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Abstract
Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue

because of playing key roles in the functions of both natural ecosystems and agricultural

systems. There are several studies in the literature with the aim of finding the best method

to assess and map the distribution of SOC content for Europe. Therefore this study aims

searching for another aspect of this issue by looking to the performances of using aggre-

gated soil samples coming from different studies and land-uses. The total number of the soil

samples in this study was 23,835 and they’re collected from the “Land Use/Cover Area

frame Statistical Survey” (LUCAS) Project (samples from agricultural soil), BioSoil Project

(samples from forest soil), and “Soil Transformations in European Catchments” (SoilTrEC)

Project (samples from local soil data coming from six different critical zone observatories

(CZOs) in Europe). Moreover, 15 spatial indicators (slope, aspect, elevation, compound

topographic index (CTI), CORINE land-cover classification, parent material, texture, world

reference base (WRB) soil classification, geological formations, annual average tempera-

ture, min-max temperature, total precipitation and average precipitation (for years 1960–

1990 and 2000–2010)) were used as auxiliary variables in this prediction. One of the most

popular geostatistical techniques, Regression-Kriging (RK), was applied to build the model

and assess the distribution of SOC. This study showed that, even though RK method was

appropriate for successful SOCmapping, using combined databases was not helpful to

increase the statistical significance of the method results for assessing the SOC distribution.

According to our results; SOC variation was mainly affected by elevation, slope, CTI, aver-

age temperature, average and total precipitation, texture, WRB and CORINE variables for

Europe scale in our model. Moreover, the highest average SOC contents were found in the

wetland areas; agricultural areas have much lower soil organic carbon content than forest

and semi natural areas; Ireland, Sweden and Finland has the highest SOC, on the contrary,

Portugal, Poland, Hungary, Spain, Italy have the lowest values with the average 3%.
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Introduction
Numerous environmental and socio-economic models require soil parameters as inputs to esti-
mate and forecast changes in our future life conditions. However, the availability of soil data is
limited on both national and European scales. Soil information is either missing at the appro-
priate scale, its meaning is not well explained for reliable interpretation, or the quality of the
data is questionable [1]. There are several reasons for working on assessing the distribution of
this important chemical parameter, such as; SOC is a quantifiable indicator which is of high
importance for evaluating the state of soils in Europe; SOC is of high interest for environmental
policy making in Europe; existence of comparable modelling datasets exist at local/national
and European level; and availability of auxiliary datasets (environmental covariates) for the
best application of a modelling platform.

Digital soil mapping (DSM) has evolved as a discipline linking field, laboratory, and proxi-
mal soil observations with quantitative methods to infer on spatial patterns of soils across vari-
ous spatial and temporal scales. Studies use various approaches to predict soil properties or
classes including univariate and multi-variate statistical, geostatistical and hybrid methods, and
process-based models that relate soils to environmental covariates considering spatial and tem-
poral dimensions [2].

Geostatistical techniques allow for the prediction of soil properties using soil information
and environmental covariates. There are some commonly used geostatistical methods (Inverse
Distance Weighted (IDW), Multiple Linear Regression, Ordinary Kirging, Co-Kriging, Radial
Basis Functions (RBF), Geographical Weighted Regression, Partial Least Squares Regression,
Regression Kriging (RK), etc.) to map soil properties in the literature. RK method as one of the
widely used geostatistical techniques has been used for producing of soil property maps [3–12].
RK is a spatial interpolation technique that combines a regression of the dependent variable on
auxiliary variables (such as land surface parameters, remote sensing imagery and thematic
maps) with simple kriging of the regression residuals. In other words, RK is a hybrid method
that combines either a simple or a multiple-linear regression model with ordinary, or simple,
kriging of the regression residuals [13, 6]. RK is becoming an important tool in geostatistics
because of its user-friendliness and its accuracy often outperforms ordinary linear regression
and ordinary kriging [8].

