is directing his or her attention,
and thus has been widely used in Human-Machine
Interface applications, sometimes coupled with gaze
estimation [5]. It is a principal component of many
driver inattention monitoring systems [6], [7], [8].

Determining face pose is a complex problem, and
numerous methods have been proposed to estimate
it [9], [10], [11], [12]. Obtaining the pose from 2D im-
ages is difficult because many factors appear coupled.
Face movement is subject not only to rigid variations

(pose), but also non-rigid deformations (expressions).
These deformations can be separated in 3D, but
doing so in 2D is a challenging problem, because
they are not linearly separable [13], [14]. Several
works, such as the one presented in this paper, are
nonetheless able to obtain positive results assuming a
rigid face [15]. In 2D images, self-occlusions also have
to be indirectly calculated and robustly handled.

Most approaches to the problem of face pose es-
timation use a face model of various kinds. Among
the most common are 2D appearance models [16],
2D+3D [14], 3D models from range images [11], and
patch-based models [17]. Estimating the pose with a
model is usually a step in the process of fitting the
model to the image or range scan. These models are
created with an offline training process that involves
large amounts of samples and it can be very time-
consuming.

Our approach is similar to [17] in that we use a set
of 3D points with a patch associated to model the
appearance of the face around each point. Our model
is, however, a rigid model that does not consider
face deformations due to expressions. This is a valid
assumption when the magnitude of the expressions is
small and if enough points that deform very slightly
on expressions are taken, i.e., eye corners or points
over the nose. We propose a stereo camera system
that can track different users without prior training.
The model is automatically initialised on the first
frame of the video sequence, locating adequate fea-
tures for tracking over the face of the subject. The
3D coordinates of these points are calculated using
the stereo correspondence of the cameras. To reduce
the computational load, points are tracked semi-
independently on each image with a modified SMAT
[18], and the pose recovered with POSIT [19]. Points
incorrectly tracked are removed from the estimation
using RANSAC [20]. The system is able to track a
driver’s face robustly in real conditions. Experimen-
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tal results and an analysis of the performance are
presented. This paper extends the work presented in
[21].

II. Related Works

Many different approaches have been made to
the face pose estimation problem. A comprehensive
survey of the state of the art has been recently carried
out by Murphy-Chutorian and Trivedi in [22]. In
this section we present some representative works,
and refer to [22] for more information. One classical
approach to this problem was presented by La Cascia
et al. in [23]. Their approach uses a 3D cylinder
model and optical flow to estimate the head pose.
The system was tested on a few indoor sequences
with controlled head turns. In recent years, Active
Appearance Models [16] have been used to estimate
the object pose, in 2D [24] and 2D+3D spaces [14].
Appearance models represent the face as a flexible
object, with changes in position, shape and appear-
ance modelled as a linear subspace of all possible
variations. They have been shown to work reliably in
many different scenarios. Although efficient versions
have been introduced [14], their fitting algorithms
are computationally expensive, and some exhibit fit-
ting convergence problems when the face shape or
illumination change rapidly. Three dimensional face
models [25] include pose estimation as part of the
fitting process.

In [26], Morency et al. use depth and intensity
view-based eigenspaces to build a prior model from
the first frame that is then robustly tracked. Murphy-
Chutorian and Trivedi [6] presented a system based
on Localized Gradient Orientation histograms inte-
gration with Support Vector Machines for regression
that has obtained good results in tests performed
with drivers in a moving car.

Several methods have been presented that work on
range scan data [11]. 3D acquisition systems provide
accurate and dense data, but the vast amount of data
requires powerful parallel processors (GPU), and not
always can be processed in real-time [25].

Instead of working with dense data, in [27] detec-
tion of non-rigid surfaces is done based on keypoint
recognition. This algorithm works in real time, and
its keypoint classifier can be trained within min-
utes [28].

