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We describe a new algebra of boundary value problems which contains Lopatinskii elliptic as well as
Toeplitz type conditions. These latter are necessary, if an analogue of the Atiyah-Bott obstruction
does not vanish. FEvery elliptic operator is proved to admit up to a stabilisation elliptic conditions of
such a kind. Corresponding boundary value problems are then Fredholm in adequate scales of spaces.
The crucial novelty consists of the new type of weighted Sobolev spaces which fit well to the nature
of pseudodifferential operators.
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Introduction

The boundary symbols of elliptic symbols with the transmission property on a manifold
X with boundary Y are families of Fredholm operators acting in spaces normal to the
boundary and parametrised by points of the cosphere bundle S*Y. The situation for symbols
without the transmission property is similar. To analyse the nature of associated boundary
conditions, we investigate the associated index element.

If A is an elliptic differential operator then the boundary symbol o9 (A4)(y,n) is surjective
for all (y,n) € S*Y. Then the Lopatinskii condition entails that indg-y oa(A) = [s&W] is
an element of s3 K (Y). In other words,

indg-y oa(A) € s K(Y) (0.1)

is a topological obstruction for A to possess boundary conditions 7" elliptic in the sense of
Lopatinskii. The relation (0.1) goes at least as far as [1].

There are elliptic differential operators A on X which violate condition (0.1). It is well
known that Dirac operators in even dimensions and other interesting geometric operators
belong to this category, cf. [2]. Possible boundary conditions leading to associated Fredholm
operators are then rather different from the Lopatinskii elliptic ones. In fact, after the works
of Calderén [3], Seeley [4], Atiyah et al. [5] another kind of boundary conditions became a
natural concept in the index theory of boundary value problems.
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There is now a stream of investigations in the literature to establish index formulas in
terms of the so-called n-invariant of elliptic operators on the boundary, see for instance [6],
[7], and the references there.

General elliptic boundary value problems for differential operators and boundary condi-
tions in subspaces of Sobolev spaces that are ranges of pseudodifferential projections on the
boundary were studied in [4]. It is natural to embed such problems into a pseudodifferential
algebra, where arbitrary elliptic operators admit either Lopatinskii elliptic or global projec-
tion boundary conditions, and parametrices again belong to the algebra. Such a calculus for
operators with the transmission property at the boundary has been introduced by Schulze
[8] as a “Toeplitz extension” of Boutet de Monvel’s calculus [9)].

Elliptic operators in mixed, transmission or crack problems, or, more generally, on man-
ifolds with edges also require additional conditions along the interfaces, crack boundaries,
or edges, cf. [10]. The transmission property is not a reasonable assumption in such appli-
cations. In simplest cases the additional conditions satisfy an analogue of the Lopatinskii
condition as a direct generalisation of ellipticity of boundary conditions in boundary value
problems. However, for the existence of such conditions for an elliptic operator in the interior
topological obstructions similar to those in boundary value problems are still to be overcome.
Thus, it is again natural to ask whether there are Toeplitz extensions of the corresponding
algebras which contain the genuine operator algebras and admit all interior elliptic symbols
that are forbidden by the obstruction.

The paper [11] gives an answer for pseudodifferential boundary value problems with
general interior symbols, i.e., without the condition of the transmission property at the
boundary. This algebra may also be regarded as a model for operators on manifolds with
edges, though the case of boundary value problems has certain properties which are not
typical for edge operators in general.

The present paper contributes to the theory by new weighted Sobolev spaces which are
invariant under local diffeomorphisms of X. Thus, the theory is carried over to manifolds
with boundary while the approach of [11] seems to apply only in the case of half-space R'}.

1. Weighted Sobolev Spaces

1.1. Cone Sobolev Spaces

The aim of this subsection is to fix some terminology for pseudodifferential analysis on
manifolds with conical and edge singularities.

For s = 0,1,... and v € R, we let H*7(R,) be the Hilbert space of all distributions
u € D'(R4), such that

PV (14 7)*7 (rD,)u(r) € L*(Ry, dr)

for all j <s.

By duality, the definition extends in a natural way to any negative integer s. Us-
ing complex interpolation, it then extends to arbitrary real s. The scalar product in
L?*(Ry) = H%°(R,) induces a sesquilinear pairing H=*"7(R;) x H*7(R,) — C by
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(u,v) = (u,v)r2(r,), which allows one to identify the dual space of H*7(R,) with
H=*77(Ry).

1.2. Edge Sobolev Spaces

Given a Hilbert space V' endowed with a strongly continuous group of isomorphisms
(Ka)aso C L(V), we define the space H*(R9,7*V) to be the completion of S(R?, V) with
respect to the norm

we ((Joegacnlan)

If V is a Fréchet space written as a projective limit of Hilbert spaces V;, j € N, and V/
is endowed with group action, we have the spaces H*(R?, 7*Vj) for all j. We then define
H*R?, m*V) to be the projective limit of H*(R?, 7*V}) over j € N.

Example 1.1. For V = H*7(R,) with the standard group action
(kau)(r) = X772 (Ar)

we get a weighted Sobolev space H*7(R? x R, ) with the norm

o . . 1/2
= ([ [ e 30 @m0 6D, e, updyar)

18l+5<s

Let {O1,...,0n} be a covering of the manifold X by coordinate neighbourhoods and
{¢1,...,én} asubordinate partition of unity on X. Suppose O; NOX # () for j =1,..., N’
and O; NOX =0 for j = N'+1,...,N. Fix charts §; : 0; — R"! xRy forj=1,...,N’,
and 0; : O; - R" for j = N’ +1,...,N. Then H*7(X) is defined to be the completion of
C* functions with compact support in X \ Y with respect to the norm

N’ N

L L 1/2
(X185 @) o oz + D 165 (@) ) - (1.1)

j=1 j=N'+1

Throughout this exposition we fix a Riemannian metric on X that induces a product
metric of Y x [0,1] on a collar neighbourhood of Y. We then have a natural identification
H%%(X) = L?(X) and, via the L?(X)-scalar product, a non-degenerate sesquilinear pairing
H*7"(X)x H*7(X) — C.

Analogous definitions make sense for the case of distributional sections of vector bundles.
Given any smooth complex vector bundle V' over X, we have an analogue H*7(X,V) of
the above space of scalar-valued functions, locally modelled by H*(R"~!, 7* H*7 (R, CF)),
where k € Z>( corresponds to the fibre dimension of V, cf. § 3.5.2 of [10].
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For each V we fix a Hermitian metric. We thus obtain a Hilbert space L?(X,V) whose
norm is clearly equivalent to that of H*°(X, V).

2. The Transmission Property

2.1. Operators on a Manifold with Boundary

The study of ellipticity of operators A on a C* manifold X with boundary Y gives rise
to the question on proper algebras of pseudodifferential boundary value problems.

As mentioned, a particular answer is given in [8] in terms of an operator algebra ¥, (X)
that contains Boutet de Monvel’s algebra ¥p 4, (X) as well as an algebra ¥4 (Y") of Toeplitz
operators on the boundary.

The transmission property suffices to generate an algebra that contains all differential
boundary value problems together with the parametrices of elliptic elements. The transmis-
sion property has been imposed in ¥4y (X) as well as in ¥, (X). It is a natural condition if
we prefer standard Sobolev spaces on X or scales of closed subspaces as a frame for Fredholm
operators. On the other hand, in order to understand the structure of stable homotopies of
elliptic boundary value problems, or to reach specific applications, the algebra ¥p 4, (X)
appears too narrow. It is interesting to consider a larger algebra, namely, a suitable subal-
gebra ¥ (X) of the general edge algebra on X. In this interpretation X is regarded as a
manifold with edge Y and R as the model cone of the wedge Y x R . The algebra ¥;(X)
is adequate for studying mixed and transmission problems and consists of pseudodifferential
boundary value problems not requiring the transmission property. All classical symbols on
X that are smooth up to Y are admitted in ¥;(X).

Recall that the operators in ¥ (X) act in a certain scale H*7(X) of weighted edge
Sobolev spaces which are different from the standard Sobolev spaces H®*(X), except for
s = = 0 where we have H*°(X) = L*(X) = H(X).

To illustrate the idea of constructing our Toeplitz extension ¥y, (X) of ¥ (X) we first dis-
cuss the corresponding construction for Boutet de Monvel’s algebra W¥j (X ). The general
case will be studied in Section 3.

Let X be a smooth compact manifold with boundary, V, V smooth vector bundles over
X, and W, W smooth vector bundles over Y. Then wmd(X;0) for m € Z and d € Zxg is
defined to be the space of all block matrix operators

C>®(X,V) C>®(X,V)
A: @ — D (2.1)
C>®(Y, W) C>®(Y, W)

of the form

A ( rTPet 0

. O)+g+c, (2.2)

the components of (2.2) being given as follows.

By P is meant a classical pseudodifferential operator of order m on the double of X
which has the transmission property at Y. As usual, et is the operator of extension by zero
from X to 2X, and rt the restriction from 2X to the interior of X.

