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Let D be a bounded domain in Rn (n ≥ 2) with a smooth boundary ∂D. We describe necessary and
sufficient solvability conditions (in Sobolev spaces in D) of the ill-posed non-homogeneous Cauchy problem
for a partial differential operator A with injective symbol and of order m ≥ 1. Moreover, using bases with
the double orthogonality property we construct Carleman’s formulae for (vector-) functions from the Sobolev
space Hs(D), s ≥ m, by their Cauchy data on Γ and the values of Au in D where Γ is an open (in the
topology of ∂D) connected part of the boundary.
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It is well-known that the Cauchy problem for an elliptic system A is ill-posed (see, for instance,
[1]). However it naturally appears in applications: in hydrodynamics (as the Cauchy problem
for holomorphic functions), in geophysics (as the Cauchy problem for the Laplace operator), in
elasticity theory (as the Cauchy problem for the Lamé system) etc., see, for instance, the book
[2] and its bibliography. The problem was actively studied through the XX-th century (see, for
instance, [3], [4], [5], [6], [7], [8], [9], [10] and many others); it stimulated the development of the
theory of conditionally stable problems.

In this paper we present the approach developed in [9] for the homogeneous Cauchy problem for
overdetermined elliptic partial differential operators. However we consider the non-homogeneous
Cauchy problem. Of course, it is easy to see that these problems are equivalent (at least, locally) for
systems with the invertible principal symbol. But, if the system is overdetermined, the equivalence
takes place only if we have information on the solvability of the equation Au = f in a domain where
we look for a solution of the problem. Therefore, even for operators with constant coefficients, the
problems are not equivalent in domains which have no convexity properties with respect to the
operator A (see, for example, [11]). Moreover, if the coefficients of the operator A are C∞-smooth
(and not real analytic) then there are no general results even on the local solvability of the equation
Au = f (see, for instance, [12, §0.0.2, §1.3.13]).

We emphasize that in the present paper we impose no convexity conditions on the domain D.

1. The Problem

Let X be a C∞-manifold of dimension n with a smooth boundary ∂X. We tacitly assume that it
is enclosed into a smooth closed manifold X̃ of the same dimension.

For any smooth C-vector bundles E and F over X, we write Diffm(X;E → F ) for the space of
all the linear partial differential operators of order ≤ m between sections of E and F . Then, for an
open set O ⊂

◦

X (here
◦

X is the interior of X) over which the bundles and the manifold are trivial,
the sections over O may be interpreted as (vector-) functions and A ∈ Diffm(X;E → F ) is given
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as (l × k)-matrix of scalar differential operators, i.e. we have A =
∑
|α|≤m

aα(x)∂
|α|

∂xα , x ∈ O, where

aα(x) are (l × k)-matrices of C∞(O)-functions, k = rank(E), l = rank(F ).
Denote E∗ the conjugate bundle of E. Any Hermitian metric (., .)x on E gives rise to a sesquilin-

ear bundle isomorphism (the Hodge operator) ?E : E → E∗ by the equality 〈?Ev, u〉x = (u, v)x for
all sections u and v of E; here 〈., .〉x is the natural pairing in the fibers of E∗ and E.

Pick a volume form dx on X, thus identifying the dual and conjugate bundles. For A ∈
Diffm(X;E → F ), denote by A′ ∈ Diffm(X;F ∗ → E∗) the transposed operator and by A∗ ∈
Diffm(X;F → E) the formal adjoint operator. We obviously have A∗ = ?−1

E A′?F , cf. [2, 4.1.4] and
elsewhere.

Write σ(A) for the principal homogeneous symbol of the order m of the operator A, σ(A)
living on the (real) cotangent bundle T ∗X of X. From now on we assume that σ(A) is injective
away from the zero section of T ∗X. Then we will say that A is elliptic if rank(E) = rank(F ) and
overdetermined elliptic otherwise. Hence it follows that the Laplacian A∗A is an elliptic differential
operator of the order 2m on X.

We always assume that A satisfies the so-called uniqueness condition in the small on
◦

X.
(i) if u is a distribution in a domain D b

◦

X with Au = 0 in the sense of distributions and
u ≡ 0 on an open subset O of D then u ≡ 0 in D.

It holds true if, for instance, all the objects under consideration are real analytic.
For an open set O ⊂ X, we write L2(O,E) for the Hilbert space of all the measurable sections

of E over O with a finite norm (u, u)L2(O,E) =
∫
O

(u, u)xdx. We also denote Hs(O,E) the Sobolev
space of the distribution sections of E over O, whose weak derivatives up to the order s ∈ N belong
to L2(O,E). Let D be a bounded domain in

◦

X, and Γ be a C∞-smooth open (in the topology
of ∂D) connected part of ∂D. As usual, let Hs

loc(D ∪ Γ, E) be the set of sections in D belonging
to Hs(σ,E) for every measurable set σ in D with σ ⊂ D ∪ Γ. For u ∈ Hs

loc(O,E), we always

understand Au in the sense of distributions in O. Given any open set O in
◦

X we let SolA(O) stand
for the space of all the weak solutions to the equation Au = 0 in O.

