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This paper investigates noise-immunity of accelerated phase-lock-loop frequency control algorithms 
of user equipment in perspective ground-based radio navigation systems. Three algorithms of 
accelerated phase-lock-loop frequency control are suggested and described. Statistic simulations of 
signal processing in involved system are given.
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Introduction

Spread spectrum signals with minimum shift keying (MSK) are widely used in modern radio 
navigation systems (RNS), e.g.: GEOLOC (France). High accuracy of coordinate measuring in the whole 
RNS working area requires providing phase shift measurements with root-mean-square (RMS) error 

3ϕσ ≤  , when signal-to-noise ratio threshold equals to 40dB−  (in the band of MSK-signal). That is why, 
the meaning of phase-lock-loop frequency control pass band equals to 0,1 Hz. Thus, locking time is 600 s, 
and can grow by a factor of 10 under noise and jamming influence [1]. 

Recently, researchers have shown an increased interest in Kalman filtering, because it can provide 
high accuracy of phase tracing measurements. But Kalman filter has a significant disadvantage – 
computational complexity, therefore, in the foreseeable future it can’t be used for preprocessing 
algorithms. 

Due to limits in computational technology, it’s necessary to investigate phase tracking algorithms 
with performance objectives: small values of locking time and RMS error. So, the hypothesis that 
will be tested is that multistage (several meanings of pass band) phase-lock-loop frequency control 
algorithms can provide adequate accuracy of phase-tracing measurements and greatly smaller locking 
time. Consequently, investigation of accelerated phase-lock-loop frequency control algorithms with 
invariable phase shift accuracy is a topical scientific problem.
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1. Navigation signal model of perspective RNS

Total realization of received MSK-signal and additive white Gaussian noise (AWGN) can be 
described as:
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here j – imaginary unit; f0 – carrier frequency; Fd – Doppler frequency shift; φs – starting phase of 
signal; tξ( )  – AWGN; ( )S t  – complex envelope of MSK-signal:
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where sP  – signal’s power; ( ) 1D t = ±  – information signal; 
0
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= −∑ , { }id  – pseudorandom sequence (PRS) of 

N-length, T – one’s bit PRS duration, rect(t) – square pulse with T duration [2].

2. Phase synchronization system of MSK-signal receiver

Structural chart of MSK-signal receiver’s digital phase-lock-loop frequency control system 
(PLFS) is presented in Fig. 1. Values ( )i iy y t=  ( ,it i t= ∆ 0,1,...,i = t∆  – sampling interval) are incoming 
observations to digital phase-shift discriminator (DPD), formed by analog-digital converter (ADC).

Reference signals of carrier frequency 0
ˆˆcos ( ) cos(2 )i d ik f F k tΦ = π( ± ( ))  and 

0
ˆˆsin ( ) cos(2 )i d ik f F k tΦ = π( ± ( ))  come into supporting inputs of DPD. These signals are formed by 

digital synthesizer (DS) and based on Doppler frequency shift estimation ˆ ( )dF k  in each k-period 
of filtering. Reference signals sini iQ = θ  and cosi iI = θ , which are synchronous with quadrature 
components of MSK-signal, are formed by delay lock system. Quadrature components of bandwidth 
compressing signal (after MSK-detection) are formed by summarizing of multiplications of 
quadrature components of realization (1) and reference signals iI , iQ  and integration on intervals 

[ ,( 1) ]p pt kT k T∈ + , 0,1,...,k =  ( 40pT ms=
 
– MSK-signal’s period). Time of one cycle radio-range 

beacon transmition equals 25c pT T= . Error signal which is proportional to phase mismatch forms in 
compliance with quasi-optimal algorithm [3]:

( ) ( )( ) ( ) ( ) ( )1 2 2
ˆsign ,dZ k z k z k D k z k= =                                        (3)

where ( )sign x  – sign function, ˆ ( )D k  – estimation of information signal ( )D t  on k-period of filtering, 

1( )z k  and 2 ( )z k  – quadrature components of correlation, computed on interval [ ,( 1) ]p pt kT k T∈ + . Error 
signal ( )dZ k  comes into digital filter (DF). Output signal of DF used to control signals ˆcos ( )i kΦ  and 