Considering the face a rigid object simplifies
its modelling and tracking. The reflection of near-
infrared light on the subject’s eyes (red-eye effect) has
been used in several works [12], [29]. This technique
has also been used in [29] to estimate the pose of

the face. These works obtained accurate tracking and
estimations in real time in indoor tests. However,
the red-eye effect may not be visible outdoors where
sunlight is present. Also, continuous exposure to
near-IR lighting is a known cause of eye fatigue,
so users may not be able to use these systems for
extended periods of time.

III. Face model and pose estimation

Automatically creating the face model on the first
frame of the sequence removes the offline training
process. It also allows to work with an specific model
for the subject in the sequence. On the downside,
not having a trained model makes identifying the
different parts very difficult, although that is outside
the scope of this work.

Our model is formed by a set of up to 30 3D
points of the face. These points present adequate
characteristics for tracking and are found with Harris
detector [30]. The patches around the 2D projections
of these points on each camera are tracked on each
frame, using the Simultaneous Modelling and Track-
ing (SMAT) algorithm. 3D pose is obtained from
the 2D points using POSIT, redundantly for both
cameras to improve robustness.

Tracking may fail for some points on each frame.
RANSAC is used to reject erroneous points from the
estimation of the pose. After a set of correctly tracked
points (inliers) is obtained, the position of the outlier
points is set accordingly to the estimated pose. A
diagram of the whole process is shown in Fig. 1.

A. 3D Face model creation

The camera model is referenced to a coordinate
system affixed to the right camera. Within this sys-
tem, the face pose is defined as a translation vector
and a pointing vector, normal to the face. On model
initialisation, it is set to ~vini = (x, y, z) = (0, 0,−1),
as shown in Fig. 2. The translation vector points to
the centre of the model.

The model points are referenced to another coor-
dinate system, with origin on the central point of the
model. ~X axis is the horizontal axis, and grows to
the right of the image. ~Y axis is vertical, and grows
down the frame, and the ~Z axis is perpendicular to
the image plane and grows to the rear of the scene, so
the nose of the driver should have the most negative
z value.

Model creation begins with a face localisation step.
The Viola & Jones [31] algorithm is used on both
images to localise the position of a frontal face within
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Fig. 1. System block diagram

Fig. 2. Face Model, coordinate system and initial model vector

the camera frames. This algorithm returns a box that
encloses the face. We reduce the size of this box by
a factor experimentally obtained, so that it encloses
the face with bigger certainty, as shown in Fig. 3.

The algorithm initialisation requires the subject
to have a frontal pose to the cameras for a few
frames at the beginning of system operation. At this
moment, the model is considered to have a pointing
vector ~vini = (x, y, z) = (0, 0,−1). If the user is not
correctly positioned, the difference between the real
pose vector at the initialisation step and ~vini will
appear as a constant offset error.

The face model is defined by up to thirty points
that are tracked over successive frames. To choose

appropriate points, a predefined standard face pat-
tern is scaled and placed over the detected inner box
containing the face on the left camera image. These
points may not fall over any good feature to be used
for tracking on the specific user’s face, so Harris
algorithm [30] is used to locate features with good
contrast and tracking characteristics in the vicinity
of each pattern point.. Stereo correspondence of these
points over the other camera are obtained apply-
ing epipolar restrictions, and are used to calculate
its 3D coordinates. The stereo camera system was
calibrated using the Camera Calibration Toolbox for
MATLAB.

The predefined pattern that is placed over the face
is similar to that shown in Fig. 2, and has most of
its points around the eye area. An example of the
resulting model can be seen in Fig. 1. This feature
point location scheme provides great flexibility to the
model, but it is very dependant on the success of the
Harris algorithm in finding valid points. For users
with few distinct points on their face, selected points
tend to concentrate around the eyes and mouth.
On the other hand, users with facial hair or other
features such as moles will have the point set spread
over their face more evenly. Both cases have potential
problems associated. In the former, estimating the
pose from points that are close together is more diffi-
cult when tracking inaccuracies appear, because the
signal-to-noise ratio is lower. In the latter case, facial
hair may be very similar across a significant part of
the face, making tracking failures more probable.

