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We describe a new algebra of boundary value problems which contains Lopatinskii elliptic as well as
Toeplitz type conditions. These latter are necessary, if an analogue of the Atiyah-Bott obstruction
does not vanish. Every elliptic operator is proved to admit up to a stabilisation elliptic conditions of
such a kind. Corresponding boundary value problems are then Fredholm in adequate scales of spaces.
The crucial novelty consists of the new type of weighted Sobolev spaces which fit well to the nature
of pseudodifferential operators.

Keywords: pseudodifferential operators, boundary values problems, Toeplitz operators

Introduction

The boundary symbols of elliptic symbols with the transmission property on a manifold
X with boundary Y are families of Fredholm operators acting in spaces normal to the
boundary and parametrised by points of the cosphere bundle S∗Y . The situation for symbols
without the transmission property is similar. To analyse the nature of associated boundary
conditions, we investigate the associated index element.

If A is an elliptic differential operator then the boundary symbol σ∂(A)(y, η) is surjective
for all (y, η) ∈ S∗Y . Then the Lopatinskii condition entails that indS∗Y σ∂(A) = [s∗Y W̃ ] is
an element of s∗YK(Y ). In other words,

indS∗Y σ∂(A) ∈ s∗YK(Y ) (0.1)

is a topological obstruction for A to possess boundary conditions T elliptic in the sense of
Lopatinskii. The relation (0.1) goes at least as far as [1].

There are elliptic differential operators A on X which violate condition (0.1). It is well
known that Dirac operators in even dimensions and other interesting geometric operators
belong to this category, cf. [2]. Possible boundary conditions leading to associated Fredholm
operators are then rather different from the Lopatinskii elliptic ones. In fact, after the works
of Calderón [3], Seeley [4], Atiyah et al. [5] another kind of boundary conditions became a
natural concept in the index theory of boundary value problems.
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There is now a stream of investigations in the literature to establish index formulas in
terms of the so-called η -invariant of elliptic operators on the boundary, see for instance [6],
[7], and the references there.

General elliptic boundary value problems for differential operators and boundary condi-
tions in subspaces of Sobolev spaces that are ranges of pseudodifferential projections on the
boundary were studied in [4]. It is natural to embed such problems into a pseudodifferential
algebra, where arbitrary elliptic operators admit either Lopatinskii elliptic or global projec-
tion boundary conditions, and parametrices again belong to the algebra. Such a calculus for
operators with the transmission property at the boundary has been introduced by Schulze
[8] as a “Toeplitz extension” of Boutet de Monvel’s calculus [9].

Elliptic operators in mixed, transmission or crack problems, or, more generally, on man-
ifolds with edges also require additional conditions along the interfaces, crack boundaries,
or edges, cf. [10]. The transmission property is not a reasonable assumption in such appli-
cations. In simplest cases the additional conditions satisfy an analogue of the Lopatinskii
condition as a direct generalisation of ellipticity of boundary conditions in boundary value
problems. However, for the existence of such conditions for an elliptic operator in the interior
topological obstructions similar to those in boundary value problems are still to be overcome.
Thus, it is again natural to ask whether there are Toeplitz extensions of the corresponding
algebras which contain the genuine operator algebras and admit all interior elliptic symbols
that are forbidden by the obstruction.

The paper [11] gives an answer for pseudodifferential boundary value problems with
general interior symbols, i.e., without the condition of the transmission property at the
boundary. This algebra may also be regarded as a model for operators on manifolds with
edges, though the case of boundary value problems has certain properties which are not
typical for edge operators in general.

The present paper contributes to the theory by new weighted Sobolev spaces which are
invariant under local diffeomorphisms of X. Thus, the theory is carried over to manifolds
with boundary while the approach of [11] seems to apply only in the case of half-space Rn+.

1. Weighted Sobolev Spaces

1.1. Cone Sobolev Spaces

The aim of this subsection is to fix some terminology for pseudodifferential analysis on
manifolds with conical and edge singularities.

For s = 0, 1, . . . and γ ∈ R, we let Hs,γ(R+) be the Hilbert space of all distributions
u ∈ D′(R+), such that

r−γ (1 + r)s−j (rDr)ju(r) ∈ L2(R+, dr)

for all j ≤ s.
By duality, the definition extends in a natural way to any negative integer s. Us-

ing complex interpolation, it then extends to arbitrary real s. The scalar product in
L2(R+) = H0,0(R+) induces a sesquilinear pairing H−s,−γ(R+) × Hs,γ(R+) → C by
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(u, v) 7→ (u, v)L2(R+), which allows one to identify the dual space of Hs,γ(R+) with
H−s,−γ(R+).

1.2. Edge Sobolev Spaces

Given a Hilbert space V endowed with a strongly continuous group of isomorphisms
(κλ)λ>0 ⊂ L(V ), we define the space Hs(Rq, π∗V ) to be the completion of S(Rq, V ) with
respect to the norm

u 7→
(∫
〈η〉2s‖κ−1

〈η〉û(η)‖2V dη
)1/2

.

If V is a Fréchet space written as a projective limit of Hilbert spaces Vj , j ∈ N, and V
is endowed with group action, we have the spaces Hs(Rq, π∗Vj) for all j. We then define
Hs(Rq, π∗V ) to be the projective limit of Hs(Rq, π∗Vj) over j ∈ N.

Example 1.1. For V = Hs,γ(R+) with the standard group action

(κλu)(r) = λs−γ+1/2u(λr)

we get a weighted Sobolev space Hs,γ(Rq × R+) with the norm

‖u‖ =
(∫

Rq

∫ ∞
0

r−2γ
∑
|β|+j≤s

(1 + r)2(s−|β|−j)|(rDy)β(rDr)ju|2dydr
)1/2

.

Let {O1, . . . , ON} be a covering of the manifold X by coordinate neighbourhoods and
{φ1, . . . , φN} a subordinate partition of unity on X. Suppose Oj ∩ ∂X 6= ∅ for j = 1, . . . , N ′

and Oj ∩ ∂X = ∅ for j = N ′ + 1, . . . , N . Fix charts δj : Oj → Rn−1 × R̄+ for j = 1, . . . , N ′,
and δj : Oj → Rn for j = N ′ + 1, . . . , N . Then Hs,γ(X) is defined to be the completion of
C∞ functions with compact support in X \ Y with respect to the norm

( N ′∑
j=1

‖δ−1
j
∗(φju)‖2Hs,γ(Rn−1×R+) +

N∑
j=N ′+1

‖δ−1
j
∗(φju)‖2Hs(Rn)

)1/2

. (1.1)

Throughout this exposition we fix a Riemannian metric on X that induces a product
metric of Y × [0, 1] on a collar neighbourhood of Y . We then have a natural identification
H0,0(X) = L2(X) and, via the L2(X) -scalar product, a non-degenerate sesquilinear pairing
Hs,γ(X)×H−s,−γ(X)→ C.

Analogous definitions make sense for the case of distributional sections of vector bundles.
Given any smooth complex vector bundle V over X, we have an analogue Hs,γ(X,V ) of
the above space of scalar-valued functions, locally modelled by Hs(Rn−1, π∗Hs,γ(R+,Ck)),
where k ∈ Z≥0 corresponds to the fibre dimension of V , cf. § 3.5.2 of [10].
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For each V we fix a Hermitian metric. We thus obtain a Hilbert space L2(X,V ) whose
norm is clearly equivalent to that of H0,0(X,V ).

2. The Transmission Property

2.1. Operators on a Manifold with Boundary

The study of ellipticity of operators A on a C∞ manifold X with boundary Y gives rise
to the question on proper algebras of pseudodifferential boundary value problems.

As mentioned, a particular answer is given in [8] in terms of an operator algebra Ψ ·gp(X)
that contains Boutet de Monvel’s algebra Ψ ·BdM(X) as well as an algebra Ψ ·T(Y ) of Toeplitz
operators on the boundary.

The transmission property suffices to generate an algebra that contains all differential
boundary value problems together with the parametrices of elliptic elements. The transmis-
sion property has been imposed in Ψ ·BdM(X) as well as in Ψ ·gp(X). It is a natural condition if
we prefer standard Sobolev spaces on X or scales of closed subspaces as a frame for Fredholm
operators. On the other hand, in order to understand the structure of stable homotopies of
elliptic boundary value problems, or to reach specific applications, the algebra Ψ ·BdM(X)
appears too narrow. It is interesting to consider a larger algebra, namely, a suitable subal-
gebra Ψ ·s(X) of the general edge algebra on X. In this interpretation X is regarded as a
manifold with edge Y and R̄+ as the model cone of the wedge Y × R̄+. The algebra Ψ ·s(X)
is adequate for studying mixed and transmission problems and consists of pseudodifferential
boundary value problems not requiring the transmission property. All classical symbols on
X that are smooth up to Y are admitted in Ψ ·s(X).

Recall that the operators in Ψ ·s(X) act in a certain scale Hs,γ(X) of weighted edge
Sobolev spaces which are different from the standard Sobolev spaces Hs(X), except for
s = γ = 0 where we have H0,0(X) = L2(X) = H0(X).

To illustrate the idea of constructing our Toeplitz extension Ψ ·gp(X) of Ψ ·s(X) we first dis-
cuss the corresponding construction for Boutet de Monvel’s algebra Ψ ·BdM(X). The general
case will be studied in Section 3.

Let X be a smooth compact manifold with boundary, V , Ṽ smooth vector bundles over
X, and W , W̃ smooth vector bundles over Y . Then Ψm,d(X; v) for m ∈ Z and d ∈ Z≥0 is
defined to be the space of all block matrix operators

A :
C∞(X,V )
⊕

C∞(Y,W )
→

C∞(X, Ṽ )
⊕

C∞(Y, W̃ )
(2.1)

of the form

A =
( r+Pe+ 0

0 0

)
+ G + C, (2.2)

the components of (2.2) being given as follows.
By P is meant a classical pseudodifferential operator of order m on the double of X

which has the transmission property at Y . As usual, e+ is the operator of extension by zero
from X to 2X, and r+ the restriction from 2X to the interior of X.
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Recall that the transmission property of an operator P on U × R with coordinates
x = (y, r), U being an open subset of Rn−1, with respect to r = 0 is defined in terms of the
homogeneous components pm−j(y, r, η, %) of a symbol p(y, r, η, %) of P by the condition

Dk
rD

β
η

(
pm−j(y, r, η, %)− (−1)m−jpm−j(y, r,−η,−%)

)
| r=0
η=0

= 0

for all y ∈ U , % ∈ R \ {0}, and k ∈ Z≥0, β ∈ Zn−1
≥0 and all j. This condition is invariant

under changes of coordinates which preserve the boundary.
Thus, for any vector bundles V and Ṽ over 2X, we have Ψm

tp(2X;V, Ṽ ), the space of all
classical pseudodifferential operators of order m on 2X acting from sections of V to sections
of Ṽ , whose symbols in local coordinates near Y possess the transmission property at Y .
Set Ψm

tp(X;V, Ṽ ) := {r+Pe+ : P ∈ Ψm
tp(2X;V, Ṽ )}. In other words, the operator in the first

summand on the right-hand side of (2.2) belongs to Ψm
tp(X;V, Ṽ ).

