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We construct a complex Ω•S(log C) of sheaves of multi-logarithmic differential forms on a complex
analytic manifold S with respect to a reduced complete intersection C ⊂ S, and define the residue
map as a natural morphism from this complex onto the Barlet complex ω•C of regular meromorphic
differential forms on C. It follows then that sections of the Barlet complex can be regarded as a
generalization of the residue differential forms defined by Leray. Moreover, we show that the residue
map can be described explicitly in terms of certain integration current.
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Introduction

In 1887, Henri Poincaré [21] introduced the notion of residue 1-form associated with
rational 2-forms on C2. In the papers of G. de Rham, [23], and J. Leray, [18], this notion
was extended to the class of d-closed meromorphic q-form ω having poles of the first order
along a smooth divisor. They proved that the residue of such a form is holomorphic. Inspired
by the ideas of Leray and P. Dolbeault, then M. Herrera, P. Liberman, N. Coleff and others
have developed theory of the integral representation and residue currents (see [7], [8], [6]).

The next stage of the development of the theory started in early ’70’s. It is closely related
with the general theory of logarithmic differential forms. In fact, forms of such type were first
considered in 1972 in a work by J.-B. Poly [22] who defined and studied the Leray residue for
semi-meromorphic differential forms. He had proved that the Leray residue is well defined
for any (not necessarily d-closed) semi-meromorphic differential form ω, as soon as ω and
dω have a simple pole along a hypersurface. Somewhat later, K. Saito investigated the class
of meromorphic differential forms ω satisfying these conditions; in a series of his works,
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these forms were called logarithmic along a hypersurface (see [24], [25]). Saito established
the basic properties of logarithmic differential forms and their residues, and considered some
important and interesting applications. It should be also remarked that the same notion has
occurred also in the book by Ph. Griffiths and J. Harris [12], with no references to previous
works; in this book, the authors use this notion only in the case of divisors which are normal
crossings of smooth hypersurfaces. From another point of view this case has also been treated
in earlier works by P. Deligne, J. Steenbrink, F. Pham, and many others.

Almost at the same time, in 1976, D. Barlet introduced and investigated a complex ω•X
of subsheaves of the sheaves of meromorphic differential forms on an analytic subvariety X
of a complex manifold (see [3], [4]). If dimX = n, then the sheaf ωnX is naturally isomorphic
to the Grothendieck dualizing module. In a purely algebraic context, a similar notion also
appeared in the works by E. Kunz [16], [17], M. Kersken [15], and others on general duality
theory. They call ωqX the sheaf of regular meromorphic differential forms of degree q. In a joint
paper by G. Henkin and M. Passare an analytic interpretation of regular meromorphic forms
is given (see [14]). Some of their results are essentially deduced from the basic properties of
weakly holomorphic functions, established in a series of earlier works of the second author
and his collaborators (see [28], [29], [27]).

In the present paper, we discuss in detail the notion of a multi-logarithmic differential
form introduced in [2]. In fact, a meromorphic multi-logarithmic differential form has poles
along a divisor D =

⋃k
i=1Di such that C =

⋂k
i=1Di is a reduced complete intersection.

Our main theorem asserts that there is a natural morphism which maps the complex of the
multi-logarithmic differential forms onto the complex of the regular meromorphic forms. The
latter complex was defined and studied by D. Barlet [3], [4]. We also define the residue map
and residue form of a multi-logarithmic differential form, as a generalization of corresponding
definitions due to J. Leray, J.-B. Poly and K. Saito. In 1990 the first author investigated
similar constructions in the case of logarithmic differential forms along the divisor D. More
precisely, it was proved [1] that the residue map defined by K. Saito [26] gives a natural
quasi-isomorphism between the complexes of sheaves of the logarithmic differential forms
along the divisor D and of the regular meromorphic forms on D. It should also be mentioned
that an explicit description of residue map in terms of integration currents is also given here;
it is mainly based on results obtained in [28], [29], [27], [6], and [19].

The present paper contains four sections. In the first one we give the basic notation and
definitions, and establish some properties of multi-logarithmic differential forms with respect
to a reduced complete intersection in a complex analytic manifold. Then we consider the
notion of regular meromorphic differential forms and discuss their properties. In Section 3,
our main result is proved. The final section contains an explicit description in terms of
integration currents of the residue map in the case of multi-logarithmic differential forms.

Acknowledgment. The authors are very grateful to Professor A.Yger for useful and stim-
ulating conversations on the theory of residue currents.

1. Multi-Logarithmic Differential Forms

Let U be an open subset of S = Cm, and let D1, . . . , Dk be a set of hypersurfaces defined
by the equations hj(z) = 0, j = 1, . . . , k, k > 1, respectively. Here hj(z) = hj(z1, . . . , zm),
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j = 1, . . . , k, are holomorphic functions on U, and z = (z1, . . . , zm) is a system of coordinates.
In what follows we shall suppose that h1, . . . , hk is a regular sequence in OU , and I =
(h1, . . . , hk)OU is a radical ideal, that is, I =

√
I. In other words, the complex analytic

variety C = D1 ∩ . . . ∩Dk is a reduced complete intersection. In particular, dimC = m− k
and the differential k-form dh1 ∧ . . . ∧ dhk vanishes identically on no irreducible component
of C. Let Ω•U =

(
ΩqU , d

)
q=0,1,...

be the de Rham complex of germs of holomorphic differential
forms on U whose terms, locally at the point 0 ∈ U, are defined as follows:

ΩqU,0 = OU,0
〈
. . . , dzi1 ∧ . . . ∧ dziq , . . .

〉
, (i1, . . . , iq) ∈ [1,m].

Set D = D1 ∪ . . . ∪Dk, and D̂j = D \Dj , j = 1, . . . , k. Let ΩqU (?D̂j) be the OU -module of
meromorphic differential forms of degree q > 0 consisting of all the differential q-forms with
the polar divisor D̂j . We write D̂1 = ∅ for k = 1, so that ΩqU (?D̂1) = ΩqU .

