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In this paper we introduce a temporal multi-agent logic S4IAT , which implements interacting agents. Logic
S4IAT is defined semantically as the set of all formulas of the appropriate propositional language that are
valid in special Kripke models. The models are based on S4-like time frames, i.e., with reflexive and
transitive time-accessibility relations. Agents knowledge-accessibility relations Ri, defined independently
for each individual agent, are S5-relations on R-time clusters, and interaction of the agents consists of
passing knowledge along arbitrary paths of such relations. The key result of the paper is an algorithm for
checking satisfiability and recognizing theorems of S4IAT . We also prove the effective finite model property
for the logic S4IAT .
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Introduction

Multi-agent systems have attracted significant attention throughout recent years, due to various
prospective applications. The latter include software distribution systems, computerized support
of administrative tasks, modeling, routing, e-commerce, search engines and so on (cf. Bordini et
al. [2], Dix et al. [3], Hoek et al. [9], Fisher [6], Hendler [12], Wooldridge [23, 24]). Based on infor-
mational aspect, multi-agent systems can be seen as communities of interacting entities that can
perceive, act upon and transmit information to each other. The research on such systems nec-
essarily combines methods and concepts from variety of sources, including artificial intelligence,
computing and various areas of mathematical logic. One of the venues of the current research
deals with specification, design and verification issues of such systems as well with logical and
complexity analysis of these aspects.

Out of several viable approaches toward mathematical formalization of multi-agent systemы,
modal and temporal propositional logics provides an impressive set of well-developed, mathemat-
ically effective and sound tools for logical and complexity analysis (cf. e.g. van Benthem [22, 21],
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Goldblatt [8], Gabbay and Hodkinson [7], Hodkinson [13]). However the use of these tools meets
the problem of integration of agents paradigm into temporal and modal framework (cf. Fagin et
al. [5, 4], Halpern and Shore [10]).

Although a particular evolution of a multi-agent system can be modeled on a discreet linear
time frame (cf. Rybakov [16, 17, 18, 19, 20]), to allow for non-deterministic nature of interaction,
more appropriate non-linear modal and temporal tools are required. While modal logics appear
adequate for design and implementation purposes (since no agent is allowed to act by “fixing"past
state of affairs), logical analysis calls for temporal logics framework (see Eds. Barringer, Fisher,
Gabbay and Gough [1] for related applications of temporal logics).

In general, modal-like operations Ki (operators ♦i in this paper) are used to model the
knowledge accessibility relations of individual agents. However, because they are related to indi-
vidual agents, these operations are of relatively low logical level and do not permit by themselves
adequate logical description of a situation of a practical value. To repair this deficiency, several
higher-level operators were introduced (cf. e.g. Halpern [11]). We will augment our language with
one of them.

In many cases, either it is a new record in a database or a changed data profile, the only
available for an agent information about the source of new entry has the implicit form “obtained
through interaction with (other) agents". An attempt to make this information more specific
may fail, for a variety of reasons, the major are: information nodes often don’t preserve all the
necessary information about transactions, or because the investigation about the source might
take more than a time-cycle of the system. One possible solution to reflect this situation is to
consider an operator ♦K — “knowledge through agents which is the existential version of the
“Common Knowledgeoperator from [5]. Formally,

(F , a) 
V ♦Kα ⇐⇒ ∃a1, . . . , at ∈W : aRj1a1Rj2a2 . . . Rjtat & (F , at) 
V α.

This operator cannot be expressed by finitary means in terms of usual agent-knowledge operators,
in fact, ♦K α is equivalent to an infinite disjunction [5]

♦K α =
∨

n̄∈{1,...,n}+
♦n̄ α, where ♦〈i1,...,it〉 := ♦i1 . . .♦it .

This approach has been recently implemented in Rybakov [20] to handle interacting agents in
the linear temporal logic (LTL). Our paper attempts to extend this technique to more general
temporal logics, those which do not suppose linearity of time.

