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Let D be a bounded domain in C™ (n > 1) with a smooth boundary 0D. We indicate appropriate Sobolev
spaces of negative smoothness to study the non-homogeneous Cauchy problem for the Cauchy-Riemann
operator 9 in D. In particular, we describe traces of the corresponding Sobolev functions on 8D and give
an adequate formulation of the problem. Then we prove the uniqueness theorem for the problem, describe
its mecessary and sufficient solvability conditions and produce a formula for its exact solution.
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As it was understood in the 50-th of XX-th century, it is very natural to consider generalized
formulations of boundary value problems and to solve the problems in spaces of generalized
functions (see, for instance, [1], [2]). There are two principal reasons for this: the advantage of
using very powerful mathematical apparatus of functional analysis and the needs of applications
(in modern models it is practically impossible to point-wisely measure the data of boundary value
problems; in the best case one can interprete them as functionals). In the present paper we want
to consder the Cauchy problem for the Cauchy-Riemann operator 0 in spaces of distributions
with restrictions on the growth near the boundaries of domains (the last condition is imposed in
order to define traces of such distributions on domain’s boundaries, see, for instance, [3], [4], [5]).

It is well-known that the Cauchy problem is ill-posed (see, for instance, [6], [7]). However it
naturally appears in applications: in Hydrodynamics, in Tomography, in Theory of Electronic
Signals. Beginning from the pioneer work [8], the problem was actively studied through the XX-
th century (see [7] and [4] for a rather complete bibliography). Here we present the approach
developed in [9] for the Cauchy problem for holomorphic functions (cf. [10]); but we consider
the non-homogeneous Cauchy problem (cf. [11]). Of course, it is easy to see that these problems
are equivalent for n = 1. On the other hand, if n > 1 then the Cauchy-Riemann system is
overdetermined, and the equivalence takes place only if we have information on the solvability of
the O-equation in a domain where we look for a solution to the problem. Therefore, the problems
are not equivalent in domains which have no convexity properties (see, for example, [12], [13]).
We emphasize that in the present paper we impose no convexity conditions on the domain D.
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1. Functional Spaces

Let R™ be n-dimensional Eucledian space and C™ be n-dimensional complex space with points
being n-vectors z = (21, ..., 2,), where z; = x; + vV/—1%;4n, j = 1,...,n, /=1 being imaginary
unit and o = (21, ..., T2,) € R?". We tacitly assume n > 1, though n = 1 is formally possible.

Let d be the Cauchy-Riemann operator in C". It is known (see, for instance, [13] or [14]) that
it induces the differential compatibility complex (Dolbeault complex):

0 — A 2, pOn) 9, 702 9, 9 p0m)
here A(97) is the set of all the complex exterior forms of bi-degree (¢,7) and d be the (graduated)
Cauchy-Riemann operator extended to the differential forms.

Let D be a bounded domain (i.e., an open connected set) in R?", and let D be its closure.
We always assume that the boundary 0D of D is of class C*°.

As usual we denote by C°°(D) the Frechet space of infinitely differentiable functions in D and
by CZ5,,,(D) the space of smooth functions with compact supports in D. Besides, let C*(D)
stand for the set of smooth functions in D with any derivative extending continuously to D
and, for an open (in the toplology of dD) subset I' C 0D, let Cgy,, (D UT') be the set of all
C°°(D)-functions with compact supports in DUT'. Everywhere below the set of differential forms
of bi-degree (¢, r) with the coefficients from a space &(D) is denoted by &(D, A7),

Recall that for every R € C>°(D, A=) there is such a function r € C°>°(9D) that R = rds
on 9D (ds being the volume form on D induced from C™). We will write R—ds for r.

Let us denote by * the Hodge operator for differentail forms (see, for instance, [14, §14]); it
is convenient to set ¥f = xf for f € C°°(D, A@"). If f € C>(D, AV then n(f) = (¥f)—ds is
called normal part of f on D and then n(Jv) = d,v is called the complex normal derivative of
a function v € C*°(D) on dD.

We write L?(D) for the Hilbert space of all the measurable functions in D with a finite norm

_ dz Ndz
(va)w(p) /DU(Z)U(Z)(Q\/_—D”-

Then the Hermitian form
(W, v)L2(p Aty = / R
D

defines the Hilbert structure on L?(D, A7),

We also denote by H?(D) the Sobolev space of distributions over D, whose weak derivatives
up to the order s € N belong to L?(D). For a non-integer positive s € R, we define Sobolev
spaces H® with the use of the standard interpolation procedure (see, for example, [15] or [4,
§1.4.11]). It is known (see, for instance, [15]) that functions of H*(D), s € N, have traces on 0D
of class H*~1/ 2(0D) and the corresponding trace operator is continuous.