The European Commission is currently funding a $10-million CZO programme with 10
sites in Europe, the United States and China focused on mitigating soil threats. Four core
European sites represent key stages of the soil cycle. At the Damma Glacier CZO in Switzer-
land, researchers are studying the stages of development of new soil formed over the past
150 years on bedrock exposed as the glacier retreats due to global warming. The Fuchsenbigl
CZO in Austria is dedicated to studying the development of soil fertility on a floodplain:
sediments deposited along the Danube River since the last glaciation reveal progressive
stages of soil formation over thousands of years. The Lysina CZO in the Czech Republic is
focused on soil recovery in managed forests, in an area damaged by acid rain during the late
twentieth century. The Koiliaris CZO in Crete, Greece, has mature soils affected by millen-
nia of agriculture and is under imminent threat of desertification because of global warming
[14]. The aim of this study was aggregating those different databases which were coming
from local (CZOs) and EU scale databases (LUCAS and Biosoil) and comparing the effects
of different combinations of the datasets and searching for how the performances might
change.
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Material and Method

Materials
The main dataset used in this study is made up of totally 23,835 soil samples collected from
three different studies on different land-uses: 19,860 points from the LUCAS Project (samples
from agricultural soil); 3588 points from the Biosoil Project (samples from forest soil); and 387
samples from the SoilTrEC Project (samples from local soil data coming from six different crit-
ical zone observatories (CZOs) in Europe). The distribution of the soil organic carbon mea-
surements can be seen Fig 1.

Soil Samples
LUCAS dataset. Land Use/Cover Area frame Statistical Survey (LUCAS) [15, 16] is an in-

situ survey, which means that the data are gathered through direct field observations. The aim
of the LUCAS survey is to gather fully harmonized data on land use/cover and their changes
over time in the EU 27. In the LUCAS (2009) survey, 265,000 geo-referenced points were vis-
ited by more than 500 field surveyors. The survey points were selected from a standard 2
km × 2 km grid based on stratification information provided by Martino&Fritz [17].

For the first time the LUCAS (2009) survey included a soil module. Top soil samples (0–
30 cm) were collected from 10% of the survey points, thus providing approximately 20,000
soil samples. LUCAS soil samples were taken from all land use/land cover types; however,
the survey focused mainly on agricultural areas. Each soil sample was taken from the topsoil
zone (top 30 cm) with a weight of ca. 0.5 kg. The objective of the soil module was to improve
the availability of harmonized data on soil parameters in Europe. The 19,860 LUCAS soil
samples were analysed in a single ISO-certified laboratory that used harmonized chemical
and physical analytical methods (ISO standards, or their equivalent) in order to obtain a
coherent and harmonized dataset with pan-European coverage. The analysis results formed
the LUCAS soil database, including, inter alia, SOC in top soils (0–30 cm) expressed in g/kg
[18]. For the determination of the organic carbon content correction for LUCAS soil sam-
ples is made with the carbonate content determined according to ISO 10694:1995 [19].

Biosoil Dataset. It was a research challenge for the project to use additional data covering
the forest land use which was not sampled adequately in LUCAS survey. For this purpose, JRC
has taken into account the Biosoil study carried out within the scope of the Forest Focus EC
regulation 2152⁄2003 under the responsibility of the Institute for Environment and Sustainabil-
ity of the European Commission Joint Research Centre. The aim of the project was to demon-
strate the feasibility of harmonized monitoring of forest soils at the European scale involving
22 countries and following common manuals [20]. As the project monitored forest and envi-
ronmental interactions at European level [21, 22], the Soil Organic carbon samples were taken
during the Biosoil Survey in 2006. The result of Biosoil project was the Biosoil dataset with
3,379 plots across Europe.

SoilTrEC Organic Carbon Dataset. SoilTrEC Dataset is originated from the Critical Zone
Observatories (CZOs) in SoilTrEC Project. SOC measurements from five different located
CZOs in Europe (Fig 2) (60 samples from Koiliaris (Greece) [23], 33 samples from Damma
Glacier (Switzerland) [24], 33 samples from Lysina (Czech Republic) [25], 71 samples from
Fuchsenbigl (Austria) [26], 85 samples from Plynlimon (UK)) are merged and included in this
study. Besides CZOs data, 105 samples from Switzerland (data were measured between 2000
and 2004 in the fourth repeated sampling campaign of Swiss Soil Monitoring Network
(NABO) [27] are used to fill the gap between geographical borders of Europe Content.
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Fig 1. Distribution of SOC samples. Very low (<1%) Low (1–2%) Medium (2–6%) High (> 6%).

doi:10.1371/journal.pone.0152098.g001
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Fig 2. Locations of CZOs in SoilTrEC Project CZOs.

doi:10.1371/journal.pone.0152098.g002
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Auxiliary Variables
Different variables can be used for different study areas to best explanation of SOC distribution.
Either one or all of the factors together might be found as significant and might have changed
SOC content. The combination and the correlation of the significant variables which effect
SOC content might be different in the different regions.