- 161 —



Nikolai N.Tarkhanov Boundary Value Problems with Non-Local Conditions

Recall that the transmission property of an operator P on U x R with coordinates
x = (y,7), U being an open subset of R"~! with respect to r = 0 is defined in terms of the
homogeneous components p,,—;(y, 7,7, 0) of a symbol p(y,r,n, o) of P by the condition

D;DJ (pmfj(yﬂ",n, 0) = (=)™ I ppm_j(y,r, —n, —9))|

forally e U, p € R\ {0}, and k € Zxo, § € Zggl and all j. This condition is invariant
under changes of coordinates which preserve the Boundary.

Thus, for any vector bundles V' and V over 2X, we have i (2X;V, f/), the space of all
classical pseudodifferential operators of order m on 2X acting from sections of V' to sections
of V, whose symbols in local coordinates near Y possess the transmission property at Y.
Set ¥ip(X;V, V):={rtPet: Pec i (2X5V, V)}. In other words, the operator in the first
summand on the right-hand side of (2.2) belongs to ¥ (X;V,V).

The operator C on the right side of (2.2) belongs to ¥~°¢(X;v), i.e., it is smoothing
and of type d.

Here, ¥~°>9(X;v) is the space of all operators (2.1) whose Schwartz kernel is C* up to
the boundary. We fix Riemannian metrics on X and Y, such that a collar neighbourhood of
Y has the product metric from Y x [0,1). Then the entries of

€= (Cij) i1z
are integral operators with C* kernels over X x X, X XY, Y x X and Y x Y, respectively,
which are sections of corresponding external tensor products of bundles on the respective
Cartesian products. Now ¥ ~°¢(X;v) is defined to be the space of all operators

c_c0+zd:cj( lgj o).
j=1

where Cy,Cy,...,Cq are arbitrary operators in ¥~°%%(X:v) and D a first order differential
operator which is equal to D, in a collar neighbourhood of the boundary.

The operator G in (2.2) is a (2 x 2) -block matrix with entries G;;, where G1; has a C™
kernel over X°x X°, G152 has a C'* kernel over X° XY, Go1 has a C* kernel over Y x X° and
G is a classical pseudodifferential operator of order m on Y, while G in local coordinates
(y,7) € U x Ry near Y is a pseudodifferential operator G = op(g) with operator-valued
symbol of the form

d j
9(y,m) = go(y,n) +Zgj(y,n)( % 8 )
j=1

where g; € S:f_j(U x R W&?(RJF;(C’“,(CE;(CZ,(C[)) and k, k, [, [ are the fibre dimensions
of V, V, W, W, respectively.

The concept of a Green operator in Boutet de Monvel’s algebra is slightly different from
that in the edge algebra. Namely, by ST(U x R"~1, W&?(RJF;(C]“,C’“;C[,(CZ)) is meant the

space of all operator-valued symbols g(y,n) on U x R"~! with the property that

(2.3)

g(y.n) € SPU xR LILAR,,C*) & CLSR,,CF) & CY),
g*(yﬂ?) € SCT(U X Rn—17£(L2(R+’Ck) S (Clv'S(RJrv(Ck) D (Cl))
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Symbols g(y, n) of the form (2.3) are called Green symbols of order m and type d. The space
of all such symbols is denoted by ST(U x R" ™1, Wg(R.H Ck,Ck;C!, Chy).
To any pseudodifferential operator A € ¥™4(X;v) one assigns a pair of principal sym-

bols 0(A) = (cw(A),cs(A)). Here,
ow(A): TV - 7%V

is the interior symbol which is the restriction of the principal homogeneous symbol of P
from T*(2X) \ {0} to T*X \ {0}, cf. (2.2). Moreover,

HE)OV  HT(R) e T
oo(A) : 7y & — Ty D (2.4)
W w

is the boundary symbol of A. It is defined for all s > d —1/2. It is often convenient to think
of it as a family of maps

S(R+)®Vy S(R+) ®‘7y
oa(A) : 7y @ — Ty @ (2.5)
w W

The boundary symbol is defined by

oo (A) = ( UB(T‘BP@"‘) 8 )+Ua(g)’
where og(rt Pet)(y,n) = rTow(A)(y,0,n,D,)e’ and
d Di 0
70(G)(y.m) = a(g0)(w.m) + > oala)wm) (7 o ):

oa(g;) being the principal homogeneous symbol of g;. It is easy to verify that og(A) is
twisted homogeneous of degree m, i.e.,

7oAy ) = 3 (" D )aa( ) (7 )"

for all A € Ry. It is worth emphasizing that the group action in H*(Ry) ® Vi is different
from that in H*7(R,) ® Vi, namely, (kyu)(r) := AY2u(\r) for X > 0, as if s = 7.

We systematically employ various facts on operators in ¥™4(X;v). In particular, any
such operator A induces a continuous map

H%(X,V) H™(X,V)
A: @ — o
Hs(Y,W) H*™(Y,W)

for all real s > d — 1/2, which is compact provided that o(.A) = 0. Moreover, composition
of operators induces a map

gmed(Xiu) x UM% (X 0y) s U X0y 0 0;)
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where for
v = (VLVEWLW?),
ve = (V2 V3, W2, W3)

we set vpovy = (V1 V3, W1 W3), while m = mj+ms and d = max{d;, m1+ds}. On the level
of principal symbols we get o(A?A!) = 0(A?)o(A"') with componentwise multiplication.

2.2. Conditions with Pseudodifferential Projections

As usual, an operator A € ¥™%(X;v) is called oy -elliptic if the interior symbol oy (A)
defines an isomorphism 7%V — 7% V. In this case,

rtoy(A)(y,0,n,D,)et s HY(Ry) @V, — H™(Ry) @V, (2.6)

is known to be a family of Fredholm operators for all (y,n) € T*Y \ {0} and all s >
max{m,d} — 1/2. The Fredholm property of (2.6) is in turn equivalent to that of

rtou(A)(y, 0,1, D)et : SRy) @V, — SRy) @V,

for all (y,n) € T*Y \ {0}.

An operator A € ¥™%(X;v) is called Lopatinskii elliptic if it is oy -elliptic and if, in
addition, o9(.A) induces an isomorphism (2.4) for any s > max{m, d} —1/2, or, equivalently,
an isomorphism (2.5).

Let ™4(X;V, f/) stand for the space of upper left corners of operator block matrices
in ¥™4(X;v), where v = (v). The question whether or not a oy -elliptic element A €
(X, V) may be interpreted as the upper left corner of a Lopatinskii elliptic operator
A € ¥™d(X;v) gives rise to an operator algebra of boundary value problems that is different
from Boutet de Monvel’s algebra. A general answer is given in [8]. It consists of a new algebra
with boundary conditions which in [8] are called global projection conditions. Operators in
this algebra

H*(X,V) H™(X,V)
A: S — @ (2.7)
H(Y,Q)  HTY.Q)

are characterised by the following data.

The upper left corner A of the operator block matrix A is assumed to belong to
gmd(X;V, V).

By @ is meant a triple Q = (F,W, P) cousisting of a smooth vector bundle F' over
T*Y \ {0}, a smooth vector bundle W over Y, and a pseudodifferential projection P €
w9 (Y; W) with the property that F just amounts to the range of the principal homogeneous
symbol

p=ocyg(P): 7y W — 7y W, (2.8)
and similarly for Q = (F, W, P).
The spaces on the boundary in (2.7) are given by

HS(YvQ) = PHS(YaW)’

H(Y.Q) = PH Y. W), 29)
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for s € R. It is obvious that these are closed subspaces of H*(Y, W) and H*(Y, W), respec-
tively.

The operator (2.7) is now defined to be a composition A = PAE for an operator A €
g4 (X v) with v = (V, V; W, W) and

I 0 ~ I 0
5‘(0 E) P‘(o 13)’
where [ stands for the identity operator in the corresponding Sobolev space on X and
E:H(Y,Q) — H*(Y,W) for the canonical embedding.

For v = (V, V;Q,Q), we denote by Lpg"f;d(X;v) the set of all operators (2.7) described
above. Continuity of (2.7) holds for all s > d — 1/2.

Remark 2.1. If P € ¥4(Y;W) is a pseudodifferential projection with principal homo-
geneous symbol p as above, then p?> = p. Vice versa, given any smooth homomorphism
p: W — 75 W which is positively homogeneous of degree 0 and satisfies p*> = p, there
exists a projection P € ¥3(Y; W) with oy (P) = p. This can be found in [8].

Ellipticity of an operator A € Wg;’d(X ;v) is defined by a pair of principal symbols
0(A) = (ow(A),05(A)), where oy (A) : 75V — 7%V is the interior symbol and o5(A) the
boundary symbol which is a bundle homomorphism

W;S(R_,_)@Vy W;S(R_y)@VY

F F

still satisfying

~1
wol ) =3 () Yoot ()
The boundary value problem A is called elliptic if both o3 (A) and o9(A) are isomorphisms.
Instead of S(R;) in (2.10) we could equivalently consider Sobolev spaces H*(R.) for
arbitrary s > max{m,d} —1/2.
Recall, cf. [8], that if A € Wg’d(X ;v) is elliptic then operator (2.7) is Fredholm for any
s > max{m,d} — 1/2. Moreover, this~0perzitor possesses a parametrix II € Wg*pm’t(X;vfl)
with ¢ = max{d — m,0} and v=! = (V,V;Q, Q) in the sense that

HNA-T € ¥ >"X;V;Q),

AT -1 € U o8 (X;V3Q) (2.11)

for t; = max{m,d} and ¢, = max{d — m,0}. Clearly, the remainders in (2.11) are compact
in the respective spaces (2.7).