Proposition 1.1. Let ω be a meromorphic differential q-form on U, q > k, with poles along
the divisor D = D1 ∪ . . . ∪Dk. The following conditions are equivalent:

i) hjω ∈
k∑
i=1

ΩqU (?D̂i), hjdω ∈
k∑
i=1

Ωq+1
U (?D̂i), j = 1, . . . , k ;

ii) hjω ∈
k∑
i=1

ΩqU (?D̂i), dhj ∧ ω ∈
k∑
i=1

Ωq+1
U (?D̂i), j = 1, . . . , k ;

iii)There exists a holomorphic function g, not equal identically to zero on every irreducible
component of C, a holomorphic (q−k)-form ξ and a meromorphic q-form η ∈

∑k
i=1 ΩqU (?D̂i)

on U such that

gω =
dh1

h1
∧ . . . ∧ dhk

hk
∧ ξ + η ;

iv)There exist analytic subsets Aj ⊂ Dj , j = 1, . . . , k, of codimension at least 2 such
that the germ of ω at any point x ∈

⋃k
j=1(Dj \Aj) belongs to

dh1

h1
∧ . . . ∧ dhk

hk
∧ Ωq−kU,x +

k∑
i=1

ΩqU,x(?D̂i),

where Ωq−kU,x is the module of germs of holomorphic q-forms on U at x.

Proof. The equivalence of i) and ii) follows directly from the Leibnitz rule:

d(hjω) = dhj ∧ ω + hjdω.

Let us prove the implication ii) ⇒ iii). Consider the following representation of the form
ω :

ω =

∑
|I|=q

aI(z)·dzI

h1 · · ·hk
,

where I := Iq = (i1, . . . , iq), 1 6 i1, . . . , iq 6 m, is a multi-index, dzI = dzi1 ∧ . . .∧dziq , and
aI(z) is a set of holomorphic functions on U, skew symmetric with respect to the index I.
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It is easy to see that the condition

dhj ∧ ω ∈
k∑
i=1

Ωq+1
U (?D̂i)

is equivalent to the condition

dhj ∧
∑
I

aI(z)·dzI ∈
k∑
`=1

h`Ω
q+1
U .

For an ordered multi-index I := Iq+1 = (i1, . . . , iq+1), the latter gives us the following
system of relations between the coefficients aI and the derivatives ∂hj/∂zi :

q+1∑
`=1

(−1)`−1 ∂hj
∂zi`

aI\i` = b1jIh1 + . . .+ bkjIhk, j = 1, . . . , k, (1)

with holomorphic coefficients b1jI , . . . , b
k
jI ∈ OU .

Let us fix a multi-index Jp = (j1, . . . , jp) ⊂ [1, . . . ,m], 1 6 p 6 k, and denote the
corresponding minor of the Jacobian matrix Jac(h1, . . . , hk) = ‖∂hi/∂zj‖ as follows:

∆Jp = ∆j1...jp = det
∥∥∥∥ ∂hi∂zjr

∥∥∥∥
16i, r6p

.

Let I ⊆ OU be the ideal generated by the sequence of germs (h1, . . . , hk).We shall prove
the following relations:

∆JpaIq ≡
∑
K⊂Iq
|K|=p

sgn
(

Iq

K, Iq \K

)
∆K a(Jp,Iq\K)

(
mod (I)

)
, p = 1, . . . , k, (2)

by induction on p. Suppose that p = 1, J1 = j1, and set I = (j, Iq) = (j1, i1, . . . , iq) in
formula (1). One gets

∂h1

∂zj
aI ≡

q+1∑
`=1

(−1)`
∂h1

∂zi`
aI\i`

(
mod (I)

)
,

and this coincides with relation (2) for p = 1.
Assuming relation (2) to be true for p− 1, one can prove it for p as follows. Making use

of the cofactor expansion along the p-th row of the determinant ∆Jp , one obtains:

∆JpaI =
p∑
`=1

(−1)p−`
∂hp
∂zj`

∆p−1

j1...ĵ`...jp
aI .

We have

∆j1...ˆ̀...jp
aI ≡

∑
K′⊂Iq
|K′|=p−1

sgn
(

Iq

K ′, Iq \K ′

)
∆K′a(j1...ĵ`...jp, I\K′)

(
mod (I)

)
,
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by the induction hypothesis. By substituting this relation into the previous equation and
changing the order of summation, one obtains

∆JpaI ≡
∑
K′⊂Iq
|K′|=p−1

sgn
(

Iq

K ′, Iq \K ′

)
∆K′

p∑
`=1

(−1)p−`
∂hp
∂z`

a(j1...ĵ`...jp, I\K′)
(
mod (I)

)
.

The second sum consists of p summands contained in formula (1) for j = p, I =
(i1, . . . , ip, I \ K ′). Hence one can rewrite it as a sum of other q − p + 1 summands with
opposite signs and an element of the ideal (h1, . . . , hk)OU . This yields the following relation
modulo I :

∆JpaI ≡
∑
K′⊂Iq
|K′|=p−1

sgn
(

Iq

K ′, Iq \K ′

)
∆K′(−1)p−1

∑
i∈I\K′

(−1)#(i; I\K′) ∂hp
∂zi

a(j1...jp, I\K′\i), (3)

where #(i; I \K ′) denotes the number of occurrences of the index i in the set I \K ′. Let
us order all the pairs (K ′, i) in such a way that the multi-index K ′ ∪ {i} coincides with a
given K ⊂ I. For any such pair, the corresponding coefficient a(j1...jp, I\(K′\i)) is equal to
a(J, I\K). Thus the contribution of the set ordered as above to relation (3) looks as follows:

a(J, I\K)(−1)p−1
∑
i∈K

sgn
(

Iq

K \ i, Iq \K, i

)
(−1)#(i; I\(K\i)) ∂hp

∂zi
∆K\i =

= sgn
(

Iq

K, Iq \K

)
aJ, I\K ∆K .