Sobolev spaces of negative smoothness may be defined in many different ways (see, for in-
stance, [16]). The standard Sobolev space H=*(D), s € N, is the completion of C>°(D) with
respect to the norm
|(u, 0) L2 ()|

|ull -2y = sup
H=*(D) D) ||U||HS(D)

veCss

Somp(

However we prefer to use the ones allowing us to consider boundary value problems, to use
integral representations and to get boundedness of standard potentials. That is why we follow [3]
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(cf. [5], [17]). More precisely, let C°*:°(D) be the subspace of C*°(D) having zero values on dD.
Apart from the standard one, two more types of negative norms may be defined for functions
from C>°(D):

o= sup @Oz@l o o, o)

vec=®) Vllm=(D) vec=o®) Vllm=(D)

It is more correct to write || - ||—s,p and |- |5 p but we prefer to drop the index D if this does
not cause misunderstandings. Denote the completions of C°°(D) with respect to these norms by
H(D,| ||-s) and H(D,|-|-s) respectively. By definition, it is aslo natural to call these Banach
spaces negative Sobolev spaces (cf. [3]). Obviously, H(D,| - ||-s) < H(D,| - |-s) — H*(D),
because [ull_s > ful_s > [ull-+(p).

For s € N the Banach space H(D, | - ||—s) is (topologically) isomorphic to the dual space
(H*(D))' for the Hilibert space H*(D) (see, for instance, [4, Theorem 1.4.28]). This allows us to
define a Hilbert structure on the space H(D,|| - ||—s). Indeed, this Banach space is a Hilbert one
with the scalar product

1 . .
(wv)—s = 7 (lutvllZy = o= vlZ + liu +0]2, = fliw - v]|2,),

related to the norm ||.||—s, because the mentioned above [4, Theorem 1.4.28]) implies the paral-
lelogramm identity.

Given a bounded domain Q D D, it is easy to see that any u € H(D, || - ||-s) extends to an
element U € H(,| - ||-s); for instance, one can set

(U,v)q = (u,v)p for all v € H*(Q)

(here (.,.)p is the pairing between H and H' for a space H of distributions over D). It is natural
to denote this extention by x pu; obviously, the support of the distribution xpwu lies in D. The
linear operator

XD - H(D7 || : ”—s) - H(Q’ H ’ ||—s)7
defined in this way is continuous.

In [3] these spaces were used to study Dirichlet problem for the scalar elliptic partial differen-
tial operators in R™ (see also [17] for more general operators); we briefly expose the corresponding
results and slightly modify the results [3] for C" because we will need them now. To this end,
define pairing (u,v) for u € H(D, || ||—s), v € C>(D) as follows. By the definition, one can find
such a sequence {u, } in C*°(D) that ||u, —u||—s — 0 if ¥ — co. Then

[(uy = wp, ) 2(D)| < lluw — wpll=sllvll = (p) — 0 as p, v — oo.
Set (u,v) = lim (u,,v)r2(py. It is clear that the limit does not depend on the choice of the
V—00
sequence {u, }, for if ||u,||-s — 0, v — oo, then
|(uws 0) L2 (D) | < Jluw [l =sl|vll 2+ ()

tends to zero, too. This implies that for u € H(D,| - ||—s) and v € C*°(D) we have the in-
equality: |(u,v)| < [Jul|—s||v||gs(py. Similarly, one defines pairing (u,v) for u € H(D,|-|_s)
and v € C*Y(D) and, obviously one has |(u,v)| < |u|_s||v||#=(p). Of course, the scalar
product (.,.)z2(p,ac1) induces pairings (.,.) on H(D, AV || - ||_5) x C®°(D,A®V) and
H(D,ACD || ) x Co0(D, AO:D),
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2n
Now, given F' and wug, consider Dirichlet problem for the Laplace operator A = Y 88—; in

j=0 7%
R2";
Au = F in D, (1)
u = wug on OD.
More exactly, let F' € H(D,| - |_s_2), up € H*"1/2(0D), s € Z,. One says that u €
H(D, || -||—s) is a strong solution to (1) if there is a sequence {u, } € C°°(D) such that

Huu - UH_S — 0, Hul/ - U0||—s—1/2,aD — 0, ||5nuu - ﬁOH — 0, |AUV - F|—s—2 — 0,

—5—3/2,0D
v — o0, where iy € H—*73/2(0D) is arbitrary.

Given F € H(D,|-|_s_2), up € H*"Y2(8D), we say that a function u is a weak solution to
(1) if it belongs to H(D, || - ||-s/) with a number s’ € Z, and, according to the Green formula in

complex form,
(u, Av) = (F,v) — 2(ug, Opv)ap for all v € C0(D).