The model is built with the 3D coordinates of the
feature points. The model origin is then moved to
the closest point to the centre of mass of the model,
so that the initial 3D coordinates of the points are
independent of the initial face position and distance
to the camera, and the initial pose vector is set to
~vini.

B. Model self-occlusion

The face model is subject to self-occlusion when
the head exceeds a certain range. Some model points
may not be visible, or appear too distorted to be
correctly tracked. To detect such points, a hidden-
point pattern is created after the model initialisation.
Each point is associated a limit rotation angle within
which the point is considered to be visible. When the
face rotation angle is over the limit angle of a point,
it is considered to be hidden and the point is not
processed for tracking and pose estimation.

To create the hidden-point pattern, a circumfer-
ence is adjusted to the (x, z) coordinates of each
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(a) Left image (b) Right image

Fig. 3. Model Construction

model point, as shown in Fig. 4. The circumference
is adjusted to minimise the function

wk =
∑

(
√

(xo − xi)2 + (zo − zi)2 − R
2

), i = 1..30

(1)
where (xi, zi) are the x and z coordinates of each
model point, and (xo, zo) and R are the centre in the
(x, z) plane and the radius of the circumference.

Each point of the model is considered to be hidden
when its angle with respect to vini excesses ±60
degrees. This is a simplification over calculating the
visibility of each point. Setting a fixed threshold is
however advisable considering that the model points
are chosen automatically and may not represent face
elements (such as the nose) that occlude other parts
of the face when turns take place.
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Fig. 4. Circumference fit to the face to get the limit angles

C. Tracking using SMAT

The Simultaneous Modelling and Tracking
(SMAT) [18] is a recently developed technique for
tracking objects in sequences. It is closely related to
other techniques such as Constrained Local Models
(CLM) [32], but it does not require any previous
training. We briefly outline its main characteristics
here, and some modifications we have included over
the original work proposed by Dowson et al.

SMAT works by building a library of exemplars
obtained from previous frames in the sequence. The
exemplars in the library, image patches in our case,
are clustered based on their relative distance, and
the medians of the clusters are used for fitting the
model to the next frame. A new exemplar is included
in one of the clusters depending on the distance to
their medians, or a new cluster is created if the new
exemplar is too far away from the existing ones. As
a group of similar exemplars, each of these clusters
will approximately represent different appearances of
the same feature of the object. The resulting mixture
model is fitted to the next frame. Two tracking
examples with a simple 4 patch model are shown in
Fig. 5.

The SMAT algorithm is very flexible and can be
used to track any kind of object. However, it has
a few weaknesses. As it has no prior information,
the model is defined on the first frames only by
a few exemplars and may fail if occlusions or fast
movements take place. In our method this prob-
lem is minimised because outliers are rejected and
exemplars that incorrectly added to the model are
removed. On an implementation level, the mixture
model in SMAT has a bigger memory footprint that
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equivalent models from other methods. Very similar
patches can be redundantly kept in a cluster, as no
compression or dimensionality reduction technique
(such as Principal Component Analysis) is used.

In the original paper, Dowson et al. [18] included
a model of structure for the distribution of the
exemplars on the images, that is also built on-line.
Nevertheless, our implementation only builds an ap-
pearance model, and the point distribution of the
shape is constrained by the 3D model. Restricting
learning to the appearance model reduces complexity
and uncertainty, and allows to use robust methods,
and discard points and exemplars that do not fit
well, improving the overall robustness of the tracking.
Further details are given in the section below.