Generally, climate (temperature, precipitation, topographic/compound wetness index, evap-
oration, soil moisture, etc.), topography (slope, aspect, elevation, etc.), soil texture, parent
material, geology, vegetation (NDVI, etc.) and land use types are used as environmental covari-
ates for predicting soil organic carbon content. Both continuous (slope, aspect, temperature,
precipitation) as well as categorical (elevation, geology, land-cover map, soil map) factors were
used as auxiliary variables in our study to predict distribution of SOC and to map it as a spa-
tially continuous surface as listed below:

1. DEM (90 m resolution, SRTM)

1.1. Slope (%)

1.2. Aspect

1.3. Elevation

1.4. CTI (Compound topographic index)

2. Soil map (European Soil Bureau Network (ESBN) Database [28], JRC, WRB-Level1 Classes)

3. Geology Map (IGME 5000. 1/5Million International Geological Map of Europe and Adja-
cent Areas)

4. Land-Cover Map (CORINE 2000, EEA) [29]

5. Soil texture map (ESBN Database, JRC, Texture Classes) [28]

6. Parent material map (ESBN Database, JRC, dominant parent material classes) [28]

7. Climatic Data

7.1. WorldClim Data (EFSA & JRC, 1km) [30–32, 18]

7.1.1. Total precipitation (1950–2000 years, total precipitation)

7.1.2. Average precipitation (1960–1990 years, average monthly precipitation, mm/month)

7.1.3. Average temperature (1960–1990 years, average monthly mean temperature)

7.2. AGRI4CAST Interpolated Meteorological data (MARS Unit, JRC, 25km)

7.2.1. Average precipitation (2000–2010 years, Average total precipitation)

7.2.2. Max temperature (2000–2010 years, Average annual max temperatures)

7.2.3. Min temperature (2000–2010 years, Average annual min temperatures)

Data preparation and processing
All input data were being prepared before executing geostatistical analysis; all input data were
prepared using transformations for compliant projection and coordinate system (ETR-
S_1989_LAEA) and were resampled to the same resolution (90m). These actions ensured com-
patible data structure.
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All covariates were normalized before executing the model.Most of the continuous covari-
ates (slope, temperature, precipitation, etc.) was normalized by using Z-score normalization
technique. The range of [-1, 1] was used for aspect instead of [0, 360], by taking their sinus.
The number of classes–were kept between 7 and 8- in order to reduce the categorical informa-
tion as well as the importance of a specific covariate. Expert knowledge was used in this pro-
cess. Categorical covariates were normalized by reclassifying the chosen main classes and then
transferring these classes into new layers. The reclassification process resulted in binary data (0
and 1 classes) for each layer.

Fifteen different variables were used to assess and model the relationship between SOC and
environmental factors as given in auxiliary variables section. The detail description of the prep-
aration processes for each of the variables can be found in further paragraphs in this section.

Topographic covariates were obtained from a DEM which comes from SRTM 100m digital
terrain model: elevation, slope gradient (%) aspect and CTI. The Compound Topographic
Index (CTI also called Topographic Wetness Index) is a steady-state wetness index. It involves
the upslope contributing area, a slope raster, and a couple of geometric functions. The value of
for each cell in the output raster (the CTI raster) is the value in a flow accumulation raster for
the corresponding DEM.

21 classes of soil types (level 1) fromWRB (FAO, 1998) soil classification system were also
used as auxiliary information. These classes are: 1. AB (Albeluvisol), 2. AC (Acrisol), 3. AN
(Andosol), 4. AR(Arenosol), 5. CH (Chernozem), 6. CL (Calcisol), 7. CM (Cambisol), 8. FL
(Fluvisol), 9. GL (Gleysol), 10. GY (Gypsisol), 11. HS (Histosol), 12. LP (Leptosol), 13. LV
(Luvisol), 14. PH (Phaeozem), 15. PL (Planosol), 16. PZ (Podzol), 17. RG (Regosol), 18. SC
(Solochack), 19. SN (Solonetz), 20. UM (Umbrisol), 21. VR (Vertisol)). All of the classes were
included in the model as they are; they were not reclassified.

