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Abstract 

 

Information on human toxicokinetics plays an important role in the safety assessment of chemicals, even though there 

are few data requirements in the EU regulatory framework. While existing EU test methods and OECD test guidelines are 

mostly based on animal procedures, there are increasing opportunities to achieve a 3Rs impact in this area by exploiting 

modern developments. For example, whole-body toxicokinetic information can be obtained by using physiologically-based 

toxicokinetic (PBTK) models that integrate data generated by in vitro methods for absorption, distribution, metabolism 

and excretion (ADME). The development of an infrastructure providing access to such models and their underlying data 

needs to be accompanied by the establishment of standards for human in vitro ADME methods, the development of 

guidance on the development and application of such models and the creation of regulatory incentives. Taking these 

needs into account, this report describes the EURL ECVAM strategy to achieve a 3Rs impact in the area of toxicokinetics 

and systemic toxicity. The proposed activities are expected to lay the foundation for a risk assessment approach that is 

increasingly based on human data. Implementation of the strategy will rely on the coordinated efforts of multiple 

stakeholders. 

mailto:JRC-ECVAM-CONTACT@ec.europa.eu
https://ec.europa.eu/jrc
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Executive summary 

Information on the human toxicokinetics, or biological fate of a substance, plays an important role 

in human safety assessment. While there are few explicit requirements in EU chemicals legislation 

for the generation of human toxicokinetic data, such as human in vitro or in vivo measurements or 

computational predictions, the use of these data to support the assessment of systemic toxicity is 

widely recommended in regulatory guidance. For the generation of data, some EU test methods 

and OECD test guidelines are available, but these are mostly based on animal procedures, the 

traditional means of obtaining whole-body toxicokinetic parameters. Exploiting modern 

developments in predictive toxicology, there are increasing opportunities to generate human whole-

body toxicokinetic information by using physiologically-based toxicokinetic (PBTK) models. These 

models provide a means of integrating human data generated by in silico and in vitro methods for 

absorption, distribution, metabolism and excretion (ADME), the four underlying processes driving 

toxicokinetic behaviour. In general however, the lack of standardisation of these methods is 

hampering their regulatory acceptance and use. 

This report outlines the strategy proposed by the European Union Reference Laboratory for 

Alternatives to Animal Testing (EURL ECVAM) for achieving a 3Rs (replacement, reduction and 

refinement of animal experiments) impact in the area of toxicokinetics. The EURL ECVAM strategy 

identifies opportunities for generating and making better use of toxicokinetic data. Apart from 

specifying strategic aims and associated objectives to progress this field, the strategy is also 

intended to provide a framework for the identification and prioritisation of alternative test methods 

for ADME.  

Efforts in this area should be directed towards developing standards that will increase the 

development, harmonisation, validation and acceptance of human-relevant methods for ADME of 

substances, including nanomaterials. This will enable the generation of reliable data for 

toxicokinetic modelling in support of chemical safety assessment. Although ADME and 

toxicokinetics usually consider single substances, the information obtained may inform on risk 

assessment issues of mixtures and combined exposures as well. In parallel, in order to promote 

modelling efforts, an infrastructure needs to be established to make any human data, as well as 

existing animal data, readily available. To enhance the uptake of PBTK models, good modelling 

practice needs to be further developed and accepted at an international level. Finally, guidance is 

needed on how best to use human ADME and toxicokinetics data for decision making purposes. 

Regulatory anchoring might provide a boost in this respect. These efforts are expected to lay the 

foundation for a risk assessment approach that is increasingly based on human data, ultimately 

obviating the need for animal studies.  

The implementation of this strategy will rely not only on the efforts of EURL ECVAM, but on the 

collective and coordinated contribution of a wide range of stakeholders. 
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Glossary1  

 
3Rs replacement, reduction and refinement (of animal experiments) 

ADME  absorption, distribution, metabolism and excretion 

AUC area under (the plasma concentration-time) curve 

BPR EU Regulation on Biocidal Products (EU, 2012); Regulation (EU) No 528/2012 

CLP EU Regulation on Classification, Labelling and Packaging of substances and mixtures (EC, 2008); 

Regulation (EC) No 1272/2008 

Cmax maximum concentration (typically in plasma) following specified exposure/dose  

Css steady state concentration (typically in plasma) following specified exposure/dose 

CTK classical toxicokinetic (modelling) 

CPR EU Cosmetic Products Regulation (EC, 2009b); Regulation (EC) No 1223/2009 

DB-ALM EURL ECVAM DataBase service on ALternative Methods 

EC European Communities 

ECHA European Chemicals Agency 

EFSA European Food Safety Authority 

EURL ECVAM European Union Reference Laboratory for Alternatives to Animal Testing 

F fraction bioavailable unchanged (parent substance, i.e. non-metabolised) 

human based on a human in vitro method, a human in vivo measurement or on a prediction tool based on one of 

these data types (PBTK, QSAR) 

IATA integrated approaches to testing and assessment (to accommodate use of non-animal data) 