The formulation of the SMAT algorithm is inde-
pendent of distance measure used to compare the
cluster medians with the incoming patches. A min-
imisation method is used to obtain the best matching
position without evaluating the distances at every
point in the vicinity of the position. We have used
Zero mean Normalised Cross-Correlation (ZNCC)
and Sum of Squared Differences (SSD) as distances,
and Gauss-Newton and the Nelder-Mead simplex
method [33] for the minimisation process. Of the two
distance measures tested, the best performing was
ZNCC. This distance is more robust to changes of
illumination if those take place over the whole patch,
which happens in most situations as the patches
are small. All results presented in this paper were
obtained using this distance measure.

D. Pose estimation

Given the new updated position of the 2D points
for both left and right images, the 3D face pose is
estimated from these 2D projections. However, the
matching process may not succeed for all points, and
can result in errors or drifting for some of them.
These errors degrade the accuracy of the estimated
pose. Thus, a robust method is required to estimate
the best matching 3D face pose, so that points incor-
rectly tracked can be detected as outliers and safely
discarded. We also consider that points that have
been correctly tracked may have some random noise.
The RANSAC algorithm is used to eliminate the
outliers. 3D pose is obtained using DeMenthon’s four
point iterative pose estimation algorithm (POSIT)
[19].

In each RANSAC iteration, seven points are ran-
domly selected from the model, and used to calculate
the pose (rotation matrix ~R and translation matrix

~T ) using the POSIT algorithm. The value of the pose
is referenced to the pose in the first frame of the
sequence. With this ~R and ~T , all 3D original points
of the model are projected over the image plane, and
the Euclidean distance from the tracking point to
the corresponding projected point is calculated. If
this distance is less than a threshold, this point is
considered to be correct, and marked as an inlier.
The RANSAC algorithm runs for enough iterations
to guarantee a 99% of success with 50% of outliers.

This process is performed over the left and right
frames independently, and the final pose estimation
is calculated from the pose estimations as a weighted
sum, according to the expressions:

~Rmodel =
~Rright · Il

Il + Ir

+
~Rr

left · Ir

Il + Ir

, if Ir, Il > Imin

(2)

~Tmodel =
~Tright · Il

Il + Ir

+
~T r
left · Ir

Il + Ir

, if Ir, Il > Imin (3)

where Il and Ir are the number of inliers from the
left and right pose estimations, as determined with
RANSAC. ~Rmodel and ~Tmodel are the resulting pose
estimation. ~Rright and ~Tright are the pose estimation

from the right image, and ~Rr
left and ~T r

left are pose
estimation from the left camera, translated to the
right camera using the corresponding stereo equa-
tions and camera calibration parameters. In case the
number of inliers of any of the cameras is less than the
Imin threshold, set to half the total number of points,
that estimation is discarded and the estimation of
the other camera is used. If inliers for both images
are below the threshold, the frame is rejected and the
estimation from the previous frame is used. The final
values of the pose are filtered with a Kalman Filter
to smooth the response.

E. Feature point tracking failure detection and recov-

ery

Points identified as outliers by the RANSAC algo-
rithm are moved to a corrected position, so they can
be tracked on the following frames. The new position
of the points is calculated by re-projecting the 3D
model on both camera planes with the final estimated
pose, ~Rmodel and ~Tmodel.

The SMAT model is also inspected when outliers
are found, as it has been updated with all the image
patches, regardless of their validity. Incorrect patches
could contaminate the model and induce further
tracking errors. Thus, patches that correspond to
outlier points on the last frame are also considered
outliers, and removed from the SMAT model.
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Fig. 5. SMAT based tracking