Clearly, any strong solution to (1) is a weak one.

Theorem 1. Let s € Z. If F € H(D,| - |_s_2), up € H=5"Y2(dD), then there is the unique
weak solution u to the problem (1). In particular, the weak solution to (1) is the strong one and

ull s < ¢ (IF|-s—2 + [|uoll—s—1/2,6D) ;
where the constant ¢ does not depend on F, ug and u.

Proof. See, for instance, [17] (cf. [3] for the real case). O

Denote by PP) . H=*=1/2(9D) — H(D, || -|_s) the continuous operator, mapping uo and
F = 0 to the unique solution to Dirichlet problem (1). Of course, on a sufficiently smooth wg,
this is nothing but the Poisson integral of the Dirichlet problem. Similarly, denote by G(P) :
H(D,| " |-s—2) — H(D,| - ||-s) the continuous operator, mapping F' € H(D,|-|_s_2) to the
unique solution to Dirichlet problem (1) with the zero boundary data.

Now we want to solve the Cauchy problem for 0 in spaces H(D, || - ||—s). For an element u of
H*(D), H(D, | - ||-s) or H(D,|-|_s) we always understand Qu in the sense of distributions in
D. Of course, 0 continuously maps H*(D) to H*~1(D), s € Z.

Lemma 1. The differential operator 0 induces a linear bounded operator

d: H(D7A(O7T)7 ” ’ H*S) - H(Dv A(OJ.—H)v | ’ |*S*1)'
Proof. It immediately follows from Stokes’ formula. g
However there is no need for elements of H(D, || - || =) to have traces on 9D and there is no
need for 0 to map H(D, | -|—s) to H(D, AOY || - || _s_1).

For this reason we introduce two more types of spaces (cf. [4, §9.2, 9.3]). Namely, denote the
completion of C*°(D) with respect to the graph norms

1/2 1/2
)2 Ml = (Nl + ul221j2.00)

by Hz(D,| - |-s) and Hy(D, || - [|-s) respectively. Obviously, H5(D, || - ||-s) and Hy(D, | - || —s)
are Hilbert spaces with scalar products

lull sz = (lulZ, + 19ul?,

(U,U)_s,g = (U,’U),S + (51},,5’[}),5,17 (’U,,U),S’b = (U7’l)),s + (U, /U)fsfl/Q,aD
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respectively. Clearly, elements of these spaces are more regular in D than elements of H (D, ||-|| _s).
Moreover, by the definition, the differential operator 0 induces a bounded linear operator

95 Hy(D, || - | -s) — H(D, A | || -s-),
and the trace operator t, : H*(D) — H* '/2(9D) induces a bounded linear trace operator
tos: Hy(D, | -||-s) — H=*"1/2(8D).
Theorem 2. The linear spaces Hz(D, | - ||=s) and Hy(D, | - ||=s) coincide and their norms are

equivalent.

Proof. By the definitions of the spaces we need to check the equivalence of norms on C*°(D)
only. Let 9 g = —%0%¢g be the formal adjoint for 0. Then because of Stokes’ formula we have:

(B, g) = (0,0 g) +/ v(%g) for all g € C=(D, AV v e C=(D).
oD

Hence, for all v € C*°(D) we have:
ol s + 190112 o1 < (10apal* + lnsa I + (0] s + 0012 —12.00)

where ny,; is the continuous operator n,y; : H**(D,AOD) — Hs+1/2(9D) induced by the
normal operator n, and 5:+1 : H¥*Y(D, A1) — H*(D) is the continuous operator induced by

0.

Back, fix a defining function p € C'*° of the domain D; without loss of a generality we may
assume |dp| = 1 on dD. For a function gg € C*(9D), set

n Qogfp
Go =Y PP | ——F s | a2
- (Z 86711 )
h=1

Due to [14, lemma 3.5| and the properties of the Poisson integral PP), we see that Gy €
C>(D, A1) with n(Gg) = go on D and

1Gollg=+1(p,ac0y < Yllgoll me+1/200)

with a constant v = ~y(s), not depending on gy and Go. Then, by Stokes’ formula, we have:

/ vgods(x) = / v(FGo) = (Ov, Go) — (v, Gp) for all v € C®(D).
oD oD
Hence

W12 s + ol a1 jp < 492+ 921051 P (0l + [190]]2 ). O

2. Weak Boundary Values of Sobolev functions

Consider now the weak extension of d on the scale H(D, ||-||s). Namely, denote by HZ (D, [-]-s)
the set of functions u from H(D, || - ||_,) such that du € H(D, A || .| _4_1). As 9 is linear,
then the set is linear too; we endow it with the graph norm

= 1/2
ull 55 = (el + [OulZ 1) "
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It is not difficult to see that the normed space HZ (D, || - ||-s) is complete.
Clearly,
Hy(D, |- [I-s) € Hg (D, || - [[-5), (2)

Besides, the differential operator 0 induces the linear bounded operator

"W

0%, Hy(D,|| - |-s) — H(D, A, || - [|s-).