10 geological classes of 1/5.000.000 scale International Geological Map of Europe and Adja-
cent Areas (IGME 5000) were also used as auxiliary information. These classes are: 1. (Meta-)
Sedimentary rocks, 2. Acid magmatic and metamorphic rocks, 3. Limestones, 4. Acid to inter-
mediate, 5. Other rocks, 6. Basic magmatic and metamorphic rocks, 7. Ultra-basic magmatic
and metamorphic rocks, 8. Intermediate to basic igneous and metamorphic rocks, 9. Interme-
diate magmatic and metamorphic rocks, 10. Basic to ultra-basic)

The land cover data collected within the CORINE Land Cover (CLC) were also used as aux-
iliary information. Existing 44 CLC classes were grouped and reclassified into 7 new classes as
listed: 1. Urbanized (Corine classes 1–11), 2. Agricultural (Corine classes 12–22), 3. Forest/Nat-
ural areas (Corine classes 23–29), 4. Arenosol (Sand) (Corine class 30), 5. Bare rocks/open
spaces/glaciers (Corine classes 31–34), 6. Wetlands (Histosols) (Corine classes 35–39), 7.
Water bodies (Corine classes 40–44)

Texture information of the soils was also obtained from ESDB. All of the textural classes
were used as they appeared in the database. Those 7 classes were; 1. Coarse (18%< clay
and> 65% sand), 2. Medium (18%< clay< 35% and> = 15% sand, or 18%<\clay and 15%
< sand< 65%), 3. Medium fine (< 35% clay and< 15% sand), 4. Fine (35%< clay< 60%), 5.
Very fine (clay> 60%), 6. No mineral texture (Peat soils).

Dominant parent material level 3 classes of ESDB were also included in the study. These 8
classes were; 1. Consolidated-clastic-sedimentary rocks, 2. Sedimentary rocks (chemically pre-
cipitated,\evaporated, or organogenic or biogenic in origin), 3. Igneous rocks, 4. Metamorphic
rocks, 5. Unconsolidated deposits (alluvium, weathering\residuum and slope deposits), 6.
Unconsolidated glacial deposits/glacial drift, 7. Eolian deposits, 8. Organic materials

Precipitation and temperature datasets were derived from two different sources as indicated
in the list in previous section as different meteorological records from several temporal inter-
vals and from different resolutions. WorldClim dataset was obtained from EFSA spatial dataset
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which was made available in May 2011 and created on the basis of the dataset provided by JRC
[31]. The whole meteorological dataset contains 27 layers such as Mean monthly temperature
(12 maps, each per month), Mean annual temperature, Arrhenius weighted mean annual tem-
perature, Mean monthly precipitation (12 maps, each per month), Mean annual precipitation.
The dataset was described in Hijmans et al.[30]. The other dataset was obtained from “The
Crop Growth Monitoring System (CGMS)” which is the core of the MARS Crop Yield Forecast
System (MCYFS) currently used in forecasting activities in Europe by AGRI4CAST action of
JRC. One of the main output of the CGMS system are the Meteorological Interpolated data.
The CGMS database contains daily meteorological interpolated data from 1975 to the last cal-
endar year completed, covering the EUMember States, neighboring European countries, and
the Mediterranean countries. Several available meteorological parameters (min-max tempera-
ture, mean daily vapor pressure, mean daily rainfall, etc.) interpolated to a 25x25 km grids and
can be downloaded in the ASCII comma delimited text format.

Method
The Regression-Kriging method was applied to build the model and assess the distribution of
SOC in this study. Supposing that a data vector describing a soil property is a random variable
Z, determined at locations in a region, X = x1, . . ., xN, and consisting of three components as;

ZðxÞ ¼ mþ Z1 ðxÞ þ εðxÞ ð1Þ
where m is the local mean for the region, Z1 (x) is the spatially dependent component and ε
the residual error term, spatially independent.

The assumption in the RK technique is that the deterministic component of the target (soil)
variable is accounted for by the regression model, while the model residuals represent the spa-
tially varying but dependent component (Z1 in Eq 1). If the exogenous variables used in the
regression equation are available at denser locations than the target variable, the equation can
then be used to predict them factor of those locations [6].

Multiple linear Regression-Kriging geostatistical technique was used to estimate regression
coefficients, calculate residuals, and determine significant predictors for soil organic carbon
contents. Regression coefficients are estimations to predict target variable or to explain the var-
iability and spatial correlation in target variable.