Further, for non-integer positive s we define Sobolev spaces Hs(O,E) with the use of the
proper interpolation procedure (see, for example, [2, §1.4.11]). In the local situation we can use
other (equivalent) approach. For instance, if X ⊂ Rn and the bundles E and F are trivial, we may
we denote H1/2(O,E) the closure of C∞(O,E) functions with respect to the norm (see [13]):

‖u‖H1/2(O,E) =

√√√√‖u‖2L2(O,E) +
∫
O

∫
O

|u(x)− u(y)|2dx dy
|x− y|2n+1

.

Then, for s ∈ N, let Hs−1/2(O,E) be the space of functions from Hs−1(O,E) such that weak
derivatives of the order (s− 1) belong to H1/2(O,E).

It is well-known that if ∂D is sufficiently smooth then the functions from the Sobolev space
Hs(D), s ∈ N, have traces on the boundary in the Sobolev spaceHs−1/2(∂D) and the corresponding
trace operator tr : Hs(D) → Hs−1/2(∂D) is bounded and surjective (see, for instance, [13]). In
particular, this means that for every u ∈ Hs

loc(D∪Γ), s ∈ N, there is a trace trΓ(u) on Γ belonging
to Hs−1/2

loc (Γ).
Fix a Dirichlet system Bj , j = 0, 1, . . . ,m−1, of the order (m−1) on the boundary of D. More

precisely, each Bj is a differential operator of the type E → Fj and order mj ≤ m − 1, mj 6= mi

for j 6= i, in a neighbourhood U of ∂D. Moreover, the symbols σ(Bj), if restricted to the conormal
bundle of ∂D, have ranks equal to the dimensions of Fj . From now on we assume that mj = j and
set t(u) = ⊕m−1

j=0 Bju ∈ ⊕
m−1
j=0 H

s−j−1/2(∂D,Fj) for u ∈ Hs(D,E), s ≥ m.

Problem 1. Let N 3 s ≥ m. Given boundary data ⊕m−1
j=0 uj ∈ ⊕

m−1
j=0 H

s−j−1/2
loc (Γ, Fj) ∩ L2(Γ, Fj)

and f ∈ Hs−m
loc (D ∪ Γ, F ) ∩ L2(D,F ), find a section u ∈ Hs

loc(D ∪ Γ, E) such that

Au = f in D, (1)
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t(u) = ⊕m−1
j=0 uj on Γ. (2)

As usual, we say that the problem is homogeneous if f ≡ 0 inD and non-homogeneous otherwise.
It is well known that problem 1 has no more than one solution under the Uniqueness condition (i)
(see, for instance, [9, theorem 2.8]). We reduce this problem to the problem of the extension as a
solution to an elliptic system from a small domain to a bigger one. In this way we generalize [9,
theorems 5.2 and 10.3] related to the homogeneous Cauchy problem. We also construct formulae
for the approximate and exact solutions of the problem.

2. Necessary Solvability Conditions

As far as we consider the overdetermined systems, it is natural to assume that operator A is
included into an elliptic differential complex

0→ C∞(E) A→ C∞(F ) A1→ C∞(G).

This means that A1 ◦A = 0 and the corresponding symbolic complex is exact away from the zero
section of T ∗X. It is possible, for instance, if the operator A is sufficiently regular (see, for instance,
[12, Definition 1.3.7]). For example, every operator with constant coefficients is sufficiently regular.
Also the operators with real analytic coefficients and injective symbol may be included into an
elliptic complex under mild assumptions (see [14]). Of course, if A is elliptic then A1 ≡ 0.

Now due to the properties of the complex, A1f = 0 in D if the Cauchy problem is solvable.
Besides, for l > k the operator A induces tangential operator Aτ on ∂D (see, for instance, [12,
§3.1.5]). This means that the Cauchy data ⊕m−1

j=0 uj and f should be coherent.
More exactly, it is well-known that under our assumptions on the domain D there exists a real

valued C∞-smooth function ρ with |∇ρ| 6= 0 on ∂D and such that D = {x ∈ X : ρ(x) < 0}.
Without loss of a generality we can always choose the function ρ in such a way that |∇ρ| = 1 on
a neighborhood of ∂D.