KinCalTool EURL ECVAM Kinetics Calculation Tool 

KinParDB EURL ECVAM Kinetic Parameters DataBase 

OECD  Organisation for Economic Co-operation and Development 

PBTK physiologically-based toxicokinetic (modelling) 

PPPR EU Regulations on Plant Protection Products (EC, 2009a; EU, 2013); Regulation (EC) No 1107/2009 and 

Commission Regulation (EU) No 283/2013 

QSAR quantitative structure-activity relationship 

REACH EU Regulation on Registration, Evaluation, Authorisation and restriction of CHemicals (EC, 2006); 

Regulation (EC) No 1907/2006 

SCCS European Commission Scientific Committee on Consumer Safety 

SEURAT-1 EC-FP7/Cosmetics Europe initiative on Safety Evaluation Ultimately Replacing Animal Testing - 

Towards the Replacement of in vivo Repeated Dose Systemic Toxicity Testing 

TG test guideline 

TK toxicokinetics – describes and models the time-dependent fate of a substance within the body in 

dependence of its ADME (rate and extent); synonymous to pharmacokinetics or PK 

t1/2 blood/plasma half-life 

tmax time to maximum concentration (typically in plasma) following specified exposure/dose  

TWI Tolerable Weekly Intake 

 

  

                                                        
1 Coloured terms are clickable for direct internet links 

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2012.167.01.0001.01.ENG
http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1400574284303&uri=CELEX:32008R1272
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009R1223
http://ihcp.jrc.ec.europa.eu/our_labs/eurl-ecvam/validation-regulatory-acceptance/toxicokinetics/toxicokinetics
http://ihcp.jrc.ec.europa.eu/our_labs/eurl-ecvam/validation-regulatory-acceptance/toxicokinetics/toxicokinetics#available-for-downloading-are
http://ihcp.jrc.ec.europa.eu/our_labs/eurl-ecvam/validation-regulatory-acceptance/toxicokinetics/toxicokinetics#available-for-downloading-are
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009R1107:EN:NOT
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32013R0283
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32006R1907
http://ec.europa.eu/health/scientific_committees/consumer_safety/index_en.htm
http://www.seurat-1.eu/
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1 – Introduction 

Toxicokinetics (TK) describes the concentration and time-dependent fate of a substance within an 

organism whereas toxicodynamics describes the subsequent interaction with biological targets and 

how this may lead to adverse health effects. The time-course of the internal or systemic exposure 

is the combined outcome of four underlying processes: absorption, distribution, metabolism and 

excretion (ADME). Although they are strongly linked, it is important to distinguish between ADME 

and TK. In vitro methods can provide data on individual ADME parameters, but do not directly 

generate whole-body (animal or human) TK parameters such as the maximum concentration 

reached in blood/plasma. Traditionally, TK parameters have been obtained from in vivo 

experiments, but there are increasing opportunities to derive this information by physiologically-

based toxicokinetic (PBTK) modelling (Figure 1). PBTK models provide a means of simulating TK 

profiles by integrating (chemical-independent) physiological and anatomical information with 

(chemical-dependent) ADME parameters. The latter can be generated by quantitative structure-

activity relationship (QSAR) models and in vitro methods. PBTK models are increasingly being used 

in the chemical risk assessment process to take into account relevant in vivo differences (cross-

species, cross-route and inter-individual) and to make better use of in vitro toxicity results.  

 

Figure 1: Physiologically-based toxicokinetic (PBTK) modelling integrating ADME parameters 

derived from in silico and in vitro methods to simulate the concentration-time course of a 

substance in vivo. 

 

There are very few legal requirements in the EU chemicals legislation for the generation of human 

ADME and TK data and the requirements for ADME and TK data are not consistent (Table 1). 

However, the use of ADME/TK data when available to support the assessment of systemic toxicity 

is highly recommended in regulatory guidance and scientific opinions (Table 2). For the generation 

of new data, only three ADME/TK test methods are available in the EU test methods regulation 

(EU, 2012) and in the OECD (Organisation for Economic Co-operation and Development) guidelines 

for the testing of chemicals. With the exception of OECD TG 428 for in vitro dermal absorption, 

guideline methods such as OECD TGs 417 and 427 are based on animal tests (OECD, 2004a; OECD, 

2004b; OECD, 2010). OECD TG 417 studies typically provide rather isolated species-, dose-, and 

route-specific (mostly oral) data on absorption, tissue distribution or metabolism. In rare cases, 

OECD TG 417 is used to give the integrated TK profile of a substance, i.e. the concentration-time 

course of the parent compound and its metabolites. Although many in silico and in vitro methods 

with varying stages of maturity are available and used for integrated PBTK modelling to predict the 

concentration-time course, these methods are not generally sufficiently standardised (Bessems et 
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al., 2014) and scrutinised for relevance and reliability which is hampering their regulatory 

acceptance and widespread use. 