Notice that the index of A depends on the particular choice of the global pseudodiffer-
ential projections P and P. However, if we do not change the principal symbols (2.8), the
freedom in the choice of the projections does not affect the Fredholm property. This is a
general fact on operators in Hilbert spaces, as we shall discuss now.

To this end, let H and H be Hilbert spaces, P, P, € L(H) and Py, P, € L(H) be
projections, such that both P, — P; and Pg — 161 are compact. Then the following result
holds.
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Theorem 2.1. Given A € L(H, f[), assume that A = PLA: PLH — PiH is a Fredholm
operator. Then this is also true for Ay = PoA: PoH — P> H, and the relative index formula
holds

ind As — ind A; = ind (Pl . P H — P1H) +ind (152 P — 1521?). (2.12)
PROOF. Let us first show that the operators on the right-hand side of (2.12) are Fredholm
indeed. Since P, acts as the identity on P, H, the difference
PP -1 = PP —P}
= P (P -R)

is a compact operator on P, H. Therefore, P, is the Fredholm inverse for Py, and P, P; :
P,H — P, H is Fredholm of index 0. An analogous statement holds for the projections P,
and P;. It follows that the composition F' given by

PRHA PHA PED PA
is a Fredholm operator with index
ind F = ind Ay +ind (Py s PH — PuH) +ind (Py s P — Pl ).
On the other hand, we get
F = (PyP)) Ay (PyPy) — Py|Py, P)JA(PyP,) + P,PLA(I — P,) P,
where [151, 152] is the commutator of 151 and ]52 which is a compact operator on H , for
(BB — PPy — PPy
= (P,— P)(I—- P, — Py).

Furthermore, (I—P5)P; = (P; — P>) P, is a compact operator on H. Hence, (152151) As (P Py)

differs from F by a compact remainder and thus is itself Fredholm with the same index

ind FF = ind(]sglsl)Az (P2Py). As we have already proved, P,P; and PP, are Fredholm

operators of index 0. O
It follows that A, itself is Fredholm and ind F' = ind As, as desired.

3. Boundary Value Problems with Projection Conditions

3.1. Interior Operators

Let X be a smooth compact manifold of dimension n with smooth boundary ¥ = 0X,
and V, V vector bundles over the double of X.
As defined above, ¥"(X;V,V) is the space of all pseudodifferential operators of the form

A=rtPet + 8

where P € W7(2X;V,V) and S € ¥—>°(X°; V, V).
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Clearly, operators in ¥™(X;V, f/) are much more general than those in the subspace
Wsm’tp(X 'V, f/) of operators with the transmission property.

If S (77X \ {0}, Hom(V,V)) denotes the set of all smooth bundle homomorphisms
Q@ TV — ﬂ}f/ that are positively homogeneous of degree m in the covariable, every

Ae v(X;V, V) has a well-defined principal homogeneous symbol

op(A) :=0oy(P)

T+ X\{0}s

where P € ¥7'(2X; V,V) is any operator with the property that A — r+Pet belongs to
U—°(X°;V,V). Moreover, there is a (non-canonical) linear map

op: SIE(T*X \ {0}, Hom(V,V)) — ¥"(X;V, V) (3.1)

with oy (op(am)) = am. It can be generated by a standard procedure in terms of local charts
and local representatives of operators with given principal symbols.

Using the spaces H*(RY,7*H*"7(R,,C¥)) as a local model near the boundary, it is
straightforward to introduce weighted Sobolev spaces H*7(X, V') on X for any vector bundle
V over X. As mentioned, H*>7(X,V) — H} (X°,V) holds for all 5,7 € R.

By [10], for every A € W™(X;V,V) and each v € R there is an operator R, €
¥=°°(X°; V,V) such that A, := A— R, induces a family of continuous operators

A, HY (X, V) — HS 7™ ™(X, V) (3.2)

for all s € R.

There are many ways to find suitable operators R.,. Any choice of a correspondence
A — A, may be regarded as an operator convention that maps a complete symbol of A,
i.e., a system of local symbols corresponding to a covering of X by coordinate charts, to a
continuous operator (3.2). Setting op . (a,) = (op(am))v, cf. (3.1), we get a map

op., : SPL(T*X \ {0}, Hom(V,V)) — DRE(HS”Y(X, V), Hs=m7=m (X, V)).
In the rest of this paper we construct an operator algebra !Pg'p(X ;v;w) of boundary value
problems ~
H*Y(X,V) He=mY =X V)
@ — S (3.3)
HE (Y, Q) H(Y. Q)

for arbitrary A € ¥™(X;V,V) and certain operators P, T and Q. The spaces H*(Y, Q) and
H5~™(X, Q) are the same as in (2.9).

Every oy -elliptic operator A € ¥"(X;V, V) occurs up to a stabilisation as an upper
left corner of an elliptic (and then Fredholm) operator (3.3) for a suitable choice of P, T, @
and data Q, Q The algebra Wg'p(X ;v;w) should contain parametrices of elliptic elements.
We obtain ¥, (X;v;w) as an extension of the algebra ¥, (X;v;w) that plays a similar role
as Upav(X;v) in connection with its Toeplitz extension ¥, (X;v).

A:(‘?‘; g ;
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3.2. The Edge Algebra Revisited

Recall the calculus of boundary value problems on X which need not satisfy the trans-
mission property with respect to the boundary Y, cf. [12].

This algebra is denoted by ¥;(X;v;w) with v = (V,V; W, W) and weight data w =
(v, —m). It consists of block matrix operators

cx  (X°,V) C>®(X,V)

comp
A: @ — S
CRY, W) CR(VW)
of the form
A 0
Af(o 0)+g+c, (3.4)

the components of (3.4) being as follows.

By A is meant a classical pseudodifferential operator of order m and type V — V in
the interior of X. When localised to a coordinate chart at the boundary, A is the pull-
back of an operator op(a) whose amplitude function a is a (k x k) -matrix with entries from
S?(UxR™ 1, o™ (R, ;w)), where k and k are the fibre dimensions of V and V, respectively.

The operator G is a (2 x 2)-block matrix with entries G;;, where G711 has a C* kernel
on X° x X° (Gi5 has a C* kernel on X° x Y, G2 has a C° kernel on Y x X° and Gos is a
classical pseudodifferential operator of order m and type W — W on Y. When localised to
a coordinate chart close to the boundary, G corresponds to an operator op(g) with a Green
symbol g € ST(U x R4, Ug(Ry; CF, Ck; C!, Clw)).

Finally, the operator C on the right-hand side of (3.4) is assumed to belong to the space
V. (X;v;w), ie., it is a smoothing Green operator in the edge calculus over X. Such
operators are globally characterised by the continuity properties

H*(X,V) H>®~m+e(X V)
C: ® — © )
H*(Y, W) C=(Y, W)
HS™ (X, V) H>=7(X, V)
C*: ® — D
H(Y,W) C=(Y, W)

for all s € R and some € > 0 depending on G. Here, C* is the formal adjoint of C in the sense

(CU79)H0=0(X,‘~/)®H0(Y,V~V) = (4, C*g) goo(x,v)@HO (v, W)

for all
u € CF,(X°V)eCx(Y, W),

comp

9 € Comp(X%,V)e =Y, W).

Every operator A € ¥ (X;v;w) is known to induce a family of continuous mappings

H*(X,V) HS™™MY~™m(X V)
A(N) - @ — @ , (3.5)
H*(Y,W) H~™(Y, W)
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where s € R. If A is elliptic then the operator (3.5) is Fredholm for all s € R. In this
case a parametrix P € ¥, ™(X;v~!;w™t), can be chosen in such a way that the compact
remainders are projections of finite rank. Namely, P.A — I projects onto the null-space of
A while AP — I onto a complement of the range of A, for each fixed s. In fact, ker A is
independent of s as well as the dimension of coker A, i.e., the index of A does not depend
on s.

The constructions of this section can easily be generalised to the case of lower order
operators, i.e., one can introduce classes V™7 (X;v;w) with j € Z>( and weight data w =
(v,7—m). For j > 1, we require A to belong to chffj (X°;V,V) the local amplitude function
ato SI(U x R, o™ (R ;v;w)), and g to belong to S/ (U x R, ¥ (Ry;v;w)).

