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Resumen

En el presente artı́culo se establecen ciertos resultados de importancia para el análisis matemático, especı́ficamente
relacionados con las derivadas conformables de orden fraccional, entre ellos se destacan: la regla de la cadena, el Teorema
del valor medio de Cauchy y la Regla de L’Hopital. Se espera que estos resultados estimulen la investigación en esta
área
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Abstract

This article establishes certain important results for mathematical analysis, specifically related to conformable derivatives
of fractional order, among them the following stand out: the chain rule, the Cauchy mean value theorem and L’Hopital’s
rule. These results are expected to stimulate research in this area.
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1. Introduction

Fractional calculus [2, 5] was introduced at the end of the nineteenth century by Liouville and Riemann,
the subject of which has become a rapidly growing area and has found applications in diverse fields ranging
from physical sciences and engineering to biological sciences and economics. In a wide range of publications
dealing with this area [1, 3], several researchers have proposed various definitions for fractional derivatives,
between them we find the Riemman-Liouville and Caputo fractional derivative as follows:

Riemman-Liouville fractional derivative. For α ∈ [n − 1, n), the α−derivative of f is defined by

Dα
a ( f )(t) =

1
Γ(n − α)

∫ t

a

f (x)
(t − x)α−n+1 dx

and
Caputo fractional derivative. For α ∈ [n − 1, n), the α−derivative of f is defined by

Dα
a ( f )(t) =

1
Γ(n − α)

∫ t

a

f (n)(x)
(t − x)α−n+1 dx

Recently Khalil et al. [4] introduced a new conformable fractional derivative as follows.

Definition 1.1. Given a function f : [0,∞)→ R. Then the conformable fractional derivative of f of order α
is defined by

Tα( f )(t) = lı́m
ε→0

f (t + εtα−1) − f (t)
ε

(1)

for all t > 0 and α ∈ (0, 1). If f is α−differentiable in some (0, a), a > 0, and lı́mt→0 f (t) exists then we define

f (α)(0) = lı́m
t→0

f (α)(t). (2)

Here we denote f (α)(t) = Tα( f )(t).

In [4], certain important results were proved: algebraic properties, some conformable derivatives of basic
functions, Rolle’s theorem and mean value theorem for conformable fractional differentiable functions, a
new conformable fractional integral operator and some applications to fractional differential equations.

Motivated by this work we present additional results concerning to the conformable fractional derivative
of the composition of two functions, the Cauchy’s mean value theorem and L’hopital rule. We hope that
these results and applied method will serve to stimulate others research works.

2. Preliminaries

This section aims to summarize some of the results related to the conformable fractional derivative,
which will serve as the basis for establishing the new results set out in section 3. In [4] we can find the
following results.

Theorem 2.1. If f is an α−differentiable function in t0 > 0, with α ∈ (0, 1), then f is a continuous function
in t0.

Theorem 2.2. Let α ∈ (0, 1) and f , g be an α−differentiable functions in t > 0. Then

1. Tα(a f + bg) = aTα( f ) + bTα(g) for all a, b ∈ R.
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2. Tα(λ) = 0 for a constant function f (t) = λ.
3. Tα(tp) = ptp−α for all p ∈ R
4. Tα( f .g) = f Tα(g) + gTα( f )
5. Tα( f /g) = ( f Tα(g) − gTα( f )) /g2

6. If f is differentiable ( f ′ exists) then Tα( f )(t) = t1−α f ′(t)

Certain conformable fractional derivatives of some basic functions are:

1. Tα(ect) = ct1−αecx, for all c ∈ R
2. Tα(sin bt) = bt1−α cos bt, for all b ∈ R
3. Tα(cos bt) = −bt1−α sin bt, for all b ∈ R
4. Tα((1/t)tα) = 1

Also, the Rolle’s theorem and the mean value theorem for conformable fractional differentiable functions
are included.

Theorem 2.3. Let α ∈ (0, 1) and f : [a, b]→ R be a function satisfying the following conditions:

1. f is continuous in [a, b]
2. f is α−differentiable for some αin(0, 1)
3. f (a) = f (b).

Then, there exists c ∈ (a, b) such that f (α)(c) = 0.

Theorem 2.4. (Mean value Theorem) Let α ∈ (0, 1) and f : [a, b]→ R be a function satisfying the following
conditions:

1. f is continuous in [a, b]
2. f is α−differentiable for some α ∈ (0, 1)

Then, there exists c ∈ (a, b) such that

f (α)(c) =
α( f (b) − f (a))

bα − aα

Additionally, a result related with the α−differentiability and the uniform continuity property of a fun-
ction was proved.

Proposition 2.5. Let f : [a, b]→ R be a α−differentiable function for some α ∈ (0, 1).