The operator C on the right side of (2.2) belongs to Ψ−∞,d(X; v), i.e., it is smoothing
and of type d.

Here, Ψ−∞,0(X; v) is the space of all operators (2.1) whose Schwartz kernel is C∞ up to
the boundary. We fix Riemannian metrics on X and Y , such that a collar neighbourhood of
Y has the product metric from Y × [0, 1). Then the entries of

C = (Cij) i=1,2
j=1,2

are integral operators with C∞ kernels over X ×X, X ×Y , Y ×X and Y ×Y , respectively,
which are sections of corresponding external tensor products of bundles on the respective
Cartesian products. Now Ψ−∞,d(X; v) is defined to be the space of all operators

C = C0 +
d∑
j=1

Cj
( Dj 0

0 0

)
,

where C0, C1, . . . , Cd are arbitrary operators in Ψ−∞,0(X; v) and D a first order differential
operator which is equal to Dr in a collar neighbourhood of the boundary.

The operator G in (2.2) is a (2× 2) -block matrix with entries Gij , where G11 has a C∞

kernel over X◦×X◦, G12 has a C∞ kernel over X◦×Y , G21 has a C∞ kernel over Y ×X◦ and
G22 is a classical pseudodifferential operator of order m on Y , while G in local coordinates
(y, r) ∈ U × R̄+ near Y is a pseudodifferential operator G = op(g) with operator-valued
symbol of the form

g(y, η) = g0(y, η) +
d∑
j=1

gj(y, η)
( Dj

r 0
0 0

)
, (2.3)

where gj ∈ Sm−jcl (U × Rn−1,Ψ ,0
G (R+; Ck,Ck̃; Cl,Cl̃)) and k, k̃, l, l̃ are the fibre dimensions

of V , Ṽ , W , W̃ , respectively.
The concept of a Green operator in Boutet de Monvel’s algebra is slightly different from

that in the edge algebra. Namely, by Smcl (U × Rn−1,Ψ ,0
G (R+; Ck,Ck̃; Cl,Cl̃)) is meant the

space of all operator-valued symbols g(y, η) on U × Rn−1 with the property that

g(y, η) ∈ Smcl (U × Rn−1,L(L2(R+,Ck)⊕ Cl,S(R̄+,Ck̃)⊕ Cl̃)),
g∗(y, η) ∈ Smcl (U × Rn−1,L(L2(R+,Ck̃)⊕ Cl̃,S(R̄+,Ck)⊕ Cl)).
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Symbols g(y, η) of the form (2.3) are called Green symbols of order m and type d. The space
of all such symbols is denoted by Smcl (U × Rn−1,Ψ ,d

G (R+; Ck,Ck̃; Cl,Cl̃)).
To any pseudodifferential operator A ∈ Ψm,d(X; v) one assigns a pair of principal sym-

bols σ(A) = (σΨ (A), σ∂(A)). Here,

σΨ (A) : π∗XV → π∗X Ṽ

is the interior symbol which is the restriction of the principal homogeneous symbol of P
from T ∗(2X) \ {0} to T ∗X \ {0}, cf. (2.2). Moreover,

σ∂(A) : π∗Y

Hs(R+)⊗ VY
⊕
W

→ π∗Y

Hs−m(R+)⊗ ṼY
⊕
W̃

(2.4)

is the boundary symbol of A. It is defined for all s > d− 1/2. It is often convenient to think
of it as a family of maps

σ∂(A) : π∗Y

S(R̄+)⊗ VY
⊕
W

→ π∗Y

S(R̄+)⊗ ṼY
⊕
W̃

. (2.5)

The boundary symbol is defined by

σ∂(A) =
( σ∂(r+Pe+) 0

0 0

)
+ σ∂(G),

where σ∂(r+Pe+)(y, η) = r+σΨ (A)(y, 0, η,Dr)e+ and

σ∂(G)(y, η) = σ∂(g0)(y, η) +
d∑
j=1

σ∂(gj)(y, η)
( Dj

r 0
0 0

)
,

σ∂(gj) being the principal homogeneous symbol of gj . It is easy to verify that σ∂(A) is
twisted homogeneous of degree m, i.e.,

σ∂(A)(y, λη) = λm
( κλ 0

0 I

)
σ∂(A)(y, η)

( κλ 0
0 I

)−1

for all λ ∈ R+. It is worth emphasizing that the group action in Hs(R+) ⊗ VY is different
from that in Hs,γ(R+)⊗ VY , namely, (κλu)(r) := λ1/2u(λr) for λ > 0, as if s = γ.

We systematically employ various facts on operators in Ψm,d(X; v). In particular, any
such operator A induces a continuous map

A :
Hs(X,V )
⊕

Hs(Y,W )
→

Hs−m(X, Ṽ )
⊕

Hs−m(Y, W̃ )

for all real s > d − 1/2, which is compact provided that σ(A) = 0. Moreover, composition
of operators induces a map

Ψm1,d1(X; v1)×Ψm2,d2(X; v2) ↪→ Ψm,d(X; v2 ◦ v1)
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where for
v1 = (V 1, V 2;W 1,W 2),
v2 = (V 2, V 3;W 2,W 3)

we set v2◦v1 = (V 1, V 3;W 1,W 3), whilem = m1+m2 and d = max{d1,m1+d2}. On the level
of principal symbols we get σ(A2A1) = σ(A2)σ(A1) with componentwise multiplication.

2.2. Conditions with Pseudodifferential Projections

As usual, an operator A ∈ Ψm,d(X; v) is called σΨ -elliptic if the interior symbol σΨ (A)
defines an isomorphism π∗XV → π∗X Ṽ . In this case,

r+σΨ (A)(y, 0, η,Dr)e+ : Hs(R+)⊗ Vy → Hs−m(R+)⊗ Ṽy (2.6)

is known to be a family of Fredholm operators for all (y, η) ∈ T ∗Y \ {0} and all s >

max{m, d} − 1/2. The Fredholm property of (2.6) is in turn equivalent to that of

r+σΨ (A)(y, 0, η,Dr)e+ : S(R̄+)⊗ Vy → S(R̄+)⊗ Ṽy

for all (y, η) ∈ T ∗Y \ {0}.
An operator A ∈ Ψm,d(X; v) is called Lopatinskii elliptic if it is σΨ -elliptic and if, in

addition, σ∂(A) induces an isomorphism (2.4) for any s > max{m, d}−1/2, or, equivalently,
an isomorphism (2.5).

Let Ψm,d(X;V, Ṽ ) stand for the space of upper left corners of operator block matrices
in Ψm,d(X; v), where v = (v). The question whether or not a σΨ -elliptic element A ∈
Ψm,d(X;V, Ṽ ) may be interpreted as the upper left corner of a Lopatinskii elliptic operator
A ∈ Ψm,d(X; v) gives rise to an operator algebra of boundary value problems that is different
from Boutet de Monvel’s algebra. A general answer is given in [8]. It consists of a new algebra
with boundary conditions which in [8] are called global projection conditions. Operators in
this algebra

A :
Hs(X,V )
⊕

Hs(Y,Q)
→

Hs−m(X, Ṽ )
⊕

Hs−m(Y, Q̃)
(2.7)

are characterised by the following data.
The upper left corner A of the operator block matrix A is assumed to belong to

Ψm,d(X;V, Ṽ ).
By Q is meant a triple Q = (F,W,P ) consisting of a smooth vector bundle F over

T ∗Y \ {0}, a smooth vector bundle W over Y , and a pseudodifferential projection P ∈
Ψ0

cl(Y ;W ) with the property that F just amounts to the range of the principal homogeneous
symbol

p = σΨ (P ) : π∗YW → π∗YW, (2.8)

and similarly for Q̃ = (F̃ , W̃ , P̃ ).
The spaces on the boundary in (2.7) are given by

Hs(Y,Q) = PHs(Y,W ),
Hs(Y, Q̃) = P̃Hs(Y, W̃ ),

(2.9)
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for s ∈ R. It is obvious that these are closed subspaces of Hs(Y,W ) and Hs(Y, W̃ ), respec-
tively.

The operator (2.7) is now defined to be a composition A = P̃ÃE for an operator Ã ∈
Ψm,d(X; v) with v = (V, Ṽ ;W, W̃ ) and

E =
( I 0

0 E

)
, P̃ =

( I 0
0 P̃

)
,

where I stands for the identity operator in the corresponding Sobolev space on X and
E : Hs(Y,Q) ↪→ Hs(Y,W ) for the canonical embedding.

For v = (V, Ṽ ;Q, Q̃), we denote by Ψm,d
gp (X; v) the set of all operators (2.7) described

above. Continuity of (2.7) holds for all s > d− 1/2.

Remark 2.1. If P ∈ Ψ0
cl(Y ;W ) is a pseudodifferential projection with principal homo-

geneous symbol p as above, then p2 = p. Vice versa, given any smooth homomorphism
p : π∗YW → π∗YW which is positively homogeneous of degree 0 and satisfies p2 = p, there
exists a projection P ∈ Ψ0

cl(Y ;W ) with σΨ (P ) = p. This can be found in [8].

Ellipticity of an operator A ∈ Ψm,d
gp (X; v) is defined by a pair of principal symbols

σ(A) = (σΨ (A), σ∂(A)), where σΨ (A) : π∗XV → π∗X Ṽ is the interior symbol and σ∂(A) the
boundary symbol which is a bundle homomorphism

σ∂(A) :
π∗Y S(R̄+)⊗ VY

⊕
F

→
π∗Y S(R̄+)⊗ ṼY

⊕
F̃

(2.10)

still satisfying

σ∂(A)(y, λη) = λm
( κλ 0

0 IF̃

)
σ∂(A)(y, η)

( κλ 0
0 IF

)−1

.

The boundary value problem A is called elliptic if both σΨ (A) and σ∂(A) are isomorphisms.
Instead of S(R̄+) in (2.10) we could equivalently consider Sobolev spaces Hs(R+) for

arbitrary s > max{m, d} − 1/2.
Recall, cf. [8], that if A ∈ Ψm,d

gp (X; v) is elliptic then operator (2.7) is Fredholm for any
s > max{m, d} − 1/2. Moreover, this operator possesses a parametrix Π ∈ Ψ−m,tgp (X; v−1)
with t = max{d−m, 0} and v−1 = (Ṽ , V ; Q̃,Q) in the sense that

ΠA− I ∈ Ψ−∞,tlgp (X;V ;Q),
AΠ − I ∈ Ψ−∞,trgp (X; Ṽ ; Q̃)

(2.11)

for tl = max{m, d} and tr = max{d−m, 0}. Clearly, the remainders in (2.11) are compact
in the respective spaces (2.7).

Notice that the index of A depends on the particular choice of the global pseudodiffer-
ential projections P and P̃ . However, if we do not change the principal symbols (2.8), the
freedom in the choice of the projections does not affect the Fredholm property. This is a
general fact on operators in Hilbert spaces, as we shall discuss now.