—S

The unions U2, HZ (D, ||-[|-s) and U2, H(D, [|-[|-s) we denote by Hz(D) and H (D) respectively.

s=1

As before, let I’ be an open (in the topology of 9D) connected subset of 9D.

Definition 1. We say that a function v € Hg(D) has weak boundary value t{ (u) = ug € D'(T)
with respect to the operator @ on T if
(Ou,9)p — (4,8 9)p = (ug,n(g)) for all g € CZ5,,, (D UT,ACD),

comp

Stokes’ formula implies that every u € Hz(D, | - ||—s) has a weak boundary value on 9D in
the sense of Definition 1, coinciding with the trace t_(u) € H=*~/2(9D).

Theorem 3. For every function u € Hz(D) there is the weak boundary value t§p,(u) in the sense
of Definition 1, coinciding with limit boundary value of the harmonic function (u4G®) (25* (Ou)))
of finite order of growth near 0D.

Proof. Let u € Hg(D). Then there is such an s € N that u € HZ(D,| - [|-s), and then
uc H(D,AOD, | -] _,_).

First of all, we note that by Lemma 1 and Theorem 1 the operator G(P )9 continuously maps
the space H(D, AV || - ||_s_1) to Hz(D, | - ||-s) -

Then any element w of the image G2 (H(D, A || - ||_,_1)) has zero trace t_,(w), and
hence it has zero weak boundary value on 0D in the sense of Definition 1. Now it is clear that a
function v € Hg(D) has weak boundary value t4,(u) in the sense of Definition 1 if and only if
the function v = (u + G(P)(20" (0u))) does. Since A = —23 8 we see that, by the construction,
v e Hz(D,| - ||-s) satisfies

Av = =28 du+28 (Ou) =0 in D.

In particular, as v € H(D, || - ||s), it has a finite order of growth near 0D and has weak limit
value t(v) = vy € D'(9D) (see [5]). More precisely, set D, = {x € D : p(z) < —e}. Then, for a
sufficiently small € > 0, the sets D. € D € D_. are domains with smooth boundaries 9Dy, of
class C* and vectors Fev(x) belong to 0D, for every & € D (here v(x) is the external normal
unit vector to the hypersurface D at the point x). It is said that v = vy in the sense of weak
limit values on I' if

< vg,w >= lin+10 w(y)v(y —ev(y))ds(y) for all w € ngmp(r).
e aD

Further, as it is explained above,
(xpv,w) = (v,w)p for all w € C(C"),

(xp(0v),%G) = (dv,G)p for all G € C>°(C", AOY),
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By the construction, (5@5* YOv = 0 in D and the components of dv are harmonic functions with
a finite order of growth near dD. Ellipticity of the operators A and 9 & 9 [4, Theorem 9.4.7]
implies that there is a positive sequence {¢,}, converging to zero and such that

{(xpv,w) = hrrJer v(z)w(x)dz for all w € C°(C"),
Ep— DEV
(xp(0v),*G) = lim v AFG for all G € C=(C", AOY),
Ep— Dsy

By the Whitney Theorem, any smooth function on D can be extended to a smooth function
on C™. Therefore

(v,w)p = lim v(z)w(x)dx for all w € C*°(D),
g,—+0 D.,
(90,G)p = _lim [ BuA(3G) for G € O=(D,AOY).
£,— D.,

Hence, by Stokes’ formula, for all g € C°°(D, A(®1)) we have:

(Bv,9)p — (v,0 g)p = lim (Bv A (Fg) — v%0 g) =
e, —+0 D.,
i  f o vEe= lm [ o((Rg)dse, )dse, = (v0:n(9)),
which was to be proved. |
Corollary 1. For every function u € Hg (D, || - ||-s) there is weak limit value t§p(u) on 0D in

the sense of Definition 1, belonging to H—*~/2(dD), with

t5p (Wl —s—1/2,0p0 < Clull_, 5 (3)
where the constant C' does not depend on w.

