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Abstract

A new global information baseline describing the spatial evolution of
the human settlements in the past 40 years is presented. It is the
most spatially global detailed data available today dedicated to hu-
man settlements, and it shows the greatest temporal depth. The
core processing methodology relies on a new supervised classifica-
tion paradigm based on symbolic machine learning. The informa-
tion is extracted from Landsat image records organized in four col-
lections corresponding to the epochs 1975, 1990, 2000, and 2014.
The experiment reported here is the first known attempt to exploit
global Multispectral Scanner data for historical land cover assess-
ment. As primary goal, the Landsat-made Global Human Settlement
Layer (GHSL) reports about the presence of built-up areas in the
different epochs at the spatial resolution allowed by the Landsat sen-
sor. Preliminary tests confirm that the quality of the information on
built-up areas delivered by GHSL is better than other available global
information layers extracted by automatic processing from Earth Ob-
servation data. An experimental multiple-class land-cover product is
also produced from the epoch 2014 collection using low-resolution
space-derived products as training set. The classification schema
of the settlement distinguishes built-up areas based on vegetation
contents and volume of buildings, the latter estimated from integra-
tion of SRTM and ASTER-GDEM data. On the overall, the experiment
demonstrated a step forward in production of land cover information
from global fine-scale satellite data using automatic and reproducible
methodology.
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1. Introduction

Human settlement information is used to develop indicators for mod-
elling the access (to services, market, industrial infrastructure, food,
water, land), the exposure (to natural / human hazards, disasters,
pollution), and the impact of human footprint (to land, water, ecosys-
tem). In fact, global human settlement information are in demand by
a number of institutions operating globally that include the European
Commission Services, the United Nations agencies and programs,
the World Bank, as well as the donor countries that require quanti-
tative variables to prioritize their humanitarian and development aid
or their financial investments. Human settlements information will
also be required for developing indicators for the four post-2015 in-
ternational frameworks, namely Sendai framework for Disaster Risk
Reduction (DRR), Sustainable Development Goals (SDG) with partic-
ular focus on Goal 11 (make cities and human settlements inclusive,
safe, resilient, sustainable), Climate Change and the Global Urban
Agenda (adopted in 2016). In fact, to monitor the implementation
of the SDGs, it will be important to improve the availability and ac-
cess to data and statistics to ensure that no one is left behind in the
information gaps1.
Human settlements can be mapped with Remote Sensing (RS)

data which are independent, globally-consistent, updated regularly,
providing a synoptic overview and can be considered objective. These
data can be used to derive indicators that are action oriented, global
in nature and universally applicable. Regular provision of remote
sensing data may be one of the few ways to gather standardized
information globally.
From the above perspective, open access to fine-scale global in-

formation is an important aspect to be taken in to consideration,
together with the issues related to the scientific control and repro-
ducibility of the information results as they are improving the objec-
tivity of the derived assessments. The reproducibility of the informa-
tion extraction model is linked to the level of automatic control of the
information production workflow, the sustainability of the information
gathering and the scalability to large continuous data streams as the
ones produced by the Landsat and Sentinel satellite platforms.
This manuscript reports on processing 40 years of Landsat im-

agery for mapping the global built-up areas over this period. This
work is conducted within the Global Human Settlement Layer (GHSL)
project funded by the European Commission, Joint Research Centre
(JRC). The aim of the GHSL is to provide scientific methods and sys-
tems for reliable and automatic built-up information gathering. The
GHSL project contributes to the Group of Earth Observation (GEO)
societal benefit SB-04-C1: Global Urban Observation and Informa-
tion2.
1Open Working Group proposal for Sustainable Development Goals https://

sustainabledevelopment.un.org/focussdgs.html
2http://www.earthobservations.org/ts.php?id=158
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In October 2014 the first (alpha) release of the global data was
processed by JRC and shared inside a newly set group of experts
(the GEO Global Human Settlement working group3) for early testing
purposes. To date, the applications under test include impact assess-
ment, disaster early warning and alerting, losses estimates, exposure
and risk mapping and post-disaster need assessment (PDNA), spatial
population modeling, census planning, urban and regional develop-
ment, urban and global climate modeling, spatial epidemics analysis,
ecological studies, environmental protection, agricultural fragmenta-
tion studies, and historical landscape protection. Their geographical
scope may include national, regional/continental, and global cover-
ages as well.
The experiment reported here aimed to answer to the following

questions:

1. is it possible to increase the (spatial, thematic, temporal) de-
tail of the available global information layers describing human
settlements and using free and open satellite data in input?

2. is it possible to increase the level of automatic control and re-
producibility of the information production workflow?

3. what are the minimal computational requirements needed for
performing the tasks?

This manuscript will focus on answering the first question address-
ing the application domain. The second and third questions are re-
lated to the classification methodology and the computational issues.
They will be addressed only partially in this manuscript by showing
the specific solutions implemented in the Landsat data classification
scenario. They are more developed in [43], where the core data clas-
sification strategy applied in this experiment is compared with other
standard approaches for image data classification in remote sensing.
The report is structured as follows. The methodological context

and the past experiences are summarized in the background section.
Then, the general methodology, data sets and theoretical framework
of our approach are presented in section 3. Section 4 details the
basic recognized information components. The specific processing
steps undertaken for Landsat 8 data are reported in section 5 and
the description of the information fusion processes applied is included
in section 6. Results are then discussed in section 7 and, finally,
conclusions are drawn in section 8.