To this end, let H and H̃ be Hilbert spaces, P1, P2 ∈ L(H) and P̃1, P̃2 ∈ L(H̃) be
projections, such that both P2 − P1 and P̃2 − P̃1 are compact. Then the following result
holds.
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Theorem 2.1. Given A ∈ L(H, H̃), assume that A1 = P̃1A : P1H → P̃1H̃ is a Fredholm
operator. Then this is also true for A2 = P̃2A : P2H → P̃2H̃, and the relative index formula
holds

indA2 − indA1 = ind
(
P1 : P2H → P1H

)
+ ind

(
P̃2 : P̃1H̃ → P̃2H̃

)
. (2.12)

Proof. Let us first show that the operators on the right-hand side of (2.12) are Fredholm
indeed. Since P2 acts as the identity on P2H, the difference

P2P1 − I = P2P1 − P 2
2

= P2 (P1 − P2)

is a compact operator on P2H. Therefore, P2 is the Fredholm inverse for P1, and P2P1 :
P2H → P2H is Fredholm of index 0. An analogous statement holds for the projections P̃2

and P̃1. It follows that the composition F given by

P2H
P1→ P1H

A1→ P̃1H̃
P̃2→ P̃2H̃

is a Fredholm operator with index

indF = indA1 + ind
(
P1 : P2H → P1H

)
+ ind

(
P̃2 : P̃1H̃ → P̃2H̃

)
.

On the other hand, we get

F = (P̃2P̃1)A2 (P2P1)− P̃2[P̃1, P̃2]A (P2P1) + P̃2P̃1A (I − P2)P1

where [P̃1, P̃2] is the commutator of P̃1 and P̃2 which is a compact operator on H̃, for

[P̃1, P̃2] = P̃1P̃2 − P̃2P̃1

= (P̃2 − P̃1)(I − P̃1 − P̃2).

Furthermore, (I−P2)P1 = (P1−P2)P1 is a compact operator on H. Hence, (P̃2P̃1)A2 (P2P1)
differs from F by a compact remainder and thus is itself Fredholm with the same index
indF = ind(P̃2P̃1)A2 (P2P1). As we have already proved, P2P1 and P̃2P̃1 are Fredholm
operators of index 0. �

It follows that A2 itself is Fredholm and indF = indA2, as desired.

3. Boundary Value Problems with Projection Conditions

3.1. Interior Operators

Let X be a smooth compact manifold of dimension n with smooth boundary Y = ∂X,
and V , Ṽ vector bundles over the double of X.

As defined above, Ψm
s (X;V, Ṽ ) is the space of all pseudodifferential operators of the form

A = r+Pe+ + S

where P ∈ Ψm
cl (2X;V, Ṽ ) and S ∈ Ψ−∞(X◦;V, Ṽ ).
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Clearly, operators in Ψm
s (X;V, Ṽ ) are much more general than those in the subspace

Ψm
s,tp(X;V, Ṽ ) of operators with the transmission property.
If Smhg(T ∗X \ {0},Hom(V, Ṽ )) denotes the set of all smooth bundle homomorphisms

am : π∗XV → π∗X Ṽ that are positively homogeneous of degree m in the covariable, every
A ∈ Ψm

s (X;V, Ṽ ) has a well-defined principal homogeneous symbol

σΨ (A) := σΨ (P ) |T∗X\{0},

where P ∈ Ψm
cl (2X;V, Ṽ ) is any operator with the property that A − r+Pe+ belongs to

Ψ−∞(X◦;V, Ṽ ). Moreover, there is a (non-canonical) linear map

op : Smhg(T ∗X \ {0},Hom(V, Ṽ ))→ Ψm
s (X;V, Ṽ ) (3.1)

with σΨ (op(am)) = am. It can be generated by a standard procedure in terms of local charts
and local representatives of operators with given principal symbols.

Using the spaces Hs(Rq, π∗Hs,γ(R+,Ck)) as a local model near the boundary, it is
straightforward to introduce weighted Sobolev spacesHs,γ(X,V ) onX for any vector bundle
V over X. As mentioned, Hs,γ(X,V ) ↪→ Hs

loc(X
◦, V ) holds for all s, γ ∈ R.

By [10], for every A ∈ Ψm
s (X;V, Ṽ ) and each γ ∈ R there is an operator Rγ ∈

Ψ−∞(X◦;V, Ṽ ) such that Aγ := A−Rγ induces a family of continuous operators

Aγ : Hs,γ(X,V )→ Hs−m,γ−m(X, Ṽ ) (3.2)

for all s ∈ R.
There are many ways to find suitable operators Rγ . Any choice of a correspondence

A 7→ Aγ may be regarded as an operator convention that maps a complete symbol of A,
i.e., a system of local symbols corresponding to a covering of X by coordinate charts, to a
continuous operator (3.2). Setting op,γ(am) := (op(am))γ , cf. (3.1), we get a map

op,γ : Smhg(T ∗X \ {0},Hom(V, Ṽ ))→
⋂
s∈R
L(Hs,γ(X,V ), Hs−m,γ−m(X, Ṽ )).

In the rest of this paper we construct an operator algebra Ψ ·gp(X; v;w) of boundary value
problems

A =
( Aγ P

T Q

)
:
Hs,γ(X,V )

⊕
Hs(Y,Q)

→
Hs−m,γ−m(X, Ṽ )

⊕
Hs−m(Y, Q̃)

(3.3)

for arbitrary A ∈ Ψm
s (X;V, Ṽ ) and certain operators P , T and Q. The spaces Hs(Y,Q) and

Hs−m(X, Q̃) are the same as in (2.9).
Every σΨ -elliptic operator A ∈ Ψm

s (X;V, Ṽ ) occurs up to a stabilisation as an upper
left corner of an elliptic (and then Fredholm) operator (3.3) for a suitable choice of P , T , Q
and data Q, Q̃. The algebra Ψ ·gp(X; v;w) should contain parametrices of elliptic elements.
We obtain Ψ ·gp(X; v;w) as an extension of the algebra Ψ ·s(X; v;w) that plays a similar role
as Ψ ·BdM(X; v) in connection with its Toeplitz extension Ψ ·gp(X; v).
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3.2. The Edge Algebra Revisited

Recall the calculus of boundary value problems on X which need not satisfy the trans-
mission property with respect to the boundary Y , cf. [12].

This algebra is denoted by Ψ ·s(X; v;w) with v = (V, Ṽ ;W, W̃ ) and weight data w =
(γ, γ −m). It consists of block matrix operators

A :
C∞comp(X◦, V )

⊕
C∞(Y,W )

→
C∞(X, Ṽ )
⊕

C∞(Y, W̃ )

of the form

A =
( A 0

0 0

)
+ G + C, (3.4)

the components of (3.4) being as follows.
By A is meant a classical pseudodifferential operator of order m and type V → Ṽ in

the interior of X. When localised to a coordinate chart at the boundary, A is the pull-
back of an operator op(a) whose amplitude function a is a (k̃× k) -matrix with entries from
Smcl (U×Rn−1,Ψm(R+;w)), where k and k̃ are the fibre dimensions of V and Ṽ , respectively.

The operator G is a (2 × 2) -block matrix with entries Gij , where G11 has a C∞ kernel
on X◦×X◦, G12 has a C∞ kernel on X◦×Y , G21 has a C∞ kernel on Y ×X◦ and G22 is a
classical pseudodifferential operator of order m and type W → W̃ on Y . When localised to
a coordinate chart close to the boundary, G corresponds to an operator op(g) with a Green
symbol g ∈ Smcl (U × Rq,ΨG(R+; Ck,Ck̃; Cl,Cl̃;w)).

Finally, the operator C on the right-hand side of (3.4) is assumed to belong to the space
Ψ−∞G (X; v;w), i.e., it is a smoothing Green operator in the edge calculus over X. Such
operators are globally characterised by the continuity properties

C :
Hs,γ(X,V )

⊕
Hs(Y,W )

→
H∞,γ−m+ε(X, Ṽ )

⊕
C∞(Y, W̃ )

,

C∗ :
Hs,−γ+m(X, Ṽ )

⊕
Hs(Y, W̃ )

→
H∞,−γ+ε(X,V )

⊕
C∞(Y,W )

for all s ∈ R and some ε > 0 depending on G. Here, C∗ is the formal adjoint of C in the sense

(Cu, g)H0,0(X,Ṽ )⊕H0(Y,W̃ ) = (u, C∗g)H0,0(X,V )⊕H0(Y,W )

for all
u ∈ C∞comp(X◦, V )⊕ C∞(Y,W ),
g ∈ C∞comp(X◦, Ṽ )⊕ C∞(Y, W̃ ).

Every operator A ∈ Ψm
s (X; v;w) is known to induce a family of continuous mappings

A(λ) :
Hs,γ(X,V )

⊕
Hs(Y,W )

→
Hs−m,γ−m(X, Ṽ )

⊕
Hs−m(Y, W̃ )

, (3.5)
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where s ∈ R. If A is elliptic then the operator (3.5) is Fredholm for all s ∈ R. In this
case a parametrix P ∈ Ψ−ms (X; v−1;w−1), can be chosen in such a way that the compact
remainders are projections of finite rank. Namely, PA − I projects onto the null-space of
A while AP − I onto a complement of the range of A, for each fixed s. In fact, kerA is
independent of s as well as the dimension of cokerA, i.e., the index of A does not depend
on s.

The constructions of this section can easily be generalised to the case of lower order
operators, i.e., one can introduce classes Ψm−j

s (X; v;w) with j ∈ Z≥0 and weight data w =
(γ, γ−m). For j ≥ 1, we require A to belong to Ψm−j

cl (X◦;V, Ṽ ) the local amplitude function
a to Sm−jcl (U × Rn−1,Ψm−j(R+; v;w)), and g to belong to Sm−jcl (U × Rq,ΨG(R+; v;w)).

By Sm−jcl (U×Rn−1,Ψm−j(R+; v;w)) is meant the set of all operator families of the form

a(y, η) =
( σ(y, η) 0

0 0

)
+ c(y, η),

where σ is a (k̃ × k) -block matrix family with entries ϕ (a0(y, η) + a∞(y, η)) ϕ̃, and c ∈
Sm−jcl (U×Rn−1,ΨG(R+; v;w)). The expressions a0 and a∞ stem from a Mellin quantisation,
now related to a symbol p ∈ Sm−jcl ((U×R̄+)×Rn,L(Ck,Ck̃)), and ϕ, ϕ̃ are cut-off functions.