RK method was applied to assess and map organic carbon distribution by using 3 different
combinations of datasets in EU scale. These combinations were;

1. LUCAS samples,

2. Aggregated samples from LUCAS and CZOs,

3. Aggregated samples from LUCAS, CZOs and BioSoil.

All of the analyses were performed in R 3.1.1 open source software by using several packages
such as gstat, mapproj, maptools, rgdal, sp, zoo, xts, space-time, mass. For mapping purposes
ArcGIS 10.2.2 (ESRI) software was also used. “Akaike information criterion (AIC)” was used
to obtain the best fit for the model in R.

The “repeated random sub-sampling validation”model was used for validating the model,
by writing a code in R which takes off 25% validation datasets randomly from the whole dataset
and calculate the results for subsets and put the subsets back and again takes off new subsets
for 10 times. Final validation result was calculated by taking the averages of the results comes
from 25% validation datasets.
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Results
Significant correlation between the covariates and the SOC was found for all of the predictions
with different combination of the dataset; with an R2, 0.4, 0.41 and 0.33 respectively (p< 0.05)
(Table 1), which are better results than found by Brogniez et al. [33] (R2 = 0.28). The averages
for each of the SOC calculations and standard deviation were founded as 5.73% and 6.08%;
6.08% and 6.02%; 5.46% and 5.34% respectively (Table 1). The final maps which show the SOC
distributions with the RK prediction models for three different combinations of dataset can be
seen in Figs 3–5.

Statistically significant predictors of the SOC distribution were found for each of the data-
sets. For the combination 2; elevation, slope, CTI, Average temperature, average precipitation,
total precipitation, Texture class 6 (Peat soils), WRB classes 21,10,6 (Vertisol, Gypsisol, Calci-
sol), CORINE Classes 1,2,4,5,6 predictors were found as statistically significant (p< 0.01) and
41% of the SOC distribution was best explained by these covariates. Aspect, parent material,
geological formations, most of the WRB classes and min-max temperature were not recorded
as having significant relationship between SOC. The following regression equation was used to
predict organic carbon distribution by using the combination 2:

SOC ¼ ½8:29� ð0:376 nELEVATIONÞ � ð0:416 nSLOPEÞ þ ð0:426 nCTIÞ
� ð3:11 nTAVGEÞ þ ð1:97 nPRECTOTEÞ � ð0:547 nTOTPRECÞ þ ð4:26 TEX6Þ
þ ð1:89 WRB21Þ þ ð2:62WRB10Þ þ ð2:55 WRB06Þ � ð4:37 COR1Þ
� ð4:63 COR2Þ � ð14:0 COR4Þ � ð5:94 COR5Þ þ ð16:6 COR6Þ � ð2Þ

where nElevation is the normalized elevation; nSLOPE is the normalized slope values; nCTI is
the normalized CTI values; nTAVGE is the normalized average temperatures for the 1960–
1990 years; nPRECTOTE is the normalized average monthly precipitation for the 1960–1990
years; nTOTPREC is the normalized total precipitation for the 1950–2000 years; TEX6 is the
texture class corresponds to peat soils; WRB21-WRB10-WRB06 are the WRB classes respec-
tively correspond to Vertisol, Gypsisol, Calcisol; COR1-2-4-5-6 is the CORINE classes respec-
tively correspond to urbanized, Agricultural, Arenosol (Sand), Bare rocks/open spaces/glaciers,
Wetlands (Histosols).

Statistically significant predictors of the SOC distribution were found for the combination 3
as; elevation, slope, CTI, Average temperature, average precipitation, total precipitation, Tex-
ture class 6 (Peat soils), WRB classes 10,6 (Gypsisol, Calcisol), CORINE Classes 3,4,6 predictors
were found as statistically significant (p< 0.01) and 33% of the SOC distribution was best
explained by these covariates. Aspect, parent material, geological formations, most of the WRB
classes and min-max temperature were not recorded as having significant relationship between
SOC.The following regression equation was used to predict organic carbon distribution by

Table 1. Comparison of the results of the predictedmaps.