3http://www.earthobservations.org/ghs.php
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2. Background

This section offers information about the methodological basis, the
precedent experience and the innovative contribution of our approach.

2.1. Methodological issues
In GHSL, the built-up area class is defined as the union of all the spa-
tial units collected by the specific sensor and containing a building or
part of it as stated in [41]. Human settlements are made by popu-
lation and physical infrastructures. The building is one essential part
of the settlement infrastructure and is the basic sign of the human
presence that can be physically observable by remote sensing tech-
nologies. The concept of Human Settlement adopted in this study
relies on the classical notion inherited from the settlement geogra-
phy, defined as "...the description and analysis of the distribution of
buildings by which people attach themselves to the land" by [52].
Urban and more generally settlement areas observed by satel-

lite sensors are characterized by large spectral mixture of different
objects/entities. On average, the characteristic scale of the entities
composing settlements is of 10 meters as stated in [50, 51]. Tem-
porary settlements as refugees and internally displaced people (IDP)
camps, camping areas, slums and some traditional rural settlements
may be much smaller (up to 2 meters). On the other hand, large
factories and commercial estates in contemporary settlements may
exceed 100 meters.
The observed spectral variability is mainly produced by i) the re-

lation between sensor spatial resolution and the characteristic scale
of the settlement entities, ii) the presence of different materials in
the settlement areas, their variable local spatial arrangements and
mixture, and iii) the variable illumination conditions coupled with dif-
ferent building sizes causing variable shadowing largely affecting the
observed radiometric behavior.
In [41], it is demonstrated the possibility to solve fine-scale recog-

nition of human settlements by exploiting the fact that they sys-
tematically produce locally-heterogeneous spectral reflectance in the
recorded image data. Local signal heterogeneity is formalized through
a selected set of textural features [36, 40] and multi-scale morpho-
logical image descriptors [38, 42], both of them based on local con-
trast measures. In particular, the local density of highly contrasted
square corners was found strongly correlated to the presence of hu-
man settlements [22]. These methods build upon early work of the
’90s in the remote sensing community by [19, 20] exploring the use
of structural image information for automatic discrimination of urban
areas.
These textural and morphological image features demonstrated

the capacity to discriminate built-up areas with optical sensors in the
spatial resolution range of 0.5m-10m. The upper bound of the reso-
lution range (10 meters) being consistent with the scale of the urban
reflectance as estimated using spatial auto-correlation techniques in
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[50]. They were successfully tested using 2.5m input sensor resolu-
tion for producing large national coverages in Brazil by [24] and in
China by [28] using CBERS-2B panchromatic data, as well as in South
Africa by [25] with SPOT-5 data. [15] and [16] used Spot-5,6 multi-
spectral pan-sharpened data for producing a continental coverage in
Europe.
In the experiment reported here, we test the possibility to extend

these methods to global open Landsat satellite data that are beyond
security and commercial restrictions. Free and open data access pol-
icy is facilitating the free sharing of the analysis results in the global
scientific and user communities, thus augmenting their societal im-
pact and benefit as stated by [55]. The Landsat free and open access
to data policy, begun in 2008, offered the possibility to exploit the
longest continuous global record of the Earth’s surface dating back to
’70.

2.2. Past experiences
Global human settlements have mostly been mapped from low to
moderate resolution (300m - 1000m spatial resolution), as reported
in [44] and [48]. Low and moderate resolution imagery has also been
used to detect changes. For example, DMSP/OLS night time lights
and SPOT-VGT data were used to detect changes between 1998 and
2008 in India by [34]. MODIS 500m resolution images were used by
[32] to map urban areas in East Asia from 2000 to 2010.
Finer scale imagery has also been extensively used to map the

built environment. Angel and his team [3] mapped 120 cities over
1990 and 2000. Taubenböck and his colleagues [53] conducted a
systematic analysis of 27 current mega cities using multi-temporal
Landsat data from 1975, 1990, 2000 and TerraSar-X data from 2010.
The Terrasar-X was also used in the TanDEM-X mission to generate a
Global Urban Footprint (GUF) for the years 2011-2013 by [29].
Global finer scale built-up areas mapping from Landsat was de-

livered by the Monitoring of Global Land Cover (FROM-GLC) project
for the year 2006 as reported in [21]. In FROM-GLC, only one epoch
(circa 2006) was processed, and the impervious surfaces resulted
with not satisfactory classification accuracy as presented in [4] and
[21]. Successive experimental activity tried to inject in FROM-GLC
output the urban or impervious information derived from third-parts,
low-resolution satellite-derived information sources as in [56]. Fi-
nally, a 30m resolution global land cover (GlobeLand30) was pro-
duced as reported in [8]. GlobeLand30 processes two global Landsat
data collections (years 2000 and 2010), it integrates in the output
several internationally available land cover products, and relies on
large use of manual editing of the final information done by domain
experts.
A global urban area map was also produced by [33] using an au-