The corresponding subclass of Green operators is denoted by Ψm−j
s,G (X; v;w) and the

spaces of upper left corners by Ψm−j
s (X;V, Ṽ ;w) and Ψm−j

s,G (X;V, Ṽ ;w), respectively. In-
stead of Ψm

s,M+G(X;V, Ṽ ;w) = Ψm
s (X;V, Ṽ ;w) ∩Ψ−∞(X◦;V, Ṽ ;w) we have

Ψm−j
s,G (X;V, Ṽ ;w) = Ψm−j

s (X;V, Ṽ ;w) ∩Ψ−∞(X◦;V, Ṽ ;w)

for j ≥ 1.
For A ∈ Ψm−j

s (X; v;w), we introduce the pair σm−j(A) = (σm−jΨ (A), σm−j∂ (A)) of
principal interior symbol and boundary symbol. The scheme is the same as for j = 0.
Then, Ψm−j−1

s (X; v;w) just amounts to the space of all A ∈ Ψm−j
s (X; v;w) satisfying

σm−j(A) = 0.
Composition of operators induces a map

Ψm1−j
s (X; v1;w1)×Ψm2−k

s (X; v2;w2) ↪→ Ψm1+m2−(j+k)
s (X; v2 ◦ v1;w2 ◦ w1)

where for

v1 = (V 1, V 2;W 1,W 2),
v2 = (V 2, V 3;W 2,W 3);

w1 = (γ1, γ1 −m1),
w2 = (γ1 −m1, γ1 −m1 −m2)

we set v2 ◦v1 = (V 1, V 3;W 1,W 3) and w2 ◦w1 = (γ1, γ1−m1−m2). On the level of principal
symbols we get

σm1+m2−(j+k)(A2A1) = σm2−k(A2)σm1−j(A1)

with componentwise multiplication. For a thorough treatment we refer the reader to [13].

3.3. Constructions for Boundary Symbols

Let γ ∈ R. Combining (3.1) with the operator convention of [10], we get a map

op,γ : Smhg(T ∗X \ {0},Hom(V, Ṽ ))→ Ψm
s (X;V, Ṽ ;w) (3.6)
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for w = (γ, γ − m), such that σΨ (op,γ(am)) = am. Clearly, such a construction is not
canonical and not necessarily linear, but it yields a right inverse of the principal symbolic
map σΨ .

Denote by Smhg(T ∗Y \ {0},Ψm(R+;VY , ṼY ;w)) the space of all principal homogeneous
boundary symbols

σ∂(A) : π∗Y H
s,γ(R+)⊗ VY → π∗Y H

s−m,γ−m(R+)⊗ ṼY

belonging to elements A ∈ Ψm
s (X;V, Ṽ ;w).

Moreover, let Smhg,M+G(T ∗Y \{0},Ψm(R+;VY , ṼY ;w)) be the space of all principal homo-
geneous boundary symbols σ∂(A) of elements A ∈ Ψm

s,M+G(X;V, Ṽ ;w). In a similar manner
we define Smhg,G(T ∗Y \ {0},Ψm(R+;VY , ṼY ;w)) in terms of the space of Green operators
Ψm
s,G(X;V, Ṽ ;w).
Note that operators σ∂(A) are pointwise elements of the cone algebra on R+ with weight

control of breadth ε for some ε > 0 relative to the weights γ and γ −m, respectively. From
the cone theory we have an interior symbolic structure in (r, %) ∈ T ∗R+ \ {0} which is the
standard one of classical pseudodifferential operators on R+, the exit symbolic structure
that is responsible for r → +∞, and the principal conormal symbolic structure for r → 0.
This latter is given by the family

σMσ∂(A)(y, z) : Vy → Ṽy

for y ∈ Y and z ∈ Γ1/2−γ .
Set T ∗YX := T ∗X |Y and write Smhg(T ∗YX \ {0},Hom(VY , ṼY )) for the space of all

restrictions of elements in Smhg(T ∗X \ {0},Hom(V, Ṽ )) to T ∗YX \ {0}. Given any am ∈
Smhg(T ∗X \ {0},Hom(V, Ṽ )), we form A = op,γ(am). The operator family σ∂(A)(y, η) al-
lows one to recover

am |T∗YX\{0} ∈ S
m
hg(T ∗YX \ {0},Hom(VY , ṼY ))

in a unique way, which yields a linear map

σΨ ,Y : Smhg(T ∗Y \ {0},Ψm(R+;VY , ṼY ;w))→ Smhg(T ∗YX \ {0},Hom(VY , ṼY ))

with
kerσΨ ,Y = Smhg,M+G(T ∗Y \ {0},Ψm(R+;VY , ṼY ;w)). (3.7)

Remark 3.1. For a pair

(pΨ , p∂) ∈ Smhg(T ∗X \ {0},Hom(V, Ṽ ))× Smhg(T ∗Y \ {0},Ψm(R+;VY , ṼY ;w))

there exists an A ∈ Ψm
s (X;V, Ṽ ;w) satisfying σ(A) = (pΨ , p∂) if and only if σΨ ,Y (p∂) =

pΨ |T∗YX\{0}.
It is worth pointing out that for every choice of op,γ the composition σ∂ op,γ induces a

linear map

σ∂ op,γ : Smhg(T ∗X \ {0},Hom(V, Ṽ ))→
Smhg(T ∗Y \ {0},Ψm(R+;VY , ṼY ;w))

Smhg,M+G(T ∗Y \ {0},Ψm(R+;VY , ṼY ;w))
.
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An element of Smhg(T ∗X \ {0},Hom(V, Ṽ )) is called elliptic if it defines an isomorphism
π∗XV → π∗X Ṽ .

Theorem 3.1. Assume that there exists a nowhere vanishing vector field on the boundary
Y . Then, for every γ ∈ R, the map op,γ , cf. (3.6), can be chosen in such a way that the
ellipticity of am ∈ Smhg(T ∗X \ {0},Hom(V, Ṽ )) entails the Fredholm property of

σm(y, η) := σ∂ op,γ(am)(y, η) : Hs,γ(R+)⊗ Vy → Hs−m,γ−m(R+)⊗ Ṽy (3.8)

for all (y, η) ∈ T ∗Y \ {0}.

For general X a similar result holds up to stabilisation. By this we mean an elliptic
symbol ãm ∈ Smhg(T ∗X \ {0},Hom(V ⊕ B, Ṽ ⊕ B)) for some vector bundle B on X, such
that

ãm = am ⊕ Iπ∗XB

on S∗X.

Theorem 3.2. Suppose γ ∈ R. For any elliptic am ∈ Smhg(T ∗X \ {0},Hom(V, Ṽ )) there is a
smooth vector bundle B over X, such that for a suitable choice of the map op,γ

σ̃m(y, η) := σ∂ op,γ(ãm)(y, η) : Hs,γ(R+)⊗ (V ⊕B)y → Hs−m,γ−m(R+)⊗ (Ṽ ⊕B)y

is a Fredholm operator for all (y, η) ∈ T ∗Y \ {0}.

Theorems 3.1 and 3.2 will be proved in Section 3.7. If am is elliptic, the operator (3.8)
is Fredholm for any s = s0 ∈ R and η 6= 0 if and only if the principal conormal symbol

σM σ∂ op,γ(am) (y, z) : Vy → Ṽy

is a family of isomorphisms for all z ∈ Γ1/2−γ . In this case σm(y, η) is actually Fredholm
for all s ∈ R, the null-space of σm(y, η) does not depend on s, and it is a finite-dimensional
subspace of Sγ+ε(R+)×Vy for some ε > 0. Moreover, there is a finite-dimensional subspace
of Sγ−m+ε(R+)× Ṽy for some ε > 0, which is a direct complement of the range of σm(y, η)
in Hs−m,γ−m(R+)⊗ Ṽy for all s ∈ R. This is true for all y ∈ Y .

3.4. Lopatinskii Ellipticity

Let σm ∈ Smhg(T ∗Y \ {0},Ψm(R+;VY , ṼY ;w)) be such that the operator

σm(y, η) : Hs,γ(R+)⊗ Vy → Hs−m,γ−m(R+)⊗ Ṽy

is Fredholm for every s ∈ R and (y, η) ∈ T ∗Y \ {0}, cf. (3.8). Since σm is homogeneous, i.e.,
σm(y, λη) = λmκλσm(y, η)κ−1

λ for all λ > 0, it is often sufficient to consider σm on the unit
cosphere bundle S∗Y . It will cause no confusion if we use the same letter to designate σm
and its restriction to S∗Y . We then get an index element

indS∗Y σm ∈ K(S∗Y ).
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If τm ∈ Smhg(T ∗Y \ {0},Ψm(R+;VY , ṼY ;w)) is another element with the property that
σΨ ,Y (τm) = σΨ ,Y (σm), then relation (3.7) gives

σm − τm ∈ Smhg,M+G(T ∗Y \ {0},Ψm(R+;VY , ṼY ;w)).

Clearly, τm(y, η) is not necessarily a Fredholm family in the above setting, cf. (3.8).
Moreover, if this is the case, it may happen that indS∗Y σm 6= indS∗Y τm.

Fix v = (V, Ṽ ;W, W̃ ). Let A ∈ Ψm
s (X; v;w) be a Lopatinskii elliptic boundary value

problem with an upper left corner A ∈ Ψm
s (X;V, Ṽ ;w). If σm = σ∂(A) we then have a

Fredholm family (3.8) and

indS∗Y σ∂(A) = [s∗Y W̃ ]− [s∗YW ], (3.9)

where sY : S∗Y → Y is the canonical projection. Thus, as in the calculus of boundary value
problems with the transmission property, we have

indS∗Y σ∂(A) ∈ s∗YK(Y ),

cf. relation (0.1). Hence, this is a necessary condition for A to be Lopatinskii elliptic.
Given an elliptic symbol am ∈ Smhg(T ∗X \ {0},Hom(V, Ṽ )), we may ask whether to any

γ ∈ R there corresponds a Lopatinskii elliptic operator A ∈ Ψm
s (X; v;w) for a suitable

choice of bundles W and W̃ over Y , such that am = σΨ (A).

Theorem 3.3. Let γ ∈ R. Suppose am ∈ Smhg(T ∗X \ {0},Hom(V, Ṽ )) is elliptic and A :=
op,γ(am) is chosen in such a way that (3.8) is a family of Fredholm operators. Then the
following are equivalent:

1) there is a Lopatinskii elliptic boundary value problem A ∈ Ψm
s (X; v;w) such that

am = σΨ (A);

2) indS∗Y σ∂(A) ∈ s∗YK(Y ).