The need for human TK information on one hand, combined with the paucity of legal requirements 

for animal TK data on the other, provides an opportunity to develop a risk assessment approach 

that is increasingly based on human ADME and TK data. A fundamental transition is needed in the 

toxicological testing and risk assessment methodology away from the widely used default 

approach using external animal dose levels and external human exposures. At best this only 

accommodates the use of species- and route-specific information on absorption, instead of taking 

the systemic exposure (AUC, Cmax etc.) into account. A scientifically more advanced and 

toxicologically relevant approach based on internal concentrations is highly recommended. In 

addition to regulatory drivers (e.g. EU ban on animal testing of cosmetic ingredients), such a 

transition is motivated by scientific considerations. Animals are often poor models for humans due 

to sometimes well-known qualitative and also quantitative differences in their physiology and 

metabolism (Coecke et al., 2005; Pelkonen et al., 2009; Greek and Menache, 2013; Coecke et al, 

2014). In order to use human in vitro toxicity data for human risk assessment, a stronger focus on 

internal exposure (e.g. AUC and Cmax of the putative toxicant) is warranted. In this approach, in vitro 

free (unbound to protein) concentrations (points of departure) would be compared to simulated or 

measured (e.g. by biomonitoring) human in vivo systemic exposure free concentrations. The 

resulting margin of internal exposure would then be used to characterise the risk (Bessems et al., 

manuscript in preparation).  

Until a full replacement of animal testing for systemic toxicity is reached, a more intelligent and 

systematic generation and use of ADME/TK information will provide a means of reduction and 

refinement. For example, the reliable prediction of extremely low absorption could support the 

waiving of animal toxicity test requirements based on the low internal exposure expected. The 

prediction and the measuring of internal exposure can also support dose range finding, e.g. 

avoiding irrelevant high-dose testing if high doses are predicted to result in kinetic non-linearity. 

Measuring systemic exposure across dose levels, sexes, study durations, species, strains and life 

stages in ongoing animal toxicity studies, i.e. without using satellite animals (preferably using 

microsampling), will significantly reduce uncertainties involved in various extrapolations needed in 

the risk characterisation phase (Bessems and Geraets, 2013; Terry et al., 2014). Moreover, it may 

reduce the chance that the results of one animal study will unnecessarily trigger another. This 

could happen for example when non-linearity of the dose-response is caused by non-linearity of 

the internal exposure. Lastly, ADME properties form an important source of information in 

integrated approaches to testing and assessment (IATA) that are designed to optimally exploit 

various streams of non-animal data (OECD, 2015). 

The purpose of this document is to present the EURL ECVAM strategy to avoid, reduce and refine 

animal testing in the assessment of toxicokinetics and systemic toxicity of substances. This 

strategy is also applicable to nanomaterials, although specific technical provisions are needed in 

places due to their particular physicochemical properties. The intention was to focus on pragmatic 

options that could be expected to have a significant short to mid-term 3Rs impact, while at the 

same time laying the foundation for a risk assessment approach that is increasingly based on 

human ADME/TK data. The implementation of this strategy will rely not only on the efforts of EURL 

ECVAM, but on the collective and coordinated contribution of a wide range of stakeholders. 
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2 – Regulatory provisions on ADME and TK 

Within EU regulatory frameworks, route-to-route extrapolation is probably the most important use-

case for information on species- and route-specific ADME and, if available, systemic exposure 

(whole-body TK). However, such information is not consistently required. Table 1 provides an 

overview of data requirements and recommendations under the frameworks that are most relevant 

in this respect, i.e. CLP (classification and labelling), REACH (industrial chemicals), CPR (cosmetics), 

BPR (biocides) and PPPR (pesticides). It is noted that over time, legislative frameworks have placed 

increasing emphasis on the use of systemic exposure information for human risk assessment 

purposes. Except for the CPR however, these needs are being addressed for the most part using 

animal data. 

 

Table 1: Requirements and recommendations for ADME/TK information2 in EU legal frameworks3.  

Regulation 
Required or 

recommended 

What ADME and/or TK 

parameter? 
Use 

CLP  

Regulation (EC) 
No 1272/2008 

Not required 

but use if 
available  

Non-specific but numerous 
examples about use of species- 
and route-specific TK 
information 

Shall and/or should be used as weight of 
evidence to classify, lower the classification 
or abstain from classification for a particular 
toxicodynamic endpoint. 

REACH  

Regulation (EC) 
No 1907/2006 

Not required 

but use if 
available 

TK (A, D, M, E) 

In REACH Guidance documents, many 
examples of recommendations that would 
replace default assessment factors (e.g. 
Sections R.7.12 and R.8.4 in Chapters R.7.C 
and R.8, respectively). 

CPR 

Regulation (EC) 
No 1223/2009 

Recommended 

by SCCS (2012) 

Human systemic exposure 

Human dermal absorption 

Biotransformation 

Route-to-route extrapolation 

BPR 

Regulation (EU) 
No 528/2012 

Required 

A: rate and extent 

D: tissue 

M: pathway + degree 

E: routes and rate 

When accumulation indicated, 90 d study 
preferred over 28 d. 

If no significant human exposure and no 
systemic absorption F = 0, reproduction 
toxicity study not needed. 