tomated classification method based on ASTER data. The approach
combine Learning with Local and Global Consistency (LLGC) and lo-
gistic regression with urban maps.
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2.3. Innovation
Landsat historical data records range from 75m to 15m spatial resolu-
tion in multispectral and panchromatic imaging mode: consequently,
textural and morphological image features used in [41] lose most
of their capacity to discriminate built-up areas and must be comple-
mented with multispectral image information.
The new method generalizes the single-variable single-training-

set optimization techniques proposed by [41] in the machine learning
phase, to the scenario where the combination of multiple variables
in input are taken into consideration with a combination of multiple
training set collections. The generalization to multiple variables al-
lows exploiting the multi-spectral information contents of the input
satellite data instances, while the generalization to multiple training
sets allows the improving of broad-scale learning sets by adding fine-
scale open information. This includes information collected from de-
tailed but usually incomplete and heterogeneous geo-spatial sources
describing settlements globally.
The volume, variety and partially unstructured nature of the data

instances used in the experiment can be associated with the char-
acteristics of Big Data Analytics as stated by [12], [31] and [37].
Today’s state-of-the art machine learning techniques used in remote
sensing applications show severe drawbacks if used in scenarios where
large training sets are used together with large input data. Those al-
gorithms have been designed and tested on small to medium data
instances (if compared with fine-scale global RS data scenarios) with
a moderate to large number of attributes or features and are difficult
to scale to geo-spatial Big Data machine learning problems according
to [54], [37]. Those drawbacks are amplified if the training set and
input image data show inconsistencies, inaccuracies and calibration
issues. The GHSL is in fact exploiting open source geospatial infor-
mation as training set and multiple-sensor and historical satellite data
series embedding large variability in metadata documentation. This is
being addressed by a new general paradigm for remote sensing data
classification introduced by [43], based on image data sequencing
and Symbolic Machine Learning (SML) by association analysis (AA)
techniques. Association Rule Analysis and Associative Classification
are some of the most popular paradigms in mature data mining and
knowledge discovery application areas, requiring the analysis of large
databases. In particular, the Association Rules in genes (or Genetic
Association), is extensively used in bio-informatics for revealing bi-
ologically relevant associations between different genes or between
environmental effects and gene expression as in [5], [10], [18] and
[1]. By analogy, the associative classifier (AC) proposed in this ex-
periment searches for relevant, systematic relations between image
data instances and spatial information encoded in the selected train-
ing sets.
In the proposed solution, five main new products are generated

at the maximum spatial resolution allowed by the Landsat: i) the
estimation of the global built-up area in 1975, 1990, 2000, and 2014,
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ii) the estimation of the degree of built-up by sub-pixel information
mixing, and iii) an experimental per-pixel multiple-class land cover
classification.
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3. Methodology

This section includes the description of the general data processing
workflow, the input image data, the training and testing sets used
in the experiment. The proposed method is based on a combination
of data-driven and knowledge-driven reasoning by implementing su-
pervised and unsupervised data classification processes. The super-
vised classification is done independently at the scene level, for all
the scenes processed, using the same global training set. The unsu-
pervised classification chains are implemented with the same criteria
and the same parameters to the whole data set. During the process-
ing of the satellite scenes, no manual tuning of model or parameters
is applied per scene, per specific collection or per geographical area.
The whole parameter sets are either decided at the beginning of the
process, or optimized during the learning and classification phase.
As a consequence, the whole process is fully transparent and repro-
ducible with very limited manual intervention. Moreover, the drastic
reduction of the free parameters to be tuned makes the method rela-
tively easy to scale to large volumes of data processing by replication
of parallel processes.

3.1. Workflow
As in [41], the general data processing workflow is based on super-
vised classification inserted in an evolutionary schema with a retro-
action mechanism. Specifically, two main processing loops (α, β) are
implemented for all the scenes of all the epochs, with the purpose
of stabilization of the classification output (see Figure 1). In the first
loop α, the learning set consists of coarse-scale global data (low-
resolution land cover) available before the experiment and a multi-
temporal GHSLα mosaic at full resolution is produced. In the sec-
ond loop β, the previous global learning set is augmented by the
multi-temporal GHSLα mosaic (the retro-action feed) and additional
fine-scale data collected i) from unsupervised classification of the
panchromatic channel of the Landsat 8 (L8) data, ii) from open source
data such as Open Street Maps (OSM), or iii) made available by GHSL
partners. The second loop ends with the GHSLβ global mosaic that
is discussed here. The α loop is a first approximation of the so-
lution that is considered conservative and under-representing small
and scattered settlement patterns given the scale of the used train-
ing set. The β loop is dedicated to the refinement and enlargement
of the stable background information discovered in the GHSLα set
by risking new input fine-scale positive samples. Because some fine-
scale training set sources (e.g. OSM) are arbitrarily available in some
locations with unknown completeness and update characteristics, to
rely only on these sources would introduce instability in the overall
system reliability performances.
During the experimental design phase, textural, morphological and
radio-metrical image features were tested with regard to the capac-
ity to discriminate built-up areas with the Landsat input data char-
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acteristics. The contribution of the textural and morphological image
features was assessed as marginal if compared to the radiometric fea-
tures, while they provide the major computational cost of the image
feature extraction phase. For this reason, the textural and morpho-
logical image features play only an ancillary role. The input image
data to the classification process includes most exclusively multispec-
tral data provided by the different sensors in the four epochs consid-
ered. The panchromatic channel has been exploited exclusively for
the improvement of the built-up area training sets through textural
analysis when available.
The whole information production workflow (see Figure 1) is based

on parallel single-scene learning and classification processes, without
band combinations or spectral special feature extraction. Therefore,
a direct re-quantization of the digital numbers (DN) recorded in the
processed scenes was used in input for the symbolic machine learn-
ing phase. This choice dramatically contributes to decrease the com-
putational complexity of the data preparation phase and it is made
possible by the fact that during the experiment each satellite scene is
classified individually and consequently no classification model trans-
ferability is required.