We introduce and study a tense multi-agent logic S4IAT with interacting agents (i.e. with the
operator ♦K ) based on arbitrary reflexive and transitive time flows. The logic S4IAT is defined
semantically, as the set of all propositional formulas valid in special Kripke-like models. These
models are based on S4-like time frames, i.e., with reflexive and transitive time-accessibility rela-
tions. Agents knowledge-accessibility relations Ri are S5-relations on R-time clusters, and inter-
action of the agents consists in passing knowledge along arbitrary paths of knowledge-accessibility
relations.

The language of S4IAT employs operations ♦+ and ♦− related to future and past time-
accessibility relations, knowledge-accessibility relations ♦j , 1 6 j 6 m, — for each present agent.
The number m of participating agents is assumed to be fixed. In addition, we introduce a higher-
level operation ♦K to model a situation when information about an interaction path is absent
or lost — ♦K φ means that “φ is known by interaction with (other) agents".
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The main result of the paper is an algorithm, which checks satisfiability in S4IAT and rec-
ognizes the theorems of S4IAT . Thus we show that S4IAT is decidable. The algorithm is based
on the effective finite model property for S4IAT , also proved in this paper. Our approach uses
representation of formulas by inference rules, and reduction these rules to special normal reduced
forms, and further verification of satisfiability of these rules in Kripke models.

1. Preliminaries and Notation

A language of our tense multi-agent logic with interacting agents is a set of operations
L = 〈∧,∨,→,¬,♦+,♦−,♦1, . . . ,♦m,♦K 〉, where m is fixed. We fix an enumerable set Var :=
{x1, x2, x3, . . . } of propositional variables. Well-formed formulas of the language L (L-formulas)
are defined by the following grammar

α ::= xi | α1 ∧ α2 | α1 ∨ α2 | α1 → α2 | ¬α | ♦±α | ♦jα | ♦Kα |

For a formula α, the set of variables Var(α) of α is defined inductively:

Var(xi) := {xi}, Var(∗β) := Var(β), Var(β ∗ γ) := Var(β) ∪Var(γ).

Suppose W is a non-empty set and R ⊆ W ×W is a preorder on W (i.e., a reflexive and
transitive binary relation on W ). An R-cluster of W is a maximal by inclusion subset C of W ,
such that relation R, in restriction to C, is a an equivalence relation.

Definition 1. Suppose that the language L = 〈∧,∨,→,¬,♦±,♦1, . . . ,♦m,♦K 〉 is fixed. An
S4IAT -frame is a Kripke multi-frame, i.e., m+ 2-tuple 〈W,R,R1, . . . , Rm〉, where

• W is a non-empty set of states or worlds,

• R ⊆W ×W is a binary reflexive and transitive relation on W ,

• R1, . . . , Rm ⊆ R are equivalence relations on W .

The relation R is intended to model the time-accessibility relation, R1, . . . , Rm are meant to
represent knowledge-accessibility relations of individual agents. Informally, each R-cluster C is
a moment in time (a computational step, inner cycle of a system, etc). The cluster contains all
possible states available at this moment (completed data outputs in parallel computing, network
nodes to retrieve information from, etc). Individual agents can only retrieve information from
the states attainable through the corresponding relation. All agents act concurrently. To take
into account random factors in agents interaction, we assume that there is a variety of possible
time-configurations following the current time moment. Access rules are not preserved along time
flow, and agents cannot know in what accessibility configuration they will operate.

For a set X we denote by P(X) := {Y | Y ⊆ X} — the power-set of X. A valuation V on a
S4IAT -frame F = 〈W,R,R1, . . . , Rm〉 is a function

V : W → P({x1, . . . , xn}).

The fact that xi ∈ V (a) means that xi is true or satisfied at a state a ∈ W under valuation V .
A pair 〈F , V 〉, where F is a S4IAT -frame and V is a valuation, is called an S4IAT -model.