Fix a Green operator GA attached to A, i.e. an operator GA(., .) ∈ Diffm−1(X; (F ∗, E)→ Λn−1)
such that

dGA(g, v) = (〈g,Av〉y − 〈A′g, v〉y) dy for all g ∈ C∞(X,F ∗), v ∈ C∞(X,E);

here Λp is the bundle of the exterior differential forms of the degree 0 ≤ p ≤ n over X.
The Green operator always exists (see [12, Proposition 2.4.4]) and (as ∂D is not characteristic

for A in our sutuation) it may be written in the following form:

GA(g, v) =
m−1∑
j=0

〈Cjg,Bjv〉yds(y) + dρ ∧Gν(g, v) (3)

in a neighbourghood U of ∂D, where ρ is a defyning function ofD,Gν(g, v) ∈ Diffm−1(U ; (F ∗, E)→
Λn−2|U) and {Cj}m−1

j=0 is a Dirichlet system of the order (m − 1) on ∂D, with operators Cj ∈
Diffm−j−1(U ;F ∗|U → F ∗j ) (see [15, Lemma 8.3.2]); here ds is the volume form on ∂D induced from
X.

Now let C∞comp(D ∪ Γ, E) stand for the set of C∞(D,E)-functions with compact support in
D ∪ Γ. Then for the solvability of problem 1 it is necessary that∫

Γ

m−1∑
j=0

〈CjA′1β, uj〉yds(y) =
∫
D

〈A′1β, f〉ydy for all β ∈ C∞comp(D ∪ Γ, G∗). (4)

In fact, dρ = 0 on ∂D. Hence, if problem 1 is solvable and u is its solution then, by Stokes’ formula,
we have for each section β ∈ C∞comp(D ∪ Γ, G∗):∫

Γ

m−1∑
j=0

〈CjA′1βuj , 〉yds(y) =
∫
∂D

GA(A′1β, u) =
∫
D

〈A′1β,Au〉ydy =
∫
D

〈A′1β, f〉ydy

where G is a domain in D with a smooth boundary such that supp v ⊂ G.
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3. Solvability Criterion

From now on we assume that the Laplacian A∗A satisfies the Uniqueness condition (i). Then it

has a two-sided (i.e. left and right) pseudo-differential fundamental solution, say, Φ, on
◦

X (see, for
instance, [2, §4.4.2]). In particular, L = ΦA∗ is a left pseudo-differential fundamental solution for
A.

Let MΓv be the Green integral with a density v = ⊕m−1
j=0 vj ∈ ⊕

m−1
j=0 L

2(Γ, Fj):

MΓv(x) = −
∫
Γ

m−1∑
j=0

〈Cj(y)L(x, y)), vj〉y ds(y), x 6∈ Γ (5)

(here L(x, y) is the Schwartz kernel of L (see, for instance, [12, 1.5.4]). It is known that if ∂D is
smooth enough (e.g. ∂D ∈ C∞) then the Green integral induces a bounded linear operator

M∂D : ⊕m−1
j=0 H

s−j−1/2(∂D,Fj)→ Hs(D,E), s ∈ Z+, s ≥ m

(see, for instance, [16, 2.3.2.5]). In particular, we easily see that in our caseMΓ(⊕m−1
j=0 uj) ∈ Hs

loc(D∪
Γ, E).

Further, for a section f ∈ L2(D,F ) we denote by TDf the following volume potential:

TDf = LχDf

where χD is the characteristic function of the domain D. If ∂D is smooth enough (e.g. ∂D ∈ C∞)
then the potential TD induces a bounded linear operator

TD : Hp(D,F )→ Hp+m(D,E), p ∈ Z+

(see, for example, [16, 1.2.3.5]). Moreover, for p = 0 we can extend f by zero onto X obtaining thus
a form f ∈ L2(X) and therefore the potential TD induces actually a continuous linear operator

TD : L2(D,F )→ Hm
loc(

◦

X,E). (6)

In particular, in our case we easily see that TDf ∈ Hs
loc(D ∪ Γ, E) ∩Hm

loc(
◦

X,E).
Further, if ∂D is smooth then for every section u ∈ Hm(D,E) we have the Green formula:

M∂D(⊕m−1
j=0 Bju) + TDAu = χDu (7)

(see [2, lemma 10.2.3])).
It is clear that the integrals MΓv and TDf satisfy A∗A(MΓv) = 0 and A∗A(TDf) = 0 every-

where outside D as parameter dependent integrals. Hence the section

F = MΓ(⊕m−1
j=0 uj) + TDf

belongs to SolA∗A(
◦

X \ D). The Green formula (7) shows that the potential F contains a lot of
information on solvability conditions of problem 1.