ˆsin ( )i kΦ  frequencies. When there is no noise, discrimination characteristic can be described as

( ) ( )1 sign cos sin
2dZ Mϕ = ϕ ϕ

.
Structural chart of the DPD is presented in Fig. 2, where × – multiplier; +  – adder; Σ – adder 

accumulator (digital integrator), which interrogated in kTp moments, 0,1,...;k =  M = Tp / ∆t – integer.
Normalized discrimination (curves 1, 2) and fluctuation (curve 3) characteristics of DPD 

are presented in Fig. 3. At that, curve 1 corresponds with no-noise case, and curves 2, 3 present 
discrimination and fluctuation characteristics respectively. Curves 2, 3 are the statistical simulation 
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data then signal-to-noise ratio equals to 40dB− . Length of using PRS 142 1 16383N = − = . Number of 
statistical examinations equals to 410 .

The model of PLFS is presented in Fig. 4, where ( )Zd ϕ  – discrimination characteristic of 
DPD; iT  – time constant of integrator; K = Kф Kc – instantaneous element, taking account of transfer 
constants of digital filter Kф and digital synthesizer Kc; the meaning of another designation are clear 
without comments.

Doppler frequency shift on k-period of filtering is estimated in compliance with the following 
algorithm:

( ) ( ) ( ) ( )ˆ 1 1 .p
d d d

i

T
F k K Z k x k Z k

T
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= + − + − 
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                                      (4)

Discriminator nonlinearity in case of using quasi-continuous analyzing method for digital 
synchronization systems is taking into account by it parameters, which depend on signal-to-noise ratio [4].

3. Accelerated phase synchronization target setting

In phase navigation systems RMS error of coordinate measuring (in meters) can be approximately 
determined as

1 Ã ,c 0 ϕσ ≈ λ σ
2π                                                                  

(5)

where 0λ  – wave-length, Ã – geometric quotient, ϕσ  – RMS error of phase-shift measurements [5]. In 
steady-state regime phase-tracking error dispersion value can be determined by using quasi-continuous 
analyzing method for digital synchronization systems [6]:

2 22 ,e pT Fϕ ϕσ = σ                                                                   (6)

here 2
eσ  – phase fluctuation dispersion, which can be calculated as

2
2
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e

dk
σ

σ =
                                                                     

(7)

where 2 2 (0)d dσ = σ  – fluctuation characteristic for algorithm (3) of phase mismatch failing; 

0( )d dk Z ϕ== ∂ ϕ ∂ϕ  – discrimination characteristic slope for algorithm (3), line from the top means 
statistical estimation. Noise pass band of PLFS can be written as

( )2

0

1
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(8)

where ( )K jω  – complex transfer coefficient of PLFS. 
Using (5) it can be shown that in case of ГÃ 1,5= (rho-rho navigation), 150m0λ =  for attainment of 

coordinate measuring accuracy with RMS 2c mσ ≤  needed RMS error of phase-shift measurements 
value is 3,3 0,053radϕσ ≤ 

 . Further, using results [3] for 2
dσ  and 2

dk , when signal-to-noise ratio 
threshold equals to 40dB− , and using equation (6) let’s compute required noise pass band of PLFS for 
MSK-signal receiver:
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Thus, PLFS must provide RMS error of phase-shift measurements value 0,05radϕσ ≤  in case of 
noise pass band value 0,1F Hzϕ ≤ .

Functional dependences of phase-tracking and frequency estimation error average 
values from discrete time k in digital PLFS are presented in Fig. 5, a and 5, b respectively. 
Computational approach conditions are equal to discriminator modeling, except number of 
statistical examinations – 102.

Presented functional dependences are correspondent to noise pass band value 0,1F Hzϕ = , user’s 
top speed equals max 100V km h=  (peak level of Doppler frequency shift max 0,2dF Hz= ) and capture 
probability 1cP → .