IV. Test setup and results

The algorithm has been tested with videos
recorded in a moving car during daytime. In the
videos, the driver faces front to the cameras on
the first frames. The sequences recorded in the car
show the subjects performing normal driving ges-
tures and head movements, and they frequently talk.
The videos were recorded using two synchronised
FireWire cameras, at a framerate of 20 fps and a
resolution of 960 x 480 pixels. Eight drivers partic-
ipated in the recordings, of which 6 were male and
2 female. Four of them wore glasses. The lenght of
each video sequence depends on the driver and traffic
conditions, ranging from 2 minutes to 5 minutes.
Several sequences were recorded for each driver. The
total length of the sequences is over an hour. Most se-
quences were recorded in the streets of the University
Campus at daytime, with the rest recorded in a urban
environment. The weather conditions were mostly
sunny, which made noticeable shadows appear on the
half of the face further away from the window (see
Figs. 6 and 8). Global illumination changes took place
as the car moved, due to the presence of trees by the
road. Local illumination changes affecting only part
of the face occurred when the driver’s head moved
closer or further away from the window.

Assessing the performance of the approach requires
obtaining a ground-truth value for the orientation of
the head on each frame. Hand-marking several points
over the face on every frame is a very time consuming
procedure, and it is not error-free as there is always
an error in the precision of the human operator and
there may be deformations on the selected points too.
We have tried to minimise the error on the ground-
truth value by recording videos were the subjects
wear a bicycle helmet where two printed chessboards
have been attached, as can be seen in Fig. 6(a).
This chessboards are a cut-out version of the ones
commonly used for camera calibration, so the corner
localisation techniques used in calibration could be
used to determine it position and orientation. The

chessboards were placed at the back of the helmet
so they had a minimal impact on the subject move-
ments and the helmet was still comfortable to wear,
while being visible from at least one of the cameras.
As with the driver face model, the position of the
chessboards is determined on the first frame, and
they are subsequently tracked for the whole duration
of the recording. The corners on the chessboard are
roughly tracked with the SMAT algorithm, and the
fine position is obtained using the gradients of the
squares’ borders. The resulting videos were inspected
for errors in the corner detection.

Subjects were also recorded driving without the
helmet, and asked to drive the same streets. These
videos do not have a ground truth value available, but
demonstrate the performance of the approach when
drivers are not wearing any additional equipment, as
can be seen in Fig. 6(b). A few videos of the approach
working on both types of set-ups can be found on our
website1.

The model construction step is performed on the
first frame. The system chooses up to 30 character-
istic tracking points to built the 3D model. Point
positions are corrected, erroneous points are auto-
matically removed, and the point occlusion pattern
is created, based on a cylinder-like face.

Fig. 7 shows the process of model creation, tracking
and pose estimation. Pose is correctly estimated over
face rotations. The more the face is rotated, the more
points are hidden, and thus the accuracy of the pose
estimation falls. This reduced accuracy appears for
angles that result in more than 50% of the points
being hidden (over ±35 degrees). When approxi-
mately 75% of the model’s points are hidden, the
RANSAC algorithm does not have enough points to
get the correct set of inliers and outliers, and the pose
estimation fails to produce a value. The images cover
different head rotations, and show the estimated pose
vector. Fig. 8 shows frames from another test.

In most cases when rotations go over ±50◦, track-

1http://robesafe.com/tecnologias/index en.php
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(a) Driver wearing a helmet with chessboards attached (b) Subject driving without helmet

Fig. 6. Shots from videos with and without helmet

(a) Frame 10 (b) Frame 80 (c) Frame 130 (d) Frame 225

Fig. 7. Model creation, tracking and pose estimation of the face of a driver

(a) Frame 75 (b) Frame 117 (c) Frame 271 (d) Frame 589

Fig. 8. Face tracking of a subject wearing the helmet

ing is lost. The system then searches the image for a
frontal view of the face, first with the Viola&Jones
algorithm, and then with the model patches in the
area where the face has been found. Fig. 9 shows a
few frames of a sequence where tracking is lost and
the face is found again. Tracking recovery is very fast,
and pose parameters are correctly estimated again in
less than 0.5 seconds (10 frames).

