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Abstract Coupled atmosphere-ocean general circulation
models (GCMs) simulate different realizations of possible fu-
ture climates at global scale under contrasting scenarios of
land-use and greenhouse gas emissions. Such data require
several additional processing steps before it can be used to
drive impact models. Spatial downscaling, typically by re-
gional climate models (RCM), and bias-correction are two
such steps that have already been addressed for Europe. Yet,
the errors in resulting daily meteorological variables may be
too large for specific model applications. Crop simulation
models are particularly sensitive to these inconsistencies and
thus require further processing of GCM-RCM outputs.
Moreover, crop models are often run in a stochastic manner
by using various plausible weather time series (often generat-
ed using stochastic weather generators) to represent climate
time scale for a period of interest (e.g. 2000 ± 15 years), while
GCM simulations typically provide a single time series for a
given emission scenario. To inform agricultural policy-mak-
ing, data on near- and medium-term decadal time scale is
mostly requested, e.g. 2020 or 2030. Taking a sample of mul-
tiple years from these unique time series to represent time
horizons in the near future is particularly problematic because

selecting overlapping years may lead to spurious trends, cre-
ating artefacts in the results of the impact model simulations.
This paper presents a database of consolidated and coherent
future daily weather data for Europe that addresses these prob-
lems. Input data consist of daily temperature and precipitation
from three dynamically downscaled and bias-corrected re-
gional climate simulations of the IPCC A1B emission scenar-
io created within the ENSEMBLES project. Solar radiation is
estimated from temperature based on an auto-calibration pro-
cedure. Wind speed and relative air humidity are collected
from historical series. From these variables, reference evapo-
transpiration and vapour pressure deficit are estimated ensur-
ing consistency within daily records. The weather generator
ClimGen is then used to create 30 synthetic years of all vari-
ables to characterize the time horizons of 2000, 2020 and
2030, which can readily be used for crop modelling studies.

1 Introduction

There is a general consensus in the scientific community that
the change in the climatic system of the Earth is unequivocal
(IPCC 2013). Agriculture is one of the sectors most vulnerable
to climate change. In Europe, future impacts of climate change
on agriculture can be generalized by a northward movement
of crop suitability, with increased productivity in Northern
Europe and a decline in both productivity and suitability in
Southern Europe (Olesen et al. 2002; Maracchi et al. 2005;
Falloon and Betts 2010). However, it is also foreseen that
there will be an increase in extreme events, such as the heat
waves over Europe of 2003 and 2010 (Schär et al. 2004;
Barriopedro et al. 2011; Russo et al. 2014). These shifts and
changes will offer opportunities and challenges requiring ad-
aptation of European agriculture to the changing environment.
In order to implement appropriate policies, appropriate tools
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are required to characterize spatially the vulnerability of its
agriculture based on future climate predictions.

Deterministic crop growth modelling is a major tool for
analysing the impacts of climate change on agricultural pro-
duction. Daily weather data is necessary to drive these models.
The climate information required to estimate daily weather in
the future typically originates from coupled atmosphere-ocean
general circulation models (AOGCMs, but onwards referred
to more simply as GCMs). These models can be used to gen-
erate projections of future climate based on scenarios, i.e. a
coherent, internally consistent and plausible description of a
possible future state of the world.

Some of the most commonly used climate change scenar-
ios are those provided by the Special Report on Emissions
Scenarios (SRES) (Nakićenović et al. 2000) of the
Intergovernmental Panel on Climate Change (IPCC). These
scenarios consider four main alternative storylines classified
along two axes representing conditions where the world is
either more globalized or regionalised, and whether it will be
more environmentally or economically centred. More recent-
ly, the SRES have been replaced by representative concentra-
tion pathways (RCP) (van Vuuren et al. 2011) and with asso-
ciated shared socio-economic pathways (SSPs) (O’Neill et al.
2013).

Climate change projections realized by running
GCMs under different emission scenarios are intrinsical-
ly subject to a considerable amount of uncertainty. This
has lead the community to use various GCMs together,
such as the Coupled Model Inter-comparison Project
(CMIP) which provides an ensemble of model runs that
are examined by the IPCC to produce their reports. The
latest IPCC Fifth Assessment Report (AR5) is based on
CMIP5.