By S/ 77 (U xR*™1, w™~J(R,;v;w)) is meant the set of all operator families of the form

aly,n) = ( U(yo’ ) 8 ) + ey, n),
where o is a (k x k)-block matrix family with entries ¢ (ag(y,n) + aoo(y,1)) @, and ¢ €
ST (UxR™ Y, W (Ry; v;w)). The expressions ap and as stem from a Mellin quantisation,
now related to a symbol p € Sgb_j((U xRy ) xR™, L(CF, (C’;)), and ¢, ¢ are cut-off functions.
The corresponding subclass of Green operators is denoted by WSmGT 7(X;v;w) and the
spaces of upper left corners by ¥ =J(X;V, V:w) and J/Z"GT] (X;V,V;w), respectively. In-
stead of ¥/, o (X; V. Viw) = !P;"(X;V,f/;w) N II/_‘X’(XO;V,‘N/;w) we have

VI (X V Vi) = 00 (VL V) 0 0 (X Vi V)

for j > 1.

For A € ¥ 7(X;v;w), we introduce the pair o7 (A) = (o 7 (A), 05 7 (A)) of
principal interior symbol and boundary symbol. The scheme is the same as for j = 0.
Then, W™ 9~1(X;v;w) just amounts to the space of all A € WM~ I(X;v;w) satisfying
o™= I(A) = 0.

Composition of operators induces a map
—J . —k oy —(j+k . .
WM (X v wr) X WTR (X vgswa) < WM TR (X4 0 vy w0 0 wy)

where for

U1 = (V1>V2; W17 WQ)) w1 = (71771 - ml)a
vy = (V2 V3 W2 W3); we = (71— mi, 1 —mg—ma)

we set voovy = (V1 V3 WL W3) and weow; = (y1,7y1 —m1 —ms). On the level of principal
symbols we get

0m1+m2—(j+k)(A2A1) = Umz_k(A2)Uml_j (Al)

with componentwise multiplication. For a thorough treatment we refer the reader to [13].

3.3. Constructions for Boundary Symbols
Let v € R. Combining (3.1) with the operator convention of [10], we get a map

op., + S(T*X \ {0}, Hom(V, V) — 0(X:V, V) (3.6)
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for w = (v, —m), such that oy (op ,(am)) = am. Clearly, such a construction is not
canonical and not necessarily linear, but it yields a right inverse of the principal symbolic
map oy.

Denote by S{l’é(T*Y \ {0}, ¥™(R,; Vi, Vy;w)) the space of all principal homogeneous
boundary symbols

oo(A): 7y HY(R) @ Vy — w3 HS ™7 ™(RL) @ Vy
belonging to elements A € V™ (X;V,V;w).

Moreover, let Sfl; 3/, o (T*Y\{0}, ¥ (Ry; Vy, Vs w)) be the space of all principal homo-
geneous boundary symbols 5(A) of elements A € ¥, +(X;V, V;w). In a similar manner
we define bné,G(T*Y \ {0}, ¥ (R, ; Vi, Vy;w)) in terms of the space of Green operators
V(X5 V. Viw).

Note that operators o5(A) are pointwise elements of the cone algebra on Ry with weight
control of breadth € for some € > 0 relative to the weights v and v — m, respectively. From
the cone theory we have an interior symbolic structure in (r, 0) € T*R4 \ {0} which is the
standard one of classical pseudodifferential operators on Ry, the exit symbolic structure
that is responsible for r — +o00, and the principal conormal symbolic structure for r — 0.
This latter is given by the family

omoa(A)(y,2): V, =V,

foryeY and z € I'1j5_,.

Set Ty X := T*X |y and write Sjg(7y-X \ {0}, Hom(Vy, Vy)) for the space of all
restrictions of elements in S[ (7 X \ {0}, Hom(V,V)) to Ty X \ {0}. Given any a, €
Siig (T X\ {0}, Hom(V, V), we form A = op ,(am). The operator family og(A)(y,n) al-
lows one to recover

am |7y x\ 0y € (T3 X \ {0}, Hom(Vy, V)
in a unique way, which yields a linear map
owy : Spg(T*Y \ {0}, U™ (Ry; Vy, Vyiw)) — Sp(Ty X\ {0}, Hom(Vy, )

with
kerowy = Spig priq(T7Y \ {0}, U™ (Ry; Vy, Vy;w)). (3.7

Remark 3.1. For a pair
(pw,po) € Sip(T*X \ {0}, Hom(V, V)) x S[e(T*Y \ {0}, ™ (Ry; Vi, Vi w))

there exists an A € W™ (X;V,V;w) satisfying 0(A) = (pw,ps) if and only if oy y(ps) =
Pw

Ty X\{0}-
It is worth pointing out that for every choice of op ., the composition oy op ., induces a
linear map

Si(T*Y \ {0}, U™ (Ry; Vy, Vys w))

op.: S™(T*X \ {0}, Hom(V,V)) — s .
09 OP 4 hg( \ {0} ( ) S}E,MJ,-G(T*Y\{O}’ VTR Vy, Vs w))
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An element of St (T*X \ {0}, Hom(V, V)) is called elliptic if it defines an isomorphism
%V = i V.

Theorem 3.1. Assume that there exists a nowhere vanishing vector field on the boundary
Y. Then, for every v € R, the map op ,, cf. (8.6), can be chosen in such a way that the
ellipticity of am € S (T* X \ {0}, Hom(V, V) entails the Fredholm property of

om(y;n) =09 op ,(am)(y,n) : H'(Ry) @V, — HZ"™ M (Ry) @V, (3.8)

for all (y,n) € T*Y \ {0}.

For general X a similar result holds up to stabilisation. By this we mean an elliptic
symbol a,, € S (T X \ {0}, Hom(V @ B,V & B)) for some vector bundle B on X, such
that

ZL'm = am D IT(;(B
on S*X.

Theorem 3.2. Suppose vy € R. For any elliptic a,, € Sfiy (T X \ {0}, Hom(V, V) there is a
smooth vector bundle B over X, such that for a suitable choice of the map op

Tm(y,1) =09 0p (Am)(y,n) = H*(Ry) @ (V@ B)y — H*™™7""(Ry) @ (V @ B),
is a Fredholm operator for all (y,n) € T*Y \ {0}.

Theorems 3.1 and 3.2 will be proved in Section 3.7. If a,, is elliptic, the operator (3.8)
is Fredholm for any s = s9 € R and 7 # 0 if and only if the principal conormal symbol

om0 op,(am) (y,2) 1 Vy =V,

is a family of isomorphisms for all z € I'jo_,. In this case 0,,(y,n) is actually Fredholm
for all s € R, the null-space of ,,(y,n) does not depend on s, and it is a finite-dimensional
subspace of 877¢(R.) x V,, for some € > 0. Moreover, there is a finite-dimensional subspace
of ST=™+E(R, ) x V, for some & > 0, which is a direct complement of the range of o, (y, n)
in H*=™7~™(R,) ® V, for all s € R. This is true for all y € Y.

3.4. Lopatinskii Ellipticity

Let 0, € S (T*Y \ {0}, ™ (Ry; Vy, Vy;w)) be such that the operator

om(y,m): H YRy @V, — H™7 ™Ry @V,

is Fredholm for every s € R and (y,n) € T*Y \ {0}, cf. (3.8). Since oy, is homogeneous, i.e.,
Om (Y, A1) = N kx0m (y,n)ky * for all A > 0, it is often sufficient to consider ¢, on the unit
cosphere bundle S*Y. It will cause no confusion if we use the same letter to designate o,
and its restriction to S*Y. We then get an index element

indgey om € K(S*Y).
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If 7 € S (T*Y \ {0}, ™ (Ry; Vy, Vy;w)) is another element with the property that
0w,y (Tm) = 0w, y(om), then relation (3.7) gives

O = T € ST ar 46 (T7Y \ {0}, 07 (R: Vi, Ty w)).

Clearly, 7,,,(y,n) is not necessarily a Fredholm family in the above setting, cf. (3.8).
Moreover, if this is the case, it may happen that indg«y o, # indg«y T, .-

Fix v = (V,V;W,W). Let A € ¥™(X;v;w) be a Lopatinskii elliptic boundary value
problem with an upper left corner A € W;"(X;V,f/;w). If 0,, = 05(A) we then have a
Fredholm family (3.8) and

indg-y op(A) = [s3 W] — [s3 W], (3.9)

where sy : S*Y — Y is the canonical projection. Thus, as in the calculus of boundary value
problems with the transmission property, we have

indg-y 05(A) € sy K(Y),

cf. relation (0.1). Hence, this is a necessary condition for A to be Lopatinskii elliptic.

Given an elliptic symbol a,, € Spy ("X \ {0}, Hom(V, V)), we may ask whether to any
v € R there corresponds a Lopatinskii elliptic operator A € ¥ (X;v;w) for a suitable
choice of bundles W and W over Y, such that a,, = ow(A).

Theorem 3.3. Let v € R. Suppose an, € S (T*X \ {0}, Hom(V, V) is elliptic and A :=
op . (am) is chosen in such a way that (3.8) is a family of Fredholm operators. Then the
following are equivalent:

1) there is a Lopatinskii elliptic boundary value problem A € W™ (X;v;w) such that
am, = oy (A);

9) indg-y op(A) € st K(Y).