Proof. We have already proved the existence of weak boundary values in the sense of Definition
1 in the class of distributions for elements of the space Hy' (D, || - ||-s). We need to prove that
they belong to the corresponding Sobolev spaces on dD. Fix gy € C°°(9D). Then, as we have
seen proving Theorem 2,

(0, 90)| = |(uo, n(Go))| = |(Bu, Go) — (1,9 Go)| <

— —%
< |Oull-s—1lGollgs+1(p,ac00y + [ull-s10° Goll s (p,awvy < Cllull_ ll90ll zro+12(0D)

with a constant C' not depending on gg. Hence

(10, 9)|

lollgrrnopy = sup 0D oy o

pecss,, @) |0l me+1/2(am)
Thus, we have proved that t%,(u) € H=571/2(9D) and the estimate (3) holds true. O
Corollary 2. The spaces Hz(D, || - [|-s) and HZ (D, || -||-s) coincide.
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Proof. Because of (2), it is sufficient to prove that
HZ (D, |- l-s) € Hg(Ds [ - [|-s)-

Fix a function u € Hy (D, | - |-s). By Corollary 1, it has weak boundary value t§p(u) €

H=1/2(dD). Let us show that u is a weak solution to the Dirichlet problem (1) with the
data

F=—-29 (9u) € H(D,| - |_s_2) and t§,(u) € H*~/2(0D).
Indeed, Corollary 1 implies that, for all v € C°°(D), we have:
(u, Av) = —2(u,d (Jv)) = —2(Bu, ) + 2(ug, Inv). (4)
On the other hand, as du € H(D,AY | - |_,_1), then there is a sequence {f,} C
C>=(D, A1) converging to du in this space. By Lemma 1, the sequence {g*fy} c C>*(D)
converges to d (Ou) in the space H(D, |- |_,_5). That is why

(9u,0v) = lim (f,,00) = lim (@"f,,v) = (9 (Qu),v). (5)

Combining (4) and (5) we conclude that u is the weak solution to the Dirichlet problem.
Finally, Theorem 1 implies that u is the strong solution to the Dirichlet problem and hence
it belongs to H5(D, || - ||-s)- O

Corollary 3. Let u € H(D). If

Oue HD,| - ||-s—1), t_s(u)e H*"1/2(aD)
then w € Hz(D,|| - ||—s). Moreover, if Ou € H*~Y(D), t(u) € H*~'/2(dD) then u € H*(D).
As we have seen above, the space Hz(D, || - ||—s) is a suitable class for stating the Cauchy

problem for the Cauchy-Riemann operator. In order to do this we need to choose proper spaces
for the boundary Cauchy data on a surface I' C dD. As we are interesting in the case I' # 0D,
we will use one more type of Sobolev spaces: Sobolev spaces on closed sets (see, for instance,
[4, §1.1.3]). Namely, let H—*(T) stand for the factor space of H~%(0D) over the subspace of
functions vanishing on a neighbourhood of T'. Of course, it is not so easy to handle this space,
but its every element extends from I" up to an element of H~*(9D). Further characteristic of this
space may be found in [4, Lemma 12.3.2]). We only note that if I" has a C°°-smooth boundary

(on OD), then
H(T, |- |-sr) = H*(T) < H(T).

Corollary 4. For every function u € Hg(D, | - ||—s) and every I' C 0D there is boundary value
tr(u) in the sense of Definition 1, belonging to H—5~/2(T).

As 9D is compact, U2, H(OD, || - ||=s.op) = D'(OD). Set U2, H—*(T') = D'(T).

Corollary 5. For every u € Hgz(D) and every I' C 0D there is boundary value tr(u) in the

sense of Definition 1, belonging to D'(T).
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3. The Martinelli-Bochner Formula

Let ® be the standard fundamental solution to the Laplace operator in R?* and il be the
Martinelli-Bochner kernel (see, for instance, [14]):

n

B(o—y) = | FTE n=t 8¢ = g ”*1 St “< STF geiinde
o2, (2—2n)[z—y[?" =2 n>1 nj:l -2

where o, is the square of the unit sphere in R™. We use the same notation ® also for the operator
corresponding to the introduced fundamental solution kernel.

For z ¢ 0D, denote by Muvg(z) the Martinelli-Bochner transform of a density vg € D'(8D),
i.e., the action’s result of the distribution vy to the function n((-, z)) with respect to the variable
¢ € 9D. As the kernel 4l is harmonic with respect to z # (, the transform is harmonic everywhere
in C™ outside the support supp vy of the density vy.

Further, for a form f € C°°(D, A(®Y)) denote by T f the following volume potential:

(Tof)(2) = (90" xp f)(z / F(O) AU, 2).

Lemma 2. For every bounded domain Q €@ C" with 9Q € C* and D N Q = 0, the potential
Tp induces the bounded linear operator

Tpg: HD, A |- —y—1) — Hg(Q ]| - | -)-
Moreover, for any form f € H(D,ACY ||| _,_1), the function Tp o f is harmonic in Q\ D.
Proof. For all g € C=(D, A®V) and ¢, € C=(Q) we have:

(Tpg, d)a = (90 xpg, xad)cr = (XD, OPXQD)Cn,
(0Tpg, ) = (990 xpg, xat)cr = (xpg, 0PI xat)cr = (xpg, ITaw)cn.