Figure 1: The general workflow applied in the experiment

At each process loop for each scene, three basic information (classes)
are estimated with a fixed sequence: i) clouds and data mask, ii)
surface water mask (and consequently land mask), and iii) built-up
confidence. Clouds and valid data masks are extracted by deductive
reasoning, while water and built-up areas are detected using sym-
bolic machine learning and supervised classification. Clouds and wa-
ter masks are Boolean outputs, while built-up is a continuous output
in a standardized range. They are described in the next paragraphs.
Only for the L8 collection of the epoch 2014-2015 a set of addi-
tional information layers was extracted. They include experimental
land cover products made by integration and generalization of the
extracted information. Only in the L8 collection, also textural image
features were used for enhancing the classification of built-up areas.
At the end of the per-scene processing phase, a global mosaic of the
basic information contents was created for each of the 4 epochs, by
fusing the information discovered in the same spatial unit by different
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scenes of the same epoch. During this process, data gaps (as pro-
duced by clouds) are minimized, and redundant information was ex-
ploited for reduction of the overall error rate. After this phase of infor-
mation aggregation by epoch, a second phase was implemented for
the multi-temporal assessment. This phase includes the automatic
mitigation of the systematic gain-bias effects that may result in the
confidence calculated from different sensors and different geograph-
ical locations and consequently including different building practices,
settlement patterns, and natural background characteristics. In this
last phase, an expert-driven check was integrated in order to reduce
the probability that macroscopic errors in the final classified product
may be found.

3.2. Input Image Data
This report relies on the data of the Landsat programme, which is
available since 1972 from six satellites and distributed with free and
open access4. The satellites have been equipped with three primary
sensors evolving over thirty years: MSS (Multispectral Scanner), TM
(Thematic Mapper), and ETM+ (Enhanced Thematic Mapper Plus).
Landsat supplies visible and infrared imagery, with thermal imagery
and a panchromatic image also available from the ETM+ sensor. De-
tails regarding the sensor characteristics are available from [30]. The
RS data used in this experiment consists of 32808 scenes organized
in four collections corresponding to the epochs 1975, 1990, 2000,
and 2014, including 7588, 7375, 8756, and 9089 satellite scenes,
respectively. The collections of the epochs 1975, 1990, and 2000
are made by the Global Land Survey (GLS) data pre-processed by
the Maryland University and available for public use since 20085 and
described in [23]. The collection of the epoch 2014 was made by a
direct download of Landsat 8 scenes from the USGS website6. The
main known issues related to the used GLS collections are (i) the
incomplete metadata information for 16.6% and 32.8% of scenes of
the 1975 and 1990 epochs, respectively, which does not allow to es-
timate the top-of-atmosphere (TOA) reflectance parameters, and (ii)
large data gaps in the 1975 epoch. In particular, the northern part of
South America, the whole Greenland, and large parts of Siberia are
missing in the 1975 collection and consequently are not processed in
this experiment. Figure 2 shows the amount of satellite data records
available in the different epochs during the experiment.

3.3. Training Set
The proposed processing workflow makes large use of already avail-
able spatial information describing human settlements and that is
available from various sources at different scales, thematic definition
and completeness or accuracy conditions. This information is used
4http://landsat.usgs.gov/about_mission_history.php
5http://glcf.umd.edu/data/gls/
6http://landsat.usgs.gov/Landsat_Search_and_Download.php
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(a) (b)

(c) (d)

Figure 2: Global data availability by collections processed in the ex-
periment. (a) 1975, (b) 1990, (c) 2000, and (d) 2014. Black =
no data available, red = only one data record, yellow = two data
records, green = three data records, white = four and more data
records available.

as training set for the supervised classification process. The data
are collected by open collaborative projects or, more structured, by
academic or governmental organizations. The fine-scale training sets
consists of information extracted from available sources with compa-
rable or better scale with respect to the image data. They included
i) Yosm - the Open Street Map (OSM) data reporting about roads -
Yosmws, settlement places - Yosmb1

, and urban cover - Yosmb2
extracted

from the Geofabrik7 source; ii) Ygnm - the Settlement location points,
extracted from the Geonames8 source; and iii) Ynlc - the settlement
polygons extracted from fine-scale land cover information available
at the moment of the experiment. In the Ynlc, a set of settlement
layers kindly made available by the WorldPop9 project was also in-
tegrated. The broad-scale training sets were made by i) the MODIS
global urban extents - Ymds from [49, 48]; ii) the Meris Globcover -
Yglc from [6], and iii) the population density grid Landscan - Ylsc from
[13] (version for the year 2013 available from the website10).