MAPS R2 Standard error Mean of SOC Standard deviation of SOC

LUCAS 0.4003 0.790 5.73 6.08

LUCAS+CZOs 0.4062 0.792 6.08 6.02

LUCAS+CZOs+BIOSOIL 0.3326 0.84 5.46 5.34

doi:10.1371/journal.pone.0152098.t001
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Fig 3. Predicted distribution of SOC content by using combination 1 dataset.

doi:10.1371/journal.pone.0152098.g003
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Fig 4. Predicted distribution of SOC content by using combination 2 dataset.

doi:10.1371/journal.pone.0152098.g004
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Fig 5. Predicted distribution of SOC content by using combination 3 dataset.

doi:10.1371/journal.pone.0152098.g005
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using the combination 3:

SOC ¼ ½3:76� ð0:645 nELEVATIONÞ � ð0:283 nSLOPEÞ þ ð0:342 nCTIÞ
� ð2:93 nTAVGEÞ þ ð1:84 nPRECTOTEÞ � ð0:283 nTOTPRECÞ þ ð2:73 TEX6Þ
þ ð2:56 WRB10Þ þ ð2:56WRB06Þ þ ð2:68 COR3Þ � ð8:73 COR4Þ
þ ð15:22 COR6Þ � ð3Þ

where nElevation is the normalized elevation; nSLOPE is the normalized slope values; nCTI is
the normalized CTI values; nTAVGE is the normalized average temperatures for the 1960–
1990 years; nPRECTOTE is the normalized average monthly precipitation for the 1960–1990
years; nTOTPREC is the normalized total precipitation for the 1950–2000 years; TEX6 is the
texture class corresponds to peat soils; WRB10-WRB06 are the WRB classes respectively corre-
spond to Gypsisol, Calcisol; COR3-4-5-6 is the CORINE classes respectively correspond to
Forest, Arenosol (Sand), Wetlands (Histosols).

The residuals derived from the regression analysis were interpolated by kriging using a
semivariogram model with -0.0035 average error and 7.84 root mean squared error (RMSE)
for the combination 2 (aggregated samples from LUCAS and CZOs). Measured organic carbon
content ranged from 0.07% to 58.68% and an average value of the samples was 5.21%, standard
deviation 9.45 for combination 2. Besides, estimated results for combination 3 (aggregated
samples from LUCAS, CZOs and BioSoil) were found as between 0 and 61.02% and average
organic carbon content of Europe has been found as 5.46% which is medium organic carbon
content, and standard deviation 5.34 (Table 1).

The highest average SOC contents was found in the wetland areas in three of the maps
(Table 2); then in the scrub/ herbaceous vegetation (natural grasslands, moors, etc.) for combi-
nation 2 (LUCAS+CZOs) and combination 3 (LUCAS+CZOs+BIOSOIL) maps, forest for
combination 1 (LUCAS) map and in the forest areas for combination 2 (LUCAS+CZOs) and
combination 3 (LUCAS+CZOs+BIOSOIL) maps, scrub/ herbaceous vegetation (natural grass-
lands, moors, etc.) for combination 1 (LUCAS) map. Agricultural areas have much lower soil
organic carbon content than forest and semi natural areas.

According to our results, Ireland, Sweden and Finland has the highest SOC and Portugal,
Poland, Hungary, Spain, Italy have the lowest values with the average 3% (Table 3). Northern
Countries with high precipitation and low temperature averages seem that having higher
organic carbon amount than warmer southern Countries.

Predicted data were evaluated with repeated random sub-sampling validation datasets and
average R2 and RMSE were found as 0.584 and 0.897 for the predictions with only LUCAS

Table 2. SOC averages per land-cover for eachmethod.

AREA (%) MEAN

LUCAS LUCAS+CZOs LUCAS+CZOs+BIOSOIL

Arable Land 24.9 2.0 2.1 1.98

Permanent crops 2.3 1.9 2.0 1.80

Pastures 8.5 5.2 5.3 5.28

Heterogeneous agricultural areas 10.9 3.1 3.2 3.03

Forests 31.1 7.5 7.7 6.75

Scrub/herbaceous vegetation (natural grasslands, moors, etc.) 12.3 7.2 8.0 7.49

Open spaces with little or no vegetation 1.7 4.4 7.0 6.37

Wetlands 2.0 13.5 13.5 10.48

doi:10.1371/journal.pone.0152098.t002
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samples; 0.486 and 0.76 for the predictions with LUCAS-CZOs samples; 0.401 and 0.578 for
the predictions with LUCAS-CZOs-BIOSOIL samples (Table 4) respectively.