As pseudo-differential operators ®xq and T, are continuous on the scale of Sobolev spaces H*((Q),
s € Z4 (see, for instance, [4, theorem 2.4.24] then

ITogll_, 50 < Cllgll-s,p for all g € C=(D,AY), (6)

with a constant C' > 0 does not depending on g € C>(D, AO1).

Now, if f € H(D, AV || -||_s_1) then there is a sequence {f,} ¢ C(D, A%1) converging
to f in H(D,A®V || -|_s_1). By the inequality (6), the sequence {Tpf,} is fundamental in
H5(€, || - ||=s); we its limit denote by Tp,qf. Clearly this limit does not depend on the choice
of the sequence {f,} € C>(D,A®V), and the estimate (6) guarantees the boundedness of the
linear operator Tp of defined in this way. Moreover, since every potential T f, is harmonic
in C" \ D then Stiltjes-Vitali Theorem implies that the sequence {Tpf,} converges uniformly
together with all the derivatives on compacts in Q\ D and its limit is harmonic in @\ D. O

Lemma 3. For any domain 2 € C™ such that Q) € C* and D C 2, the transform M defined
above induces bounded linear operators

Mp : H="V2(0D) — Hy(D. | -|—),
Mg : H*7Y2(8D) — H(Q, || - ||—s)-
Besides, for every function v € Hg(D) the Martinelli-Bochner formulae hold true:

Mp(t(v)) +Tp.pdv =v, Mq(t(v))+Tpadv=xpo. (7)
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Proof. As we have seen before, for any vy € H~*"'/2(9D), the Poisson integral P(P)(vy) €

Hz(D,|| - ||-s), satisfies t(PP)(vg)) = vo (see Theorem 1). We set
Mp =P —Tp pdPP) : H=*71/2(0D) — Hy(D, || - ||-s),
Mq = xpPP) = Tp odPP) : H=*712(0D) — H(Q, | - ||-s).

By Lemma 2, Theorem 1 and the continuity of the operator xp, the operators Mp, Mg, defined
in this way, are continuous. Let us show that Mp and Mg coincide with the transform M on
C*>®(dD). Indeed, if vy € C>(8D) then PPy € C(D) and

Muvy = M(t(PP)u)).
Then, by Martinelli-Bochner formula for smooth functions (see [14]), we have:
XDP(D)UO = MUO + TDE’P(D)”U(),

which was to be proved.

As C*®(dD) is dense in H=*"1/2(9D) then M continuously extends from C*°(dD) to the
space H—5~1/2 (D) up to the operators Mp, Mg defined above. Moreover, it is easy to see that
the functions Mpvg, Mavg coincide with the transform Mwvy in D and Q \ supp vp respectively.
Indeed, let ¢ € Cg°(Q2\ supp vo). We approximate the distribution vy € H~5"1/2(9D) by smooth
functions v(()”) with supports in a neighbourhood of supp vy in such a way that supp véy) Nsupp ¢ =
(). Then, by easy computations, lim, _, (M (vy — v(()u)), ¢)a = 0, and hence

(Mo, 9)a = lim (Mvg”, ¢)a = (Mavo, d)a
because Mg is continuous. Similarly, if supp ¢ C D then
(Mo, ¢)p = lim (Muvg”,6)p = (Mpvo, 6)p-

Let now v € Hg(D). Then v € Hg(D,| - ||—s) with a number s and there is a sequence
{v,} € C>°(D) converging to v in Hz(D, | - ||—s). Therefore the Martinelli-Bochner formula for
smooth functions implies

M(t(v,)) + Tpdv, = XDV, (8)

Passing to the limit with respect to v — oo in the spaces Hg(D, || - [|—s) and H (€, || - [|s) in (8)
we obtain (7) because of Lemma 2 and the continuity of Mp, Mg, proved above. 0

Remark 1. Let f € H(D,AOY ||-||_._1). If Q, Q1 and Qy are bounded domains in C™ con-
taining D, having smooth boundaries and such that €, C §, p=1,2, then functions Tpqof €
H@Q, |- -5), Tpoppf € H\ D, |- [|-s) and T, o \5f € H(Q2\ D, || - [-s) are harmonic
in Q\ D, Q1 \ D and Q2 \ D respectively. As each of them is constructed as a limit of the same
sequence of functions, they coincide in (21 NQ)\ D. Actually, as Q, 1, and Qg are arbitrary, all
these limits harmonically extend their to C*\ D and all these extentions coincide, too. Since the
operators Mq, Mq,, and Mg, are constructed with the use of the operators Tp o TD,QI\E and
TD,Qz\ﬁ respectively, this remark is valid for potentials of the type Mauy with vy € H—~/2(dD).
This allows us to consider functions Tpf and Mvy harmonic in C" \ D, having finite orders of
growth near D (outside D!) and such that Tpf = Tpag € H(Q, || - ||-s), Mvo € H(Q, | - ||-s)
for any domain Q D D.
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4. The Cauchy problem
Set H(D,AV) = H(D,AOD | -]_,).