Proof. It remains to show the implication 2) ⇒ 1). By assumption, there are vector
bundles W and W̃ on Y , such that (3.9) holds. It is actually a general property of Fredholm
families that there exists a gm ∈ Smhg,G(T ∗Y \ {0},Ψm(R+;VY , ṼY ;w)) with the property
that under notation (3.8)

ker (σm + gm) (y, η) ∼= W̃y,

coker (σm + gm) (y, η) ∼= Wy

for all (y, η) ∈ T ∗Y \ {0}, independently of the specific choice of s. We can fill up the family
of Fredholm operators (σm + gm)(y, η) to a smooth family of isomorphisms

( σm + gm km
tm 0

)
(y, η) :

Hs,γ(R+)⊗ Vy
⊕
Wy

→
Hs−m,γ−m(R+)⊗ Ṽy

⊕
W̃y

, (3.10)

first for all (y, η) ∈ S∗Y and then for all (y, η) ∈ T ∗Y by twisted homogeneity of order m.
In addition, since C∞comp(R+) is dense in Hs,γ(R+) for all s, γ ∈ R, the potential part km
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can be chosen to be a map π∗YW → π∗Y C
∞
comp(R+) ⊗ ṼY , while the trace part tm may be

represented by an element in π∗Y W̃ ⊗ (C∞comp(R+)⊗ Ṽ ∗Y ) through integration

u 7→
∫ ∞

0

〈ktm(y,η)(r), u(r)〉Vydr

for all u ∈ Hs,γ(R+)⊗Vy. Here, 〈·, ·〉Vy denotes the pairing between Vy and its dual V ∗y . Let
us now restrict gm, km and tm to a coordinate neighbourhood Ωj on Y and interpret the
variables y as local coordinates in U ⊂ Rn−1 with respect to a chart Ωj → U . Choosing a
zero excision function χ(η) we obtain operator-valued symbols

g = χgm ∈ Smcl (U × Rn−1,L(Hs,γ(R+,Ck), H∞,γ−m(R+,Ck̃))),
k = χkm ∈ Smcl (U × Rn−1,L(Cl, H∞,γ−m(R+,Ck̃))),
t = χtm ∈ Smcl (U × Rn−1,L(Hs,γ(R+,Ck),Cl̃))

for all s ∈ R, where k = k̃ and l, l̃ are the fibre dimensions of the bundles V , Ṽ and W ,
W̃ , respectively. Denote by Gj , Kj and Tj the pull-backs of op(g), op(k) and op(t) from U

to Ωj with respect to the charts and trivialisations of the bundles involved. Pick a covering
{Ω1, . . . ,ΩN} of Y by such coordinate neighbourhoods, a subordinate partition of unity
{φ1, . . . , φN}, and a family {ψ1, . . . , ψN} of functions ψj ∈ C∞comp(Ωj) satisfying φjψj = φj .
We can then pass in a familiar way to an operator( G K

T 0

)
=

N∑
j=0

( ϕbφj 0
0 φj

)( Gj Kj

Tj 0

)( ϕ̃bψj 0
0 ψj

)
,

where ϕb and ϕ̃b are cut-off functions supported close to the boundary. It follows that

A :=
( op,γ(am) +G K

T 0

)
belongs to Ψm

s (X; v;w) for v = (V, Ṽ ;W, W̃ ) and σΨ (A) is equal to (3.10), while σΨ (A) =
σΨ (op,γ(am) +G) just amounts to am. �

Remark 3.2. Under the hypotheses 2) of Theorem 3.3 it is even possible to construct
A ∈ Ψm

s (X; v;w) in such a way that A = op,γ(am) is equal to the upper left corner of A.
To verify this, it is sufficient to set W = Y × Cl for l ∈ N large enough, and to choose

some homogeneous potential symbol km : π∗YW → π∗Y H
s−m,γ−m(R+)⊗ ṼY such that

(σm km) : π∗Y

Hs,γ(R+)⊗ VY
⊕
W

→ π∗Y H
s−m,γ−m(R+)⊗ ṼY (3.11)

is surjective. For sufficiently large l this is possible, and then the null-space of (σm km) can
be taken as a copy of W̃ . Finally, (3.11) can be filled up by a second row (tm qm) to a block
matrix isomorphism which plays the role of σ∂(A). Then we can pass to a desired boundary
value problem A just as in the proof of Theorem 3.3.

The following lemma states that the topological obstruction for the existence of a
Lopatinskii elliptic boundary value problem is not affected by the choice of the operator
convention op,γ .
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Lemma 3.1. Assume that am ∈ Smhg(T ∗X \ {0},Hom(V, Ṽ )) is an elliptic symbol and let
õp,γ : Smhg(T ∗X \ {0},Hom(V, Ṽ ))→ Ψm

s (X;V, Ṽ ;w) be another choice of operator conven-
tion (3.6). If for A = op,γ(am) and Ã = õp,γ(am) both σ∂(A) and σ∂(Ã) are families of
Fredholm operators Hs,γ(R+)⊗ Vy → Hs−m,γ−m(R+)⊗ Ṽy for all (y, η) ∈ T ∗Y \ {0}, then
indS∗Y σ∂(A) belongs to s∗YK(Y ) if and only if indS∗Y σ∂(Ã) does.

Proof. The symbols σ∂(A) and σ∂(Ã) can be written in the form

σ∂(A) = σ∂(a) + σ∂(m) + σ∂(g),
σ∂(Ã) = σ∂(ã) + σ∂(m̃) + σ∂(g̃),

the terms on the right-hand side having standard meaning in the cone theory. Since
σ∂(a) = σ∂(ã) modulo Smhg,M+G(T ∗Y \ {0},Ψm(R+;VY , ṼY ;w)), we may assume with-
out loss of generality that σ∂(a) = σ∂(ã). Furthermore, since the elements of Smhg,G(T ∗Y \
{0},Ψm(R+;VY , ṼY ;w)) are families of compact operators, the property of indS∗Y σ∂(A) or
indS∗Y σ∂(Ã) to belong to s∗YK(Y ) is not affected by a Green summand. Therefore, σ∂(g)
and σ∂(g̃) may be ignored.

There is l ∈ N and a monomorphism km : s∗Y (Y × Cl) → s∗Y H
s−m,γ−m(R+) ⊗ ṼY

pointwise mapping to C∞comp(R+)⊗ Vy, such that both

(σ∂(A) km) : s∗Y

Hs,γ(R+)⊗ VY
⊕

Y × Cl
→ s∗Y H

s−m,γ−m(R+)⊗ ṼY

and (
σ∂(Ã) km

)
: s∗Y

Hs,γ(R+)⊗ VY
⊕

Y × Cl
→ s∗Y H

s−m,γ−m(R+)⊗ ṼY

are surjective. As usual, the choice of s is unessential.
Set bm = (σ∂(A) km) and b̃m = (σ∂(Ã) km). Observe that the property indS∗Y σ∂(A) ∈

s∗YK(Y ) is equivalent to saying that for l large enough the bundle ker bm over S∗Y may
be represented by a system of trivialisations with transitions isomorphisms depending only
on y, not on the covariable η. Clearly, we have indS∗Y σ∂(A) ∈ s∗YK(Y ) if and only if
indS∗Y bm ∈ s∗YK(Y ), and similarly for the operator families with tilde.

Let b̃−1
m be a right inverse of b̃m. It can be calculated within our class of boundary symbols.

In fact, in the case m = γ = 0 the right inverse is equal to b̃∗m(b̃mb̃∗m)−1 which possesses the
required structure due to the algebra property of boundary symbols. The general case can
then be treated by using order reducing operators, cf. [13].

Since bm − b̃m = (σ∂(m− m̃) 0), it follows that

bmb̃
−1
m = I + (σ∂(m− m̃) 0) b̃−1

m

= I + σ∂(m0) + g0

belongs to S0
hg,M+G(T ∗Y \ {0},Ψm(R+;VY , ṼY ;w−1 ◦ w)) restricted to S∗Y . Here m0 is a

smoothing Mellin family which consists of a single term containing the zero power of r, and
the family g0 belongs to S0

hg,G(T ∗Y \{0},Ψm(R+;VY , ṼY ;w−1◦w)) restricted to S∗Y . Since
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σ∂(m0) is actually independent of η on S∗Y and g0 takes values in compact operators, we
get

indS∗Y (I + σ∂(m0) + g0) = indS∗Y (I + σ∂(m0))

∈ π∗YK(Y ).

From
indS∗Y b̃m = indS∗Y bm − indS∗Y (I + σ∂(m0) + g0)

we then immediately obtain the assertion.
The obstruction for the existence of Lopatinskii elliptic conditions is also not affected by

the choice of the parameter γ ∈ R in the operator convention op,γ . �

Lemma 3.2. Let am ∈ Smhg(T ∗X \ {0},Hom(V, Ṽ )) be elliptic. If for Aγ = op,γ(am) and
Aδ = op,δ(am) both

σ∂(Aγ)(y, η) : Hs,γ(R+)⊗ Vy → Hs−m,γ−m(R+)⊗ Ṽy and
σ∂(Aδ)(y, η) : Hs,δ(R+)⊗ Vy → Hs−m,δ−m(R+)⊗ Ṽy

are Fredholm operators for all (y, η) ∈ T ∗Y \ {0}, then indS∗Y σ∂(Aγ) belongs to s∗YK(Y ) if
and only if indS∗Y σ∂(Aδ) does.

Proof. Starting with the operators

Aγ : Hs,γ(X,V )→ Hs−m,γ−m(X, Ṽ ),
Aδ : Hs−γ+δ,δ(X,V )→ Hs−γ+δ−m,δ−m(X, Ṽ )

which are continuous for all s ∈ R, we pass to

Ãγ =
(
Dγ−δ
Ṽ

)−1

AδD
γ−δ
V

∈ Ψm
s (X;V, Ṽ ;w)

by using the order reducing operators from [13]. We then obviously obtain σΨ (Aγ) =
σΨ (Ãγ) = am, and so the boundary symbols of A = Aγ and Ã = Ãγ satisfy the as-
sumptions of Lemma 3.1. In order to complete the proof it is now sufficient to observe that
indS∗Y σ∂(Ãγ) ∈ s∗YK(Y ) is equivalent to saying that indS∗Y σ∂(Aδ) ∈ s∗YK(Y ), since both
indS∗Y σ∂(Dγ−δ

Ṽ
)−1 and indS∗Y σ∂(Dγ−δ

V ) are equal to zero. �

3.5. Boundary Value Problems with Projection Data

In the previous section we have seen that Lopatinskii elliptic conditions for a given
operator A of Ψm

s (X; v;w) may only exists under condition 2) of Theorem 3.3. If this is not
the case, one might pass to another kind conditions that we call global projection conditions.

Let us fix some vector space data v = (V, Ṽ ;Q, Q̃) withQ = (F,W,P ) and Q̃ = (F̃ , W̃ , P̃ )
as in § 2.2.
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Definition 3.1. For w = (γ, γ − m), the space Ψm
gp(X; v;w) is defined to consist of all

operators

A :
Hs,γ(X,V )

⊕
Hs(Y,Q)

→
Hs−m,γ−m(X, Ṽ )

⊕
Hs−m(Y, Q̃)

, (3.12)

s ∈ R, such that

1) the upper left corner A of the operator block matrix A is assumed to be in
Ψm
s (X;V, Ṽ ;w);

2) there is an Ã ∈ Ψm
s (X;V, Ṽ ;W, W̃ ;w) such that A = P̃ÃE , where P̃ and E have the

same meaning as in § 2.2.