Figs. 10 and 11 show the estimated and ground-
truth values for two videos of different drivers. As
can be seen, both values are very close and frequently
overlap. Estimation error stays in acceptable values
in presence of severe rotations. Combined rotations
are correctly handled, as happens around frame 500
in Fig. 10, where a remarkable turn occurs for the
pitch and yaw angles. Illumination changes were also
correctly handled.

The driver in the video corresponding to Figs. 8
and 11 talks frequently and rises his eyebrows in dif-
ferent moments. It can be seen that the error values
remain very similar throughout the video, with no
significant differences due to the presence of facial ex-
pressions. As mentioned above, when the magnitude
of the expressions is small the fixed-body assumption
holds for most of the points and the introduced errors
can be corrected with RANSAC+POSIT.

Table I shows the Mean Absolute estimation er-
ror of the proposed system along with three other
methods referenced above [23], [6], [26] that are
representative approaches to the problem of head
pose estimation. The error values for our system are
for frames where face tracking is not lost, as in the
event of a loss an estimation can not be obtained. The
comparison should be taken with caution, because
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(a) Frame 584 (b) Frame 600 (c) Frame 640 (d) Frame 660

Fig. 9. Tracking loss and recuperation.
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Fig. 10. Estimated and ground-truth pose for video 074

the datasets used to evaluate the methods and the
systems used to obtain the ground-truth values are
all different. Some methods use monocular systems
and other use stereo camera setups. In terms of
the video datasets, Murphy-Chutorian and Trivedi’s
and the one used in this work are the biggest, and
the only ones recorded in a moving vehicle. Both
contain sequences recorded at daytime, while the
former also includes sequences recorded at night. The
error values of the proposed system are in line with
the best methods presented to date, with the added
benefit that it does not require an off-line training
step.

For the proposed system, the highest error values
are those for the yaw angle. This is expected, as the
rotations of the subjects’ head along this angle are
more pronounced than along the other angles, and
the accuracy of the estimation is lower for angles over
±35◦. Tracking losses also increased with the magni-

tude of the rotation. Table II shows the percentage
of head turns in the yaw angle that led to tracking
losses.. The error figures are consistent over different
videos and users.

TABLE II
Percentage of head turns that led to tracking losses

Yaw angle range |β| ≤ 35◦ 35◦ < |β| ≤ 45◦

Tracking losses 4% 32%

The algorithm has been coded in C/C++ using
the OpenCV Library, and it is able to run in real-
time in a 2.4GHz Core2 Duo processor. Table III
shows the mean and maximum processing times for
tracking and pose estimation, for the given system
with 30 points. Tracking with SMAT is the most time
consuming process. Processing times vary slightly
depending on the number of iterations required, but
they are below the real-time threshold in all our tests.
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TABLE III
Processing times

Task Mean time Max time

SMAT 18 ms 21 ms

RANSAC+POSIT 13 ms 15 ms

V. Conclusions

This paper presents a robust face tracking and pose
estimation method using stereo vision that runs in
real-time. Our approach automatically constructs a
3D model with feature points located on the face,
just requiring the user to look straight ahead for
a few frames. Tracking of feature points is carried
out separately on left and right images using SMAT,
and incorrectly tracked points are rejected using
RANSAC. 3D pose is recovered from the 2D point
set using POSIT.

The algorithm has been tested in video sequences
recorded in a moving vehicle, and works reliably
for face rotations under ±45◦, with mean absolute
estimation error below 2◦. Rotations greater than
this value result in a great number of points being
occluded, and the pose can not be estimated. We
are working towards on-line model extension to solve
this problem. This would augment the model when
the face pose is extreme, and the algorithm accuracy
drops below a threshold due point occlusion. A mod-

ification of the technique used to create the initial
frontal model will be used to extend it. We will also
study different statistics on the tracking results for
each 3D point, so points that can not be consistently
tracked are removed from the model. Finally, we plan
to analyse the system performance with lower reso-
lution images. With these additions, this algorithm
is to be used as the base of a inattention monitoring
system for drivers.
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