Satisfiability of L-formulas on a S4IAT -model 〈F , V 〉 is defined as follows (we write (F , a) 
V α

to say that a formula α is true in a model 〈F , V 〉 at a given state a):
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(F , a) 
V xi ⇐⇒ xi ∈ V (a),

(F , a) 
V α ∧ β ⇐⇒ (F , a) 
V α and (F , a) 
V β,

(F , a) 
V α ∨ β ⇐⇒ (F , a) 
V α or (F , a) 
V β,

(F , a) 
V α→β ⇐⇒ (F, a) 6
V α or (F , a) 
V β,

(F , a) 
V ¬α ⇐⇒ (F , a) 6
V α,

(F , a) 
V ♦+α ⇐⇒ ∃b ∈W : aRb & (F , b) 
V α,

(F , a) 
V ♦−α ⇐⇒ ∃b ∈W : bRa & (F , b) 
V α,

(F , a) 
V ♦iα ⇐⇒ ∃b ∈W : aRib & (F , b) 
V α,

(F , a) 
V ♦Kα ⇐⇒ ∃a1, . . . , at ∈W : aRj1a1Rj2a2 . . . Rjtat & (F , at) 
V α.

We say that a formula α is valid in a model M = 〈F , V 〉 (we writeM 
 α or F 
V α ) if α is
valid at any state of F . A formula α is valid on a frame F (F 
 α) if it is valid on every model
〈F , V 〉 for any valuation V : W → P(Var(α)). Symbolically

F 
V α ⇐⇒ ∀a : (F , a) 
V α,

F 
 α ⇐⇒ ∀V : W → P(Var(α)) : F 
V α.

The usual “universal"adjoint operators 2+,2−,21, . . . ,2m (sometimes taken as basic oper-
ations of the language) for modalities ♦+,♦−,♦1, . . . ,♦m are defined as accustomed:

2±α := ¬♦±¬α, 2jα := ¬♦j¬α, for all j = 1, . . . ,m.

Definition 2. The logic S4IAT is the set of all formulas over the language L that are valid on
all S4IAT -frames.

2. Main Results

We will be representing formulas by inference rules. A rule is a pair 〈α, β〉 of L-formulas. We will
usually write a rule 〈α, β〉 in the form α/β. For a rule r = α/β: Var(r) := Var(α) ∪Var(β).

We say that a rule r = α/β is valid on a model 〈F , V 〉 (symbolically F 
V r), if V : W →
P(Var(r)) and

∀a ∈ F : (F , a) 
V α =⇒ ∀a ∈ F : (F , a) 
V β.

A rule r is valid on a frame F , if, for any valuation V of variables Var(r), F 
V r. If the rule r
is not valid on F , then there is a valuation V such that F 6
V r. In that case we say that r is
refuted on F (by valuation V ).

A rule r is said to be in a reduced normal form if

r =
∨

16j6s

θj/x1, (1)

and each disjunct θj has the form

θj =
∧

16i6n

(
x
t(i,j,0)
i ∧ (♦+xi)t(i,j,1) ∧ (♦−xi)t(i,j,2) ∧

∧(♦K xi)t(i,j,3) ∧
∧

16k6m
(♦kxi)t(i,j,3+k)

)
,
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and all θj are different, letters xi are variables, t(i, j, z) ∈ {0, 1}, and for any formula α, α0 := ¬α,
α1 := α.

Two rules r1, r2 are equivalent if for any S4IAT -frame F :

F 
 r1 ⇐⇒ F 
 r2.

For a formula α, the set of subformulas Sub(α) of α is defined inductively:

Sub(xi) := {xi},

Sub(∗β) := Sub(β) ∪ {∗β},

Sub(β ∗ γ) := Sub(β) ∪ Sub(γ) ∪ {β ∗ γ}.

For a rule r = α/β: Sub(r) := Sub(α) ∪ Sub(β).