There are several major obstacles to use information from
GCMs to generate daily weather for cropmodels. There is first
a serious challenge due to the significant differences in spatial
and temporal scales between GCMs and crop growth models
(Hansen et al. 2006). Despite an increasing ability of GCMs to
successfully model present-day climate and provide realistic
quantitative predictions of climate change at a continental
scale, GCMs still have serious difficulties in reproducing ac-
curate daily estimates at local scale. This is especially true for
rainfall variability: while a GCM may estimate monthly pre-
cipitation correctly, the daily precipitation may be spread
throughout the month in a highly unrealistic way (e.g. raining
a little every day). Such distortions of daily weather variability
can seriously bias crop model simulations (Semenov and
Porter 1995; Mearns et al. 1996; Hansen and Jones 2000;
Baron et al. 2005). The need for bias correcting GCM-RCM
projections before using them to drive impact models is well
known, e.g. Christensen et al. (2008), and the influence of
such biases on hydrological and crop modelling has been ex-
tensively investigated by, e.g. Teutschbein and Seibert (2010),

who claimed that unless climate model outputs are corrected,
their application in impact modelling may be unrealistic.
Furthermore, it is important to note that the choice of the
bias-correction method itself can influence the results as much
as differences between GCMs (Hawkins et al. 2013).

There is a need to bridge this gap between the data
provided by the climate community and the requirements
of crop growth models. The objective of this paper is to
present a dataset of future weather data covering Europe
that (1) is suitable to use as input data for crop growth
simulation models and (2) can be used for impact studies
targeting the short-term time horizons (such as 2020 and
2030) that are highly relevant for policy-making. The
application of the dataset for crop modelling is described
in another paper (Donatelli et al. 2015).

2 Material and methods

2.1 Future weather data

The future weather dataset presented in this paper is based on
simulations generated by different GCMs that have been dy-
namically downscaled using regional climate models (RCM).
The original GCMs simulations are publicly available from
the European ENSEMBLES project (Van der Linden and
Mitchell 2009; http://ensemblesrt3.dmi.dk/). This data was
bias-corrected (Dosio and Paruolo 2011; Dosio et al. 2012)
by applying an extension of the technique proposed by earlier
studies (Piani et al. 2009; Piani et al. 2010) in which both
precipitation and temperature values are corrected indepen-
dently with respect to the E-OBS dataset (Haylock et al.
2008). From this bias-corrected dataset, simulations of the
A1B scenario by different coupled GCM-RCM models were
selected (from now onwards, when the notation GCM is used
in this paper, it refers to the bias-corrected dataset). In the
present work, only the A1B SRES is considered because
short-term time horizons (2020 and 2030) are targeted, and
at such time scales, differences with other scenarios are mod-
est with respect to temperature. A1B is also a scenario that has
been widely used in simulation studies representing one of the
possible high impact scenarios at later time scales deriving
from GHG emissions. The first realization of the A1B scenar-
io consists of simulations of the ECHAM5GCMcoupled with
the HIRHAM5 RCM (Christensen et al. 2006) and run by the
Danish Meteorological Institute (henceforth denoted DMI-
HIRHAM5-ECHAM5). The second model, run by the Swiss
Federal Institute of Technology, nests CLM (Jaeger et al.
2008) in the HadCM3 GCM (denoted ETHZ-CLM-
HadCM3Q0). The third realization also uses the same
HadCM3 but this time coupled with the HadRM3Q0
(Collins et al. 2011) by the UK Met Office Hadley Centre
for Climate Prediction and Research (denoted as METO-
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HC-HadRM3Q0-HadCM3Q0).1 The rationale behind this
choice of models was to (1) select widely used GCMs and
(2) maximize diversity in terms of a weather variable of inter-
est. Within the A1B realizations in the ENSEMBLES project
that have been bias-corrected (Dosio et al. 2012), the DMI-
HIRHAM5-ECHAM5 and METO-HC-HadRM3Q0-
HadCM3Q0 simulations are respectively the coldest and the
warmest in terms of surface air temperature. ETHZ-CLM-
HadCM3Q0 is added to provide an intermediate realization
with markedly different precipitations patterns. Daily data for
these three A1B realizations are selected for the time period
running from 1993 up to 2037, in order to group them into
three time horizons of 15 years: (1) a baseline period around
2000 (1993–2007), (2) horizon 2020 (2013–2027), and hori-
zon 2030 (2023–2037). The choice of time horizons of
15 years, rather than the more conventional 30 years typically
used in climate modelling, stems from the practical request
from agricultural policy-makers to deliver information on
the near-to-medium decadal time scales, i.e. 2020 and 2030.
The weather generator, described in section 3.2, is subsequent-
ly used to recreate weather for a longer time period. All data
were also resampled using a nearest-neighbour interpolation
over a common 25 by 25 km grid, which is the grid of the
reference observed weather dataset described in the next
section.