The low-resolution training sets are more generalized than the
input data under processing in this experiment. Especially if embed-
ding categorical information such as Ymds and Yglc, they are expected
to exhibit a systematic information bias that is estimated to over and
under represent large/compact vs. small/dispersed settlements, cor-
respondingly. On the other hand, they are expected to be consistent,
complete, and with a known time attribute across the global spatial
domain. The above holds with the exception of the Ylsc source where
7http://www.geofabrik.de/
8http://www.geonames.org/
9http://www.worldpop.org.uk/
10http://web.ornl.gov/sci/landscan/
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no information is available about the update, completeness and scale
of the settlement spatial information embedded in the model. By
definition, the fine-scale training sets are available at the same or
finer scale than the input image data under processing: but the con-
sistency, completeness and time attribute of these sources are typi-
cally unknown. The design of the GHSL processing workflow seeks a
compromise between the goal of global consistency and the need of
exploitation of finer-scale training sets if available.

The training set management is consistent with the overall design
of the experiment that is evolutionary with a retro-action mechanism.
The built-up areas detected in the GHSLα are calculated by associa-
tion analysis of the image data instances X using BUref (Ymds, Ylsc) as
training set. As in [41, 39], BUref is made by adaptive learning of
the best population thresholds discriminating built-up areas from Ylsc,
using Ymds as training set. The built-up areas reported in GHSLβ are
also calculated by association analysis of the X data instances but us-
ing a more comprehensive training set including fine-scale data and
the GHSLα output classification (the retro-action mechanism). The
harmonization of the input training set may be a very tedious labor-
intensive task if including a large mass of heterogeneous partially-
not-documented (completeness, update) fine-scale data. In the pro-
posed approach the harmonization of the input training set is solved
automatically by composition of the whole list of available training
sets, augmented by the GHSLeα output, with e =1975, 1990, 2000
and 2014 corresponding to the epoch of the scene under processing.
The process uses a voting schema that ends by setting two hypothe-
ses of training masks M : L → {0, 1}, respectively, strict Mbu0 and
extended Mbu1 that are used as input by the GHSLβ learning and
classification procedure. They are calculated as follows:

Ylr = M(BUref ) +M(Ymds) +M(Yglc) (1)

Yhr = 2 ∗M(GHSLeα) +M(
⋃

(Yosmb1
, Yosmb2

, Ygnm, Ynlc)) (2)

Mbu0 =

{
1, Ylr + Yhr > 3
0, otherwise

;Mbu1 =

{
1, Ylr + Yhr > 1
0, otherwise

(3)

with Ylr and Yhr denoting the low and high resolution training sets
respectively. Each set Ylr and Yhr have three votes available. From
the global point of view, the fine-scale sources are typically scarce,
incomplete and missing the time attribute: consequently they are
aggregated by the union operator contributing to Yhr with one vote.
The other two votes are derived from the fine-scale output of the
GHSLα process, introducing a retro-action with a temporal attribute.
The whole process is done at the full spatial resolution of the specific
scene under processing: a total of 6 votes are available for a total
agreement between the training sources. The strict and large training
set hypothesis are the sets consisting of the image elements where
the agreement of at least 4 and 2 sources, respectively, can be found.
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3.4. Testing Set
In the experiment, two families of test sets are introduced: i) valida-
tion sets, and ii) cross-comparison sets. The validation set includes
the geo-information sources where an absolute better scale detail
and thematic reliability was expected, when compared to the output
of the GHSL Landsat. The cross-comparison set includes the geo-
information sources that show some similarity with the GHSL Landsat
in scale and thematic contents, but cannot be used as absolute ref-
erence. Both validation and cross-comparison sets were not included
in the training set collections, thus independent from the supervised
classification process. Due to the bounding conditions determined by
the data and resources available for implementing the experiment,
only the built-up area information extracted in the epoch 2014 was
validated. Built-up areas of all the epochs (1975, 1990, 2000, and
2014) were tested by comparison with products that are similar to
the GHSL outputs but embedding some methodological differences:
consequently they can be taken only as cross comparison exercises.
Additionally, Open Street Map data have been evaluated as a po-

tential source of building footprints (extracted from GeoFabrik.de in
2013). However, they have not be used for validation due to re-
ported incompleteness and semantic inconsistency issues emerged
in the phase of the experimental set design.

3.4.1. Validation
Two validation sources were used: a systematic field survey managed
by the statistical office of the European Union (EUROSTAT) and a set
of digital cartographic products with building footprints at a scale
1:10.000 or better.
The Land Use/Cover Area frame Survey (LUCAS)11 is a harmo-