PPPR 

Regulation (EC) 
No 1107/2009  

Commission 
Regulation (EU) 
No 283/2013 

Required 

Oral A, D, M, E 

Oral F, AUC, Cmax, Tmax 
Bioaccumulation potential, t1/2 

Often dermal A (in vitro human), 

D, M, E and F 

Sometimes inhalation A 

In vitro comparative metabolism 

TK short-term toxicity studies 

Study design (e.g. dose selection) 

Interspecies extrapolation 

Route-to-route extrapolation 

Residue definition (testing of metabolites) 

 

                                                        
2
 Except when stated otherwise, in this table all ADME and TK parameters refer to animal ADME and TK. 

3
 See glossary for full titles of the regulations and explanation of the toxicokinetic terms, including A, D, M, E. 

http://ec.europa.eu/environment/chemicals/labelling/index_en.htm
http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1400574284303&uri=CELEX:32008R1272
http://ec.europa.eu/environment/chemicals/reach/reach_en.htm
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32006R1907
http://echa.europa.eu/documents/10162/13632/information_requirements_r7c_en.pdf
http://echa.europa.eu/documents/10162/13632/information_requirements_r8_en.pdf
http://ec.europa.eu/consumers/consumers_safety/cosmetics/legislation/
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009R1223
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:167:0001:0123:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009R1107:EN:NOT
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32013R0283
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In addition to the legal requirements, more detailed recommendations are laid down in various 

guidance documents, developed for example by the EU Member States (e.g. REACH Guidance) or by 

Scientific Committees (e.g. Notes of Guidance: SCCS, 2012). Table 2 provides examples of how the 

required and/or recommended ADME/TK information can be used in regulatory decision making in 

the EU.  

 

Table 2: Use cases for ADME and TK information suggested by various EU guidance.  

Use cases Examples Source 

Waiving4 

specific in vivo 

study 

Reproductive study if no systemic absorption. 

Dermal acute toxicity if no dermal absorption.  

BPR 

 

If somatic genotoxicant and germ cells reached, then in vivo 
germ cell genotoxicity can be skipped. 

EURL ECVAM Strategy Genotoxicity 
(Corvi, 2013), EURL ECVAM Strategy 
Acute systemic toxicity (Prieto, 2014) 

If substance accumulates, skip 28 d study and do 90 d. 

Inclusion blood sampling one study may avoid another. 
REACH, BPR, PPPR 

Read across Toxicokinetic studies, kinetic and metabolic factors.  
ECHA report alternatives (ECHA, 
2014) 

IATA 

ADME and TK models are regarded to be basic elements.  
ECHA report alternatives (ECHA, 
2014), OECD WS Report (OECD, 
2015) 

Skin bioavailability critical event in adverse outcome 
pathway skin sensitisation. 

EURL ECVAM Strategy Skin 
sensitisation (Casati, 2013) 

Metabolic stability/clearance + metabolite identification in 
vitro. Possibly preventing in vivo acute systemic tox. testing. 

EURL ECVAM Strategy Acute 
systemic toxicity (Prieto, 2014) 

In vivo study 

design 

Designing (further) toxicity studies (e.g. species selection 
based on in vitro metabolism species comparison) and to 
help their interpretation. 

SCCS (2012) Notes of Guidance,  

REACH Guidance on TK, R.12, 
Commission Regulation (EU) No 
283/2013 

Risk 

assessment 

extrapolations 

Use of chemical-specific data on ADME and/or TK instead of 
default Assessment Factors. 

PPPR,  

SCCS (2012) Notes of Guidance 

 TK + human urinary data to set the TWI for cadmium EFSA (2009) 

 
PBTK to reduce extrapolation uncertainty and for derivation 
of AOELs5. Quantitative use of human in vitro ADME data. 

EFSA PPR Opinion, 2006 

Risk 

management 

Persistency and bioaccumulation noted as selection criterion 
for the emerging chemical risk framework. 

EFSA (2014),  

EURL ECVAM Strategy fish acute 
toxicity + bioaccumulation (Halder, 
2014) 

Establishment of ‘common assessment groups’ using 
human metabolism (in silico, in vitro, in vivo) in public 
health issue of exposure to mixtures. 

EFSA, 2014 

                                                        
4
 Waiving an information need (animal study): based on arguments, not deemed necessary to carry out the study. 

5
 Acceptable Operator Exposure Levels as required by Regulation (EC) No 1107/2009 (PPPR). 

http://ec.europa.eu/health/scientific_committees/about/index_en.htm
http://ec.europa.eu/environment/chemicals/biocides/regulation/regulation_en.htm
http://ec.europa.eu/environment/chemicals/reach/reach_en.htm
http://ec.europa.eu/environment/chemicals/biocides/regulation/regulation_en.htm
http://ec.europa.eu/food/plant/pesticides/legislation/index_en.htm
http://echa.europa.eu/documents/10162/13632/information_requirements_r7c_en.pdf
http://ec.europa.eu/food/plant/pesticides/legislation/index_en.htm
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Comparisons between human and animal ADME/TK data (in silico, in vitro or preferably in vivo 

when available) can lead to an overall reduction of animal testing by increasing the relevance of 

animal toxicity studies, where these are required. This is achieved by identifying and avoiding 

animal species with ADME/TK for the substance that is very different from human ADME/TK. This 

could be based on comparison of any relevant parameter or process, e.g. most relevant 

metabolite(s), rate of formation of a likely toxic metabolite, and allometric scalability of various 

kinetic parameters such as hepatic metabolic clearance, renal clearance or plasma half-life 