Now we would like to obtain necessary and sufficient conditions for the solvability of the Cauchy
problem 1 with the use of function F . For this purpose we choose a set D+ ⊂

◦

X in such a way
that Ω = D ∪ Γ ∪D+ is a bounded domain with piece-wise smooth boundary ∂D+ in

◦

X.
Denote by F± the restrictions of F onto D± (here D− = D). By the definition, F+ belongs to

SolA∗A(D+). Besides, defining v in formula (5) by zero on the boundary of a large enough domain
Ω̃ ⊃ D, we see that, if ∂D is smooth enough (e.g. ∂D ∈ C∞) then the Green integral M∂D induces
a bounded linear operator

M+
∂D : ⊕m−1

j=0 H
s−j−1/2(∂D,Fj)→ Hs(Ω̃ \D,E), s ∈ N

(see, for instance, [16]). In particular, we easily see that in our situationM+
Γ (⊕m−1

j=0 uj) ∈ Hs
loc(D

+∪
Γ, E). Thus, F± ∈ Hs

loc(D
± ∪ Γ, E).

Let A∗ ⊕ A1 be the standard differential operator of type F → (E,G) mapping g to the pair
(A∗g,A1g).
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Theorem 1. Let both A∗A and A∗ ⊕ A1 satisfy the Uniqueness condition (i). Then the Cauchy
problem 1 is solvable if and only if condition (4) holds true, and there is F ∈ SolA∗A(Ω) coinciding
with F+ on D+.

Proof. Let problem 1 be solvable and u be its solution. The necessity of condition (4) is already
proved. Set

F = F − χDu.

By the definition, the function F satisfies A∗AF = 0 in D+ and belongs to Hs
loc(D

± ∪ Γ, E).
Take a domain G ⊂ D with a smooth boundary such that G ∩ ∂D ⊂ Γ. Then according to the

Green formula (7) we have in D+ ∪G:

F = MΓ(⊕m−1
j=0 uj) + TDf − χGu =

= MΓ(⊕m−1
j=0 Bju) + TGAu+ TD\Gf −M∂G(⊕m−1

j=0 Bju)− TGAu =

= −M∂G\Γ(⊕m−1
j=0 Bju) + TD\Gf.

This identity implies that F extends from D+ to D+ ∪G∪ (Γ∩ ∂G) as a solution to the operator
A∗A since the integrals M∂G\Γ(⊕m−1

j=0 Bju) and TD\Gf are solutions to this operator everywhere
outside the integration sets as parameter depending integrals.

Finally, since for every point x ∈ D there is a domain G 3 x with the described properties, we
see that in factF belongs to SolA∗A(Ω) and coincides with F+ on D+.

Back, let there be a section F ∈ SolA∗A(Ω) coinciding with F+ on D+. Set

u = F− −F−. (8)

By the construction, the section u belongs to Hs
loc(D ∪ Γ, E). Moreover, since the section F is

C∞-smooth in Ω and the potential TDf belong to Hm
loc(Ω) (see (6)), we see that t+Γ (F+) = tΓ(F−)

and t+Γ (T+
D f) = tΓ(T−D f); here t+Γ : Hs

loc(D
+ ∪Γ, E)→ ⊕m−1

j=0 H
s−j−1/2
loc (Γ, Fj) is the corresponding

trace operator. Hence the jump theorem for the Green integral (see [9, lemma 2.7]) gives:

tΓ(u) = tΓ(M−Γ ⊕
m−1
j=0 uj)− t+Γ (M+

Γ ⊕
m−1
j=0 uj) + tΓ(T−D f)− t+Γ (T+

D f) = ⊕m−1
j=0 uj .

In order to finish the proof we need to check that Au = f in D. For this purpose we consider
the section g = f − Au belonging to Hs−m

loc (D ∪ Γ, F ). Condition (4), in particular, means that f
satisfies A1f = 0 in D, and therefore the section g has the same property.

Moreover, g satisfies A∗g = 0 in D. Indeed, as Φ is a two-sided fundamental solution of the
Laplacian A∗A, we have

A∗(χDf −ATDf) = A∗(χDf −AΦA∗χDf) = 0 in
◦

X, (9)

A∗g = A∗f −A∗AMΓ(⊕m−1
j=0 uj)−A

∗ATDf = 0 in D.