PROOF. It remains to show the implication 2) = 1). By assumption, there are vector
bundles W and W on Y, such that (3.9) holds. It is actually a general property of Fredholm
families that there exists a gm € Sifg o(T™Y \ {0}, U™ (R4 Vy, Vy;w)) with the property
that under notation (3.8)

ker (o + gm) (Y, 1)
coker (O'm + gm) (y7 77)

for all (y,n) € T*Y \ {0}, independently of the specific choice of s. We can fill up the family
of Fredholm operators (¢, + gm)(y,n) to a smooth family of isomorphisms

oo+ g Fon H*(Ry) @V, H7m MRy @V,
( . 0 )(ym) : ® — ® , (3.10)
" W, W,
first for all (y,n) € S*Y and then for all (y,n) € T*Y by twisted homogeneity of order m.
In addition, since C52 (R.) is dense in H*7(R,) for all s,y € R, the potential part k,

comp
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can be chosen to be a map 73 W — 73, Co5,,p (Ry) ® Vi, while the trace part t,, may be
represented by an element in 75 W ® (CS9,,(R+) ® V) through integration

comp

U — /oo<ktm(y,n)(r)7u(r)>VydT
0

for all u € H*7(Ry)®V,. Here, (-, -)v, denotes the pairing between V,, and its dual V,". Let
us now restrict gp,, by, and ¢, to a coordinate neighbourhood (2; on Y and interpret the
variables y as local coordinates in U C R™~! with respect to a chart £2; — U. Choosing a
zero excision function x(n) we obtain operator-valued symbols

9=Xgm € SFU xR LIH*I(Ry,CF), H®1=™(R,CH))),
k=xkn € ST(U xR L(C,H®"=™R,,CF))),
t=xtm € SHUxR*LH(Ry,CF),Ch)

for all s € R, where k = k and I, [ are the fibre dimensions of the bundles V, V and W,
W, respectively. Denote by G;, K; and T the pull-backs of op(g), op(k) and op(t) from U
to {2; with respect to the charts and trivialisations of the bundles involved. Pick a covering
{f,..., 025} of Y by such coordinate neighbourhoods, a subordinate partition of unity
{#1,..., 6N}, and a family {¢1,...,¥n} of functions ¢; € CF5,,,(£2;) satisfying ¢;9; = ¢;.
We can then pass in a familiar way to an operator

N . . . 3 .
(7 0)=2 (7% o )% 9% )

J

where ¢, and @, are cut-off functions supported close to the boundary. It follows that

i (ol 16K

belongs to ¥™(X;v;w) for v = (V,V; W, W) and oy (A) is equal to (3.10), while oy (A) =
0w (0p (@) + G) just amounts to ap,. O
Remark 3.2. Under the hypotheses 2) of Theorem 3.3 it is even possible to construct
A € V" (X;v;w) in such a way that A = op ., (am) is equal to the upper left corner of A.

To verify this, it is sufficient to set W =Y x C! for I € N large enough, and to choose
some homogeneous potential symbol k,, : 75 W — 75 H*~™7™(R}) ® Vy such that

H'(R.) ® Vy )
(om km): 7y ® — 7y H7™ T RL) @ Vy (3.11)
w

is surjective. For sufficiently large [ this is possible, and then the null-space of (o, k) can
be taken as a copy of W. Finally, (3.11) can be filled up by a second row (t,, ¢m) to a block
matrix isomorphism which plays the role of o0g(A). Then we can pass to a desired boundary
value problem A just as in the proof of Theorem 3.3.

The following lemma states that the topological obstruction for the existence of a
Lopatinskii elliptic boundary value problem is not affected by the choice of the operator
convention op .
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Lemma 3.1. Assume that a,, € Sj,(T*X \ {0}, Hom(V, V) is an elliptic symbol and let
oD, S}’;’é(T*X \ {0}, Hom(V, V) — ¥™(X;V,V;w) be another choice of operator conven-
tion (3.6). If for A = op_(an) and A = op_,(am) both o5(A) and cp(A) are families of
Fredholm operators H*Y(Ry) ® V,, — H*~™7""™(Ry) ® V,, for all (y,n) € T*Y \ {0}, then
indg«y 05(A) belongs to sy, K(Y) if and only if indg-y 05(A) does.

PROOF. The symbols 05(A) and o9(A) can be written in the form

Ua(/}) = Ua(a)+03(m)+03(g),
0o(A) = 05(a)+oa(m)+0s(9),

the terms on the right-hand side having standard meaning in the cone theory. Since
op(a) = og(a) modulo S/, o(T*Y \ {0}, ™(Ry; Vy, Vy;w)), we may assume with-
out loss of generality that op(a) = 09(a). Furthermore, since the elements of S o (7T*Y"\
{0}, #"(R; Vy, Vi ; w)) are families of compact operators, the property of indgy o5(A) or
indg-y 05(A) to belong to s K (Y) is not affected by a Green summand. Therefore, o5 (g)
and o5(g) may be ignored.

There is | € N and a monomorphism k,, : s (Y x C!) — st H*™7"™(R,) @ Vy
pointwise mapping to Cg5,,,(R1) ® V,,, such that both

HS’A/(R_A,_) X VY

(0o(A) ki) sy @ — 5% H ™ TR, @ Vy
Y x C
and
~ H*'(Ry) ® Vy ]
(70(A) k) : st ® sy HTR) @ Ty
Y x C!

are surjective. As usual, the choice of s is unessential.

Set by, = (0o(A) ki) and by = (0‘3(/1) km). Observe that the property indg«y o05(4) €
sy K(Y) is equivalent to saying that for [ large enough the bundle kerb,, over S*Y may
be represented by a system of trivialisations with transitions isomorphisms depending only
on y, not on the covariable 7. Clearly, we have indg-y 05(A) € s}, K(Y) if and only if
indg+y by, € s3 K(Y'), and similarly for the operator families with tilde.

Let l;,_nl be a right inverse of bum. It can be calculated within our class of boundary symbols.

In fact, in the case m = v = 0 the right inverse is equal to Bfn(gmlgfn) L which possesses the
required structure due to the algebra property of boundary symbols. The general case can
then be treated by using order reducing operators, cf. [13].

Since by, — by, = (05(m — ) 0), it follows that

bbt = I+ (0o(m—mm) 0)b;}
= I+ o0p(mo) + go

belongs to Sl?g7M+G(T*Y \ {0}, " (Ry; Vyr, Vy;w™ ! o w)) restricted to S*Y. Here my is a
smoothing Mellin family which consists of a single term containing the zero power of r, and
the family go belongs to S}?&G(T*Y\{O}7 U™ (Ry; Vy, Vy;w L ow)) restricted to S*Y. Since
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oa(mp) is actually independent of n on S*Y and gq takes values in compact operators, we
get

inds-y (I +0a(mo) +90) = inds-y (I +0a(mo))
e TLK(Y).

From

indg-y ?)m = indg+y by, —indg-y (I + Ja(mo) + go)

we then immediately obtain the assertion.
The obstruction for the existence of Lopatinskii elliptic conditions is also not affected by
the choice of the parameter v € R in the operator convention op ... [J

Lemma 3.2. Let ay € S (T X \ {0}, Hom(V, V) be elliptic. If for A, = op ,(am) and
As = op s(am) both

oa(A)(y,n): H(Ry) @V, — H™ 1 ™R,)®@V, and

oo(As)(y,m) : H*(Ry) @V — H™0 "™ (Ry) @V

are Fredholm operators for all (y,n) € T*Y \ {0}, then indg+y go(A,) belongs to s3- K(Y) if
and only if indg-y o9(As) does.

PROOF. Starting with the operators

A, HV(X,V)— H=™7™(X,V),
As: Hs 700X V) — HsyHI—md—m(x /)

which are continuous for all s € R, we pass to

~ —1
A, = (D) 4077
e WXV, Viw)

by using the order reducing operators from [13]. We then obviously obtain oy (A4,) =
ow(Ay) = am, and so the boundary symbols of A = A, and A = A, satisfy the as-
sumptions of Lemma 3.1. In order to complete the proof it is now sufficient to observe that

inds-y 09(Ay) € s3 K(Y) is equivalent to saying that indg«y 05(A4s) € s3 K(Y), since both
indg«y aa(D"Z/_é)_l and indg-y O’a(D"Y/_(S) are equal to zero. 0

3.5. Boundary Value Problems with Projection Data

In the previous section we have seen that Lopatinskii elliptic conditions for a given
operator A of ¥ (X;v;w) may only exists under condition 2) of Theorem 3.3. If this is not
the case, one might pass to another kind conditions that we call global projection conditions.

Let us fix some vector space data v = (V, V0, Q) with @ = (F, W, P) and Q= (F, W, P)
as in § 2.2
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Definition 3.1. For w = (v,7 — m), the space ¥ i (X;v;w) is defined to consist of all

operators _
H>Y (X, V) H7™YT™X V)
A: @ — & (3.12)
HE (Y, Q) HT(Y,Q)

s € R, such that

1) the upper left corner A of the operator block matrix A is assumed to be in
(X V Vi)

2) thereis an A € (X, Vv, VW, W;w) such that A = PAE, where P and £ have the
same meaning as in § 2.2.