It was shown in Rybakov [14] that any modal inference rule may be transformed into an
equivalent rule in the reduced normal form. Using essentially the same technique we can transform
to normal reduced forms our rules in language of S4IAT .

Lemma 1. Any rule r = α/β can be transformed in exponential time to an S4IAT -equivalent rule
rnf in the reduced normal form.

Proof. We will specify the general algorithm described in Lemma 3.1.3 and Theorem 3.1.11
[15] for the language of our logic. Let r = α/β be an inference rule.

We will need a set of new variables Z = {zγ | γ ∈ Sub(r)}. The first step is to replace r = α/β

with r1 = α ∧ (zβ ↔ β)/zβ . It is straightforward to see that r and r1 are equivalent (it is easier
to proof it this way: show that r is refuted on F if and only if r1 can be refuted on F).

Inductive step: suppose we have obtained a rule ri = γi/zβ at the i-th step. We call a formula
δ ∈ Sub(γi) ∩ Sub(r) terminal, if it is not a variable and not a proper subformula of any other
formula in Sub(γi) ∩ Sub(r). Let Ti be the set of all terminal formulas at the i-th step.

We replace the rule ri with a new one ri+1 = γi+1/zβ , where

γi+1 = ti(γi) ∧
∧

zγ∗zδ∈Ti

((zγ ↔ γ) ∧ (zδ ↔ δ)) ∧
∧
∗zδ∈Ti

(zδ ↔ δ),

and ti(γi) is the formula obtained from γi by replacing all terminal subformulas δ with zδ. It is
straightforward to check that ri and ri+1 are equivalent.

Note that every inductive step reduces the maximal height of non-boolean subformulas of
the rule. Therefore after a finite number of steps we come to a premise γN , which is a boolean
combination of literals of the form x or ∗x, where x is a propositional variable and symbol
“∗"belongs to the set {♦K ,♦+,♦−,♦1, . . . ,♦m}.

Finally, we transform the premise of the obtained rule rN = γN/zβ into a fully disjunctive
normal form over literals. This requires no more than exponential time on the number of variables,
i.e., on the number of subformulas of the original rule (the same as for reduction of any boolean
formula to the full disjunctive normal form).

As seen from the proof of Lemma 1, the variables in the reduced form represent the subformu-
las of α and β, in particular, variable zβ stands for the rule’s consequent β. From the definition
of normal reduced form, it is clear that under any given valuation of variables only one θj can
hold true at a current state.
Remark. One advantage of reduced forms is that they effectively separate “modal"subformulas
of the kind ∗β, where ∗ ∈ {♦K ,♦+,♦−,♦1, . . . ,♦m}, satisfiability of which depends on other
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states, from “boolean"subformulas of the type α ∗ β and ∗α, where ∗ ∈ {∨,∧,→,¬}, satisfiability
of which depends on truth-values of its immediate subformulas at the same state. This will become
useful for computing complexity bounds for the size of refuting model.

Thus, by Lemma 1, we have, that for any formula α and any S4IAT -frame F :

F 
 α ⇐⇒ F 
 x→ x/α ⇐⇒ F 
 (x→ x/α)nf .

Therefore the following lemma holds:

Lemma 2. A formula α is a theorem of S4IAT iff the rule (x → x/α)nf is valid on all S4IAT -
frames.

To prove decidability of S4IAT we will prove that it has effective (doubly exponential on the
summary length of the formulas of a rule) finite model property. To reduce an arbitrary model
refuting r to a finite one, we use the fact that agent-related operations ♦j and ♦K are, in a
sense, local with respect to the time-relation R, that allows us to employ some sort of a two-
phase contraction technique. (Note, that these contractions, though similar, are not filtrations at
each stage. In particular, a simple filtration will not work for the operation ♦K , responsible for
obtaining knowledge through combinations of agent’s accessibility relations). Lemma 3 will deal
with the first stage and Lemma 4 with the second.