nized in situ land cover and land use data collection exercise that
extends over the whole of the EU’s territory with an update period of
three years. LUCAS sampling schema is based on a systematic grid
with points spaced 2km apart in the four cardinal directions covering
the EU’s territory. The points are classified during direct field visit.
Points above 1,500 meters of altitude and far from the road network
are excluded form the survey in order to limit the cost. The last
survey of 2012 used in this study covered all of the EU-27 member
states and was based on 270,000 points/observations. In this [14]
survey, eight main land cover categories are collected, and the “arti-
ficial land” class is divided into three subclasses listed below: A11 -
Buildings (low). Roofed constructions with one to three floors or less
than 10 meters of height in total including: single-family houses,
mobile homes, summer cottages, industrial or cultural buildings or
stores, agricultural buildings, market halls, temporary constructions;
A12 - Buildings (high). Roofed constructions with more than three
floors or more than 10 meters of height in total including: indus-
trial buildings, stores, technical infrastructures, residential or cultural
11http://ec.europa.eu/eurostat/web/lucas/overview
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buildings, agricultural buildings; A13 - Greenhouses. Installations
of glass, plastic or any other material which is translucent but im-
pervious to water. For the validation of the GHSL, the three above
mentioned classes were aggregated into a single reference built-up
class. From the 270,276 LUCAS points available in the 2012 survey,
10,786 were excluded from the analysis because they included no
data values in the GHSL data set.
The cartographic data is a collection of datasets which contains

building footprints. The datasets were gathered from data portals of
official web sites of public governmental institutions, such as coun-
ties, municipalities or city councils. The building footprints had been
usually derived from aerial photographs, digital ortho-photography
and also (if updated) urban planning projects. The temporal signa-
ture of the datasets varies between 2000 and 2010, and the data
cover areas in USA and Europe mainly. In general, the data were
available in a vector format. In order to increase the statistical inter-
est of the test, the final collection of 27 datasets of available cities and
regions was rasterised at 2.5m and then tiled following TMS grid nota-
tion (Tile Map Service - a global hierarchical quad-tree tiling schema
based on Google Mercator projection) with the resolution of the GHSL
MT dataset (i.e., 38m). As a result, 3826 sample raster tiles were cre-
ated with the side size of approx. 10km (in Google Mercator metric).
Only the tiles resulting with a valid data area greater than 50% of the
tile surface were considered during the validation (i.e. 1505 tiles). In
total, the validation tiles cover an area of 133,909 km2 with a total
built-up area of 4,656 km2. Table 1 shows the distribution of built-up
density in the tiles. We can observe that almost 50% of the tiles
are characterized by built-up density lower than 1% and 11% of tiles
have built-up density greater than 10%. There are only two tiles with
the built-up density greater than 30%.

Built-up (%) Number of tiles Cumulative (%)
0 - 1 700 46.51
1 - 5 496 79.47
5 - 10 138 88.64
10 - 32 171 100.00

Table 1: Built-up density in the validation tiles.

3.4.2. Cross-comparison
The cross-comparison set included three sources of geo-information,
namely the European Settlement Map (ESM), the results from the
Urbanization Project of the New York University (NYU) and the Geon-
ames dataset.
The European Settlement Map (ESM) represents an output gener-

ated with 2.5m and 1.5m resolution multispectral SPOT-5/6 images
from the period 2011-2012 in input for the whole Europe as in [16].
The criteria for discrimination of built-up areas from SPOT data was
based on textural and morphological image features as presented in
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[41].
The second dataset used for cross-validating our results was the

baseline data kindly made available by the Urbanization Project of the
New York University (NYU)12 and described in [2]. The cities included
in the NYU baseline data are an extension of the global stratified sam-
pling methodology introduced by [3]. The methodology for built-up
areas collection in the NYU data relies on human supervised classifi-
cation of Landsat image data organized in three epochs 1990, 2000,
and 2010. Per-scene expert tuning of the processing parameters and
exhaustive visual checking of the output is included in the workflow
of the NYU data.
The third member of our cross-comparison set is represented by

the Geonames dataset that has been derived from the GeoNames
project13, which is an online free geographical database of location
names (point data in WGS84). It was downloaded in April 2014. In
total, the dataset contains more than 8.5 million of features, of which
more than 3.2 million are classified as populated places.

3.5. Symbolic Machine Learning
The data classification experiment described here largely relies on a
new supervised classification technique introduced by [43] as scal-
able solution to complex and large multiple-scene satellite data pro-
cessing scenarios. The technique is based on Symbolic Machine
Learning (SML) and consists of two main steps: i) image data quantization-
sequencing, and ii) association rule analysis.
Let Dm×n×F be a data set with m × n = mn spatial samples or

pixels and F features or descriptors. Let Xmn×F be a 2-dimensional
data matrix, X = [x1,x2, . . . ,xi, . . . ,xF], with F expressing the number
of used features and xi ∈ Zmn+ . Let X̂ be the set of all the unique data
instances of X.
In the experiment, a uniform quantization approach was imple-

mented during the data quantization-sequencing phase, the same
for each feature of an epoch. X(q) = [Round (x/q)]mn×F are the quan-
tized data instances with q = max(x)/s where x ∈ xi. Table 2 shows
the parameters applied to the image data of the different epochs.

Year 1975 1990 2000 2014
q 2 4 8 1024
s 128 64 32 16
F 4 6 6 7 (+1)

max x 255 255 255 65535

Table 2: The values of quantization parameter q, number of symbols
s, and number of attributes F applied in the different data epochs.