Denote by ¥gt \o(X;v;w) the subspace of Wyl (X;v;w) consisting of all A such
that A = PAE for some A € Wﬂ+G(X;V,f/;VV,W;w). In a similar way we introduce
Ve (X5 v5w).

It is now straightforward that the principal symbolic structure of !Pg;)(X ; v;w) consists of
pairs o(A) = (cw(A),05(A)), where oy (A) : 7%V — 7%V is the principal interior symbol
and o5(A) the principal boundary symbol which is a bundle homomorphism

Ty H*7(Ry) @ Vy my 7™ (Ry) @ Vy
— D (313)

co(A) : &)
F F

given by

wo ) = (g st Voo (g ),

where e : F' — 73, W is the canonical embedding and p the principal homogeneous symbol
of P € wy(Y;W).

Theorem 3.4. Composition of operators induces a map
Wt (X5 v15w1) X W2 (X5 w5 wa) — Wt (X5 0z 0 015wz 0 wy)
where for

U1 = (Vl,VQ;Ql,QQ)a w1 - (’71,’)/1*7]11),
vo = (VEV3%Q%,Q%),  w = (yi—mi,y—mi—mo)

we set vaovy = (VL V3;,QY,Q3) and wy owy = (41,71 — m1 — ma).
For the principal symbols we get
0m1+m27(j+k)(A2A1) _ O’ink(Az)O'mlij(Al)

with componentwise multiplication.
If A! or A? belongs to one of the subspaces with subscript M + G or G, the same is true
for the composition.
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PRrROOF. This assertion is an immediate consequence of Definition 3.1 and of what has
been proved in § 3.2. O

Note that @5 (X;v;w) can be identified with the set of compositions A = PAP with
A€ UM(X;V, Vi W, Wiw) as in Definition 3.1. Hence ¥y (X;v;w) survives under taking
the formal adjoint A* with respect to the scalar products in H%%(X,V) @ L?(X,W) and
HO(X,V)@® L*(X, W), for the larger class ¥ (X;-;w) does.
Theorem 3.5. Assume that A € ¥5(X;v;w). Then, A* € Wp(X;v*;w”™) where v* =
(V,V;Q*,Q%) for QF = (ou(P*)mi W, W, P*) and Q* of a similar form, and w* = (—y +
m,7y).

Let
A € IR(X;vaw),
B € ¥ (X;vpw)
for . _
va = (Va,VaiQa,Qa),  Qu = (Fa,Wa, Pa),
vs = (Vs,Vs;Q8,QB); Qa = (Fa,Wa, Pa),

and similarly Qg, Qg. Then one defines the direct sum A @ B € Pt (X504 @ vp;w) of A
and B in a canonical way, where

vaDug = (VA@VBaVA@VZ’ﬁ‘?QA@QB’QA@QB) )
RQa®Qp = (Fa®F,Wa®Wp,Pa® Pg)
and, similarly, Q 4 @ Qg. For all s € R, the direct sum induces a continuous linear operator
HY(X,Va®Vp)  H™™™(X,Va® Vs)
A B: D — &
H (Y, QA ® Qp) H7™(Y,Qa® QB)

Using in Definition 3.1 the classes ¥~/ (X;v;w) defined at the end of § 3.2, we also
introduce the subspaces @g";)’j (X;v;w) with j € Z>¢. For any operator A € Wg’?;j(X; v;w),
we have a corresponding pair 0™ 7 (A) = (a7 7 (A),05 7 (A)) of principal interior and
boundary symbols of order m — j. Then, Wg;*jfl(X; v;w) is easily seen to coincide with the
space of all 4 € Wg’g’j (X;v;w) satisfying 0™ (A) = 0.

Theorem 3.6. Let A € ¥ (X;v;w) and o(A) = 0. Then, A € V71 (X;v;w) and the
operator (3.12) is compact for all s € R.
PROOF. Let us write A in the form A = PAE for an A € #™(X;V,V; W, W;w). If we

= I 0N/ 1 O

A'*(o P>A<o P)’
we also get A = ﬁjé', and o(A) = 0 implies J(f:l) = 0, the latter symbol refers to
v XV, VW, W;w). This gives us

set

Ae w6V, VW, W w),
which entails A € W72~ (X;v;w). The compactness of (3.12) follows from the compactness

of f:l in usual Sobolev spaces. g
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Theorem 3.7. Let A; € &Z/é';)_j(X;v;w) be a sequence of boundary value problems, such
that the € -weight in the Green operators involved in A; does not depend on j. Then there
exists an A € Wi (X;v;w), which is unique modulo ¥, °c(X;v;w), such that

ANiAj,

j=0
i.e., A— ZA S N(X;v;w) for all N € N.

The proof is an easy consequence of a corresponding result for the operator space
vV V W, W w).

3.6. Ellipticity under Projection Data

As usual, a boundary value problem A € ¥g5(X;v;w) is called elliptic if both oy (A)
and oy(A) are isomorphisms.

The condition that (3.13) is an isomorphism does not depend on s. If it is satisfied for
an sg € R then so is for all s € R.

Let us now show that in contrast to Lopatinskii conditions there is no obstruction for
the existence of elliptic global projection conditions.

Theorem 3.8. Let a,, € Spjy (77X \ {0}, Hom(V, V) be an arbitrary elliptic element. Then
there is a vector bundle B over X, such that for each v € R there are triples Q = (F, W, P),
Q = (F, VNV,I?) depending on v, and an elliptic operator A € Wi (X;0;w) with © = (V @
B,V®B;Q,Q) and w = (v,y—m), satisfying oy (A) = @, in the notation of Theorem 3.2.

Proor. For notational convenience let us assume that B = 0. The construction in the
general case with a,, replaced by a,, is completely analogous. According to Theorem 3.2 we
find an operator A, = op ,(am) in ¥ (X;V,V;w) with the property that

om(y,n) = 00(Ay)(y,n) : H'(Ry) @V, — H ™1 ™(RL) @V,

is a family of Fredholm operators parametrised by (y,n) € T*Y \ {0}.
Choose vector bundles F' and F over S*Y', such that [F]—[F] = indg~y 0,,. By a familiar
property of Fredholm families, there is a

9m € S a(TY \ {0}, ¥ (Ry; Vi, Vs w)),
such that under notation (3.8)

ker (Um + gm) (ya 77)
coker (o, + gm) (¥, 1)

F
F

ysm)>

1R

y,m)

for all (y,n) € T*Y \ {0}, independently of the specific choice of s. As usual, we can fill up
the family of Fredholm operators (o, + ¢gm)(y,n) to a family of isomorphisms

H*(R,) @V, H ™7~ ™R,) @V,

( Lo ). ® - ® , (3.14)

F(ym) F(y,n)
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first for all (y,n) € S*Y and then for all (y,n) € T*Y by twisted homogeneity of order m.

To shorten notation, the bundles F and F over S*Y will be identified with their pull-
backs over T*Y \ {0} under the canonical projection (y,n) — (y,7n/|n]). Choose any bundles
W and W over Y, such that F and F are subbundles of 73 W and 7% W, respectively. From
(3.14) we can pass to a homomorphism

fon T H(R)) © Vi HmamR,) & Ty
( Umg Gm 6" ) DTy @ — Ty @ (3.15)
" w w

by extending k,, to Ko, by zero on a complementary bundle F* to F in w3 W, while Z,, is
defined by composing t,, with the embedding F — 7TYW
In the same way as in the proof of Theorem 3.3 we construct an operator

Ae vMX;V, VW, Wiw)

whose principal boundary symbol just amounts to (3.15). In addition, the projections
Ty W — F and %W — F along complementary bundles F*- of F in 7rYW and F* of
F in 7TYW can be interpreted as principal symbols of certain projections P € ¥, (Y W) and
Pe 2108 W), respectively, cf. Remark 2.1. Then, forming A by formula A = 73;15 yields an
elliptic boundary value problem A € V0 (X;v;w) for v = (V, V:Q, Q) and Q = (F,W, P),
Q = (F,W, P), satisfying oy (A) = apn. 0O

To some extent, elliptic problems with global projection conditions are complemented to
Lopatinskii elliptic boundary value problems.

Theorem 3.9. For any elliptic boundary value problem A € Wg";(X;vA;w) with vq =
(V,V;Qa,Qa4) there is an elliptic boundary value problem B € Vi (X;vp;w) with vg =
(‘7, V;Qgz, QB), such that A® B € " (X;v;w) forv=(Va® V; CN) is Lopatinskii elliptic.

PROOF. The upper left corner A of A belongs to ¥ (X;V, V; w). Its formal adjoint A*
is an element of ¥ (X;V,V;w*) for w* = (—y 4+ m, —7). The definition of A* is based on
the relation

(Au,g)HO,O(X7\7) = (u, A"g)oo(x,v)

for all w € C®(X,V) and g € C°°(X,V) of compact support in the interior of X. This is
compatible with the pointwise formal adjoint on the level of principal boundary symbols

(oa(A)(y,n)u, g)HO’O(RhC’E) = (u,09(A™)(y, n)g)HOvO(R+,C’°)7

k and k being the ranks of V and V, respectively. The symbol oo(A*) defines a bundle
homomorphism 73 H* 7R, ) ® Vy — 78 H*~™ (R, ) ® Vy which is Fredholm for all
s € R, and

iIldS*y O’a(A*) = — iIldS*y O’a(A).