The following lemma for the effective bound on the sizes of time clusters in S4IAT -models is the
base for our further technique. The proof of it is based on the proof of the similar statement about
sizes of time clusters in a multi-agent logic based on LTL from Rybakov [20]. Representation of
formulas by rules in the reduced normal form is essential for the proof.

Definition 3. Suppose w is a state in a S4IAT -frame F . Let K be the smallest equivalence relation
on F , containing all equivalence relations R1, . . . , Rm, i.e., the transitive closure of the union⋃m
i=1Ri. We denote CK (w) a K -cluster of F containing w.
In other words, CK (w) includes all states of the frame F that are accessible from the state w

through various combinations of R1, . . . , Rm relations.

Definition 4. We say that two K -clusters C1, C2 of a S4IAT -model 〈F , V 〉 are isomorphic (we
indicate this as C1

∼= C2), if there exists a bijection f : C1 → C2 such that for all a, b ∈ C1

1. (F , a) 
V xi ⇐⇒ (F , f(a)) 
V xi,

2. aRjb ⇐⇒ f(a)Rjf(b), for all j = 1, . . . ,m.

Further on, the rule r will be of the form (1).

Lemma 3. If a rule r =
∨

16j6s θj/x1 is refuted on a S4IAT -modelM, then
(i) r is refuted on a S4IAT -model with size of R-clusters at most s · 2m·s2 ,
(ii) the number of non-isomorphic K -clusters is at most 2m·s

2
.

Proof. Let C be a time cluster (i.e., R-cluster) of M and N be the S5m-submodel of M,
which universe is C (i.e., model 〈C,R1�C , . . . , Rm�C , V�C〉, where Ri�C := Ri ∩ (C ×C)). Cluster
C consists of possibly infinitely many disjoint K -clusters Ci, i ∈ I. For every disjunct θj of the
form

θj =
∧

16i6n

(
x
t(i,j,0)
i ∧ (♦+xi)t(i,j,1) ∧ (♦−xi)t(i,j,2) ∧

∧(♦K xi)t(i,j,3) ∧
∧

16k6m
(♦kxi)t(i,j,3+k)

)
,
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we denote

θ∗j :=
∧

16i6n

(
x
t(i,j,0)
i ∧

∧
16k6m

(♦kxi)t(i,j,3+k)

)
.

We filter each of the K -clusters Ci through the set of disjuncts {θ∗j | j = 1, . . . , s}, thereby
obtaining a finite K -cluster C∗i = {[θ∗j ] | j = 1, . . . , s} of the size not more than s. There are
not more than 2m·s

2
non-isomorphic K -clusters of the size not exceeding s. Therefore, after

identifying the isomorphic K -clusters inside N , we obtain a finite S5m-model N ∗ of size less or
equal to s ·2m·s2 . Thus we can replace the original cluster C ofM, that had model N embedded,
with this finite submodel N ∗ to obtain a new S4IAT -model M∗. It is straightforward to check
that

(M∗, [θ∗j ]) 
 θj .

Thus we can replace all time clusters ofM by finite clusters of the size no more that s · 2m·s2 ,
meantime preserving the satisfiability of all disjuncts θj , j = 1, . . . , s.

Now we will deal with the time structure of model M, which was mainly left intact by
Lemma 3 (except for replacing time clusters with smaller ones).

Lemma 4. Let M = 〈F , V 〉 be a Kripke-model satisfying the conclusion of Lemma 3. If rule r
is refuted on the model M, then it can be refuted on a finite S4IAT -model of the size effectively
bounded by the size of r.

Proof. Suppose F = 〈W,R,R1, . . . , Rm〉. We use the following notation:

• Ḟ stands for an auxiliary S4T-frame, obtained from F by replacing K -clusters with “sol-
id"temporal worlds,

• F̃ is a result of temporal filtration of the model 〈Ḟ , V̇ 〉 based on frame Ḟ , where V̇ is a
special valuation, which characterizes temporal worlds corresponding to isomorphic inM
K -clusters,

• F̂ is a S4IAT -frame, obtained from F̃ , by replacing each temporal world (equivalence class)
of F̃ with one of the original K -clusters.