Denote by Ψm
gp,M+G(X; v;w) the subspace of Ψm

gp(X; v;w) consisting of all A such
that A = P̃ÃE for some Ã ∈ Ψm

M+G(X;V, Ṽ ;W, W̃ ;w). In a similar way we introduce
Ψm

gp,G(X; v;w).
It is now straightforward that the principal symbolic structure of Ψm

gp(X; v;w) consists of
pairs σ(A) = (σΨ (A), σ∂(A)), where σΨ (A) : π∗XV → π∗X Ṽ is the principal interior symbol
and σ∂(A) the principal boundary symbol which is a bundle homomorphism

σ∂(A) :
π∗Y H

s,γ(R+)⊗ VY
⊕
F

→
π∗Y H

s−m,γ−m(R+)⊗ ṼY
⊕
F̃

(3.13)

given by

σ∂(A)(y, η) :=
( I 0

0 p̃(y, η)

)
σ∂(Ã)(y, η)

( I 0
0 e(y, η)

)
,

where e : F ↪→ π∗YW is the canonical embedding and p̃ the principal homogeneous symbol
of P̃ ∈ Ψ0

cl(Y ; W̃ ).

Theorem 3.4. Composition of operators induces a map

Ψm1
gp (X; v1;w1)×Ψm2

gp (X; v2;w2) ↪→ Ψm1+m2
gp (X; v2 ◦ v1;w2 ◦ w1)

where for

v1 = (V 1, V 2;Q1, Q2),
v2 = (V 2, V 3;Q2, Q3),

w1 = (γ1, γ1 −m1),
w2 = (γ1 −m1, γ1 −m1 −m2)

we set v2 ◦ v1 = (V 1, V 3;Q1, Q3) and w2 ◦ w1 = (γ1, γ1 −m1 −m2).

For the principal symbols we get

σm1+m2−(j+k)(A2A1) = σm2−k(A2)σm1−j(A1)

with componentwise multiplication.
If A1 or A2 belongs to one of the subspaces with subscript M +G or G, the same is true

for the composition.
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Proof. This assertion is an immediate consequence of Definition 3.1 and of what has
been proved in § 3.2. �

Note that Ψm
gp(X; v;w) can be identified with the set of compositions A = P̃ÃP with

Ã ∈ Ψm
s (X;V, Ṽ ;W, W̃ ;w) as in Definition 3.1. Hence Ψm

gp(X; v;w) survives under taking
the formal adjoint A∗ with respect to the scalar products in H0,0(X,V ) ⊕ L2(X,W ) and
H0,0(X, Ṽ )⊕ L2(X, W̃ ), for the larger class Ψm

s (X; ·;w) does.

Theorem 3.5. Assume that A ∈ Ψm
gp(X; v;w). Then, A∗ ∈ Ψm

gp(X; v∗;w∗) where v∗ =
(Ṽ , V ;Q∗, Q̃∗) for Q∗ = (σΨ (P ∗)π∗YW,W,P

∗) and Q̃∗ of a similar form, and w∗ = (−γ +
m, γ).

Let
A ∈ Ψm

gp(X; vA;w),
B ∈ Ψm

gp(X; vB;w)

for
vA = (VA, ṼA;QA, Q̃A),
vB = (VB, ṼB;QB, Q̃B);

QA = (FA,WA, PA),
Q̃A = (F̃A, W̃A, P̃A),

and similarly QB, Q̃B. Then one defines the direct sum A ⊕ B ∈ Ψm
gp(X; vA ⊕ vB;w) of A

and B in a canonical way, where

vA ⊕ vB =
(
VA ⊕ VB, ṼA ⊕ ṼB;QA ⊕QB, Q̃A ⊕ Q̃B

)
,

QA ⊕QB = (FA ⊕ FB,WA ⊕WB, PA ⊕ PB)

and, similarly, Q̃A ⊕ Q̃B. For all s ∈ R, the direct sum induces a continuous linear operator

A⊕ B :
Hs,γ(X,VA ⊕ VB)

⊕
Hs(Y,QA ⊕QB)

→
Hs−m,γ−m(X, ṼA ⊕ ṼB)

⊕
Hs−m(Y, Q̃A ⊕ Q̃B)

.

Using in Definition 3.1 the classes Ψm−j
s (X; v;w) defined at the end of § 3.2, we also

introduce the subspaces Ψm−j
gp (X; v;w) with j ∈ Z≥0. For any operator A ∈ Ψm−j

gp (X; v;w),
we have a corresponding pair σm−j(A) = (σm−jΨ (A), σm−j∂ (A)) of principal interior and
boundary symbols of order m− j. Then, Ψm−j−1

gp (X; v;w) is easily seen to coincide with the
space of all A ∈ Ψm−j

gp (X; v;w) satisfying σm−j(A) = 0.

Theorem 3.6. Let A ∈ Ψm
gp(X; v;w) and σ(A) = 0. Then, A ∈ Ψm−1

gp (X; v;w) and the
operator (3.12) is compact for all s ∈ R.

Proof. Let us write A in the form A = P̃ÃE for an Ã ∈ Ψm
s (X;V, Ṽ ;W, W̃ ;w). If we

set
˜̃A :=

( I 0
0 P̃

)
Ã
( I 0

0 P

)
,

we also get A = P̃ ˜̃AE , and σ(A) = 0 implies σ( ˜̃A) = 0, the latter symbol refers to
Ψm
s (X;V, Ṽ ;W, W̃ ;w). This gives us

˜̃A ∈ Ψm−1
s (X;V, Ṽ ;W, W̃ ;w),

which entails A ∈ Ψm−1
gp (X; v;w). The compactness of (3.12) follows from the compactness

of ˜̃A in usual Sobolev spaces. �
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Theorem 3.7. Let Aj ∈ Ψm−j
gp (X; v;w) be a sequence of boundary value problems, such

that the ε -weight in the Green operators involved in Aj does not depend on j. Then there
exists an A ∈ Ψm

gp(X; v;w), which is unique modulo Ψ−∞gp,G(X; v;w), such that

A ∼
∞∑
j=0

Aj ,

i.e., A−
N−1∑
j=0

Aj ∈ Ψm−N
gp (X; v;w) for all N ∈ N.

The proof is an easy consequence of a corresponding result for the operator space
Ψm
s (X;V, Ṽ ;W, W̃ ;w).

3.6. Ellipticity under Projection Data

As usual, a boundary value problem A ∈ Ψm
gp(X; v;w) is called elliptic if both σΨ (A)

and σ∂(A) are isomorphisms.
The condition that (3.13) is an isomorphism does not depend on s. If it is satisfied for

an s0 ∈ R then so is for all s ∈ R.
Let us now show that in contrast to Lopatinskii conditions there is no obstruction for

the existence of elliptic global projection conditions.

Theorem 3.8. Let am ∈ Smhg(T ∗X \ {0},Hom(V, Ṽ )) be an arbitrary elliptic element. Then
there is a vector bundle B over X, such that for each γ ∈ R there are triples Q = (F,W,P ),
Q̃ = (F̃ , W̃ , P̃ ) depending on γ, and an elliptic operator A ∈ Ψm

gp(X; ṽ;w) with ṽ = (V ⊕
B, Ṽ ⊕B;Q, Q̃) and w = (γ, γ−m), satisfying σΨ (A) = ãm in the notation of Theorem 3.2.

Proof. For notational convenience let us assume that B = 0. The construction in the
general case with am replaced by ãm is completely analogous. According to Theorem 3.2 we
find an operator Aγ = op,γ(am) in Ψm

s (X;V, Ṽ ;w) with the property that

σm(y, η) := σ∂(Aγ)(y, η) : Hs,γ(R+)⊗ Vy → Hs−m,γ−m(R+)⊗ Ṽy

is a family of Fredholm operators parametrised by (y, η) ∈ T ∗Y \ {0}.
Choose vector bundles F and F̃ over S∗Y , such that [F̃ ]−[F ] = indS∗Y σm. By a familiar

property of Fredholm families, there is a

gm ∈ Smhg,G(T ∗Y \ {0},Ψm(R+;VY , ṼY ;w)),

such that under notation (3.8)

ker (σm + gm) (y, η) ∼= F̃(y,η),

coker (σm + gm) (y, η) ∼= F(y,η)

for all (y, η) ∈ T ∗Y \ {0}, independently of the specific choice of s. As usual, we can fill up
the family of Fredholm operators (σm + gm)(y, η) to a family of isomorphisms

( σm + gm km
tm 0

)
(y, η) :

Hs,γ(R+)⊗ Vy
⊕

F(y,η)

→
Hs−m,γ−m(R+)⊗ Ṽy

⊕
F̃(y,η)

, (3.14)
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first for all (y, η) ∈ S∗Y and then for all (y, η) ∈ T ∗Y by twisted homogeneity of order m.
To shorten notation, the bundles F and F̃ over S∗Y will be identified with their pull-

backs over T ∗Y \{0} under the canonical projection (y, η) 7→ (y, η/|η|). Choose any bundles
W and W̃ over Y , such that F and F̃ are subbundles of π∗YW and π∗Y W̃ , respectively. From
(3.14) we can pass to a homomorphism

( σm + gm k̃m
t̃m 0

)
: π∗Y

Hs,γ(R+)⊗ VY
⊕
W

→ π∗Y

Hs−m,γ−m(R+)⊗ ṼY
⊕
W̃

(3.15)

by extending km to k̃m by zero on a complementary bundle F⊥ to F in π∗YW , while t̃m is
defined by composing tm with the embedding F̃ → π∗Y W̃ .

In the same way as in the proof of Theorem 3.3 we construct an operator

Ã ∈ Ψm
s (X;V, Ṽ ;W, W̃ ;w)

whose principal boundary symbol just amounts to (3.15). In addition, the projections
π∗YW → F and π∗Y W̃ → F̃ along complementary bundles F⊥ of F in π∗YW and F̃⊥ of
F̃ in π∗Y W̃ can be interpreted as principal symbols of certain projections P ∈ Ψ0

cl(Y,W ) and
P̃ ∈ Ψ0

cl(Y, W̃ ), respectively, cf. Remark 2.1. Then, forming A by formula A = P̃ÃE yields an
elliptic boundary value problem A ∈ Ψm

gp(X; v;w) for v = (V, Ṽ ;Q, Q̃) and Q = (F,W,P ),
Q̃ = (F̃ , W̃ , P̃ ), satisfying σΨ (A) = am. �

To some extent, elliptic problems with global projection conditions are complemented to
Lopatinskii elliptic boundary value problems.

Theorem 3.9. For any elliptic boundary value problem A ∈ Ψm
gp(X; vA;w) with vA =

(V, Ṽ ;QA, Q̃A) there is an elliptic boundary value problem B ∈ Ψm
gp(X; vB;w) with vB =

(Ṽ , V ;QB, Q̃B), such that A⊕B ∈ Ψm
s (X; v;w) for v = (V ⊕ Ṽ ; CN ) is Lopatinskii elliptic.