Pick a sufficiently large N € N, such that both F4 and F 4 have complementary bundles
Fg and Fg in S*Y x CV, ie.,

Fo®Fg = S*YX(CN,
Fao® Fp S*Y x CN.
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Then,
inds*y O'a(A*) = [FB] — [FB]

By [13], we have order and weight reducing isomorphisms

Dy~ HYTUX,V) - HETmE2ramm(X V),
DT HYU(X,V) - HETMEO(XL V).

which are continuous for all s € R. Using them we pass from A* to the operator B :=
D?}*hA* (Dglfw)*1 which obviously belongs to ¥™(X;V,V;w) and has the property

indg«y 0o(B) = indg+y og(A¥).
As in Theorem 3.8 we find an element g,, € Sy (7Y \ {0}, ¥™(Ry; Vv, Vy;w)), such that

Fs,y.m)»
Fp,

ker (o5(B) + gm) (y,n)
coker (09(B) + gm) (v, 1)

1R

y.m)

for all (y,n) € T*Y \ {0}. Set

Qs = (Fg Y xCV, Pg),
Qs = (Fg Y xCV, Pg),

where Pg and Pg are pseudodifferential projections of W(?I(Y; C™), whose principal symbols
are the projections ¥ x CV — Fg and Y x CV — Fg along F 4 and Fy, respectively.
Analysis similar to that in the proof of Theorem 3.8 then gives us an elliptic operator
B € ¥t (X;vp;w) with the desired properties. O

The boundary value problem A can be recovered from A = A @ B by the formula

A=P4AEL with
aa=(y n ) Pa=(y )

where E 4 is the canonical embedding H*(Y,Q4) — H*(Y,C"), and similarly for B.
Let A € V3 (X;v;w) where v = (V, V:Q,Q) and w = (v,7 — m). An operator II €
—m (Y=L =1 it =1 (T 1. ) -1 _ : :
V" (X Law™l) with v=1 = (V,V;Q,Q) and w™! = (y — m, ) is called a parametrix of
A if
HA-1 € V7% (X;v tovswtow),

Al -1 € 7% (X;vovhwow™).

(3.16)

Theorem 3.10. FEwvery elliptic boundary value problem A € ng';)(X;v;w) possesses a
parametriz I € W™ (X;0 5w,

PROOF. Let us apply Theorem 3.9 to A and form A= A® B € ¥™(X;0;w) with some
complementary elliptic operator B. By [13], A has a parametrix P € ¥, ™(X;0 5 w™1),
where o(P) = 0(A)~!. Define a soft left parametrix for A by

w=(y »)?(o &)
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where E : H*~™(Y,Q) — H*™(Y,W) is the canonical embedding involved in @, and
P € w3(Y,W) the projection involved in Q. Then we get
I 0ON=<=/71 O I 0
HOA*(O P)P(O P)A(o E)

It follows that the remainder S; = I — IIy.A belongs to ng(X; v™lov;wow) and satisfies
0(S;) = 0. By Theorem 3.6 we deduce that S; € Wg’pl (X;v tov;w~tow). Applying Theorem
3.7 we find an operator C; € ¥ ' (X;v ™" ov;w™! ow) satisfying (I +C;)(I —&;) = I modulo
W2 (X;v 7t ow;w™t ow). To do this, it suffices to form the asymptotic sum

gp,G
oo
. J
C, = E Sj.
j=1

This immediately yields (1 4+ C;)IIo.A = 1 modulo ¥, ¢ (X; vt owv;w™! ow), and therefore

]Yl = (I+CZ)HO
€ !Pg;m(X;v_l;w_l)

is a left parametrix of A. In a similar manner we find a right parametrix, and so we may
take II = II;. O

As usual, the existence of a parametrix implies the Fredholm property of elliptic problems
with global projection conditions.

Theorem 3.11. Let A€ Sg’lf,(X;v;w) be elliptic. Then

HY(X,V) Hs™m~™(X V)
A &) — S
H (Y, Q) HT(Y, Q)

is a Fredholm operator for all s € R, c¢f. (2.7). Moreover, the null-space of A is independent
of s as well as the codimension of the range of A, i.e., ind A is independent of s.

The parametrix II of Theorem 3.10 can be chosen in such a way that the smoothing
remainders are projections of finite rank. In fact, I — Il A projects onto ker A while I — AIT
projects onto a complement of im A, for every s.

PROOF. The Fredholm property is a direct consequence of the fact that the remainders
I — A and I — Al in (3.16) are compact operators, which is due to Theorem 3.6. The
second part of Theorem 3.11 is a consequence of general facts on elliptic operators that are
always satisfied when we have elliptic regularity in the respective scales of spaces. O

As a converse statement for Theorem 3.11 we prove that ellipticity is not only sufficient
but also necessary for the Fredholm property.

Theorem 3.12. Suppose A € lI/gp(X;v;w) forv = (V,V;Q,Q) and w = (0,0). If the
operator
L3(X,V) L3(X,V)
A: @ — &) (3.17)
H(Y.Q  H(Y,Q)
is Fredholm, then A is elliptic.
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PrRoOOF. Write
A=(7 o)
in (3.17) and set Q+ = (o4 (I — P)W,W,I — P). Then
LAY, W) =H(Y,Q) & H*(Y, Q")

and we define B € WO(X;V,V;W,W @& W;(0,0)) by

L*(X,V) L*(X,V) L*(X,V)
L(X,V) ® ® @ L*(X,V)
B: e = HvQ S Hy,0 o rByw) = e
LAY, W) ® @ @ LAY, W & W)
H(Y.QY)  H(Y.QY)  LA(Y.W)

where the mapping C is given by

It is clear that dim ker B = dim ker A < oo. Moreover,
ker B*B = kerB
= (imB*B)*

and B*B has closed range, for C*C has. It follows that B*B € W2(X;V;W;(0,0)) is a
Fredholm operator. By the above, B*B is an elliptic element of the calculus. This implies
that both oy (A) and cg(.A) are injective. By passing to adjoint operators we can show in
an analogous manner that the symbols oy (A) and o5(A) are also surjective. O

3.7. Operators of Order Zero

Here we study operators A € ¥2(X :V,V;(0,0)) and associated boundary symbols in
more detail and prove Theorems 3.1 and 3.2. Note that by setting

A DL ADY

one obtains an isomorphism ¥"(X;V, Vi(y,y—m)) — vo(X;V, V:(0,0)).

A direct computation shows that for every A € ¥9(2X;V,V) the operator 7 Ae* be-
longs to ¥2(X;V,V;(0,0)). Moreover, for any A € W9(X;V,V;(0,0)) there exists an op-
erator A € W9(2X;V,V), such that A = r*Aet + M + G holds for suitable M + G €
!P](\)M_G(X; V,V;(0,0)). For the principal boundary symbol of A we actually have

oo(A)(y,m) =1 ao(y,0,n, Dr)et +0o(M+G)(y,n) : L*(Ry) @V, — L*(Ry) @V, (3.18)

where G is the principal homogeneous symbol of A.
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Note that in contrast to the usual domain of o5(A) we now prefer L2 -spaces, because in
the case of violated transmission property the standard Sobolev spaces or Schwartz spaces
with smoothness up to the boundary do not survive under the action of pseudodifferential
operators.

Set S3 X := S*X |y and denote by Sﬁg(S;}X, Hom(Vy, Vy)) the space of all restrictions
als; x for a € SP,(T*X \ {0}, Hom(V, V).

Given any A € W0(X;V,V;(0,0)), such that oy (A) € Spe(T*X \ {0}, Hom(V, V) is
elliptic, we consider

a:=oy(A)

53X

and ask whether the family
op*(a)(y,n) = r*aly,n, D,)e" : L*(Ry) @V, — L*(Ry) @V, (3.19)

is Fredholm for all (y,n) € S*Y.

Write N for the [—1,1]-bundle over Y induced by the conormal bundle of Y, i.e., N is
a trivial bundle whose fibres are intervals [—1, 1] connecting the south pole (1, 0) = (0,—1)
with the north pole (1, 0) = (0,1) of S; X, where y varies over all of Y.

Let us recall a criterion for the Fredholm property of (3.19) in terms of Mellin symbols

1

+ —
g (Z) - 1 _6:':271.’27

the functions ¢*(z) being meromorphic in z € C with simple poles at the points 25, where

J € Z. Thus the lines Iy = {z € C: Iz = v} do not contain poles provided that v ¢ Z.
Choose a diffeomorphism z : (=1,1) — I/, with the property that Rz(0) — +oo for

0 — +1. Setting a™ (y) := a(y, 0, £1) we introduce a family of homomorphisms Vy- — Vy by

a(y, 0) = a’ (y)g" (2(0)) + a~ (y)g~ (2(0)). (3.20)

This is well defined for all —1 < p < 1, since g7 (2) + g~ (2) = 1 and g*(2) tends to 1 when
Rz — +oo along the line I /5.