(a) If f α is bounded on [a, b], a > 0. Then f is uniformly continuous on [a, b], and hence f is bounded

(b) If f α is bounded on [a, b], a > 0 and continuous in t = a. Then f is uniformly continuous on [a, b], and
hence f is bounded

With the results mentioned above, we proceed in the next section to present some new results associated
with the definition of conformable fractional derivative of order α.
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3. Main Results

Theorem 3.1. If g is an α−differentiable function in t and f is differentiable in g(t) then ( f◦g) is α−differentiable
and

Tα( f ◦ g)(t) = f ′(g(t))Tα(g(t))

Proof. Using Definition 1.1 we have

Tα( f ◦ g)(t) = lı́m
ε→0

( f ◦ g)(t + εtα−1) − ( f ◦ g)(t)
ε

= lı́m
ε→0

f (g(t + εtα−1)) − f (g(t))
ε

.

Setting h = g(t+εtα−1)−g(t) and y = g(t), we have g(t+εtα−1) = y+h. By Theorem 2.1, if g is α−differentiable
in t then it is continuous in t, hence g(t + εtα−1)→ g(t) when ε → 0, therefore h→ 0. So, we can write

Tα( f ◦ g)(t) = lı́m
ε→0

f (y + h)) − f (y)
ε

= lı́m
ε→0

f (y + h)) − f (y)
h

h
ε

= lı́m
ε→0

f (y + h)) − f (y)
h

g(t + εtα−1) − g(t)
ε

= lı́m
h→0

f (y + h)) − f (y)
h

. lı́m
ε→0

g(t + εtα−1) − g(t)
ε

= f ′(y)Tα(g)(t)
= f ′(g(t))Tα(g)(t).

The proof is complete.
The following are some examples that illustrate the use of the previous theorem and some properties of

the conformable fractional derivative.

Example 3.2. If h(t) = cos2(t) = ( f ◦ g)(t), where f (t) = t2 and g(t) = cos(t), then, using Theorem 3.1 we
have

Tα( f )(t) = f ′(cos(t))Tα(cos(t))
= 2 cos(t)Tα(cos(t))

= −2t1−α cos(t) sin(t)

and using property 6 in Theorem 2.2 we have

Tα(cos2(t)) = t1−α
(
cos2(t)

)′
= −2t1−α cos(t) sin(t)

Also, using the property 1 in Theorem 2.2 and the conformable fractional derivative of the exponential
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function we have

Tα(cos2(t)) = Tα

(
e2it + e−2it + 2

4

)
=

1
4

Tα(e2it) +
1
4

Tα(e−2it) +
1
4

Tα(2)

=
1
4

(
2it1−αe2it − 2it1−αe−2it + 0

)
=

it1−α

2

(
e2it − e−2it

)
=

it1−α

2
(cos(2t) + i sin(2t) − cos(−2t) − i sin(−2t))

=
t1−α

2
(− sin(2t) − sin(2t))

= −t1−α sin(2t)

= −2t1−α sin(t)cos(t)

Example 3.3. If h(t) = cos(t3) = ( f ◦ g)(t), where f (t) = cos(t) and g(t) = t3, then, using Theorem 3.1 we
have

Tα(cos(t3)) = f ′(t3)Tα(t3)

= − sin(t3)3t3−α

= −3t3−α sin(t3)

and using property 6 in Theorem 2.2 we have

Tα(cos(t3)) = t1−α(h(t))′

= t1−α(− sin(t3)3t2

= −t3−α sin(t3)

Theorem 3.4. Let f , g be continuous functions on [a, b] and α−differentiable on (a, b). If g(α)(x) , 0 for all
x ∈ 0, then there exists c ∈ (a, b) such that

f (α)(c)

g(α)
(

1
α

cα
) =

f (b) − f (a)
g(bα) − g(aα)

.

Proof. Let h be the function defined by

h(x) = f (x)
[
g
(

1
α

bα
)
− g

(
1
α

aα
)]
− g

(
1
α

xα
)

( f (b) − f (a))

Since f and g are continuous functions on [a, b] then h is continuous too. Additionally, if x = a, we have

h(a) = f (a)g
(

1
α

bα
)
− f (b)g

(
1
α

aα
)
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and if x = b then

h(b) = − f (b)g
(

1
α

aα
)

+ f (a)g
(

1
α

bα
)
,

so, h(a) = h(b).
Also, since f and g are α−differentiable functions then h is too, hence we have

h(α)(x) = f (α)(x)
[
g
(

1
α

bα
)
− g

(
1
α

aα
)]
− g(α)

(
1
α

x
)

( f (b) − f (a)).