This completes the proof of relation (2) for p > 1.
It is not difficult to see that relations (2) imply the following equality

∆i1...ik ·
∑
|I|=q

aIdzI = dh1 ∧ . . . ∧ dhk ∧
( ∑
|I′|=q−k

ai1...ikI′ dzI′
)

+ ν,

with ν ∈
∑k
j=1 hjΩ

q−k
U , so that iii) holds, with g = ∆i1...ik , and with ξ, η of the required

shape. It remains to show that one can choose the function g in iii) in such a way that
g 6≡ 0 on each of the irreducible components Cj of C. Let {∆i1...ik}, (i1, . . . .ik) ∈ [1, . . . ,m],
be the set of all k × k-minors, with elements ∆1, . . . ,∆N , where N =

(
m
k

)
. By assumption,

for every non-singular point of C, there is a minor that does not vanish at this point. Let
z(j) ∈ Cj and suppose that z(j) is non-singular, then the function

∆t(z) = t∆1 + t2∆2 + . . .+ tN∆N

regarded as polynomial of t, does not vanish identically for every z = z(j). Hence, there is a
value t0 ∈ C such that ∆t0(z(j)) 6= 0 for all j; thus one can take g(z) = ∆t0(z).

Here is a purely algebraic proof of this result. Consider the ideal G of OU generated by all
the minors ∆j1...jk of maximal order of the Jacobian matrix Jac(h1, . . . , hk). The condition
that dh1 ∧ . . .∧ dhk does not vanish identically on every irreducible component of C implies
that the image G̃ of G in the ring OC,0 is not equal to AnnOC,0. Thus one can use [5],
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Th.2.4. (1) which implies that the OC,0-depth of the ideal G̃ is at least 1. Hence there is an
element g ∈ OC satisfying the condition in iii).

The implication iii)⇒ iv) is obvious: take Aj = Dj ∩ {g = 0}, j = 1, . . . , k.
Let us prove the implication iv) ⇒ ii). It is obvious that hjω can be expressed as a

sum of meromorphic forms each of which has singularities along at most k − 1 divisors,
for example, on D̂i, and on the subset Ai ⊂ Di of codimension 2. Hence by the Riemann
extension theorem, such a meromorphic form has singularities only on D̂i. As a result,
hjω ∈

∑k
i=1 ΩqU (?D̂i), j = 1, . . . , k. Similar considerations are valid for the differential form

dhj ∧ ω. This completes the proof of the implication iv)⇒ ii). 2

Remark 1.1. In fact, if k = 1 and C = D is a reduced hypersurface then Proposition 1.1
is a generalization of the basic Lemma-Definition due to K. Saito (see [26], (1.1)).

Definition 1.1. A meromorphic differential q-form ω, q > k, on U is called multi-
logarithmic with respect to the reduced complete intersection C = D1 ∩ . . .∩Dk if ω satisfies
one of the conditions i) - iv) of Proposition 1.1.

The localization of this definition leads to the notion of multi-logarithmic differential
forms with respect to the complete intersection C at a point x ∈ S. We denote the OS,x-
module of germs of multi-logarithmic q-forms at x and the corresponding sheaf of multi-
logarithmic differential q-forms on S by ΩqS,x(logC) and ΩqS(logC), q > k, respectively.
Thus the OS-module ΩqS(logC) is a submodule of ΩqS(?D), consisting of all the differential
forms with polar singularities along the divisor D.

Corollary 1.1. There are the following natural inclusions

hΩqS(logC) ⊂ ΩqS , q > k.

Proof. Condition i) implies that hω has poles along D, while condition iv) shows that
this meromorphic form has poles along the hypersurface defined by the holomorphic function
g. Hence, hω is holomorphic outside a subset of S of codimension at least 2 since the functions
h and g are in general position. It remains to apply the Riemann extension theorem. 2

The structure of Ω•S(logC) seems to be more clear from the following observations. Set
Ĉj =

⋂k
i=1, i 6=j Di, where j = 1, . . . , k. Then there are the following natural inclusions

ΩqS(log Ĉj) ⊂
k∑
i=1

ΩqS(?D̂i) ⊂ ΩqS(logC),
dhj
hj
∧ Ωq−1

S (log Ĉj) ⊂ ΩqS(logC).

In similar notations one gets

ΩqS(log Ĉij) ⊂
k∑
i=1

ΩqS(?D̂i) ⊂ ΩqS(logC),
dhi
hi
∧ dhj
hj
∧ Ωq−2

S (log Ĉij) ⊂ ΩqS(logC),

and so on.
The following statement shows that the definition of multi-logarithmic differential forms

is quite functorial; in particular, it is compatible with restrictions of certain type.
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Lemma 1.1. The sheaves ΩqS(logC) and ΩqS coincide outside D for all q > k. The stalks
ΩqS,x(logC) and ΩqS,x(logDi) are isomorphic at all points x ∈ Di \ C. Further, set Cij =
Di ∩Dj . Then ΩqS,x(logC) ∼= ΩqS,x(logCij) at all points x ∈ Cij \ C. A similar assertion is
valid for triple intersections, and so on.

At last, for the sake of convenience of notation we set

ΩqS(logC) =
k∑
i=1

ΩqS(?D̂i), q = 0, . . . , k − 1. (4)

It should also be remarked that ΩqS(logC), q > 0, are coherent sheaves of OS-modules.
Moreover, they are OS-modules of finite type, and the direct sum ⊕mq=0ΩqS(logC) is an
OS-exterior algebra closed under the standard action induced by the exterior de Rham
differentiation d on Ω•S .

In what follows, we let for simplicity x = 0 when considering the local problems in the
neighbourhood of x. We shall also assume that U is an open subset of S = Cm containing
the origin.

Definition 1.2. In the notation of iii), the restriction to the complete intersection C =
D1 ∩ . . . ∩Dk of the form ξ/g is called the residue form of ω :

res. ω =
ξ

g

∣∣∣∣
C

.

Proposition 1.2. The residue morphism res. is well-defined.

Proof. Let ω ∈ ΩqS(logC), q > 0. If ω has two different local presentations

g`ω =
dh1

h1
∧ . . . ∧ dhk

hk
∧ ξ` + η`, ` = 1, 2,

then
dh1 ∧ . . . ∧ dhk ∧ (g1ξ2 − g2ξ1) = h1 · · ·hk(g1η2 − g2η1) ∈ (h1, . . . , hk)ΩqS .