Thus we have proved that (A∗ ⊕A1)g = 0 in D.
Now let ∇E ∈ Diff1(X;E → E⊗ (T ∗X)c) and ∇G ∈ Diff1(X;G→ G⊗ (T ∗X)c) be connections

in the bundles E and G respectively compatible with the corresponding Hermitian metrics (see
[17, Ch. III, Proposition 1.11]). Let m1 be the order of A1. Set,

QE =


∇E(∇∗E∇E)

m1−m−1
2 , if (m1 −m) is positive and odd;

(∇∗E∇E)(m1−m)/2, if (m1 −m) is positive and even;
I, if m1 ≤ m,

QG =


∇(∇∗G∇G)

m−m1−1
2 , if (m−m1) is positive and odd;

(∇∗G∇G)(m−m1)/2, if (m−m1) is positive and even;
I, if m ≤ m1.
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Denote m̃ = max(m,m1). Clearly, QE ∈ Diffm̃−m(X;E → BE) and QG ∈ Diffm̃−m1(X;G→ BG)
have injective symbols; here BE and BG are the corresponding vector bundles. Then, the ellipticity
of the complex means that

P = QEA
∗ ⊕QGA1

belongs to Diffm̃(X;F → (BE , BG)) and has the injective symbol (cf. [12, §2.1.4]).
Since P (f − ATDf) = Pg = 0 in D, we conclude that both g and (f − ATDf) are smooth in

D. As g ∈ L2
loc(D ∪ Γ, F ) ∩ SolP (D), it has a finite order of growth near Γ (see [9, theorems 2.6

and 4.4]).
Set Dε = {x ∈ D : ρ(x) < −ε}. Then for all the sufficiently small ε > 0 the sets Dε ⊂⊂ D ⊂⊂

D−ε are domains with smooth boundaries ∂D±ε and vectors ∓εν(x) belong to ∂D±ε for every
point x ∈ ∂D (here ν(x) is the outward unit normal vector to ∂D at the point x).

Now using Stokes’ formula, we easily obtain∫
∂Dε

GA1(β, g) =
∫
Dε

〈A′1β, (Au− f)〉y dy =

= −
∫
Dε

〈A′1β, f〉y dy +
∫
∂Dε

GA(A′1β, u) for all β ∈ C∞comp(D ∪ Γ, G∗) (10)

Then, using (3) and condition (4), we get for all β ∈ C∞comp(D ∪ Γ, G∗):

lim
ε→+0

− ∫
Dε

〈A′1β, f〉y dy +
∫
∂Dε

GA(A′1β, u)

 =

= −
∫
D

〈A′1β, f〉y dy +
∫
Γ

m−1∑
j=0

〈CjA′1β, uj〉yds(y) = 0. (11)

Combining (10) and (11), we obtain:

lim
ε→+0

∫
∂Dε

GA1(β, g) = 0 for all β ∈ C∞comp(D ∪ Γ, G∗). (12)

Similarly, using Stokes’ formula and [12, Proposition 2.4.5], we get for all h ∈ C∞comp(D∪Γ, E∗):∫
∂Dε

GA∗(h, g) = −
∫
Dε

〈(A∗)′h, f〉y dy +
∫
Dε

〈(A∗)′h,ATDf〉y dy+

+
∫
∂Dε

m−1∑
j=0

〈Cj ?F (AMΓ(⊕m−1
j=0 uj)−AF), Bj ?−1

E h〉ydsε(y). (13)

Let h̃ ∈ C0(Ω, E∗) such that h̃ = h in D. Then, according to (9), we have

−
∫
D

〈(A∗)′h, f〉y dy +
∫
D

〈(A∗)′h,ATDf〉y dy = −
∫

Ω\D

〈(A∗)′h̃, ATDf〉y dy. (14)

Moreover, since TDf ∈ SolA∗A(D+), and F ∈ C∞(Ω, E), Stokes’ formula implies:

− lim
ε→+0

∫
∂Dε

m−1∑
j=0

〈Cj ?FAF , Bj ?−1
E h〉ydsε(y) =

∫
Ω\D

〈(A∗)′h̃, ATDf〉 dy+

− lim
ε→+0

∫
∂D−ε

m−1∑
j=0

〈Cj ?F (AMΓ(⊕m−1
j=0 uj), Bj ?

−1
E h〉yds−ε(y). (15)
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Hence, using (13), (14), and (15), we obtain:

lim
ε→+0

∫
∂Dε

GA∗(h, g) = lim
ε→+0

 ∫
∂Dε

m−1∑
j=0

〈Cj ?F (AMΓ(⊕m−1
j=0 uj), Bj ?

−1
E h〉ydsε(y)−

−
∫

∂D−ε

m−1∑
j=0

〈Cj ?F (AMΓ(⊕m−1
j=0 uj), Bj ?