More precisely, consider an auxiliary S4IAT -frame Ḟ = 〈Ẇ , Ṙ〉, where

Ẇ = {CK (a) | a ∈W}, CK (a)Ṙ CK (b) ⇐⇒ aRb.

We know from Lemma 3, that there are only finitely many non-∼=-isomorphic K -clusters in M
(see Def. 4 for definition of relation ∼=).

Let S := {[C]∼= | C ∈ Ẇ}, i.e., S is the set of isomorphic types of K -clusters in the model
M. We introduce a set of additional variables {pk | k ∈ S}, and define a valuation V̇ : Ẇ →
P(Var(r) ∪ {pk}k∈S) as follows:

• (Ḟ , C) 
V̇ pk ⇐⇒ C ∈ k,

• (Ḟ , C) 
V̇ xi ⇐⇒ ∃a ∈ C : (F , a) 
V xi.

As a result, we have that

(Ḟ , C) 
V̇ ♦
±xi ⇐⇒ ∀a ∈ C : (F , a) 
V ♦±xi.
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Now we are ready to apply a filtration procedure. Suppose C is a K -cluster of the modelM.
Let us define

Θ+(C) := {xi | ∃a ∈ C : (M, a) 
 ♦+xi},

Θ−(C) := {xi | ∃a ∈ C : (M, a) 
 ♦−xi},

Θ(C) := 〈Θ+(C),Θ−(C)〉,

Θ(C1) 4 Θ(C2) def⇐⇒ Θ+(C2) ⊆ Θ+(C1) & Θ−(C1) ⊆ Θ−(C2),

Θ(C1) = Θ(C2) ⇐⇒ Θ(C1) 4 Θ(C2) & Θ(C2) 4 Θ(C1).

We define an equivalence relation ≈ on Ẇ as follows

C1 ≈ C2 ⇐⇒ C1
∼= C2 & Θ(C1) = Θ(C2).

Let F̃ = 〈W̃ , R̃〉, where

W̃ = {[C]≈ | C ∈ Ẇ},

[C1]≈R̃[C2]≈ ⇐⇒ Θ(C1) 4 Θ(C2).

From each ≈-equivalence class we can choose a unique representative. The fact that a cluster C
was chosen from a class X we indicate by writing C ∈1 X.

Now, define F̂ = 〈Ŵ , R̂〉 and a valuation V̂ as follows

Ŵ =
⋃
{C | C ∈1 X ∈ Ẇ},

aR̂b ⇐⇒ [CK (a)]≈ R̃ [CK (b)]≈,

aR̂jb ⇐⇒ ∃C ∈1 X ∈ Ẇ : a, b ∈ C and aRjb in modelM, j = 1, . . . , s,

(F̂ , a) 
V̂ xi ⇐⇒ (F , a) 
V xi.

Thus we have that Ŵ ⊆W and R̂j = Rj ∩ (Ŵ × Ŵ ). We want to prove now that for all θj and
a ∈ Ŵ

(F̂ , a) 
V̂ θj ⇐⇒ (F , a) 
V θj .

Since Ŵ consists of elements of the original model and the valuation V̂ on them is the same as
V , the boolean part of θj holds at a ∈ Ŵ as required.