Hence
dh1 ∧ . . . ∧ dhk ∧ (g1ξ2 − g2ξ1) ≡ 0

(
mod (h1, . . . , hk)

)
.

Now one can apply the part i) of the Theorem from [24] for R = OC,0, M = ΩqS,0 ⊗ OC,0.
It follows then that

Ge(g1ξ2 − g2ξ1) ∈ dh1 ∧ Ωq−kS,0 + . . .+ dhk ∧ Ωq−kS,0 , e ∈ Z, e > 1,

in ΩqS,0⊗OC,0, where the ideal G of OS,0 is generated by all minors of maximal order ∆j1...jk

of the Jacobian matrix Jac(h1, . . . , hk). Since C is reduced, the image G̃ of G in the ring
OC,0 is not equal to AnnOC,0. Thus one can use [5], Th.2.4. (1), which implies that the
OC,0-depth of the ideal G̃ is at least 1. Hence there is a maximal minor ∆ = ∆i1...ik which
is not a zero-divisor in OC,0, and

∆e(g1ξ2 − g2ξ1) ∈ dh1 ∧ Ωq−1
S,0 + . . .+ dhk ∧ Ωq−1

S,0

in ΩqS,0⊗OC,0. Therefore the class of ∆e(g1ξ2− g2ξ1) in ΩqC,0 is equal to zero. Thus the two

elements
1
g1
ξ1 and

1
g2
ξ2 define the same class inMC,0 ⊗OC,0 ΩqC,0. 2
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Lemma 1.2. The map res. commutes with the exterior de Rham differentiation d and
defines a homomorphism of OS-modules

res. : ΩqS(logC) −→MC ⊗OC Ωq−kC , q > k,

so that
∑k
i=1 ΩqS(?D̂i) ⊆ Ker(res. ).

Remark 1.2. In particular, for q = k we have a short complex

k∑
i=1

ΩkS(?D̂i) −→ ΩkS(logC) res.−→MC
∼=MC̃ ,

where π : C̃ −→ C is the normalization of C. It was observed by K. Saito that if k = 1 and
C = D is a hypersurface which is a normal crossing outside a subvariety of codimension at
least 2, then the image Im (res. ) coincides with π∗(OD̃); it consists of the so-called weakly
holomorphic functions on D, that is, meromorphic functions whose preimage becomes holo-
morphic on the normalization (see [26], (2.8)). Some interesting properties of the class of
weakly holomorphic functions have been discussed in [28].

Lemma 1.3. The image res.ΩqS(logC), q > k, of the residue map are OC-modules.

Proof. The definition of multi-logarithmic forms implies that

hj ·
(

ΩqS,0(logC)/
k∑
i=1

ΩqS(?D̂i)
)

= 0, j = 1, . . . , k.

Hence, the ideal (h1, . . . , hk) ⊂ OS annihilates Im (res. ). 2

Remark 1.3. The requirement iii) of Proposition 1.1 is equivalent to the following condi-
tion:

∆j1...jk · ω ∈
dh1

h1
∧ . . . ∧ dhk

hk
∧ Ω•−kU +

k∑
i=1

Ω•U (?D̂i), (j1, . . . , jk) ∈ [1, . . . ,m],

for any minor ∆j1...jk of maximal order of the Jacobian matrix Jac(h). That is, these minors
can be considered as universal denominators for complete intersections in the usual sense.

2. Regular Meromorphic Differential Forms

Let X be an analytic reduced subspace of a complex manifold S, let dimX = n, and
dimS = n+ k. The OX,0-module

ωnX,0 = ExtkOS,0(OX,0, Ωn+k
S,0 )

is said to be the Grothendieck dualizing module of the germ (X, 0).
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Definition 2.1. The sheaf ωqX , q > 0, of regular meromorphic differential q-forms is locally
given as follows:

ωqX,0 = HomOX,0(Ωn−qX,0 , ω
n
X,0);

equivalently, the sheaf ωqX,0 consists of all the meromorphic forms ω of degree q on X such
that ω ∧ η ∈ ωnX,0 for any η ∈ Ωn−qX,0 .

We shall study the case whenX is taken to be the reduced germ of a complete intersection
C = D1 ∩ . . . ∩ Dk, where D1, . . . , Dk is a set of hypersurfaces defined by the equations
hj(z) = 0, j = 1, . . . , k, k > 1, respectively (in the notation of Section 1). In this case,

ωnC,0 = ExtkOS,0(OC,0, Ωn+k
S,0 ) ∼= OC,0

(
dz1 ∧ . . . ∧ dzn+k

dh1 ∧ . . . ∧ dhk

)
is a free module of rank one, and

ωqC,0
∼= HomOC,0(Ωn−qC,0 , OC,0), 0 6 q 6 n.

Here are some properties of regular meromorphic differential forms:
1) ωqC = 0 for q < 0 and for q > dimC;
2) the de Rham differential d is extended to the modules ωqC , 0 ≤ q ≤ n, so that (ω•C , d)

is a complex;
3) in the case when C is normal, the sheaves ωqC have the following well-known interpre-

tation:
ωqC
∼= j∗j

∗ΩqC ,

where j : C \SingC −→ C is the canonical embedding. More precisely, in such a case, for any
q ≥ 0 there is an exact sequence of local cohomology groups with supports in Z = SingC :

0 −→ H0
Z(ΩqC) −→ ΩqC −→ ωqC −→ H1

Z(ΩqC) −→ 0.

Let k = 1, so that C = D is a hypersurface. Then both the module ω0
D,0 and the OD-

module res.Ω1
S,0(logD) contain all the germs of locally bounded meromorphic functions on

D (cf. [4], §2, ex. i)). Moreover, these two sets coincide if the local fundamental group of the
complement S \D is abelian (see [24]).