2.2 Historical weather data

Observed weather data over the baseline period (centred
around 2000) is required in this work for two reasons: (1) to
complement the future dataset with some variables, as is ex-
plained further on, and (2) to assess how well the time series
generated by the GCM represents the historical climate. The
rationale behind selecting 2000 as a baseline period, instead of
a more common period, such as 1961–1990, is partly to ensure
a higher reliability and completeness of meteorological re-
cords. However, since the dataset in this study is intended
for studies in agriculture, the choice of the baseline also aims
at having a benchmark period in which agricultural practices
are similar to those employed currently and in the near future.
The weather database selected for this task was provided by
the MARS Crop Yield Forecasting System (MCYFS) (Micale
and Genovese 2004). The MCYFS is an operational decision
support system run by the Joint Research Centre of the
European Commission for the past 20 years to provide in-
season crop yield forecasts at a European level. The estimates
from the system are used in the decision-making process on
market intervention and for policy support. The MYCFS
weather database is based on daily weather observations from
meteorological stations that are spatially interpolated into a 25

by 25 km grid. A base of circa 4000 weather stations over
Europe is available from which only those satisfying reliabil-
ity criteria for near-real-time delivery are used as data sources.
The MYCFS data is used, as detailed in the following para-
graph and with reference to time horizon centred on year
2000, to

& Evaluate GCM-RCM estimates of surface air temperature
and rainfall,

& Evaluate solar radiation estimates, and
& Use wind and air relative humidity data.

The data is also used as support to evaluate the capability a
weather generator to reproduce time series starting from those
simulated by the GCMs (in section 3.3).

3 Methods

The methodology to construct the future weather dataset for
Europe is described in the following sections and summarized
in Fig. 1.

3.1 Complementing the weather dataset with biophysical
variables necessary for crop simulation

Despite the bias-corrections, the future weather dataset pro-
posed by Dosio and Paruolo (2011) is still inadequate to prop-
erly run process-based crop simulation models to assess cli-
mate change impacts on crop growth and yield. The main
issue is the lack of consistency of weather variables resulting
from the fact that the bias-correction is done only on a subset
of the necessary variables: surface air temperature and rainfall.
Other required variables, such as global solar radiation and
wind speed, may still have unrealistic distributions when com-
pared to observed data. Other input variables for crop growth
models, such as evapotranspiration, are not directly available
and must thus be calculated. The solutions below have been
adopted to consolidate the weather dataset.

3.1.1 Global solar radiation

To ensure global solar radiation is coherent with the bias-
corrected temperature values, it has been estimated using the
Bristow-Campbell model (Bristow and Campbell 1984). Such
methods to estimate global solar radiation using daily surface
air temperature amplitude are based on the assumption that the
site is not significantly affected by advection. This assumption
does not necessarily hold when estimating the solar radiation
pattern of a specific site, but when working with abstractions
such as interpolated time series associated to a spatial grid and
when site-specific information is lacking, the assumption can
be considered non-limiting. This is because the range-based

1 More details on the models and their institutions can be found in
(Christensen et al. 2010).
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method is physically consistent: clear days show a greater
range of temperature because solar irradiance is not filtered
by clouds during the daytime, while the long-wave emission
from soil surface is more rapidly lost in the atmosphere during
the night. Seasonality is accounted for in the Bristow-
Campbell model. The Bristow-Campbell model requires a
continuous observed global solar radiation spanning at least
2 years for proper calibration; this is not available for all of
Europe. Consequently, the auto-calibration procedure pro-
posed by Bojanowski et al. (2013), which does not require
reference data, was used. The auto-calibration method pro-
vides robust estimates of solar radiation which are consistent
with temperature data. Given that GCM climate change sce-
narios do estimate changes in temperature, the Bristow-
Cambell b parameter can be estimated for each scenario; solar
radiation data can be derived accordingly. Clear sky transmis-
sivity (CST) is estimated for each grid cell from remote sens-
ing data as in Bojanowski et al. (2013). After CST was esti-
mated, the b parameter is estimated keeping the value of the c
parameter constant as c = 2. The uncertainties in the temper-
ature estimates of GCM and RCMs can be propagated to solar
radiation; however, it is beyond the scope of this study to
articulate about the exogenous variables.