−1
E h〉yds−ε(y)

 = 0

for all h ∈ C∞comp(D ∪ Γ, E∗), because of the lemma on the weak jump of Green integrals (see [9,
Lemma 2.7]). Thus,

lim
ε→+0

∫
∂Dε

GA∗(h, g) = 0 for all h ∈ C∞comp(D ∪ Γ, E∗). (16)

Choose a Dirichlet system {B̃j}m̃−1
j=0 of the order (m̃− 1) in a neighbourhood of ∂D and denote

by {C̃j}m̃−1
j=0 a dual Dirichlet system for it, i.e. such that the Green operator GP is presented in

the form

GP (φ, ψ) =
m̃−1∑
j=0

〈C̃jφ, B̃jψ〉yds(y)ε + dρ ∧ G̃ν(g, f), ψ ∈ C∞(F ), φ ∈ C∞((B∗E , B
∗
G))

in a neighbourhood of ∂D (see [15, Lemma 8.3.2] and the discussion in § above).
Using [12, Proposition 2.4.5], (12), (16), and the fact that (A∗ ⊕A1)g = 0 in D, we see:

lim
ε→+0

∫
∂Dε

m̃−1∑
j=0

〈C̃jφ, B̃jg〉ydsε(y) = lim
ε→+0

∫
∂Dε

GP (φ, g) =

= lim
ε→+0

 ∫
∂Dε

GQGA1(φG, g) +
∫
∂Dε

GQEA∗(φE , g)

 =

= lim
ε→+0

 ∫
∂Dε

GQG(φG, A1g) +GA1

(
Q′1φG, g

)
+GQE

(
φE , A

∗g
)

+GA∗
(
Q′EφE , g

) =

= lim
ε→+0

 ∫
∂Dε

GA1

(
Q′GφG, g

)
+GA∗

(
Q′EφE , g

) = 0,

for all φ ∈ C∞comp(D∪Γ, (B∗G, B
∗
E)); here φ = (φE , φG), φE ∈ C∞(D∪Γ, B∗E), φG ∈ C∞(D∪Γ, B∗G).

Hence,

lim
ε→+0

∫
∂Dε

GP (φ, g) = 0 for all φ ∈ C∞comp(D ∪ Γ, (B∗E , B
∗
G)). (17)

As {C̃j}m̃−1
j=0 is a Dirichlet system on ∂D, for every ψj ∈ C∞0 (Γ, F ∗j ) there is φ ∈ C∞comp(D ∪

Γ, (B∗E , B
∗
G)) with C̃iφ = 0 for i 6= j, C̃jφ = ψj on ∂D and therefore the famous theorem by

Banach and Steinhaus yields that is equivalent to the following:

lim
ε→+0

∫
∂D

〈ψj , B̃jg(y − εν(y))〉y ds(y) = for every ψj ∈ C∞0 (Γ, F ∗j ) and for each 0 ≤ j ≤ m̃− 1,

i.e. ⊕m̃−1
j=0 B̃jg = 0 on Γ in the sense of the weak boundary values (see [9, Definition 2.2]).

Now the uniqueness theorem [9, theorem 2.8] for the Cauchy problem for systems with injective
symbols implies that the section g = f−Au equals to zero in D identically because the Uniqueness
condition (i) for the operator A∗ ⊕A1 holds true in

◦

X. �
For f = 0 and the operators with real analytic coefficients, theorem 1 was obtained in [9,

theorem 10.3].
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Remark 1. Theorem 1 easily implies conditions of local solvability of the Cauchy problem. Indeed,
fix a point x0 ∈ Γ. Let V be a (one-sided) neighbourhood of x0 in D and Γ̂ = ∂V ∩ Γ. Set
F̂ = MΓ̂(⊕m−1

j=0 uj) + TV f . As

F = F̂ +MΓ\Γ̂(⊕m−1
j=0 uj) + TD\V f

we see that F+ extends as a solution to the Laplacian A∗A in Ω̂ = V ∪ Γ̂ ∪D+ if and only if the
potential F̂+ does. Hence, under condition (4), the solution of the Cauchy problem exists in the
neighbourhod V where the extention of the potential F+ does.

Also we would like to note that theorem 1 gives not only the solvability conditions to problem
1 but the solution itself, of course, if it exists (see (8)). It is clear that we can use the theory of
functional series (Taylor series, Laurent series, etc.) in order to get information about extendability
of the potential F+ (cf. [8], [2]). However in this paper we will use the theory of Fourier series with
respect to the bases with the double orthogonality property (cf. [18], [2] or elsewhere). Moreover,
using formula (8) we can construct approximate solutions of problem 1 (see below).