Problem 1. Given f € H(D,A®Y), vy € D'(T), find u € Hz(D) with

(0,9 ¢) = (f,¢) — (w0, n(9)) for all ¢ € C5,,,(DUT,ACD). (9)

As we have seen before, a function u € H(D) is a solution to the Cauchy Problem 1 if and
only if Ou = f in the sense of distributions in D and tr(u) = ug on I'. Moreover, Corollary
3 means that, for sufficiently smooth data f and wug, Problem 1 becomes the classical Cauchy
problem for the Cauchy-Riemann operator. Besides, we easily get the Uniqueness Theorem for
Problem 1.

Theorem 4. Problem 1 has no more than one sulution.

Proof. Indeed, if ug = 0, f = 0 then corollary 1 implies that a solution to 1 is a holomorphic
Sobolev function in D having zero limit values on I'. As it has a finite order of growth near I" (see,
for instance, [4, theorem 9.4.8]), we conclude that v = 0 in D because of [4, theorem 10.3.5]). O

As 52 = 0, then f = 0 in D if the Cauchy problem is solvable. Besides, if n > 1, the
Cauchy-Riemann operator d induces the tangential operator 9, on 9D (see, for instance, [14,
§11]). This means that the Cauchy data ug and f have to be coherent. Namely, taking in (9) as
¢ a differential form 9 3 with 3 € Cosmp(D UL, A% we see that

(uo,n(@ B)) = (f,8 B) for all § € C,(DUT,AO2), (10)

if Problem 1 is solvable. For f = 0 it means that ug is a C'R-function on T.

We want to get a solvability criterion for Problem 1. With this aim, let us choose a domain
D7 in such a way that the set Q@ = DUT U DT would be a bounded domain with a smooth
boundary; it is convenient to set D~ = D. For a function v € C(D* U D~) we denote by v* its
restriction to D*.

For ug € H—*~Y/2(T) we fix an element iy € H~*"1/2(9D) of its equivalence class. As we
have explained in Remark 1, the distribution F' = Miig+Tp f is harmonic outside D and belongs
to H(Q, |- ]|s).

Theorem 5. The Cauchy problem 1 is solvable if and only if condition (10) holds and there is
a harmonic in Q function F of finite order of growth near 02 coinciding with F in DT,

Proof. Let Problem 1 be solvable and u be its solution. The necessity of condition (10) is
already proved. Set
F=F—xpu. (11)

By the definition, F is harmonic in D*. Then, by Martinelli-Bochner formula (7), Lemma 3
and Remark 1, we have:

F = Mquo +Tp.of — xpu = Mq(to — t(u)).

As ug = t(u) on T' then Mq(tap — t(u)) = M(@o — t(w)) is harmonic in Q \ T as parameter
depending distribution. Hence F has the same property. It has a finite order of growth near 0D
because of the structure of the kernel (¢, z) and the compactness of 9D: the kernel 4((, z) is
harmonic outside the diagonal {¢ = z} and it grows as |z — ¢|'72" near the diagonal; besides,
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the compactness of D implies that the distribution (&g — ¢(u)) has a finite order of singularity
on 0D.
Back, let there be a harmonic in 2 function F of finite order of growth near 9 coinciding
with F in DT. Set
UZTD7Df—|—MD1TL0—]:_. (12)

As f € H(D,A®V) and uo € D'(T), Lemmata 2 and 3 imply that T p f + Mpiig € Hz(D).
Moreover, since D C € then F is harmonic in D and has a finite order of growth near 9D.
Therefore ¢(F) € D'(9D) (see [4, Theorem 9.3.16]). Hence F~ = PP (¢(F)) and F~ € Hz(D)
because of Theorem 1. Thus, by the construction, the function u belongs to H(D). According
to Corollary 1, there is boundary value #(u) on T in the space of distributions which can be
calculated by Definition 1.