3.1.2 Wind speed and relative air humidity

Wind speed and relative air humidity are of direct interest for
plant disease models and for the estimation of reference

evapotranspiration based on models such as Penman-
Monteith. As illustrated in Fig. 2, the distributions of these
variables produced by GCMs are not realistic when compared
to observations fromMCYFS. The wind speed data contained
some very excessive and unrealistic values in the METO-HC-
HadRM3Q0-HadCM3Q0 model simulation. To avoid prob-
lems with the Q-Q plot, data above 15 m/s (less than 2 % of
the total samples considered here) are discarded from the sim-
ulated data and the respective records are removed from the
observed data. Even after this operation, wind speeds appear
overestimated when compared to the observed data.

Some relationship between these variables and temperature
and precipitation patterns exists, but it is much less straight-
forward to derive the former from the latter as it was done with
global solar radiation. Here, it is conservatively assumed that
patterns of wind speed and humidity should not change con-
siderably in the near future. The historical observed data from
MCYFS during the period 1993–2007 are thus used to repre-
sent all time horizons (the baseline, 2020 and 2030).

3.1.3 Evapotranspiration and vapour pressure deficit

Reference evapotranspiration and vapour pressure deficit
were estimated from the GCMs and/or derived weather ele-
ment variables using the FAO56 realization of the Penman-
Monteith model (Allen et al. 1998) as implemented in the
CLIMA libraries (Donatelli et al. 2006; Donatelli et al.
2009). While simpler temperature-driven empirical methods

Fig. 1 Outline of the data processing workflow to generate the future daily weather for crop simulation presented in this paper
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can also be used, this physically based approach is preferred to
ensure that the bio-meteorological values are consistent with
the driving thermic, aerodynamic and radiative elements.

3.2 Processing the dataset for short-term time horizons

The data produced by GCMs (or RCMs) are often used to
represent the general trend that climate variables such as tem-
perature are expected to have. However, there is some vari-
ability around such a trend representing the weather patterns
that are simulated by GCMs. For a given time horizon, climate
studies will typically use datasets with 30 years or more to
characterize a given variable or to derive biophysical variables
from impact models (such as crop yields). Such sample size is
deemed large enough so that the short-term random fluctua-
tions—such as yearly weather pattern variations—do not sig-
nificantly affect the characterization of the climate during the
target time horizon.

Typically, climate studies distinguish time horizons that are
well separated in time, e.g. 2020, 2050 and 2100. Using the
larger sample size tempers statistical descriptors such that
identified trends are not significantly influenced by short-

term anomalous fluctuations. If time horizons of interest are
close in time, such as 2020 and 2030, taking windows of
30 years around these horizons results in an overlap that is
too large, rendering the separation into two horizons not sig-
nificant. Conversely, when considering only 10 years (thereby
avoiding the overlap in the above-mentioned case of 2020 vs.
2030), the sample size becomes too small in order to assume
that specific short-term weather fluctuations do not dominate
the trend. Indeed, 3 or 4 years that are much warmer than the
average during a period of 10 years will have stronger conse-
quences on the average indicators derived by impact models,
such as crop growth models, than if these 3–4 years occur
within a period of 30 years.

A compromise was made to characterize the climate of the
target time horizons by using a stochastic weather generator,
ClimGen (Stöckle et al. 2001), to increase the sample size
corresponding to each time horizon. We used 15 years of data
around each time horizon to derivemonthly parameters for the
weather generator (WG); these parameters resume the distri-
bution of each weather variable for each grid cell. These pa-
rameters are then used to generate a set of 30 synthetic years
for every grid cell, which have the characteristics of the 15-

Fig. 2 Comparison of maximum
relative humidity (top left),
minimum relative humidity (top
right) and wind speed (bottom
left) from gridded observations in
the MCYFS weather database
against those simulated by
dynamically downscaled METO-
HC-HadRM3Q0-HadCM3Q0
model. Data come from a subset
of ten locations across Europe
(indicated in Fig. 3), collected
over the period going from 1
April till 30 September and over
the years 1993–2007. For wind
speed, simulated values above
15 m/s are discarded
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Fig. 3 Location of the selected
25 by 25 km grid cells from the
MCYFS weather database which
were used for the comparison
with the generated future daily
weather over the baseline period.
The intensity of the green colour
relates to the percentage of arable
land in each grid cell according to
the MCYFS database