Theorem 2.1 ([4]). There is the following exact sequence of OC-modules

0 −→ ωqC
C−→ ExtkOS

(
OC , Ωq+kS

) E
−−→

(
ExtkOS

(
OC , Ωq+k+1

S

))k
, q ≥ 0,

where ωqC ⊂ j∗j
∗ΩqC , the map C is multiplication by the fundamental class of C in S, and

E(e) = (e ∧ dh1, . . . , e ∧ dhk).

Thus C(v) corresponds to a Čech cocycle w/h such that w = v∧dh. It is easy to see that

ωnC
∼= ExtkOS (OC , Ωn+k

S ).

In particular, ωnC is isomorphic to the Grothendieck dualizing module of the n-dimensional
complete intersection C ⊂ S. In conclusion, we establish a remarkable property of regular
meromorphic differential forms in terms of the trace map associated with the Noether nor-
malization. In fact, this property in a slightly different context has been proved by D. Barlet
(see [4]).
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Theorem 2.2. The OC,0-module ωqC,0, q ≥ 0, consists of all the meromorphic forms ω of
degree q on C satisfying the following condition: for any η ∈ Ωn−qC,0 , the trace

TraceC/Cn(ω ∧ η)(z) =
∑

x∈π−1(z)

(ω ∧ η)(x)

is the germ of a holomorphic form on C.

Proof. Taking the Noether normalization of the germ C, one can suppose that the germ
(S, 0) is isomorphic to the direct product (Cn, 0) × (Ck, 0) with coordinates (z, w) so that
the natural projection π : (C, 0)→ (Cn, 0) is a finite covering.

Let ω ∈ ωqC,0, so that for any η ∈ Ωn−qC,0 one has

ω ∧ η =
α

dh1 ∧ · · · ∧ dhk
∈ ωnC,0,

where α ∈ Ωn+k
S,0 . By definition, one can view the differential form ω ∧ η as an element of a

Čech cochain in the open set {∆(z, w) 6= 0} :

ω ∧ η =
ϕ(z, w)

∆
dz,

where ϕ is a holomorphic function and ∆ is the determinant of the Jacobian matrix of the
sequence of functions h1(z, w), . . . , hk(z, w) with respect to w, that is,

∆ = det
∥∥∥∥∂hj∂wi

∥∥∥∥
16i, j6k

.

Thus
TraceC/Cn(ω ∧ η)(z) =

∑
`

ϕ

∆
(z, w`(z)) dz.

It is well-known (see [29], Ch.1) that the trace of the meromorphic function ϕ/∆, whose
denominator is equal to the Jacobian of the map π, is holomorphic. The proof of this fact
is based on the integral representation of the trace as(

1
2π
√
−1

)k∫
Γ

ϕ(z, w)dw
h1(z, w) · · ·hk(z, w)

,

where the integrand is holomorphic on the parameters z and

Γ = {w ∈ Ck : |h1(0, w)| = . . . = |hk(0, w)| = ε}

is a compact cycle.
To prove the converse, for simplicity, we consider the case n = 1, so that C is a complete

intersection curve. The general case can be studied in the same way. Let ν ∈ Ω1
S,0, and

suppose that Trace
(
ϕ
ν

g

)
is holomorphic, for any holomorphic function ϕ ∈ OC,0. Then

one has to prove
ν

g

∣∣∣∣
C

=
ϕ

dh1 ∧ . . . ∧ dhk

∣∣∣∣
C

,
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that is,
ν ∧ dh = ϕg + h1f1 + . . .+ hkfk, (5)

where f1, . . . , fk ∈ OS,0 are holomorphic functions. By assumption,

Trace
(
ϕ
ν

g

)
(z) =

∑
`

ϕ
ν

g
(z, w`(z))

is holomorphic for any ϕ. Let us consider the Grothendieck residue

Rh,g[ϕν ∧ dh1 ∧ . . . ∧ dhk] =
∫

Γε,δ

ϕν ∧ dh1 ∧ . . . ∧ dhk
gh1 . . . hk

,

where Γε,δ = {(z, w) ∈ (S, 0) : |h1| = ε, . . . , |hk| = ε, |g| = δ}. The local variant of the
Hilbert Nullstellensatz shows that for some N > 1, one can write

zN = q1h1 + . . .+ qkhk +Qg.

Therefore after applying the residue transformation formula one obtains

Rh,g[ϕν ∧ dh1 ∧ . . . ∧ dhk] = Rh,r[Qϕν ∧ dh1 ∧ . . . ∧ dhk],

where r = zN . The contour of integration in the latter integral

γ(ε, δ) = {(z, w) ∈ (S, 0) : |h1| = ε, . . . , |hk| = ε, |z| = δ}

is fibered under the projection π over the circle |z| = δ. Hence, the integration with respect
to w along the classical formula of the logarithmic residue yields

Rh,g[ϕν ∧ dh1 ∧ . . . ∧ dhk] =

=
1

2π
√
−1

∫
|z|=δ

Trace
(
ϕν

q

r

)
(z) =

1
2π
√
−1

∫
|z|=δ

Trace
(
ϕ
ν

g

)
(z),

since the restrictions of q/r and 1/g to C are equal. By our assumption the last integral is
equal to zero, hence the local duality theorem of Grothendieck implies (5). This completes
the proof in the case n = 1. 2

3. The Poincaré Residue Map

First recall the definition of the classical Poincaré residue, following [11]. Let ω be a
meromorphic differential m-form on an m-dimensional complex analytic manifold S with a
polar divisor D ⊂ S. Thus, locally we have a representation:

ω =
f(z)dz1 ∧ . . . ∧ dzm

h(z)
.

By definition, the Poincaré residue résD(ω) is a meromorphic (m − 1)-form on D whose
singularities are contained in the singular locus SingD ⊂ D. To define this form explicitly,
let us note that at each point x ∈ D \ SingD one of the derivatives does not vanish:

∂h

∂zi
(x) 6= 0.
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Hence, locally one can set

résD(ω) = (−1)m−i
f(x)dz1 ∧ . . . ∧ d̂zi ∧ . . . ∧ dzm

∂h

∂zi
(x)

∣∣∣∣∣
D

.