(Bessems and Geraets, 2013). In addition, risk assessment is served best when more human 

ADME/TK data is available. The EFSA PPR panel noted for example already in 2006 that human 

ADME/TK data reduce the uncertainty related to the extrapolation process from animal 

toxicodynamics data both in terms of species and dose, and help in assessing the relevance for 

humans of findings in animals (EFSA, 2006).  

There are international developments as well. OECD Guidance Document 116 on chronic and 

carcinogenicity test guidelines (OECD, 2012) attributes significant value to information on ADME 

for improving the study design. The information helps to select the highest relevant dose level in 

order to prevent non-linear kinetics from occurring, thus enabling refinement through study design. 

OECD Guidance Document 151 supports the extended one generation reproductive toxicity test 

guideline (OECD, 2013). It states that “ADME studies should be undertaken to facilitate 

extrapolation from the oral to the dermal route, if this is required”. Furthermore, ADME received 

attention at a recent OECD workshop as being an important element of IATA (OECD, 2015). 
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3 – Strategy to replace, reduce and refine the use of animals for human TK 

Although the value of human ADME and TK data in establishing health risks of substances is widely 

acknowledged, concrete guidance and case studies on how to generate the in vitro ADME and in 

silico TK parameters and how to use this information in different decision making contexts and 

within IATA is largely missing. Some human in vitro methods to measure an ADME property exist, 

such as for absorption via the gastrointestinal tract or for hepatic metabolic clearance, albeit with 

uncertainties regarding their applicability domain. In other cases, such as renal excretion, further 

efforts are needed to develop suitable methods (Mostrag-Szlichtyng and Worth, 2010; Adler et al., 

2011; Bessems et al., 2014; EFSA, 2014). In most cases however, the available methods are not 

standardised. This is an impediment to their use and acceptance. Therefore, in addition to the 

development of new methods, there is a need to characterise existing methods in a systematic 

manner (Adler et al., 2011; Bessems et al., 2014; EFSA, 2014). 

With a view to replacing, reducing and refining animal testing in the assessment of toxicokinetics 

and systemic toxicity, EURL ECVAM has defined four strategic aims (Figure 2).  

1. ADME methods: Development and standardisation of human in vitro ADME methods. 

2. Kinetic modelling: Portals and good kinetic modelling practice. 

3. Data collection: Analytics and databases to serve kinetic modelling.  

4. Regulatory anchoring: Legislation and guidance on human ADME/TK data. 

The first three are intended to enhance the availability and usefulness of the necessary tools while 

the fourth is intended to foster a regulatory evolution towards stronger requirements for ADME and 

TK information based on non-animal and human-relevant approaches. In the following paragraphs, 

the four strategic aims are further explained and translated into concrete objectives.  

 

Figure 2: Four strategic aims to facilitate generation and use of human ADME and TK data. 
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3.1 Strategic aim 1: Development and standardisation of human ADME methods 

In order to promote the acceptance of non-animal ADME/TK data for regulatory purposes, an 

international quality assurance framework needs to be established (SCHER, 2013; Coecke et al. 

2014). This framework should be applicable to ADME data generated by in vitro test methods and 

QSARs, TK data generated by integrated PBTK models, as well as human in vivo data obtained in 

monitoring programs or volunteer studies (SCHER, 2013).  

Some elements of this framework are already established or under development. For example, the 

QSAR Model Reporting Format (QMRF) and QSAR Prediction Reporting Format (QPRF) are 

internationally recognised standards for reporting the characteristics of QSAR models, and the 

quality of QSAR predictions, respectively6. More recently, the OECD has published a guidance 

document on how to characterise and describe non-guideline in vitro test methods (OECD, 2014). 

Guidance on the characterisation, documentation and application of PBTK models has been 

published by the World Health Organisation (WHO/IPCS, 2010). 

Other elements of this framework need to be developed. In particular, standards for in vitro ADME 

methods will provide a means of characterising and comparing in vitro methods which typically 

provide the same kind of information (ADME property) but which may differ considerably in terms 

of the underlying test systems and experimental protocols used. Different domains (varying 

physicochemical properties, magnitude of output parameter) may require different standards.  

Lastly and as mentioned earlier, for several ADME endpoints, test methods need to be developed, 

improved or their applicability domain widened. 

 

Objective 1.1 – Development of standards for human in vitro ADME methods  

In order to make better use of human in vitro methods for ADME properties, there is a need to 

develop a framework aiming to (a) describe a method including the characteristics of the test 

system and the results of the test method in an objective and standardised way, (b) to assess the 

performance of the method (reliability and relevance) and (c) to define its applicability in terms of 

the ranges of physicochemical properties of substances, its measurement outputs and the time-

scales for which the test system is valid. 