Fig. 4 Comparison of maximum
temperature for the baseline
period (centred on 2000) between
observations from the MCYFS
weather database and the
simulated values from the three
different bias-corrected and
dynamically downscaled climate
models. Two levels of processing
are shown: before and after
applying the weather generation
(WG) step. Both data based on
observation (the MCYFS
database) and the WG data ranges
from 1993 to 2012. WG years
were randomly sampled from the
30 years generated

Duveiller G. et al.



year period. Although the 15-year periods used to generate
parameters do overlap by 4 years, the new synthetic years
within each time horizon are distinct since they are regenerat-
ed randomly.

It must be acknowledged that due to the stochastic
nature of the weather generation process, and to the fact
that the generation is applied independently on every
grid cell, there is a lack of spatial consistency: a gen-
erated value for a variable in any given cell on any
given day will not necessarily be similar in value to
variable’s values in adjacent cells. In reality, there
would generally be a continuum of the values between
cells, if not throughout the region. This also applies to
any biophysical variables derived from this synthetic
weather dataset. The weather dataset built here is con-
sequently targeted to be used with impact models in
which runs are spatially independent. Spatially-
continuous results are obtained after averaging all the
simulated variables at each grid cells. Hence, results
can only be analysed in terms of statistic properties,
and not for investigating patterns of individual years.

3.3 Comparison against gridded observed weather data

A comparison between the observed MCYFS and the gener-
ated weather datasets for the overlapping period of the base-
line serves to assess how well the dataset correlates to the past
climate. Three evaluations were devised to ensure the cogency
of the assumptions: (1) an assessment of the bias-correction
process by analysing potential differences between the GCM-
RCMs (the reference database MCYFS is indeed different
from that of E-OBS used for the bias-correction); (2) an anal-
ysis of how the duration, or sample size, of generated weather
time horizons (section 3.2) may affect results and (3) an eval-
uation of how well global solar radiation estimation is im-
proved by the auto-calibration of the temperature-based model
(section 3.1.1).

The evaluations were conducted on a subset of grid cells
encompassing key sites representing regions in Europe with
contrasting agro-ecological conditions (as shown in Fig. 3). In
each case, every year in the baseline time horizon of 1993 to
2007 (2000 ± 7 years), was included, but only during a typical
growing season ranging from 1 April up to 30 September.

Fig. 5 Same as Fig. 4 but for
minimum temperature
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This period covering much of the spring and summer is con-
sidered most relevant for crop growth in Europe.

The bias-correction process evaluation was performed for
each meteorological variable. Each variable was sorted by
value irrespectively of spatial location for every GCM-RCM
dataset separately. Each series was matched with a series ob-
tained with the same procedure from data of the same cells in
the MCYFS dataset. Both GCM and WG series were com-
pared; in the case ofWG data, 15 years were sampled from the
30 generated to have the same number of items in each series.
This analysis quickly identifies if biases persist and if extreme
values are correctly represented.

4 Results

4.1 Evaluation against observed data

The capacity of the generated weather to represent the climate
in the baseline time horizon of 2000 is summarized by the Q-
Q plots for maximum temperature, minimum temperature and
daily precipitation in Figs. 4, 5 and 6, respectively.

Minimum and maximum temperature appears to be in line
with the observed gridded MCYFS data. The weather

Fig. 6 Same as Fig. 4 but for
daily precipitation

Fig. 7 Comparison of simulated solar radiation, either directly generated
by the GCM or derived from temperature, against the reference source:
MCYFS observed weather database
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generation step even seems to slightly improve the represen-
tation of the lower temperature values in some cases.

For daily precipitation, the distributions of the uncorrected
RCM and WG-simulated data do not quite match those of
observed data. Over the selected grid cells, there is an overes-
timation of days with no precipitation (not visible on Fig. 6.
because of the logarithmic scale) and an under-estimation of
heavy precipitation.