It is not difficult to verify that this expression does not depend on the index i, on the local
coordinates, and on the defining equation of D. Moreover, the Poincaré residue résD(ω) is
holomorphic on the complement S \D. When D is smooth, one can take h(z) = zm, then

résD

(
f(x)dz1 ∧ . . . ∧ dzm

zm

)
= f(x)dz1 ∧ . . . ∧ dzm−1

coincides with the usual residue.
For brevity, the Poincaré residue résD(ω) will be denoted by rés(ω). When D ⊂ S is a

nonsingular hypersurface, the Poincaré residue induces an exact sequence

0 −→ ΩmS −→ ΩmS (D)
rés
−−→ Ωm−1

D −→ 0 ,

where ΩmS (D) denotes the set of meromorphic forms on S having a pole of the first order
along the divisor D. In particular, it follows that the germ of every holomorphic (m−1)-form
on D is a Poincaré residue. It is obvious that this is true globally when the first cohomology
group vanishes: H1(S,ΩmS ) = 0.

More generally, following J.Leray (see [13]) one can apply the above construction to
meromorphic differential q-forms on S with a smooth polar divisor D ⊂ S for any 1 6 q 6 m,

and write locally for any d-closed differential q-form ω on S \ D, having poles of the first
order along D, the following presentation:

ω =
dh

h
∧ ξ + η,

where ξ and η are holomorphic. The restriction of ξ to D is a holomorphic form independent
of the choice of the local equation h = 0 of D; we denote it by rés(ω) as before. As a result,
one gets (see [20]) an exact sequence

0 −→ ΩqS −→ ΩqS(D)
rés
−−→ Ωq−1

D −→ 0, 1 6 q 6 m,

which is equivalent to the sequence

0 −→ ΩqS −→ ΩqS(logD)
rés
−−→ Ωq−1

D −→ 0 , (6)

since the divisor D is a smooth hypersurface.

Remark 3.1. As it has been already remarked by de Rham and Leray (cf. [13]), for a
meromorphic q-form ω with poles of the first order along D the above definition gives us
the holomorphic (q − 1)-form rés(ω) in cases when the singular locus SingD of the divisor
D consists of isolated double quadratic points only and either q < m, or q = m, and the
coefficient of m-form h · ω vanishes on SingD. This phenomenon can be readily explained
by considerations which we use in the next and previous sections.
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An extension of the exact sequence (6) to the case when the divisor D has arbitrary
singularities was described in [1]

0 −→ ΩqS −→ ΩqS(logD)
res.
−−→ ωq−1

D −→ 0, q > 1. (7)

The following theorem is devoted to further generalization of this construction to the case
of complete intersection.

Theorem 3.1. Let C ⊂ S be a reduced complete intersection. Then under notations of
Section 1 there is a short exact sequence

k∑
i=1

ΩqS(?D̂i) −→ ΩqS(logC)
res.
−−→ ωq−kC −→ 0, q > k,

and a natural isomorphism of OC-modules

res.ΩqS(logC) ∼= ωq−kC , q > k.

Proof. The proof goes similarly to [1], §4. Thus, it is sufficient to verify our statements
locally. Remark 1.3 implies

∆j1...jk · res.ΩqS(logC)
∣∣
U
⊂ Ωq−kC

∣∣
C∩U ,

for all maximal minors ∆j1...jk , (j1, . . . , jk) ∈ [1, . . . ,m] of the Jacobian matrix Jac(h).
Since ωnC,0 ∼= OC,0(dz1∧ . . .∧dzn+k/dh1∧ . . .∧dhk), the definition of the modules of regular
meromorphic differential forms implies immediately that

res.ΩqS(logC) ⊆ ωq−kC .

Let now K•(h) be the usual Koszul complex associated with the sequence h = (h1, . . . , hk) :

0→ OS,0〈e0 ∧ . . . ∧ ek−1〉
dk−1

−−→ . . .
d1
−−→ OS,0〈e0〉+ . . .+OS,0〈ek−1〉 →

d0
−−→ OS,0

d−1

−−→ OC,0 → 0 ,

where

Kk(h) = OS,0〈e0 ∧ . . . ∧ ek−1〉, . . . , K1(h) = OS,0〈e0〉+ . . .+OS,0〈ek−1〉,

and K0(h) = OS,0, d0(ei) = hi+1, i = 0, . . . , k−1, d−1(1) = 1. From the dual exact sequence
one obtains, by definition,

ExtkOS,0(OC,0, Ωq+1
S,0 ) ∼= HomOS,0(Kk(h), Ωq+1

S,0 )/dk−1
(
HomOS,0(Kk−1(h), Ωq+1

S,0 )
)
.

This means that any element of ExtkOS,0(OC,0, Ωq+1
S,0 ) can be represented as a Čech (k− 1)-

cochain (more explicitly, a (k − 1)-cocycle)

ν

h1 · · ·hk
∈ HomOS,0(Kk(h), Ωq+1

S,0 ) ∼= Ck−1
(k) (Ωq+1

S,0 ),
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where ν ∈ Ωq+1
S,0 . Choose now an element ν ∈ Ωq+1

S,0 such that

ν

h1 · · ·hk
∧ dhj ∈ ExtkOS,0(OC,0, Ωq+2

S,0 ), j = 1, . . . , k,

corresponds to the trivial element. This means that for any j = 1, . . . , k the form ν ∧
dhj/h1 · · ·hk, is defined by an element of dk−1

(
HomOS,0(Kk−1(h), Ωq+2

S,0 )
)
. This yields that

ν ∧ dhj ∈
k∑
i=1

hiΩ
q+2
S , j = 1, . . . , k,

or, equivalently,

ω ∧ dhj ∈
k∑
i=1

Ωq+1
S (?D̂i), j = 1, . . . , k, where ω =

ν

h1 · · ·hk
.