Furthermore, the OECD reporting standard for non-guideline in vitro methods (OECD, 2014) needs 

to be evaluated for its applicability to ADME methods. Additional standards may need to be 

established to characterise and compare different methods within a given class of methods (that 

generate the same ADME parameter). A few other important issues need to be taken into 

consideration here. One issue is the fact that not all ADME methods are necessarily designed to be 

directly predictive of an in vivo parameter as such. This means that the classical validation based 

on a direct comparison of a human in vitro ADME method data against human in vivo data is not 

meaningful7. Prediction methods as complex as PBTK models would be needed to interpret the 

human in vitro ADME data. Nevertheless, simple ADME parameters obtained using standardised 

                                                        
6
 JRC QSAR Model Database and QSAR Model Reporting Formats. https://eurl-ecvam.jrc.ec.europa.eu/databases/jrc-qsar-

model-database-and-qsar-model-reporting-formats. 

7
 In this context, this could mean total in vivo absorption (relative to the applied dose) measured over 7 days. Whereas an 

in vitro absorption method may deliver a flux, being an absorption rate per unit area (e.g. μmol min
-1

 cm
2
). 



11 
 

human in vitro methods could be used directly such as for priority setting and ranking (rates of 

absorption) as well as in the context of IATA. 

 

Objective 1.2 – Human route-specific absorption methodology  

For in vitro dermal absorption, an OECD TG does exist (TG 428). However, this TG needs critical 

review and/or revision as the current method is focussed mainly on determining the relative 

amount of substance systemically absorbed and much less so on establishing dermal flux values 

(through the skin) and the underlying determinants such as dermal diffusion coefficients that may 

be needed for PBTK modelling (Bessems et al., 2014). EFSA has published opinions on the 

adaptation and improvement of this TG, especially in relation to the interpretation and standardised 

reporting of results of OECD TG 428 (EFSA, 2011; EFSA, 2012). For other routes, OECD TGs and 

validated test methods are lacking.  

It is important to improve and/or standardise a set of representative in vitro methods that can be 

used to derive harmonised standards for this class of test methods (which measure the 

permeability of external membranes). This is relevant to methods for assessing exposure via skin 

as well as by inhalation or ingestion. Although this formally applies to tissue distribution, a further 

step will be to improve and develop equivalent test methods and standards for in vitro methods 

that measure the passive permeability of internal membranes, such as the blood-brain barrier and 

the placental barrier. Obviously, in the end the same applies to active transport across barriers. 

 

Objective 1.3 – Human tissue distribution and protein binding methodology  

Several in vitro test methods that measure parameters that drive the distribution (partitioning 

coefficients, protein binding), including an indication of their level of development, are described 

elsewhere (Bessems et al., 2014). Distribution is a key driver of phenomena like persistency. For 

example, high fat solubility increases the risk of persistency and bioaccumulation.  

A set of standards to improve the quality and traceability of PBTK input parameters such as 

partitioning coefficients and protein binding is crucial. Improvements and widening of applicability 

domains may be needed as well.  

 

Objective 1.4 – Human metabolic stability/clearance methodology 

Human metabolic clearance levels (or their absence, defined as metabolic stability) in liver, skin 

and lungs being the most relevant portals of entry, are important determinants of bioavailability as 

well as the (pre-systemic) elimination of substances from the body. These are essential pieces of 

information for PBTK modelling. Metabolic clearance might even be the most influential parameter 

that determines terminal elimination half-life (and thus persistency and risk for human 

bioaccumulation), systemic toxicity upon dermal exposure, as well as inter-individual variability in 

plasma levels. Harmonised standards are needed since the methods submitted to EURL ECVAM and 

available in the scientific literature vary considerably. For example, there are differences in the 

in vitro test system (e.g. subcellular fraction, primary cells, cell lines, liver slices) and the ability to 

deal with fast or slowly cleared compounds (Brandon et al., 2003; Di and Obach, 2015).  
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Objective 1.5 – Human xenobiotic metabolic pathway profiling methodology 

The identification of the main and most relevant human metabolites serves multiple applications. 

For example, the identification of common metabolites for two substances in a mixture might 

trigger the assessment to be based on the properties of the common active metabolite. As a 

multitude of methods is used under various performance requirements, a set of standards needs to 

be developed for this class of methods. Induction and inhibition of biotransformation enzymes are 

important process as well. Induction is currently the subject of a draft OECD TG. 

 

Objective 1.6 – Human route-specific excretion methodology 

Urinary and biliary excretion pathways are the two most relevant excretion pathways. To our 

knowledge, there are no in vitro methods available at the moment for urinary excretion because of 

the complex renal mechanism of formation of primary urine, passive and active reuptake and the 

dependence of these mechanisms on differences in pressure and osmolarity between blood and 

primary urine. For biliary clearance, some in vitro methods have been reported (De Bruyn et al., 

2013), but further development and standardisation work is necessary to identify representative 

methods based on which harmonised standards can be established. Although passive excretion has 

been suggested to suffice for ‘Tier 1 PBTK modelling’, it is clear that in the future, excretion based 

on active transporters needs to be taken into account as well. 