The q value was determined empirically by observing the mean
support of X̂ estimated as suppµ = |X| /

∣∣∣X̂∣∣∣ and by choosing a value
12http://urbanizationproject.org/
13http://www.geonames.org/
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so that suppµ is in the range of 102–103. These suppµ orders of mag-
nitude were tested as satisfactory for classification exercises incor-
porating noisy training sets, with noise characteristics similar to the
ones experimented here [43]. The F number of available spectral
attributes of X is dictated by the sensor characteristic in the specific
epoch, while the s number of available symbols per each spectral at-
tribute is derived by the combination of the raw DN encoding, the
specific sensor data D and the q parameter. In the case of the epoch
2014 with L8 data, the image data sequencing included also the new
Quality Assessment (QA)14 band. This band encodes some surface,
atmosphere, and sensor conditions that can affect the radiometric
information collected by a given image element (pixel). Due to the
symbolic nature of the SML classifier, it can be introduced seamlessly
in the input data attributes used for classification. In the case of the
QA attribute, because already encoding a classification output, no
quantization was applied.
The confidence family measure named Evidence-based Normal-

ized Differential Index (ENDI) ΦE [43] is noted as Z = ΦE (X,Y +, Y −)
with X the quantized input image data instances, Y + the set of posi-
tive evidences and Y − the set of negative evidences used during the
training phase. It is worth noting that in the general ΦE formulation
the mutual exclusivity of the Y +, Y − training sets is not required and
consequently Y + ∩ Y − ≥ ∅. This property allows the exploitation of
partially overlapping or inconsistent (by scale, by thematic contents)
training sets like the ones handled by this experiment.
The ΦE assumes values in the range [−1, 1]. They express the es-

timated association between the data instances and the target class
or foreground information. Values close to 1 indicate data instances
strongly associated with the presence of foreground information as
summarized by the positive evidences (e.g. buildings), while values
close to -1 are strongly associated with the presence of the comple-
ment of the foreground information (background, e.g. not built-up)
as summarized by the negative evidences. Values of ΦE close to 0
indicate that for the specific data instance, a comparable number of
evidences can support both the foreground or background informa-
tion hypothesis. Consequently, they are placed at the boundaries of
the decision space.

14http://landsat.usgs.gov/L8QualityAssessmentBand.php
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4. Information extraction

The information extracted for all the scenes include i) clouds, ii) wa-
ter, and iii) built-up. The automatic recognition uses a hierarchical
per-scene processing chain collecting the components with a precise
order and propagating the information discovered at each step to the
next. For recognition of the water and built-up components the pro-
cedure is designed in three main steps running for all data instances
(scenes) X of all epochs: i) collection of the available training set
at the geometry (resolution, projection) fitting the specific X scene,
ii) automatic refinement and improvement of the training set based
on the specific X data instances under processing and theory-driven
reasoning, and iii) supervised classification of the specific X data
instances based on data-driven reasoning (association analysis) and
refined training set. The per-scene processing schema is supposed to
reduce the problem of classification model transfer between scenes
collected in different seasons and/or different geographical places,
thus increasing the reliability of the automatic information extrac-
tion process. The theory-driven reasoning applied in the training set
refinement step exploits known relations between image data and
target information in order to automatically improve the reliability of
the training set used in the subsequent supervised classification. The
X data instances used for the classification are the ones recorded
by the multi-spectral sensor available in the different epochs. The
panchromatic channel was used exclusively for improving the train-
ing set used in the supervised built-up areas classification.

4.1. Clouds
Cloud detection identifies the valid image data domain that will be fur-
ther processed. For each collection (1975, 1990, and 2000), we ap-
plied an adaptation of the Automatic Cloud Cover Assessment (ACCA)
method, similar to that used in [41]. The 2014 Landsat 8 data set
was processed using a direct query to the new Quality Assessment
(QA) band including the coding of the cloud coverage was applied.
During the system design phase, the test of the information stored

in the QA band showed that highly reflecting rooftops as in new in-
dustrial/commercial buildings have high probability to be erroneously
classified as cirrus and cloud. In order to mitigate the risk to system-
atically miss classify highly reflecting rooftops in no data, a connected-
component morphological filtering of the cirrus and cloud sets derived
from the QA was performed. The filter is based on area criteria dis-
criminating large patches contributing to the cloud mask Mcloud and
small, scattered residual patches stored in the Mhigh mask.

4.2. Water surfaces
Water surfaces are recognized by associative classification using the
Boolean mask Mw as training set and a ΦE filtering by morphological
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Lagos, Nigeria - ΦE of the class built-up estimated from the
Landsat data of the epochs 1975 (a), 1990 (b), 2000 (c) and 2014
(d) (brown = cloud mask). Multitemporal assessment (e): dark red
= built before 1975, red = built from 1975 to 1990, green = built
from 1990 to 2000, white = built from 2000 to 2014, blue = water
bodies. (f): µbumix model output for 2014

reconstruction as in [47, 11]. At first instance, theMwlr training set is
derived by class code query from the low-resolution global land cover
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Dallas, US - ΦE of the class built-up estimated from the
Landsat data of the epochs 1975 (a), 1990 (b), 2000 (c) and 2014
(d). Multitemporal assessment (e): dark red = built before 1975, red
= built from 1975 to 1990, green = built from 1990 to 2000, white
= built from 2000 to 2014, blue = water bodies. (f): µbumix model
output for 2014

source Yglc. If a mid-infrared spectral band XmIR is available in the
specific scene under processing, then it is used in order to refine the
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scale of Mwlr. Let µ and σ be the mean and standard deviation of the
XmIR : x ∈ Mwlr. Let Mw− and Mw+ be defined as Mw− ∈ {XmIR : x <
µ+ 2 ∗σ} and Mw+ ∈ {XmIR : x ≤ µ− 0.5 ∗σ}. The refined water training
set is defined as Mwhr ← (Mwlr ∩Mw−) ∪Mw+. Let Zw0 = ΦE(X,Y + ∈
Mwhr, Y