Suppose now, (F , a) 
V ♦+x and a ∈ Ŵ . Then there exists b ∈ W such that aRb and
(F , b) 
V x. Since aRb, then Θ(CK (a)) 4 Θ(CK (b)). Let C ∈1 [CK (b)]≡, then since C ∼= CK (b),
there is a state c ∈ C, such that (F , c) 
V x. Thus, we have [CK (a)]≈R̃[CK (c)]≈, and a, c ∈ Ŵ ,
therefore aR̂c. So (F̂ , a) 
V̂ ♦

+x, as needed. On the other hand, if (F̂ , a) 
 ♦+x, then there
exists b ∈ Ŵ such that aR̂b and (F̂ , b) 
V̂ x, and therefore (F̂ , b) 
V̂ ♦

+x. Then, by definition
of R̂, Θ(CK (a)) 4 Θ(CK (b)). In particular, Θ+(CK (b)) ⊆ Θ+(CK (a)), hence (F , a) 
V ♦+x.
The case of ♦−x is proved similarly.

Since the temporal filtration does not affect the inner structure of K -clusters, satisfiability of
formulas of the type ♦jx and ♦K is preserved automatically.

From the proof of the lemma follows that the size of the final model 〈F̂ , V̂ 〉 is less or equal
than 22n+m·s2 , where n is the number of variables in r, m is the number of agents, s is the
number of disjuncts in the premise of r.

From Lemma 3 and Lemma 4 it immediately follows that
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Theorem 1. The logic S4IAT has the effective finite model property. Every non-theorem α of
S4IAT is refuted on a S4IAT -frame of the size effectively bounded on the size of the formula α.

Evidently, using Theorem 1, we can determine for any given formula whether or not it is a
theorem of S4IAT , and therefore the existence of effective finite model property for S4IAT also
solves the satisfiability problem for S4IAT :

Corollary 1. The logic S4IAT is decidable and the satisfiability problem in S4IAT is decidable.

Proof. Since S4IAT has the effective finite model property, it suffices to prove that finite models
for S4IAT are effectively recognizable. To check that a given frame F = 〈W,R,R1, . . . , Rm〉 is a
S4IAT -frame we only need to check that

1. Frame 〈W,R〉 is a S4T -frame;

2. Frame 〈C,R1�C , . . . , Rm�C〉 is a S5m-frame, for every R-cluster C of F ,

where Ri�C := Ri ∩ (C ×C). Both conditions can be checked effectively, and also the procedure
of recognizing clusters in a finite frame is effective. Thus logic S4IAT is decidable.

3. Conclusions and Future Work

This paper introduces a temporal multi-agent logic S4IAT with interacting agents and tense
operators “in the future"and “in the past". The logic S4IAT is defined semantically, as the set
of all propositional formulas valid on special Kripke models. The models are based on S4-like
time frames with multi-modal S5m frames embedded into time clusters. The additional S5-like
relations Ri, i = 1, . . . ,m, are intended to represent agents’ knowledge-accessibility relations.
Interaction of the agents consists in passing knowledge along arbitrary paths of knowledge-
accessibility relations. In addition, we introduce a higher-level operation ♦K to model a situation
when information about an interaction path is absent or lost.

The main result of the paper is a decision algorithm for theorems of S4IAT , which also resolves
the satisfiability problem for this logic. Our approach employs representation of formulas by
inference rules, and reduction of these rules to special normal reduced forms. The presented
proof uses a procedure which looks like a two-phase contraction/filtration. This approach seems
powerful enough to be applied to a wide set of hybrid propositional logics. In particular, it might
allow to generalize the technique of the paper on a variety of other tense and modal logics with
filtration property.

From the point of view of modeling agents’ interaction, logic S5m represents the situation
when all agents can be equally and totally trusted. Obviously this assumption is rather theo-
retical. In a real-life situation, a certain hierarchy is usually imposed on agents — systems with
users/software providers and certifying agencies being a simple real-life example. Therefore, it
deems useful to take a look at generalizations of the current technique to the case of families of
agents with certain forms of hierarchy placed, like subordination, supervision, rights to interdict,
and other hierarchial restrictions that can manifest themselves through special constraints on
knowledge-accessibility relations.

This research is supported by Engineering and Physical Sciences Research Council (EPSRC),
U.K., grant EP/F014406/1.
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