In view of Proposition 1.1 this means that ω ∈ ΩqS,0(logC). Now we shall use the notation
and exact sequence of Theorem 2.1. Set ν̃ = C−1(ν/h1 · · ·hk). Then C(ν̃) corresponds to
the Čech cocycle ν/h1 · · ·hk such that ν = ν̃ ∧ dh1 ∧ · · · ∧ dhk (take v = ν̃, w = ν in the
description of ωqC in terms of multiplication by the fundamental class of C in S). This implies

ν

h1 · · ·hk
= ν̃ ∧ dh1

h1
∧ · · · ∧ dhk

hk
, and res.

(
ν

h1 · · ·hk

)
= ν̃.

Thus, for any element ν̃ ∈ ωq−kC there is a preimage under the multi-logarithmic residue map
represented by ν/h1 · · ·hk. 2

4. On Residues of Multi-Logarithmic Forms and
∂̄-closed Currents

We first remark, that in view of Theorem 3.1, the sections of ω•C can be considered as
“regular meromorphic forms.” More precisely, in complex analysis “regular” or “holomorphic”
differential forms are usually described as ∂̄-closed forms (cf. [14]).

The key idea and further considerations in this section are closely related to the methods
developed in [28], where the theory of weakly holomorphic functions is studied. Moreover,
they lead to another proof of the statement of Theorem 3.1 concerning the representation of
sections of Barlet sheaves ω•C as residues of multi-logarithmic differential forms. The main
result of this section is the following theorem.

Theorem 4.1. There is a natural one to one correspondence between the sets of residues
of multi-logarithmic forms and meromorphic ∂̄-closed currents on the complete intersection
C = D1 ∩ . . . ∩Dk.

The proof will be given below. We start with the definition of the integration current
associated with a meromorphic differential form, and recall the basic properties of residue
currents.
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Let ψ = ξ/g be a meromorphic differential form on a reduced analytic subset C of a
domain U ⊂ Cm; here ξ is a holomorphic differential form and g is a holomorphic function.
Such a form defines the following current〈

[ψ], ϕ
〉

=
〈 [

ξ

g

] ∣∣∣∣
C

, ϕ

〉
= lim
ε→0

∫
C∩{|g|>ε}

ξ

g
∧ ϕ, ϕ ∈ D•(U), (8)

where ϕ is a test C∞-differential form with compact support on U, and the real dimension
of ξ is equal to the sum (degϕ+ degψ) of degrees of ϕ and ψ. This is an integration current
on C in the principal value sense.

A residue current Rh associated with a holomorphic map h = (h1, . . . , hk) : U → Ck is
a functional on the space D•(U) of C∞-differential forms with compact supports on U. It is
defined as follows (see [6] or [29]):

Rh(ϕ) = lim
ε→0

∫
Tε(h)

ϕ

h1 · · ·hk
, ϕ ∈ D2m−k(U),

where the integral is taken over the tube

Tε(h) = {z ∈ S : |hj(z)| = εj , j = 1, . . . , k}

with a fixed orientation. Here the approach of the radii ε = (ε1, . . . , εk) to zero is required
to be along a so-called admissible path: a path ε = ε(τ) is called admissible, if εk → 0 as
τ → 0 and for each j = 1, . . . , k − 1, the coordinate εj(τ) approaches zero faster than any
power of the next coordinate εj+1(τ).

The principal value of the residue current Rh with respect to a function g : U → C is
defined as the limit

PgRh(ϕ) = lim
τ→0

∫
Tε(h)∩{|g|>δ}

ϕ

gh1 · · ·hk
along the admissible path (ε(τ), δ(τ)) : [0, 1]→ Rk+1.

When the set h−1(0) = {h1 = . . . = hk = 0} is a complete intersection of codimension k
then

Rh = ∂̄

[
1
h1

]
∧ . . . ∧ ∂̄

[
1
hk

]
.

Respectively, when g 6≡ 0 on every irreducible component of the analytic set h−1(0) then

PgRh =
[

1
g

]
∂̄

[
1
h1

]
∧ . . . ∧ ∂̄

[
1
hk

]
.

When ω = α/h1 · · ·hk is a meromorphic differential form of degree ` then there is the current

Rh[ω](ϕ) := Rh(α ∧ ϕ), ϕ ∈ D2m−k−`(U).

Analogously for ω = α/g ·h1 · · ·hk we set

PgRh[ω](ϕ) = PgRh(α ∧ ϕ).

Let us assume that the zero set defined by the system of equations

{g = h1 = . . . = hk = 0}
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is a complete intersection. Then the residue currents Rh and their principal values Pg with
respect to g have the following properties:

1) Rh[ω] = PgRh[gω];

2) PgRh

[
dh1

h1
∧ . . . ∧ dhk

hk
∧ ξ
g

]
=
[
ξ

g

] ∣∣∣∣
C

=
[
ξ

g

]
∧ [C];

where [C] is the integration current (a holomorphic chain) on C. In particular, when ξ and
g are identically equal to the constant 1, then

Rh

[
dh1

h1
∧ . . . ∧ dhk

hk

]
= dh1 ∧ . . . dhk ∧ ∂̄

[
1
h1

]
∧ . . . ∧ ∂̄

[
1
hk

]
= [C];

3) hjPgRh = 0, j = 1, . . . , k;

4) If U is a domain of holomorphy (or a Stein manifold) then for v ∈ OU one has

vRh = 0⇐⇒ v ∈ (h1, . . . , hk)OU .

In particular, this property is valid in the local rings OU,x, x ∈ U.
Properties 1) and 3) are proved in [6], Theorem 4.4.1 and Theorem 1.7.6, respectively,

property 2) is obtained in [27], Theorem 2.1; property 4) is obtained in [19], Corollary 6.1.2.
Proof of Theorem 4.1. Let ω ∈ Ωq+kS,0 (logC), so that

ω =
α

h1 · · ·hk
, and gω =

dh1

h1
∧ . . . ∧ dhk

hk
∧ ξ + η,

where α, ξ are holomorphic and η satisfies the condition iii) of Proposition 1.1. In view of
property 1) one has

Rh[ω] = PgRh[gω] = PgRh

[
dh1

h1
∧ . . . ∧ dhk

hk
∧ ξ
g

]
+ PgRh

[
η

g

]
.