4. Bases with Double Orthogonality in the Cauchy Problem
and Carleman’s Formula

It is often important in applications to look for a solution of problem 1 in the class Hs(D,E). For
this purpose in the present section we assume that uj ∈ Hs−j−1/2(Γ, Fj), f ∈ Hs−m(D,F ). Then
Whitney’s theorem implies that for each 0 ≤ j ≤ m− 1 there is a section vj ∈ Hs−j−1/2(∂D,Fj)
coinciding with uj on Γ. We can always choose such a section vj vanishing outside a given neigh-
borhood of Γ. Now fix such functions ⊕m−1

j=0 vj .
Set

F̃ = M∂D(⊕m−1
j=0 vj) + TDf.

The boundedness theorems for potential operators in Sobolev spaces (see [16, 1.2.3.5 and 2.3.2.5])
imply that F̃± ∈ Hs(D±, E).

Corollary 1. Let both A∗A and A∗⊕A1 satisfy the Uniqueness condition (i) and let ∂Ω be piece-
wise smooth. In addition, let uj ∈ Hs−j−1/2(Γ, Fj), f ∈ Hs−m(D). Then the Cauchy problem
1 is solvable in Hs(D,E) if and only if condition (4) is fulfilled and there is a function F̃ ∈
Hs(Ω, E) ∩ SolA∗A(Ω) coinciding with F̃+ in D+.

Proof. Let problem 1 be solvable in Hs(D,E). Then theorem 1 implies that condition (4)
holds and there is a function F ∈ SolA∗A(Ω) coinciding with F+ in D+. Clearly,

F̃ = F +M∂D\Γ(⊕m−1
j=0 vj). (18)

Since the potential M∂D\Γ(⊕m−1
j=0 vj) belongs to SolA∗A(Ω) we conclude that the function F+

extends to a solution from SolA∗A(Ω) if and only if the function F̃+ does. Therefore, the function

F̃ = F +M∂D\Γ(⊕m−1
j=0 vj) = F +M∂D\Γ(⊕m−1

j=0 vj)− χDu = F̃ − χDu (19)

belongs to SolA∗A(Ω) and coincides with F̃+ in D+. Moreover, as F̃ ∈ Hs
loc(Ω, E)∩Hs(D±, E) we

easily see that F̃ ∈ Hs(Ω, E).
Back, formula (18) and theorem 1 imply that, under the hypothesis of the corollary, problem 1

is solvable. In order to finish the proof we will show that its solution u, given by (8), is, in fact, the
solution of problem 1 in Hs(Ω, E). However, using (8), (18) and (19) we immediately obtain that

u = F̃− − F̃−. (20)

Since F̃ ∈ Hs(D,E) and F̃ ∈ Hs(Ω, E) we see that u ∈ Hs(D,E). �
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Now recall the notion of bases with the double orthogonality property in spaces of solutions
of elliptic systems (cf. [18], [2] or [9]).For this purpose we denote by hs(Ω) the space SolA∗A(Ω) ∩
Hs(Ω, E).

Lemma 1. If ω b Ω is a domain with a piece-wise smooth boundary and Ω \ ω has no com-
pact (connected) components then there exists an orthonormal basis {bν}∞ν=1 in hs(Ω) such that
{bν|ω}∞ν=1 is an orthogonal basis in hs(ω).

Proof. These {bν}∞ν=1 are eigen-functions of compact self-adjoint operator R(Ω, ω)∗R(Ω, ω),
where R(Ω, ω) : hs(Ω)→ hs(ω) is the natural inclusion operator (see [2] or [9, theorem 3.1]). �

Now we can use the basis {bν} in order to simplify corollary 1. For this purpose fix domains

ω b D+ and Ω as in lemma 1 and denote by cν(F̃+) =
(F̃+, bν)Hs(ω,E)

‖bν‖2Hs(ω,E)

, ν ∈ N, the Fourier

coefficients of F̃+ with respect to the orthogonal basis {bν|ω} in hs(ω).

Corollary 2. Let both A∗A and A∗ ⊕ A1 satisfy the Uniqueness condition (i). In addition, let
uj ∈ Hs−j−1/2(Γ, Fj), f ∈ Hs−m(D). The Cauchy problem 1 is solvable in Hs(D,E) if and only

if condition (4) is fulfilled and the series
∞∑
ν=1
|cν(F̃+)|2 converges.

Proof. Indeed, if problem 1 is solvable in Hs(D,E) then, according to corollary 1 condition
(4) is fulfilled, and there exists a function F̃ ∈ hs(Ω) coinciding with F̃+ in ω.

By lemma 1 we conclude that

F̃(x) =
∞∑
ν=1

kν(F̃)bν(x), x ∈ Ω, (21)

where kν(F̃) = (F̃ , bν)Hs(Ω,E), ν ∈ N, are the Fourier coefficients of F̃ with respect to the orthonor-

mal basis {bν} in hs(Ω). Now Bessel’s inequality implies that the series
∞∑
ν=1
|kν(F̃)|2 converges.