Now, the function h satisfy the hypothesis of the Rolle’s theorem for α−differentiable functions, then there
exists c ∈ (a, b) such that h(α)(c) = 0, so we have

f (α)(c)
[
g
(

1
α

bα
)
− g

(
1
α

aα
)]
− g(α)

(
1
α

c
)

( f (b) − f (a)) = 0

and from this last expression we get

f (α(c)

g(α)
(

1
α

cα
) =

f (b) − f (a)
g(bα) − g(aα)

.

The proof is complete.

Remark 3.5. If g(x) = x in Theorem 3.4 we obtain Theorem 2.4.

Theorem 3.6. (L’Hopital type Theorem) Let f , g be an α−differentiable functions on (a, b) except, possibly,
in some c ∈ (a, b), and g(α)(x) , 0 for all x , c in (a, b). If

lı́m
x→c

f (x) = lı́m
x→c

g
(

1
α

xα
)

= 0 and lı́m
x→c

f (α)(x)

g(α)
(

1
α

xα
) = L

then
lı́m
x→c

f (x)

g
(

1
α

xα
) = L

Proof. Since we have no definition of the value of f (a) and g(a) then we proceed to define the following
functions:

F(x) =

{
f (x) if x , c
0 if x = c

and

G(x) =

{
g
(

1
α

xα
)

if x , c
0 if x = c

.

Also, we consider three cases, when: i) x→ c+, ii) x→ c− and iii) x→ c.
Case i):
Since f and g are differentiable on (a, b) except, possibly, in c ∈ (a, b) then we have that F and G are diffe-

rentiable functions on (c, x], therefore F and G are continuous on (c, x]. Also, F and G are right continuous in
c because lı́mx→c+ F(x) = lı́mx→c+ f (x) and lı́mx→c+ f (x) = 0, which is F(c); similarly lı́mx→c+ G(x) = G(c).
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Therefore, F and G are continuous on [c, x]. So we can use the Cauchy’s mean value theorem for confor-
mable fractional differentiable functions (Theorem 3.4) which assures us that there exists z ∈ (c, x) such
that

F(α)(z)

G(α)
(

1
α

zα
) =

f (x) − f (c)

g
(

1
α

xα
)
− g

(
1
α

cα
) . (3)

From the definition of F and G we have the following values

F(a) = G
(

1
α

cα
)

= 0 , F(x) = f (x) , G
(

1
α

xα
)

= g
(

1
α

xα
)

,

F(α)(z) = f (α)(z) and G(α)
(

1
α

zα
)

= g(α)
(

1
α

zα
)

because f and g are α−differentiable in c, then we can write (3) as follows

f (α(z)

g(α)
(

1
α

zα
) =

f (x) − 0

g
(

1
α

xα
)
− 0

.

Since x→ c+ implies that z→ c+, we have

lı́m
x→c+

f (α(z)

g(α)
(

1
α

zα
) = lı́m

x→c+

f (x)

g
(

1
α

xα
) .

Since z ∈ (c, x) and we have that lı́mx→c+
f (α)(x)

g(α)( 1
α xα) = L then

lı́m
x→c+

f (x)

g
(

1
α

xα
) = L.

Case ii) follows similarly to the case i), and case iii) follows using case i) and ii).
The proof is complete.

Example 3.7.

Given the functions f (x) = sin(x) − x and g(x) = x3, by the classical L’Hopital Theorem we have

lı́m
x→0

sin(x) − x
x3 =

1
6

Now, using the L’Hopital Theorem for the conformable fractional derivative with α = 3 we observe that

sin(x) − x
x3 =

1
3

sin(x) − x
1
3 x3

and
lı́m
x→0

(sin(x) − x) = lı́m
x→0

x3 = 0

then we proceed to find the α−derivatives

T3(sin(x) − x) = x−2(cos(x) − 1) and T3(
1
3

x3) = 1
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so
lı́m
x→0

sin(x) − x
x3 = lı́m

x→0

1
3

sin(x) − x
1
3 x3

= lı́m
x→0

1
3

cos(x) − 1
x2 ,

but
lı́m
x→0

(cos(x) − 1) = lı́m
x→0

x2 = 0

then with the corresponding α−derivatives we have

lı́m
x→0

1
3

cos(x) − 1
x2 = lı́m

x→0
−

1
6

sin(x)
x

,

again
lı́m
x→0

(sin(x)) = lı́m
x→0

x = 0

so with the corresponding α−derivatives we obtain

lı́m
x→0
−

1
6

sin(x)
x

= lı́m
x→0
−

1
6

cos(x) = −
1
6

Conclusion

In the present work we have presented certain theorems related to the chain rule, Cauchy mean value
and L’Hopital for fractional conformable derivatives, additionally some examples have been proposed that
illustrate the use of the same, including forms compared with the theorems corresponding to the classical
derivative. These results are expected to motivate research in this area.
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