 

 

3.2 Strategic aim 2: Kinetic modelling  

In order to facilitate the use of PBTK modelling in the risk assessment process, there is a need to 

make in silico ADME prediction tools as well as PBTK modelling tools readily accessible and easy to 

apply, and to establish good practice in kinetic modelling (WHO/IPCS, 2010).  

 

Objective 2.1 – Comprehensive web-based kinetic modelling portals  

Kinetic modelling includes classical kinetic modelling approaches, PBTK modelling, and also in silico 

prediction of ADME parameters. It is generally felt to be quite a complex process that requires 

experts in TK, mathematical modellers and regulatory risk assessors to work together (WHO/IPCS, 

2010; Bessems et al., 2014). The establishment of comprehensive 'one-stop' web-based kinetic 

modelling portals is needed to provide a collaborative environment to facilitate the development 

and use of kinetic models. Such portals should contain or link to freely available kinetic modelling 

tools and databases (objective 3.2).  

 

Objective 2.2 – Good kinetic modelling practice 

To facilitate the regulatory acceptance of PBTK models, good practice needs to be established for 

the development and documentation of models based on already available guidance (WHO/IPCS, 

2010). It is necessary to develop standard reporting formats, equivalent in purpose to the QSAR 

Model Reporting Format (QMRF) and QSAR Prediction Reporting Format (QPRF), for presenting 

sufficient details of model construct and application. These reporting formats should include 

assumptions made concerning the mode of action, the most relevant qualitative dose metric 
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(parent or metabolite), the most relevant quantitative dose metric (AUC, Cmax, rate of formation) 

and address uncertainty issues (see also 3.4). This will help kinetic model developers to take into 

account all the necessary considerations and facilitate uptake of kinetic modelling approaches in 

decision making.  

The formation of a PBTK modelling expert group, ideally by an international organisation, would be 

an appropriate means of developing good PBTK modelling practice.  

 

 

3.3 Strategic aim 3: Data collection - Generation and storage of ADME and TK data 

To support objectives 1 and 2, a concerted action to stimulate generation and collection of data is 

needed. These data should ideally be quality-assured and stored in readily accessible (and 

preferably free-to-use) databases in order to make the process of establishing human ADME and 

TK parameters as transparent and efficient as possible (Bessems et al., 2014). Sharing of 

proprietary data could enable the generation of a large, high quality database of ‘paired’ in vitro 

and in vivo human data on the same substance. This could be used to investigate the predictive 

value of in vitro data (Leist et al., 2014). Databases are a necessary building block for ready to use 

PBTK modelling and should become an important part of comprehensive web-based PBTK 

modelling platforms (see objective 2.1). 

 

Objective 3.1 – Collection of human in vitro ADME and in vivo TK information 

There is considerable need for standardised in vitro generation of ADME parameters. Ideally, these 

ADME parameters should be stored in open-access curated databases. This would speed up the 

development of in silico (QSAR) ADME prediction tools as well as the parameterisation of PBTK 

models. 

Simultaneous measurements of external exposure and systemic exposure in order to establish real-

life human TK are scarce. A concerted effort is necessary to collect and store in vivo human ADME 

and TK information by building on human exposure monitoring programmes (e.g. dietary intake 

studies, occupational monitoring) as well as on human biomonitoring programmes (e.g. 

measurements in biofluids). If doubts remain and more specific human in vivo benchmarking is 

required, controlled human microdosing in volunteer studies could be performed with the use of 

specific isotope labelling (Madeen et al., 2015). 

 

Objective 3.2 – Databases  

In order to facilitate human PBTK modelling, centralised publicly available (web-based) databases 

facilities containing the following are crucial:  

 A collection of human ADME data obtained by in vitro measurements.  

 Anatomical and physiological data including their variation in the human population. An 

example is the RIVM Interspecies database (http://www.interspeciesinfo.com); 

 In vivo human TK information. An example is the EURL ECVAM KinParDB (https://eurl-

ecvam.jrc.ec.europa.eu/validation-regulatory-acceptance/toxicokinetics). 

http://www.interspeciesinfo.com/
http://www.interspeciesinfo.com/
https://eurl-ecvam.jrc.ec.europa.eu/validation-regulatory-acceptance/toxicokinetics
https://eurl-ecvam.jrc.ec.europa.eu/validation-regulatory-acceptance/toxicokinetics
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Sparse but relevant kinetic data may already be available in various databases from the JRC and 

others that were not specifically designed for storage of ADME data, such as DB-ALM, the 

DataBaseservice on ALternative Methods (http://ecvam-dbalm.jrc.ec.europa.eu), the QSAR Model 

Database (http://ihcp.jrc.ec.europa.eu/our_databases/jrc-qsar-inventory) and databases that 

participate in the OECD eChemPortal  

(http://www.echemportal.org/echemportal/propertysearch/page.action?pageID=0). 