For global solar radiation, the Q-Q plot presented in Fig. 7
shows how the values generated using the auto-calibrated
Bristow-Campbell model are generally closer to measured
data. Furthermore, the graphs in Fig. 7 do not show the im-
proved consistency with the other variables. Figure 8 comple-
ments the picture by showing how the WG calculated global
solar radiation is more coherent with respect to the daily tem-
perature amplitude. This is expected as days with larger ther-
mic amplitude are typically cloudless and thus allow more
radiation to reach the land surface. This does not hold in situ-
ations in which substantial advection or convection phenom-
ena occur, but in the absence of reference data as for future
weather scenarios, the physically based assumption that the
correlation between air temperature amplitude and radiation
flux exists is more acceptable than the opposite.

4.2 Overview of the generated dataset

The general patterns of cumulated daily precipitation and av-
erage maximum temperature during the period comprising the
months of April up to September (included) are presented to
illustrate the generated dataset. The weather data variables are

respectively illustrated in Figs. 9 and 10, and consist of the
average of 30 individual synthetic years with an additional
spatial smoothing, using a 3 by 3 averaging filter to further
increase the spatial consistency and facilitate the interpretation
of the maps.

According to the three GCMs, under the A1B scenario,
temperature is foreseen to rise steadily over most of Europe
from the baseline in 2000 up to 2020 and then 2030. However,
within the general pattern of surface air temperature increase,
the areas with the estimated highest increase by 2030 differ
according to GCMs: (i) Eastern Europe (DMI-HIRHAM5-
ECHAM5), (ii) Southwestern Europe (ETHZ-CLM-
HadCM3Q0), (iii) most of Europe excepting Italy,
Southeastern Europe and the British Isles (METO-HC-
HadRM3Q0-HadCM3Q0). The rise in minimum tempera-
tures in April–September follows roughly the same patterns
(not shown).

Precipitation patterns vary spatially, even to a noticeable
extent, according to both the A1B realizations and the time
horizons. With an exception of more humid zone spanning
Ireland, Scotland, Scandinavia and Northern Russia, Europe
is generally expected to become considerably drier over the
period of April–September in the time horizon 2030.
However, before reaching this rather dry situation in 2030,
the data show that Europe is estimated to see higher precipi-
tations in horizon 2020 compared to the situation in 2000, in
particular for METO-HC-HadRM3Q0-HadCM3Q0.
Diversifying from the general trend, all models present areas
in Southern Europe which are estimated to become wetter in
the 2030 time horizon compared to the 2000 one. This zone is

Fig. 8 Simulated global solar
radiation against daily
temperature amplitude for two
grid cells. Simulated global solar
radiation is either (left column)
directly generated from the GCM
or (right column) derived from
temperature values as proposed in
this paper. The red solid line
highlights difference in maximum
values
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shifted for each model: in METO-HC-HadRM3Q0-
HadCM3Q0, it spans all along theMediterranean and includes
the western part of the Black Sea; in ETHZ-CLM-
HadCM3Q0, it is localized in the Iberian and Italian penin-
sulas; while in DMI-HIRHAM5-ECHAM5, it encompasses
central France, the Alps and Northern Italy, leaving the
Iberian peninsula much drier than the other two models.

5 Discussion

The presented database provides a coherent characterization
of three realizations of the A1B scenario in the short-term time
horizons of 2020 and 2030. The target of the database are
users of impacts models, and more specifically crop/crop dis-
eases and pests models, who aim at providing insight to
policy-makers into how agriculture will evolve in Europe un-
der changing climate conditions in the near future. This
dataset, for which a preliminary version had been announced
in a short communication (Donatelli et al. 2012b), has been
used in a series of studies of impact modelling (Bregaglio et al.
2013; Maiorano et al. 2013; Manici et al. 2014; Donatelli et al.
2015). It has been used to make policy reports for the

European Union through the AVEMAC (Donatelli et al.
2012a) and PESETA II projects (Ciscar et al. 2014), and it
was also used to generate crop simulations that contributed
to the Fifth Assessment Report of the IPCC (Kovats et al.
2014).

The considerable differences in precipitation patterns
among the three ENSEMBLES models lead to different pos-
sibilities regarding what strategy to take when defining ade-
quate policy for adaptation and/or mitigation. Depending on
what model is considered, the outlooks for France and Spain
are reversed, for instance. Policy can be conservative, trying to
tackle both diverging possibilities, or it can be tailored to
address only the more costly scenario. The fact that in many
places there is a change in trajectory between the 2020 and
2030 horizons further stresses the importance in looking at
short-term time horizons for decision-making and policy plan-
ning. Measures taken to address the situation in 2020 may
quickly become obsolete if the situation changes considerably
by 2030. Inversely, policy addressing 2030 (or beyond) may
be strongly criticized if the events in 2020 are portraying a
contrasting picture.