Conclusion
This study showed that the SOC distribution of Europe was successfully mapped using Regres-
sion-Kriging method with good accuracy (R2 = 0.4, 0.41 and 0.33 (Table 1)). Moreover, these
results gave better estimations than the results found by Brogniez et al [33] (R2 = 0.28) which is
the latest study predicts topsoil organic carbon content of Europe by LUCAS dataset. Accord-
ing to our results for Europe scale, SOC variation is affected by different variables such as eleva-
tion, slope, CTI, Average temperature, average precipitation, total precipitation, Texture, WRB
and CORINE variables. The models were determined by those variables which played a domi-
nant role in the predictions. SOC amounts were positively correlated to CTI, average precipita-
tion, texture class indicates peat soils, WRB classes and CORINE class indicates Histosols;
negatively correlated to elevation, slope, average temperature, total precipitation, and urban-
ized-agricultural-sand-bare rocks areas in CORINE Land cover for the combination 3.

LUCAS dataset mostly was based on the samples that were taken from agricultural areas.
Due to this, the combination of local dataset (CZOs), which includes samples taken from dif-
ferent land-uses (Forest in Lysina, agricultural land in Fuchsenbigl, degraded land in Koiliars
and mountain areas in Damma) and LUCAS samples was the good advantage for calibrating

Table 3. Comparisons of the SOC averages for eachmethod in terms of NUTS-Level 0.

NUTS0 MEAN

LUCAS LUCAS+CZOs LUCAS+CZOs+BIOSOIL

AT- Austria 5.46 6.53 5.85

BE-Belgium 3.66 3.58 3.28

CH-Switzerland 5.38 6.29 6.15

CZ-Czech Republic 3.49 3.58 3.37

DE-Germany 3.83 3.97 3.50

DK-Denmark 3.44 3.61 3.31

EE-Estonia 10.89 11.25 9.91

EL-Greece 3.11 3.94 3.40

ES-Spain 3.04 3.51 3.00

FI-Finland 11.63 11.99 9.79

FR-France 3.46 3.66 3.38

HU-Hungary 3.04 2.98 2.21

IE-Ireland 13.29 13.51 13.29

IT-Italy 3.04 3.74 3.37

LT-Lithuania 4.76 5.00 5.91

LU-Luxemburg 3.22 3.43 3.01

LV-Latvia 7.46 7.65 6.92

NL-Netherlands 3.24 3.57 3.30

PL-Poland 3.01 3.14 2.91

PT-Portugal 2.78 2.91 2.68

SE-Sweden 12.52 13.13 11.15

SI-Slovenia 5.90 5.97 5.92

SK-Slovakia 3.55 3.81 3.22

UK-United Kingdom 8.08 8.40 9.59

doi:10.1371/journal.pone.0152098.t003
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the land-use based soil data. The integration of local soil data (at CZO level) improved the SOC
estimates in terms of R2 evaluation.

The combination of LUCAS (samples mainly taken from agricultural areas) and BioSoil
(samples mainly taken from forest) datasets resulted in a combined dataset that could permit
our model to perform better at Europe scale in terms of R2 evaluation. It was expected that the
merged dataset (Biosoil, LUCAS, CZO) would improve the overall results and give a better out-
put since BioSoil covers up the main limitation of LUCAS dataset which has limited samples
from forests, but the findings showed the opposite case with the lower R2 than the results of
only LUCAS dataset. However, the average of the soil organic carbon content of Europe of this
combined dataset (Biosoil, LUCAS, CZO) was predicted closer to the measured average which
was 5.21 and with lower standard deviation (5.34) (Table 1).

The highest average SOC contents were found in the wetland areas in three of the maps.
Agricultural areas have much lower soil organic carbon content than forest and semi natural
areas. Ireland, Sweden and Finland has the highest SOC and Portugal, Poland, Hungary, Spain,
Italy have the lowest values with the average 3%. Northern Countries with high precipitation
and low temperature averages seem that having higher organic carbon amount than warmer
southern Countries.

Concluding, even though the predicted models could explain maximum 41% of SOC distri-
bution, RK digital soil mapping technique is still robust and valid method for the big variability
of European scale. This study also showed that, increasing the number of the soil samples by
using combination of the databases was not always be helpful to increase the statistical signifi-
cance of the method results for assessing the SOC distribution. However, applying different
geostatistical methods for the prediction (cubist model or Partial Least Squares Regression), or
selecting different auxiliary variables from different sources might increase the overall results.
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