Analysis of statistic simulation data of digital PLFS (Fig. 5) shows that average locking time has 
intolerable level for perspective RNS for special users – 315 10 600l pt T s≈ ⋅ ⋅ = .

4. Digital PLFS statistical simulation

Progress in locking time decrease can be realized by varying of PLFS noise pass band. Thus, 
using “wide” noise pass band 0,5wF Hzϕ =  on the first time stage and “narrow” 0,1nF Hzϕ =  on the 
second time stage, it is possible to attain benefit in synchronization time.

Digital PLFS statistical simulation results, namely: phase ϕ  and frequency F  tracking errors 
average meanings (a, c), and RMS phase ϕσ  and frequency Fσ  tracking errors (b, d) are presented in 
Fig. 6 and in Fig. 7. All curves are functional dependences on discrete time k.

Curves 1, 2, and 3 are signifying Doppler frequency shifts: 0; 0,02; 0,2 Hz respectively. Noise pass 
bands are described by discrete time step functions (10). Function ( )F kϕ′  describes noise pass band for 
Fig. 6, and ( )F kϕ′′  for Fig. 7.
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Fig. 6
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Fig. 6 (сontinue)
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Fig. 7
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Fig. 7 (сontinue)

c  

F Hz

0,04

0,02

0,02

0,04

0
2015105

210k

12

3

 

d  

F Hz

0,2

0

0,1

2015105
210k

3

1

2

0,01

0,0075

0,005
2019,7519,5

3

2

1

 



– 285 –

Evgeny V. Kuzmin. Accelerated Phase-lock-loop Frequency Control Methods of User’s Equipment in…

2
2

2 ,d
e

dk
 

2 2 (0)d d  

0( )d dk Z  

2

0

1
2

F K j d  

2 2

2

0,053 0,1 .
2 0,364e p

F Hz
T

 

315 10 600l pt T s  

0,5 ,0 300,
0,1 , 300,

w

n

F Hz k
F k

F Hz k
 

1

2

0,5 ,0 300,

0,1 ,300 1000,

0,02 , 1000.

w

n

n

F Hz k
F k F Hz k

F Hz k
 

                                                 

(10)

It becomes clear from Fig. 6, 7 that using multistage phase-lock-loop frequency control algorithms 
for MSK-signals receivers, average locking time can be significantly decreased (in comparison with 
autonomous algorithm 0,1F Hzϕ = ) to 1000 40l pt T s≈ ⋅ = , with phase tracking RMS error desired 
value ( 0,05radϕσ = ) in case of using function ( )F kϕ′ . Using function ( )F kϕ′′ , it can be shown that 
phase tracking RMS error desired value is provided in time equal to 40 s. Also, using function ( )F kϕ′′  
it is possible to achieve 0,03radϕσ =  in 120 s and in steady-state regime 0,02radϕσ =  ( 200k s> ).

Number of statistical examinations for Fig. 6 and Fig. 7 equals to 103. In all examinations there are no 
tracking losses. Described two- and three-stage phase-lock-loop frequency control algorithms with discrete 
time step functions (10) can be used in MSK-signal receivers of perspective frequency-limited RNS.

Conclusions

In present paper multistage phase-lock-loop frequency control algorithms of perspective RNS 
user’s equipment are suggested. Statistical simulation was used to prove that a two-stage phase-lock-
loop frequency control algorithm, using function ( )F kϕ′ , has gain in synchronization time equal to 
560 s (in comparison with autonomous algorithm) and provides steady-state RMS error values 3ϕσ ≤   
and 0,03F Hzσ ≤ . It was also stated that a three-stage phase-lock-loop frequency control algorithm has 
two benefits: first, gain in synchronization time is not less than 560 s; second, RMS error values in 
steady-state regime ( 200k s> ) is 1,1ϕσ ≤ 

 
and 0,01F Hzσ ≤  – better than required.

This article contains specific results which can be used in digital phase synchronization systems of 
user’s equipment for perspective RNS with spread-spectrum MSK-signals. The investigated algorithms 
of accelerated phase synchronization can be easily realized on the basis of field programmable gate 
array technology (FPGA).
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