The second summand corresponds to the current which is trivial by property 3). Property 2)
implies

Rh[ω] =
[
ξ

g

] ∣∣∣∣
C

.

Hence, the current
[
ξ

g

] ∣∣∣∣
C

defined by the residue res. ω =
ξ

g

∣∣∣∣
C

of the multi-logarithmic form

ω coincides with the residue current Rh[ω] which is ∂̄-closed (see [6]).
Conversely, under the same assumptions, let ξ/g be a meromorphic form on C, and the

corresponding current (8)〈
[ψ], ϕ

〉
=
〈 [

ξ

g

] ∣∣∣∣
C

, ϕ

〉
= lim
ε→0

∫
C∩{|g|>ε}

ξ

g
∧ ϕ, ϕ ∈ D•(U)

is ∂̄-closed. Then in virtue of property 2)

0 = ∂̄

[
ξ

g

] ∣∣∣∣
C

= ∂̄

([
ξ

g

]
∧ [C]

)
.
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Since ∂̄[C] = 0, applying the Leibnitz rule and property 2), one obtains

0 = ∂̄

[
ξ

g

]
∧ [C] = ∂̄

[
ξ

g

]
∧ dh1 ∧ . . . ∧ dhk ∧ ∂̄

[
1
h1

]
∧ . . . ∧ ∂̄

[
1
hk

]
.

Property 4) yields
dh1 ∧ . . . ∧ dhk ∧ ξ ∈ (g, h1, . . . , hk)Ωq+kU,0 ,

that is,
dh1 ∧ . . . ∧ dhk ∧ ξ = αg − h1η1 − . . .− hkηk, (9)

where α, η1, . . . , ηk ∈ Ωq+kU are holomorphic forms in the domain U ⊂ S. Here property 4)
is used in computing the coefficients of the form ξ ∧ dh. Let us consider the meromorphic
form ω = α/h1 · · ·hk. We have

g ·ω = g · α

h1 · · ·hk
=
dh ∧ ξ + h1η1 + . . .+ hkηk

h1 · · ·hk
=
dh1

h1
∧ . . . ∧ dhk

hk
∧ ξ + η,

where

η =
k∑
i=1

ηi
h1 · · ·hk

∈
k∑
i=1

Ωq+kU,0 (?D̂i).

This completes the proof of Theorem 4.1. 2

One can deduce the main statement of Theorem 3.1 from the following theorem.

Theorem 4.2. A meromorphic differential q-form on the complete intersection C = D1 ∩
. . . ∩ Dk defines a meromorphic ∂̄-closed current on C if and only if it is a section of the
Barlet sheaf ωqC of regular meromorphic forms.

Proof. Let ω = ξ/g be a meromorphic q-form C. It is not difficult to see that

∂̄(ω) = 0⇐⇒ ∂̄(ω ∧ ν) = 0 for any ν ∈ Ωn−qC .

Making use of property 4) and of similar considerations of the converse part of the proof of
Theorem 4.1 we conclude that the property of ∂̄-closedness of ω is equivalent to the existence
of the relation dh∧(ξ∧ν) = αg−h1η1−. . .−hkηk, where α, η1, . . . , ηk ∈ ΩmU are holomorphic
forms in the domain U ⊂ S. This is equivalent to the condition

ξ

g
∧ ν
∣∣∣∣
C

=
α

dh1 ∧ · · · ∧ dhk

∣∣∣∣∣
C

∈ ωnC .

Hence, by definition, ω =
ξ

g
∈ ωqC as required. 2

Remark 4.1. This proof is based on a similar idea from [14], Theorem 2.

Remark 4.2. Thus, any section of the Barlet sheaf ωqC is the residue of a multi-logarithmic
form. Such meromorphic forms on the complete intersection C are characterized by the
following two conditions:

a) they are holomorphic on the set of non-singular points of C (cf. [13]),
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b) they have no residues with respect to the singular locus of C (this is the so-called
∂̄-closedness property).

A differential form ψ which satisfies condition a) is not a priori meromorphic. Never-
theless it should define the following integration current (see [27]):〈

[ψ], ϕ
〉

= lim
δ→0

∫
C∩{|dh|>δ}

ψ ∧ ϕ, (10)

where dh = dh1 ∧ · · · ∧ dhk. This integration current differs from (8) by the choice of the
“principal value” of the integral. Recall that under our assumptions the singular locus SingC
of C is defined by the condition dh1 ∧ · · · ∧ dhk|C = 0. Then a natural question arises:
Whether the class of differential q-forms ψ which are holomorphic on the non-singular part
of C and define the ∂̄-closed currents by means of formula (10), and the class of sections of
Barlet sheaf ωqC coincide?

In connection with this problem it should be noted that there are non-exact ∂̄-closed
currents corresponding to non-holomorphic differential forms (see [9]).

If one supposes that ψ is meromorphic then Proposition 1 of [27] asserts that it is true.
Thus one gets the following elegant description of the Grothendieck dualizing module on
a reduced complete intersection in terms of ∂̄-closed currents. We remark that a priori all
sections of the dualizing module are meromorphic on C and holomorphic on the non-singular
part of C.

Corollary 4.1. Any element ψ of the Grothendieck dualizing module of the reduced complete
intersection C = D1∩ . . .∩Dk defines a meromorphic ∂̄-closed current on C by formula (10)
and vice versa.

In conclusion we pose a problem which is a stronger version of the above question. Let Ψq

be the set of differential q-forms ψ on U such that they are holomorphic on the non-singular
part of C and satisfy the following condition (cf. formula (10)) :〈

[ψ], ϕ
〉

= lim
δ→0

∫
C∩{|dh|=δ}

ψ ∧ ϕ = 0. (11)

Conjecture 4.1. The classes of differential q-forms defined by the set Ψq and by the sections
of the Barlet sheaf ωqC coincide.

Remark 4.3. It is well-known that any pure dimensional analytic set can be regarded locally
as a component of some reduced complete intersection (see [10], p.52). In fact, this leads to
a generalization of the notion of the multi-logarithmic differential form with respect to an
arbitrary pure dimensional analytic set.
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