Proof. The upper left corner A of A belongs to Ψm
s (X;V, Ṽ ;w). Its formal adjoint A∗

is an element of Ψm
s (X; Ṽ , V ;w∗) for w∗ = (−γ +m,−γ). The definition of A∗ is based on

the relation
(Au, g)H0,0(X,Ṽ ) = (u,A∗g)H0,0(X,V )

for all u ∈ C∞(X,V ) and g ∈ C∞(X, Ṽ ) of compact support in the interior of X. This is
compatible with the pointwise formal adjoint on the level of principal boundary symbols

(σ∂(A)(y, η)u, g)H0,0(R+,Ck̃) = (u, σ∂(A∗)(y, η)g)H0,0(R+,Ck),

k and k̃ being the ranks of V and Ṽ , respectively. The symbol σ∂(A∗) defines a bundle
homomorphism π∗Y H

s,−γ+m(R+)⊗ ṼY → π∗Y H
s−m,−γ(R+)⊗ VY which is Fredholm for all

s ∈ R, and
indS∗Y σ∂(A∗) = − indS∗Y σ∂(A).

Pick a sufficiently large N ∈ N, such that both FA and F̃A have complementary bundles
FB and F̃B in S∗Y × CN , i.e.,

FA ⊕ FB = S∗Y × CN ,
F̃A ⊕ F̃B = S∗Y × CN .
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Then,
indS∗Y σ∂(A∗) = [F̃B]− [FB].

By [13], we have order and weight reducing isomorphisms

Dm−2γ
V : Hs,−γ(X,V ) → Hs−m+2γ,γ−m(X,V ),

Dm−2γ

Ṽ
: Hs,−γ+m(X, Ṽ ) → Hs−m+2γ,γ(X, Ṽ ).

which are continuous for all s ∈ R. Using them we pass from A∗ to the operator B :=
Dm−2γ
V A∗ (Dm−2γ

Ṽ
)−1 which obviously belongs to Ψm

s (X; Ṽ , V ;w) and has the property

indS∗Y σ∂(B) = indS∗Y σ∂(A∗).

As in Theorem 3.8 we find an element gm ∈ Smhg,G(T ∗Y \{0},Ψm(R+; ṼY , VY ;w)), such that

ker (σ∂(B) + gm) (y, η) ∼= F̃B,(y,η),

coker (σ∂(B) + gm) (y, η) ∼= FB,(y,η)

for all (y, η) ∈ T ∗Y \ {0}. Set

QB = (FB, Y × CN , PB),
Q̃B = (F̃B, Y × CN , P̃B),

where PB and P̃B are pseudodifferential projections of Ψ0
cl(Y ; CN ), whose principal symbols

are the projections Y × CN → FB and Y × CN → F̃B along FA and F̃A, respectively.
Analysis similar to that in the proof of Theorem 3.8 then gives us an elliptic operator
B ∈ Ψm

gp(X; vB;w) with the desired properties. �
The boundary value problem A can be recovered from Ã = A ⊕ B by the formula

A = P̃A Ã EA with

EA =
( I 0

0 EA

)
, P̃A =

( I 0
0 P̃A

)
,

where EA is the canonical embedding Hs(Y,QA) ↪→ Hs(Y,CN ), and similarly for B.
Let A ∈ Ψm

gp(X; v;w) where v = (V, Ṽ ;Q, Q̃) and w = (γ, γ − m). An operator Π ∈
Ψ−mgp (X; v−1;w−1) with v−1 = (Ṽ , V ; Q̃,Q) and w−1 = (γ −m, γ) is called a parametrix of
A if

ΠA− I ∈ Ψ−∞gp,G

(
X; v−1 ◦ v;w−1 ◦ w

)
,

AΠ − I ∈ Ψ−∞gp,G

(
X; v ◦ v−1;w ◦ w−1

)
.

(3.16)

Theorem 3.10. Every elliptic boundary value problem A ∈ Ψm
gp(X; v;w) possesses a

parametrix Π ∈ Ψ−mgp (X; v−1;w−1).

Proof. Let us apply Theorem 3.9 to A and form Ã = A⊕B ∈ Ψm
s (X; ṽ;w) with some

complementary elliptic operator B. By [13], Ã has a parametrix P̃ ∈ Ψ−ms (X; ṽ−1;w−1),
where σ(P̃) = σ(Ã)−1. Define a soft left parametrix for A by

Π0 =
( I 0

0 P

)
P̃
( I 0

0 Ẽ

)
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where Ẽ : Hs−m(Y, Q̃) ↪→ Hs−m(Y, W̃ ) is the canonical embedding involved in Q̃, and
P ∈ Ψ0

cl(Y,W ) the projection involved in Q. Then we get

Π0A =
( I 0

0 P

)
P̃
( I 0

0 P̃

)
Ã
( I 0

0 E

)
.

It follows that the remainder Sl = I −Π0A belongs to Ψ0
gp(X; v−1 ◦ v;w−1 ◦w) and satisfies

σ(Sl) = 0. By Theorem 3.6 we deduce that Sl ∈ Ψ−1
gp (X; v−1◦v;w−1◦w). Applying Theorem

3.7 we find an operator Cl ∈ Ψ−1
gp (X; v−1 ◦ v;w−1 ◦w) satisfying (I +Cl)(I−Sl) = I modulo

Ψ−∞gp,G(X; v−1 ◦ v;w−1 ◦ w). To do this, it suffices to form the asymptotic sum

Cl :=
∞∑
j=1

Sjl .

This immediately yields (I + Cl)Π0A = 1 modulo Ψ−∞gp,G(X; v−1 ◦ v;w−1 ◦w), and therefore

Πl := (I + Cl) Π0

∈ Ψ−mgp (X; v−1;w−1)

is a left parametrix of A. In a similar manner we find a right parametrix, and so we may
take Π = Πl. �

As usual, the existence of a parametrix implies the Fredholm property of elliptic problems
with global projection conditions.

Theorem 3.11. Let A ∈ Smgp(X; v;w) be elliptic. Then

A :
Hs,γ(X,V )

⊕
Hs(Y,Q)

→
Hs−m,γ−m(X, Ṽ )

⊕
Hs−m(Y, Q̃)

is a Fredholm operator for all s ∈ R, cf. (2.7). Moreover, the null-space of A is independent
of s as well as the codimension of the range of A, i.e., indA is independent of s.

The parametrix Π of Theorem 3.10 can be chosen in such a way that the smoothing
remainders are projections of finite rank. In fact, I −ΠA projects onto kerA while I −AΠ
projects onto a complement of imA, for every s.

Proof. The Fredholm property is a direct consequence of the fact that the remainders
I − ΠA and I − AΠ in (3.16) are compact operators, which is due to Theorem 3.6. The
second part of Theorem 3.11 is a consequence of general facts on elliptic operators that are
always satisfied when we have elliptic regularity in the respective scales of spaces. �

As a converse statement for Theorem 3.11 we prove that ellipticity is not only sufficient
but also necessary for the Fredholm property.

Theorem 3.12. Suppose A ∈ Ψ0
gp(X; v;w) for v = (V, Ṽ ;Q, Q̃) and w = (0, 0). If the

operator

A :
L2(X,V )
⊕

H0(Y,Q)
→

L2(X, Ṽ )
⊕

H0(Y, Q̃)
(3.17)

is Fredholm, then A is elliptic.

– 181 –



Nikolai N.Tarkhanov Boundary Value Problems with Non-Local Conditions

Proof. Write

A =
( A K

T Q

)
in (3.17) and set Q⊥ = (σΨ (I − P )W,W, I − P ) . Then

L2(Y,W ) = H0(Y,Q)⊕H0(Y,Q⊥)

and we define B ∈ Ψ0
s (X;V, Ṽ ;W, W̃ ⊕W ; (0, 0)) by

B :
L2(X,V )
⊕

L2(Y,W )

∼=

L2(X,V )
⊕

H0(Y,Q)
⊕

H0(Y,Q⊥)

C→

L2(X, Ṽ )
⊕

H0(Y, Q̃)
⊕

H0(Y,Q⊥)

↪→

L2(X, Ṽ )
⊕

L2(Y, W̃ )
⊕

L2(Y,W )

∼=
L2(X, Ṽ )
⊕

L2(Y, W̃ ⊕W )
,

where the mapping C is given by

C =
( A K 0
T Q 0
0 0 I

)
.

It is clear that dim kerB = dim kerA <∞. Moreover,

kerB∗B = kerB
= (imB∗B)⊥

and B∗B has closed range, for C∗C has. It follows that B∗B ∈ Ψ0
s (X;V ;W ; (0, 0)) is a

Fredholm operator. By the above, B∗B is an elliptic element of the calculus. This implies
that both σΨ (A) and σ∂(A) are injective. By passing to adjoint operators we can show in
an analogous manner that the symbols σΨ (A) and σ∂(A) are also surjective. �

3.7. Operators of Order Zero

Here we study operators A ∈ Ψ0
s (X;V, Ṽ ; (0, 0)) and associated boundary symbols in

more detail and prove Theorems 3.1 and 3.2. Note that by setting

A 7→ Dγ−m
Ṽ

AD−γV

one obtains an isomorphism Ψm
s (X;V, Ṽ ; (γ, γ −m))→ Ψ0

s (X;V, Ṽ ; (0, 0)).
A direct computation shows that for every Ã ∈ Ψ0

cl(2X;V, Ṽ ) the operator r+Ãe+ be-
longs to Ψ0

s (X;V, Ṽ ; (0, 0)). Moreover, for any A ∈ Ψ0
s (X;V, Ṽ ; (0, 0)) there exists an op-

erator Ã ∈ Ψ0
cl(2X;V, Ṽ ), such that A = r+Ãe+ + M + G holds for suitable M + G ∈

Ψ0
M+G(X;V, Ṽ ; (0, 0)). For the principal boundary symbol of A we actually have

σ∂(A)(y, η) = r+ã0(y, 0, η,Dr)e+ +σ∂(M +G)(y, η) : L2(R+)⊗Vy → L2(R+)⊗ Ṽy, (3.18)

where ã0 is the principal homogeneous symbol of Ã.
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Note that in contrast to the usual domain of σ∂(A) we now prefer L2 -spaces, because in
the case of violated transmission property the standard Sobolev spaces or Schwartz spaces
with smoothness up to the boundary do not survive under the action of pseudodifferential
operators.

Set S∗YX := S∗X |Y and denote by S0
hg(S∗YX,Hom(VY , ṼY )) the space of all restrictions

a |S∗YX for a ∈ S0
hg(T ∗X \ {0},Hom(V, Ṽ )).

Given any A ∈ Ψ0
s (X;V, Ṽ ; (0, 0)), such that σΨ (A) ∈ S0

hg(T ∗X \ {0},Hom(V, Ṽ )) is
elliptic, we consider

a := σΨ (A) |S∗YX

and ask whether the family

op+(a)(y, η) = r+a(y, η,Dr)e+ : L2(R+)⊗ Vy → L2(R+)⊗ Ṽy (3.19)

is Fredholm for all (y, η) ∈ S∗Y .
Write N for the [−1, 1] -bundle over Y induced by the conormal bundle of Y , i.e., N is

a trivial bundle whose fibres are intervals [−1, 1] connecting the south pole (η, %) = (0,−1)
with the north pole (η, %) = (0, 1) of S∗yX, where y varies over all of Y .