More precisely, the family (3.20) is a convex combination of the homomorphisms a* (y) :
Vy — Vy.
Theorem 3.13. The operators (3.19) are Fredholm for all (y,n) € S*Y if and only if
. a*(y)g*(2(0)) +a~(y)g~(2(0)), for n=0, o€ [-1,1]
a(y,n, 0) = ’ : it 3.21
) ={ 5 (4 g for In.ol =1, @21

is a family of isomorphisms V,, — V, for all (y,n,0) € St X UN.

Theorem 3.13 is known from the theory of singular integral operators, cf. [14]. An explicit
proof of the necessity may be found in [15].

Mention that when op™(a) stems from a symbol oy (A) with the transmission property,
we have a™(y) = a™ (y), and hence the criterion of Theorem 3.13 is automatically satisfied
as soon as oy (A4) is elliptic.
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In general, each family of isomorphisms (3.21) represents an element o (a) in the relative
K -group of the pair (B X, S5y X U N), where B*X is the unit coball bundle of X and
By X =B*X |y.
By K(ByX,SyX UN) = K(R? x §*Y) and the Bott periodicity theorem there is an
isomorphism
t: K(ByX,Sy X UN) — K(S*Y).

Theorem 3.14. Let 0y (A) be elliptic of order 0. Suppose oy (A) |s; x extends to a family of
isomorphisms (3.21) on Sy XUN, and o(a) € K(By X, Sy X UN) is the associated element.
Then, the equality indg«y op™(a) = t(c(a)) holds for a = oy (A)

Ty X\{0}-

For symbols with the transmission property Theorem 3.14 goes at least as far as [9]. A
related statement for symbols of elliptic differential operators is owed to [1]. The general
case not assuming the transmission property is treated in [15].

It is clear that any other extension @ : Vy — Vi of the symbol ow(A) spx to Sy X U
N also represents an element o(a) € K(By X,S53X U N) and hence a certain «(o(a)) €
K(S*Y). It is not obvious at first glance how «(c(a)) can be interpreted as indg.y o for
a family o(y,n) : L*(Ry) ® V, — L*(Ry) ® V, of Fredholm operators parametrised by
(y,m) € S*Y. But the pointwise analytic information from [14] combined with that on
the structure of pseudodifferential boundary value problems not requiring the transmission
property from [15] gives us the following scenario. Let F(Vy-, Vy) denote the set of all families
of homomorphisms V, — Vy, continuously parametrised by (y,n, 0) € Sy X UN, that vanish

on S3 X. Every element of F(Vy, Vy-) can be canonically identified with a continuous family
of homomorphisms, parametrised by (y,0) € N =Y x [—1, 1], vanishing on Y x 9[—1, 1].
We then have @~'a (y,7, 0) = 1+ f(y, o) for some f € F(Vy,Vy), or

a(y,m.e) = aly.n0) (1+ f(y,0)
= aly,m0) + f(y,0)

for an f € F(Vy,Vy). It suffices to consider elements a of the above kind, such that the
pull-back of f(y,0) under ¢ = o(z) is a Schwartz function of z € I'i/;. In fact, we can

obviously construct such an a starting with an arbitrary family a of isomorphisms, satisfying
a—a € F(Vy,Vy), by a small change of c:L|N~near Y x 0[-1,1] within the homotopy
class of families of isomorphisms represented by a. We then obtain o(a) = o(a) and hence
vo(a) = vo(a).

Using the spaces C°°(U, M™ (I’ /2, Hom(CF, (C’;))) as local models, it is straightforward
to define spaces M™ (Y x I'| 5, Hom(Vy, Vy)) for vector bundles Vy and Vy over Y.

Theorem 3.15. Let oy (A) be elliptic of order zero and a(y, &) the restriction of ow(A) to
Ty X \ {0}. Suppose m is an element of M~>°(Y x I'y j5, Hom(Vy, Vy)), such that

_f at (gt (2(0) +a (y)g™ (2(0)) +m(y, 2(0)), if n=0, o€ [-1,1],
. 0) ‘{ o0 (4) |5 x, if ol =1

defines a family of isomorphisms V,;, — f/y for all (y,m,0) € Sy X UN. Then, for arbitrary
cut-off functions w(r) and o(r),

Qu

(3.22)

op™ (a)(y, 1) +w(rn)) opy (M)@(rlnl) : L*(Ry) @ Vy — L*(Ry) @V,
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is a family of Fredholm operators parametrised by (y,n) € T*Y \ {0}, and for its restriction
to S*Y we have indg-y (-) = 1o(a).

This theorem generalises Theorems 3.13 and 3.14. The Fredholm property is shown in
[14] in a slightly modified form without @. The present formulation is given in [12].

PRrROOF of Theorem 3.1. It suffices to treat the case m = v = 0. Indeed, the reduction
to order and weight zero as at the beginning of § 3.7 can also be done on the level of
interior and boundary symbols. In other words, we can first pass to a symbol of order zero
by setting ap = 0w (D} " )amow(Dy”), carry out our construction that yields a Fredholm
family oo (y,n) as asserted in (3.8), where it is sufficient to consider

ao(y,n): L*Ry) @V, — LP(Ry) @ V.

Then we may set o,,(y,n) := aa(D‘T/V"’m)(y,n) oo(y,n) oa(D})(y,n). Since the boundary
symbol can be represented in the form (3.18), it suffices to show that ag(z,§) |s; x for an

elliptic principal symbol ag : 7%V — 7%V admits an extension to an isomorphism
a: mgs xyunVy — T (X)UNVY’ (3.23)
Y Y

where Tg (x)uN Sy (X)UN — Y stands for the canonical projection. In fact, having
granted this, we apply an approximation argument of [15] to obtain an element

m(yaz) € MﬁOO(Y X Fl/ZaHOIn(VYa VY))?

such that (322) with O'Q/(A) Sy X to
an isomorphism over all of S5 X U N, which is homotopic to & through isomorphisms. By

sy x replaced by ag |5; x 1s also an extension of ag

assumption, there is a nowhere vanishing vector field v on Y. Without loss of generality we
can assume that |v(y)| = 1 for all y € Y. Pick an isomorphism 7Y — T*Y. It induces a
diffeomorphism A : SY — S*Y between the respective unit sphere bundles. Consider the
composition Aowv : Y — S*Y. For every y € Y there is a unique half-circle Ny on Sy X
containing the points A o v (y) and (y,0,0,+1), north and south poles of the sphere. This
yields a trivial bundle N on Y with fibre Ny over y. There is a projection of S5 X to the
conormal bundle N, given by (y, 0,7, 0) — (y, 0), which induces an isomorphism h : N — N
as fibre bundles in the set-up of fibre homeomorphisms. To construct an extension of ag |s; x
to an isomorphism (3.23) it suffices to set a(y, o) := ao(y, 0,7, 0), for hy(7, 8) = o. O

PROOF of Theorem 3.2. Similarly to the preceding proof it suffices to consider the case of
any fixed order m € R and v = 0. In the present case it is convenient to take m = 1. Let
a; € Sﬁg(T*X \ {0}, Hom(V, V)) be elliptic. Set @/ := a; T;: X, thus obtaining a symbol in
Sﬁg(T;}X \ {0}, Hom(V4-, Vy)). Using a familiar difference construction we get an element
[a}] € K(Ty X), the latter group just amounts to K (T*Y xR). Every element in K (T*Y xR)
can be represented by a homomorphism

o(y,n) +w: B— B, (3.24)

with B a smooth vector bundle on 7*Y x R whose restriction to T*Y is 7y, By for a vector
bundle By onY, and ¢ : 7§ By — 7} By a self-adjoint elliptic symbol of order 1 on Y, cf. [5,
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II1]. Since o(y, n) is elliptic, (3.24) is an isomorphism between corresponding fibres for ¢ = 0.
Moreover, since o (y, n) is self-adjoint, all eigenvalues are real. Hence, (3.24) is an isomorphism
for all p € R. Passing to stabilisations of a] and (3.24), we see that for a suitable M € N the
homomorphism a} @ Icm between the pull-backs of V- © CM and Vy & CM to Sy X has an
extension to an isomorphism @ : 75 yn(Vy @ cM) — W;{,XUN(VY ®CM). Similarly to the
proof of Theorem 3.1 we find an element m(y,z) € M~°°(Y x I'; /5, Hom(Vy @ CM Vo
CM)), such that (3.22) with oy (A)
a1 ®Icm | sz x to an isomorphism over all of S3 X UN, homotopic to @ through isomorphisms.
By analogy with Theorem 3.15 we now form

sz x replaced by ay © Icm |s; x defines an extension of

op™(a1)(y,n) +w(rln))r~opy (m)(y) @(rlnl) = HYY(Ry)® (V, & CY)
— H Y (R,)® (V,®CM).

To complete the proof, it suffices to apply a reduction of order and weight in much the
same way as in the proof of Theorem 3.1. O
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