 

Objective 3.3 – Sampling strategies, methods, preparations and analytical determination 

Sampling strategies, sampling methods, sample pre-treatment and final analytical determination 

and quantification are all necessary for the transition to a human-based IATA. This pertains to in 

vitro ADME testing (Broeders et al., 2012) and to the collection of human in vivo data on TK 

(biomonitoring and human volunteer studies). This also concerns in vitro toxicity testing where the 

in vitro kinetics should be measured, i.e. the concentration-time profile of the chemical and/or 

metabolites intracellular as well as in the incubation medium (Blaauboer, 2010; Wilmes et al., 

2013). And it pertains as well to animal toxicity testing as long as it is still performed in order to 

improve study design and value for risk assessment (Creton et al., 2012). The issue was identified 

previously as a high priority (Bessems et al., 2014), i.e. ‘high-throughput and low cost analytical 

facilities to measure chemicals in physiological media’. 

 

 

3.4 Strategic aim 4: Regulatory anchoring of human ADME and TK  

The inherent value of human ADME and TK information in risk assessment is obvious, be it based 

on in silico, in vitro and/or in vivo approaches. However, it is not always obvious which particular 

ADME parameter (e.g. relative absorption or absorption rate), or which TK parameter (e.g. AUC or 

Cmax) is needed for a particular decision. Clarity is often lacking too regarding if and how human 

variability should be taken into consideration and what level of uncertainty is tolerable for various 

ADME/TK information elements. 

 

Objective 4.1 – Guidance on the use of human ADME and TK data in IATA 

Reliable information on human ADME parameter values is helpful in the development and 

application of IATA. For example, extremely low absorption rates could justify the waiving of certain 

animal bioassays (analytical precision becomes very important here, see objective 3.3), local (skin) 

bioavailability is a key consideration for assessing skin sensitisation, and low whole body clearance, 

indicated by low urinary excretion and/or high metabolic stability, indicates human persistency of a 

substance. Further guidance is therefore needed on the use of ADME/TK data in IATA for specific 

endpoints, including how to characterise the uncertainty in conclusions drawn from these data. 

Uncertainty may result, for example, from the reliability and relevance of the underlying ADME/TK 

methods. 

 

http://ecvam-dbalm.jrc.ec.europa.eu/
http://ihcp.jrc.ec.europa.eu/our_databases/jrc-qsar-inventory
http://www.echemportal.org/echemportal/propertysearch/page.action?pageID=0
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Objective 4.2 – Evolution of legislative anchoring of human ADME and TK information 

There is growing awareness that human-relevant ADME and TK data are instrumental for a much 

stronger role of non-animal approaches in regulatory risk assessment. This implies a transition 

from the current animal-based testing paradigm to one that is based on 21st century science with 

greater reliance on human-relevant in vitro testing and human in vivo data (US NAS, 2007; SCHER, 

2013; US EPA, 2014). In order to achieve this, there is a need for a stronger regulatory anchoring of 

human in silico and in vitro ADME data, of human PBTK modelling tools to integrate human ADME 

data as well as of collecting human in vivo data where possible to support this. 

 

 

3.5 Timelines 

In Figure 3, an overview is presented of the strategic aims and related objectives with indicative 

timelines for meeting the objectives. This assumes optimal conditions in terms of the availability of 

necessary expertise and resources.  

 

Figure 3: Indicative timelines for critical developments in the human ADME and TK areas. 
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4 – Conclusions 

This document presents EURL ECVAM's strategic view on how to achieve a significant 3Rs impact in 

the assessment of toxicokinetics and systemic toxicity. Grouped under four strategic aims, a 

number of objectives and related activities have been identified to foster the generation and more 

intelligent use of human toxicokinetic data. In particular, the development of standards and a 

quality assurance framework to support the acceptance of human ADME/TK methods, and the 

targeted generation of relevant in silico and in vitro toxicokinetic data and their integration via 

PBTK modelling is expected to have a significant impact on the 3Rs. These activities will also lay 

the foundation for a more human-relevant approach to the safety assessment of chemicals. This 

strategy document is also intended to provide a framework for the prioritisation of alternative test 

methods for validation by EURL ECVAM towards regulatory acceptance and use.   

EURL ECVAM has already taken some important steps consistent with these strategic aims. For 

example, a pilot project delivered a kinetic parameters database (KinParDB) as well as a user-

friendly kinetic modelling tool (KinCalTool). More recently, EURL ECVAM has started to explore the 

development of standards for human in vitro hepatic metabolic clearance methods. Furthermore, 

with a view to developing a risk assessment approach based entirely on non-animal methods, EURL 

ECVAM has been working closely with other partners within the SEURAT-1 initiative to explore the 

use of in silico models in performing route-to-route extrapolations and in vitro-to-in vivo 

comparisons. 

The strategy outlined here is intended to be inclusive. EURL ECVAM has an important role to play in 

its implementation, but achievement of the objectives will depend on the proactive and coordinated 

engagement of multiple stakeholders. EURL ECVAM will continue to review its work programme in 

the light of developments in this field and with a view to providing added value at the EU and 

international levels.  
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