Let us recall a criterion for the Fredholm property of (3.19) in terms of Mellin symbols

g±(z) =
1

1− e∓2πz
,

the functions g±(z) being meromorphic in z ∈ C with simple poles at the points ıj, where
j ∈ Z. Thus the lines Γγ = {z ∈ C : =z = γ} do not contain poles provided that γ 6∈ Z.

Choose a diffeomorphism z : (−1, 1) → Γ1/2 with the property that <z(%) → ±∞ for
%→ ±1. Setting a±(y) := a(y, 0,±1) we introduce a family of homomorphisms VY → ṼY by

ã(y, %) := a+(y)g+(z(%)) + a−(y)g−(z(%)). (3.20)

This is well defined for all −1 ≤ % ≤ 1, since g+(z) + g−(z) = 1 and g±(z) tends to 1 when
<z → ±∞ along the line Γ1/2.

More precisely, the family (3.20) is a convex combination of the homomorphisms a±(y) :
Vy → Ṽy.

Theorem 3.13. The operators (3.19) are Fredholm for all (y, η) ∈ S∗Y if and only if

ã(y, η, %) =
{
a+(y)g+(z(%)) + a−(y)g−(z(%)), for η = 0, % ∈ [−1, 1],
σΨ (A) |S∗YX , for |η, %| = 1,

(3.21)

is a family of isomorphisms Vy → Ṽy for all (y, η, %) ∈ S∗YX ∪N .

Theorem 3.13 is known from the theory of singular integral operators, cf. [14]. An explicit
proof of the necessity may be found in [15].

Mention that when op+(a) stems from a symbol σΨ (A) with the transmission property,
we have a+(y) = a−(y), and hence the criterion of Theorem 3.13 is automatically satisfied
as soon as σΨ (A) is elliptic.
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In general, each family of isomorphisms (3.21) represents an element σ(ã) in the relative
K -group of the pair (B∗YX,S

∗
YX ∪ N), where B∗X is the unit coball bundle of X and

B∗YX = B∗X |Y .
By K(B∗YX,S

∗
YX ∪ N) ∼= K(R2 × S∗Y ) and the Bott periodicity theorem there is an

isomorphism
ι : K(B∗YX,S

∗
YX ∪N)→ K(S∗Y ).

Theorem 3.14. Let σΨ (A) be elliptic of order 0. Suppose σΨ (A) |S∗YX extends to a family of
isomorphisms (3.21) on S∗YX∪N , and σ(ã) ∈ K(B∗YX,S

∗
YX∪N) is the associated element.

Then, the equality indS∗Y op+(a) = ι(σ(ã)) holds for a = σΨ (A) |T∗YX\{0}.

For symbols with the transmission property Theorem 3.14 goes at least as far as [9]. A
related statement for symbols of elliptic differential operators is owed to [1]. The general
case not assuming the transmission property is treated in [15].

It is clear that any other extension ˜̃a : VY → ṼY of the symbol σΨ (A) |S∗YX to S∗YX ∪
N also represents an element σ(˜̃a) ∈ K(B∗YX,S

∗
YX ∪ N) and hence a certain ι(σ(˜̃a)) ∈

K(S∗Y ). It is not obvious at first glance how ι(σ(˜̃a)) can be interpreted as indS∗Y σ for
a family σ(y, η) : L2(R+) ⊗ Vy → L2(R+) ⊗ Ṽy of Fredholm operators parametrised by
(y, η) ∈ S∗Y . But the pointwise analytic information from [14] combined with that on
the structure of pseudodifferential boundary value problems not requiring the transmission
property from [15] gives us the following scenario. Let F(VY , ṼY ) denote the set of all families
of homomorphisms Vy → Ṽy, continuously parametrised by (y, η, %) ∈ S∗YX ∪N , that vanish
on S∗YX. Every element of F(VY , ṼY ) can be canonically identified with a continuous family
of homomorphisms, parametrised by (y, %) ∈ N = Y × [−1, 1], vanishing on Y × ∂[−1, 1].
We then have ã−1˜̃a (y, η, %) = 1 + f(y, %) for some f ∈ F(VY , ṼY ), or

˜̃a(y, η, %) = ã(y, η, %) (1 + f(y, %))

= ã(y, η, %) + f̃(y, %)

for an f̃ ∈ F(VY , ṼY ). It suffices to consider elements ˜̃a of the above kind, such that the
pull-back of f̃(y, %) under % = %(z) is a Schwartz function of z ∈ Γ1/2. In fact, we can

obviously construct such an ˜̃a starting with an arbitrary family ˜̃̃a of isomorphisms, satisfying
ã − ˜̃̃a ∈ F(VY , ṼY ), by a small change of ˜̃̃a |N near Y × ∂[−1, 1] within the homotopy
class of families of isomorphisms represented by ˜̃̃a. We then obtain σ(˜̃̃a) = σ(˜̃a) and hence
ι σ(˜̃̃a) = ι σ(˜̃a).

Using the spaces C∞(U,Mm(Γ1/2,Hom(Ck,Ck̃))) as local models, it is straightforward
to define spaces Mm(Y × Γ1/2,Hom(VY , ṼY )) for vector bundles VY and ṼY over Y .

Theorem 3.15. Let σΨ (A) be elliptic of order zero and a(y, ξ) the restriction of σΨ (A) to
T ∗YX \ {0}. Suppose m is an element of M−∞(Y × Γ1/2,Hom(VY , ṼY )), such that

˜̃a(y, η, %) =
{
a+(y)g+(z(%)) + a−(y)g−(z(%)) +m(y, z(%)), if η = 0, % ∈ [−1, 1],
σΨ (A) |S∗YX , if |η, %| = 1,

(3.22)

defines a family of isomorphisms Vy → Ṽy for all (y, η, %) ∈ S∗YX ∪N . Then, for arbitrary
cut-off functions ω(r) and ω̃(r),

op+(a)(y, η) + ω(r|η|) opM (m)ω̃(r|η|) : L2(R+)⊗ Vy → L2(R+)⊗ Ṽy
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is a family of Fredholm operators parametrised by (y, η) ∈ T ∗Y \ {0}, and for its restriction
to S∗Y we have indS∗Y (·) = ι σ(˜̃a).

This theorem generalises Theorems 3.13 and 3.14. The Fredholm property is shown in
[14] in a slightly modified form without ω̃. The present formulation is given in [12].

Proof of Theorem 3.1. It suffices to treat the case m = γ = 0. Indeed, the reduction
to order and weight zero as at the beginning of § 3.7 can also be done on the level of
interior and boundary symbols. In other words, we can first pass to a symbol of order zero
by setting a0 = σΨ (Dγ−m

Ṽ
)amσΨ (D−γV ), carry out our construction that yields a Fredholm

family σ0(y, η) as asserted in (3.8), where it is sufficient to consider

σ0(y, η) : L2(R+)⊗ Vy → L2(R+)⊗ Ṽy.

Then we may set σm(y, η) := σ∂(D−γ+m
Ṽ

)(y, η)σ0(y, η)σ∂(Dγ
V )(y, η). Since the boundary

symbol can be represented in the form (3.18), it suffices to show that a0(x, ξ) |S∗YX for an
elliptic principal symbol a0 : π∗XV → π∗X Ṽ admits an extension to an isomorphism

ã : π∗S∗Y (X)∪NVY → π∗S∗Y (X)∪N ṼY , (3.23)

where πS∗Y (X)∪N : S∗Y (X) ∪ N → Y stands for the canonical projection. In fact, having
granted this, we apply an approximation argument of [15] to obtain an element

m(y, z) ∈M−∞(Y × Γ1/2,Hom(VY , ṼY )),

such that (3.22) with σΨ (A) |S∗YX replaced by a0 |S∗YX is also an extension of a0 |S∗YX to
an isomorphism over all of S∗YX ∪ N , which is homotopic to ã through isomorphisms. By
assumption, there is a nowhere vanishing vector field v on Y . Without loss of generality we
can assume that |v(y)| = 1 for all y ∈ Y . Pick an isomorphism TY → T ∗Y . It induces a
diffeomorphism ∆ : SY → S∗Y between the respective unit sphere bundles. Consider the
composition ∆ ◦ v : Y → S∗Y . For every y ∈ Y there is a unique half-circle Ñy on S∗yX

containing the points ∆ ◦ v (y) and (y, 0, 0,±1), north and south poles of the sphere. This
yields a trivial bundle Ñ on Y with fibre Ñy over y. There is a projection of S∗YX to the
conormal bundle N , given by (y, 0, η, %) 7→ (y, %), which induces an isomorphism h : Ñ → N

as fibre bundles in the set-up of fibre homeomorphisms. To construct an extension of a0 |S∗YX
to an isomorphism (3.23) it suffices to set ã(y, %) := a0(y, 0, η̃, %̃), for hy(η̃, %̃) = %. �

Proof of Theorem 3.2. Similarly to the preceding proof it suffices to consider the case of
any fixed order m ∈ R and γ = 0. In the present case it is convenient to take m = 1. Let
a1 ∈ S1

hg(T ∗X \ {0},Hom(V, Ṽ )) be elliptic. Set a′1 := a1 |T∗YX , thus obtaining a symbol in
S1

hg(T ∗YX \ {0},Hom(VY , ṼY )). Using a familiar difference construction we get an element
[a′1] ∈ K(T ∗YX), the latter group just amounts toK(T ∗Y ×R). Every element inK(T ∗Y ×R)
can be represented by a homomorphism

σ(y, η) + ı% : B → B, (3.24)

with B a smooth vector bundle on T ∗Y ×R whose restriction to T ∗Y is π∗YBY for a vector
bundle BY on Y , and σ : π∗YBY → π∗YBY a self-adjoint elliptic symbol of order 1 on Y , cf. [5,
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III]. Since σ(y, η) is elliptic, (3.24) is an isomorphism between corresponding fibres for % = 0.
Moreover, since σ(y, η) is self-adjoint, all eigenvalues are real. Hence, (3.24) is an isomorphism
for all % ∈ R. Passing to stabilisations of a′1 and (3.24), we see that for a suitable M ∈ N the
homomorphism a′1 ⊕ ICM between the pull-backs of VY ⊕CM and ṼY ⊕CM to S∗YX has an
extension to an isomorphism ã : π∗S∗YX∪N (VY ⊕CM )→ π∗S∗YX∪N

(ṼY ⊕CM ). Similarly to the
proof of Theorem 3.1 we find an element m(y, z) ∈ M−∞(Y × Γ1/2,Hom(VY ⊕ CM , ṼY ⊕
CM )), such that (3.22) with σΨ (A) |S∗YX replaced by a′1 ⊕ ICM |S∗YX defines an extension of
a′1⊕ICM |S∗YX to an isomorphism over all of S∗YX∪N , homotopic to ã through isomorphisms.
By analogy with Theorem 3.15 we now form

op+(a1)(y, η) + ω(r|η|)r−1 opM (m)(y) ω̃(r|η|) : H1,0(R+)⊗ (Vy ⊕ CM )

→ H0,−1(R+)⊗ (Ṽy ⊕ CM ).

To complete the proof, it suffices to apply a reduction of order and weight in much the
same way as in the proof of Theorem 3.1. �
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