Let take sequences {f,} C C°°(D,A®V) and {u((f')} C C*(9D) approximating functions
fe  HD,A ||.||_s_1) and ug € D'(OD) respectively in these spaces. Then, because Tp f, €
C?(Q) (see [4, Theorem 2.4.24] ) and because of the Jump Theorem for Martinelli-Bochner
integral (see, for instance, [14, Theorem 2.3 or Theorem 3.1]),

(Tpf))” = (Tpf)t =0onT, (Mal")” — (Mal")" =ul onT.

Now, using Stokes’ formula and Lemmata 1, 3, 2 and Remark 1, we conclude that for all g €
c . (DUT, AV we have:

comp

(Du,9)p — (u, 8 g)p =
= lim @(Tpf, + M=l — F),9)p — (Tnf, + (Mal")~ — F, 5 g)p =

= Jim (o + (To fi)* + (Mig”)™ = F),n(9)) = (uo, n(9)),

i.e, u=wugonl.
In order to finish the proof we need to convince ourselves that du = f in D. To this end
consider the form P = xp(f — du) belonging to H(Q, A(®Y). Tt is clear that C2,, (2, A(0:?) C

comp
CS5np(D UL, A% Then, by (10) and Definition 1 we have for all 3 € CZ5,,,,(2, A©2):

(P9 B)a = (.9 B)p — (0u,9 B)p = (uo,n(xd B)) — (ug,n(x8 B)) — (u,8 8 B)p =0,

because - = 0. Hence 9P = 0 in Q.
On the other side, by Definition 1, for all v € C%o., () we have:

comp
_ _ _ _ 1 _
(P,0v)q = (f,0v)p — (Ou, 0v)p = (f,00)p — (u, §AU)D — (ug, Onv). (13)
Since F is harmonic in © and coincides with F' in D, then (see Remark 1)
1 1 21
(.7:, §AU)D = —(.7:, 5AU)D+ = —(TDygf + Mquy, §A’U)D+. (14)
Besides, as @ is bilateral fundamental solution to the Laplace operator in C™ then %ATD f=

8 xpf. Hence again taking a sequence {f,} ¢ C>(D, AOD), approximating f € H(D, AV |-
|l-s—1) in this space, and using Lemmata 1, 2 and Remark 1, we see that

1 1 . 1 1
(Toaf. 5800+ + (Toof. 5800 = fim ((Toh 5800+ + (Tnfu 52000 ) =
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V—00

. 1 .k . = =
lim (Tp fy, 5Av)e = lim (9 xpfy,v)e = lim (f,,dv)p = (f,0v)p. (15)
Combining (13), (14), (15), we conclude that
= o1 1 —
(P,0v)q = (Mo, §AU)D+ + (Mo, iAv)D — (ug, Onv).

Finally, by the Stokes’ formula, we have in the sense of weak limit values on I':

21 o 1 o - =

(Mg, 5AU)D+ + (Mao)~, iAv)D = ((Mag)~ — (Mag)™,0nv)ap +

+(On((Mag)™ — (Mag) ™), v) = (ug, Inv),
because in the sense of weak limit values on I'" there are the jumps on I':
(M’ao)_ — (Mﬂ0)+ = Uog, gn((Mﬂo)_ — (Mﬂ0)+) = 0,

see [18] and [9] respectively.
Thus, 9P =0in Q, and hence (0 @ 5*)]3 = 0 in Q. As every such a form has harmonic
coeflicients in §2, the uniqueness theorem for harmonic functions yields P = 0 in Q2. In particular,

f=0uin D. O
Corollary 6. Let f € H(D,A®Y || - ||_,_1), wug € H*"Y%(T). The Cauchy Problem 1 is
solvable in Hz(D,| - [|—s) if and only if (10) holds and there is harmonic in Q function F €
H(Q, | - ||-s) coinciding with F in D*.

Proof. Indeed, if the Cauchy Problem 1 is solvable in Hz(D, || - ||—s) then it is solvable and

F = Mq(tg — ug) (see the proof of Theorem 5). Hence, according to Lemma 3, function F
belongs to H(Q, | - ||-s)-

Back, if F € H(L,||-||—s) is harmonic and coincides with F in D then the Cauchy Problem 1
is solvable. Therefore, its unique solution w is given by (12) and F is given by (11). In particular,
xpu= (F-F) € H(Q, ||||—s)- Take v € C°>°(D). Then thereis V € C*°(Q) with ||V |s.o = ||v|ls.0
and v =V in D. By the definition,

[(u,v)p| = [(xpw, V)al < l[xpull-sallvls,p,

ie.,u€ H(D,||||-s). Finally, as 9u = f € H(D, AV ||-||_s_;) we see that u € Hz(D, |- —s)-
O

At the end, we note that Corollary 6 allows us to use the bases with double orthogonality
property in order to construct Carleman’s formulae for Cauchy Problem 1 in the same way as in
[10] or [11].
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