Finally, the necessity of the corollary holds true because

cν(F̃+) =
(R(Ω, ω)F̃ , R(Ω, ω)bν)Hs(ω,E)

(R(Ω, ω)bν , R(Ω, ω)bν)Hs(ω,E)
=

(F̃ , R(Ω, ω)∗R(Ω, ω)bν)Hs(Ω,E)

(bν , R(Ω,Ω)∗R(Ω, ω)bν)Hs(ω,E)
= kν(F̃).

Back, if the hypothesis of the corollary holds true then we invoke the Riesz-Fisher theorem.
According to it, in the space hs(Ω) there is a section

F̃(x) =
∞∑
ν=1

cν(F̃+)bν(x), x ∈ Ω. (22)

By the construction, it coincides with F̃+ in ω. Therefore, using theorem 1, we conclude that
problem 1 is solvable in Hs(D,E). �

The examples of bases with the double orthogonality property be found in [9], [2], [18].
Let us obtain Carleman’s formula for the solution of problem 1. For this purpose we introduce

the following Carleman’s kernels:

CN (y, x) = L(y, x)−
N∑
ν=1

cν(L(y, ·))bν(x), N ∈ N, x ∈ Ω, y 6∈ ω, x 6= y.

Corollary 3. Let both A∗A and A∗ ⊕ A1 satisfy the Uniqueness condition (i). Then, for every
section v ∈ Hs(D,E), s ∈ N, the following Carleman’s formula holds true:

lim
N→∞

∥∥∥v − v(N)
∥∥∥
Hs(D,E)

= 0, (23)
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v(N)(x) = −
∫
∂D

m−1∑
j=0

〈CjCN (., x)), vj〉yds(y) +
∫
D

〈CN (., x), Au〉ydy

and vj ∈ Hs−j−1/2(∂D,Fj) are (arbitrary) sections coinciding with Bjv on Γ for each 0 ≤ j ≤
m− 1.

Proof. Indeed for the Cauchy data f = Av and ⊕m−1
j=0 uj = (Bjv)|Γ the Cauchy problem 1

is solvable in Hs(D,E). Hence corollary 1 implies that a solution of this problem u is given by
formula (20). Then the Uniqueness theorem for the problem (see, for instance [9, theorem 2.8])
gives u = v in D.

As ω ∩D = ∅ we may use Fubini theorem and obtain for all ν ∈ N:

kν(F̃+) =

− ∫
∂D

m−1∑
j=0

〈Cj(y)cν(L(y, .)), vj〉yds(y) +
∫
D

〈cν(L(y, .)), f〉dy

 . (24)

Moreover (see the proof of corollary 2) we know that the function F̃ is given by formula (21)
with the coefficients (24), the series converges in Hs(Ω, E) to F̃ and hence in Hs(Ω, D) to F̃−−u,
i.e. we have:

lim
N→∞

∥∥∥v −M∂D(⊕m−1
j=0 vj)− TDAv−

−
N∑
ν=1

− ∫
∂D

m−1∑
j=0

〈Cj(y)cν(L(y, ·)), vj〉yds(y) +
∫
D

〈cν(L(y, ·)), f〉ydy

 bν

∥∥∥
Hs(D,E)

= 0.

This exactly gives identity (23) after regrouping the summands. �

Remark 2. Formula (20) means that v = M∂D(⊕m−1
j=0 vj) + TDAv − F̃ . As F̃ and each function

bν are solutions of the elliptic system A∗A in Ω, the Stiltjes-Vitali theorem implies that the series
(22) converges in C∞loc(Ω, E) Therefore, if Av ∈ Hp(D,F ), s ≤ p+m, then TDAv ∈ Hp+m(D,E),
M∂D(⊕m−1

j=0 vj) ∈ C∞loc(D,E) and we additionally have: 1) AvN converges to Av in Hp
loc(D∪Γ, F );

2) vN converges to v in Hp+m
loc (D,E).

It is worth emphasizing that in fact we obtain the same type of Carleman kernel as for f = 0
(cf. [9, theorem 12.6]). In particular, if A is a Dirac type operator and D is a part of a unit ball
in Rn cut off by smooth hypersurface Γ 63 0 we easily construct both exact and approximate
solutions of the Cauchy problem 1 by using the decomposition for harmonic functions with respect
to spherical harmonics (see [9, §13]). For the Cauchy-Riemann operator on the complex plane this
formula for exact solution is the well-known formula by Goluzin and Krylov (see, for instance, [6,
Theorem 1.1]).

The first author was suppoted by Krasnoyarsk regional scientific fund, grant 17G102; the second
author was supported in part by RFBR, grant 05-01-00517.
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