Targeting these short-term horizons is challenging because
they are more prone to be influenced by the inter-annual
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variability rather than by the long-term trends (Maraun
2013a).Multiplying the number of years over the 15-year time
horizon windows using a weather generator to characterize the
climatology is not necessarily a perfect solution. The 15-year
windows might still be strongly influenced by some more
extreme events that are more attributable to inter-annual
variability than changes in the climate. However, this meth-
od proved to be a suitable compromise, since the compari-
son over the baseline period does not show large differences
of the distributions of synthetic weather variables with res-
pect to those of observed ones, even though the observed
ones ranged over the period 1988–2012 while the synthetic
dataset ranged from 1993 to 2007. One thing that could be
improved is to generate a larger number of synthetic years
(such as 100 instead of 30) so as to better represent the
extreme events. Regarding the comparison with observed
data, it must be acknowledged that the gridded observed
weather data can also have problems. Some researchers
have noted potential weaknesses of the E-OBS data set in
data-sparse regions (e.g. Herrera et al. 2010). The MCYFS
database has similar shortcomings with respect to the spa-
tial density of weather stations and how these are interpo-
lated to the grid.

The results overall indicate that the presented dataset is
coherent with respect to observed weather data for the bias-
corrected variables. For the other variables necessary for crop
growth simulation, pragmatic solutions have been proposed to
render the database usable. For global solar radiation, the pro-
posed approach of deriving it from temperature using the auto-
calibrated Bristow-Campbell model showed a higher consis-
tency with respect to other weather variables and allowed
rescaling to the maximum values expected in clear sky condi-
tions. Patterns in wind and relative humidity had to be as-
sumed constant over the time spans of interest to be able to
derive evapotranspiration and vapour pressure deficit, given
that currently there is neither evidence nor quantitative esti-
mates of the future change for those variables. Even if the
accuracy and robustness of GCMs estimates will likely im-
prove with time, the need of using weather data to estimate
impacts must be match with usable weather data products, and
this is what this paper presents for the crop modelling
community.

The methodology used here to derive a dataset dedicated to
crop modelling is not limited to the input data currently used.
The ENSEMBLES data are being replaced by those of the
CORDEX project (http://wcrp-cordex.ipsl.jussieu.fr/), just as
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ENSEMBLES replaced those of PRUDENCE (Christensen
and Christensen 2007). Furthermore, as already mentioned,
the SRES scenarios are being replaced by the representative
concentration pathways (RCPs) and shared socio-economic
pathways (SSPs). However, there is no reason the present
methodology should not be similarly applied to these new
products. The bias-correction step realized by Dosio and
Paruolo (2011) will need to be repeated, bearing in mind ca-
veats regarding the spatial scale (Maraun 2013b), since the
European part of CORDEX data is at a finer spatial resolution
(11 km) than ENSEMBLES.

6 Data availability

Data are available to public users from the MARS
AGRI4CAST data portal of the European Commission Joint
Research Centre, which can be accessed from the following
weblink: http://agri4cast.jrc.ec.europa.eu/DataPortal/.

7 Conclusions

Weather data are the main driving forces of models used to
make impact assessments of climate change scenarios on
agriculture. Differences in the processing required to pre-
pare these weather datasets may lead to different weather
outputs, which in turn can have large repercussions on the
resulting simulations of impact models. Sharing a common
database across Europe and neighbouring countries, as the
one proposed in this paper, removes a potential source of
uncertainty in climate change and agriculture analyses
across the region.

The three GCMs used to generate the dataset show a
noticeable heterogeneity in the short-term future. This is
particularly the case for precipitation patterns, which can
be substantially different even for the same emission sce-
nario and despite having all GCMs simulations showing
similar increases in temperature values in the short term.
Furthermore, the differences in precipitation patterns ap-
pear to be more pronounced in areas in which rainfall is
already critical. Because rainfall is such a key driver of
the performance of agricultural systems in the short term,
such variability should be further investigated extending
the analysis beyond by using more GCMs that the three
considered here.

The process to build a dataset as the one developed
here has requested considerable resources, domain-
specific knowledge and substantial infrastructure and
technological expertise. The data made available, which
could be extended in the near future to other emission
scenarios, provide a ready to use, cost-free resource to
public institutions.
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