− ∈ ¬Mwhr) be the ΦE score estimated for the X data instances
using the Mwhr training mask. And let M2 and M1 be defined as
M2 ∈ {x : Zw0 > 0.0}, M1 ∈ {x : Zw0 > 0.1}. The output water mask Mw0

is calculated according to [11] as reconstruction by dilation of the
marker M1 under the mask M2. In case of L8 input data, a second
hypothesis of water surface is made: Mw1 = Mwlr−Mw0, including the
samples that were labeled as water in the low-resolution data but
not water in the high resolution mask derived from the image data
instances. They are classified as water interface and a specific ΦE is
calculated accordingly as Zw1 = ΦE(X,Y + ∈Mw1, Y

− ∈ ¬Mw1). Zw1 will
be integrated in the final multiple-class land cover product.

4.3. Built-up areas
The confidence-like metric for the built-up areas in the GHSLα are
estimated by ΦE(X) using BUref ← (Ymds, Ylsc) as training set. The
confidence-like metric for the built-up areas in the GHSLβ are also
calculated by ΦE(X) but using a more comprehensive training set
aggregated by a voting schema in a Mbu0 strict and Mbu1 extended
built-up training set hypothesis. The input X data instances used
for the classification are the ones collected by the multi-spectral sen-
sor of the Landsat satellite. The panchromatic channel - if available
in the specific epoch - was used only for the improvement of the
training sets through textural image analysis. Before the supervised
classification, the built-up training sets are refined using image data
instances and unsupervised reasoning. Let Y ∈ {BUref ,Mbu0,Mbu1} be
any of the three training sets used for built-up detection, the refined
set is defined as Yr = Yr1∪Yr2, where Yr1 = Y ∩¬{Mw0∪Mndvi0∪Mptx0}
and Yr2 = {Mptx1 ∩Mndvi1}.
The Mndvi0,1 and Mptx0,1 masks are calculated only in the 2014 col-
lection where suitable data and meta-data were available. In par-
ticular, a normalized differential vegetation index Xndvi feature was
extracted using the top-of-atmosphere (TOA) reflectance values and
used as input of the Mndvi0,1 masks with Mndvi0 ∈ {Xndvi : x < 0.65}
and Mndvi1 ∈ {Xndvi : x < 0.3}. Moreover, a multi-scale textural anal-
ysis of the 15m resolution panchromatic channel of the L8 data was
performed in order to calculate the Mptx0,1 masks contributing to the
improvement of the available training sets.
The textural analysis was made by application of anisotropic rotation-
invariant contrast textural measures extracted using the grey-level
co-occurrence matrix (GLCM) and the pantex methodology of [40]
extended to a multi-scale domain.
Let Xptx be the multi-scale pantex values calculated from the 15m
resolution P data using a displacement vector of 1, 2 and 9 pix-
els (correspondingly 15, 30, 135 meters) and a sliding window size
of 15x15 pixels (225 square meters). The Xptx data were spatially
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aggregated (by average) at the resolution of the multi-spectral chan-
nels and an association analysis was performed in order to estimate
the index Zbuptx for the presence of built-up areas, based on textural
information. Consequently, Zbuptx = ΦE(Xptx, Y

+ ∈ Mbu1, Y
− ∈ ¬Mbu1).

The cut-off points are determined by observation of the ΦE index val-
ues in the training mask Mbu1 and the complement ¬Mbu1. Let µ0 and
σ0 be the mean and standard deviation of the index Zbuptx : x ∈ ¬Mbu1

and let µ1 and σ1 be the mean and standard deviation of the index
Zbuptx : x ∈ Mbu1. The Mptx0,1 masks are calculated as Mptx0 ∈ {Zbuptx :
x > max(−1, µ0 − σ0)} and Mptx1 ∈ {Zbuptx : x > min(1, µ1 + 2 ∗ σ1)}.
The final ΦE values of the built-up class for the GHSLα,β loops, cor-
respondingly Zbuα and Zbuβ were estimated as follows:

Zbuα = ΦE(X,Y + ∈ Yr(BUref ), Y − ∈ ¬Yr(BUref )) (4)
Zbuβ = ΦE(X,Y + ∈ {Yr(Mbu0) ∪ Yr(Mbu1)}, Y − ∈ ¬Yr(Mbu0)) (5)

The Zbuβ estimation included a stratification of the X data instances
based on the Yglc prior knowledge. The stratification aimed to miti-
gate class-dominance effects that may be present in specific scenes
under processing. In particular, strata with more than |D| /5 instances
(pixels) were classified separately in the same scene. Moreover, a
test on the number of samples falling in Yglc water surfaces was made:
a maximum number of water samples equal to the number of land
samples was accepted.
Figures 3 and 4 present the ΦE results of the built-up class for the

four epochs in Lagos (Nigeria) and Dallas (US).
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5. Landsat 8 specific processing

For the 2014 L8 data, a specific data processing chain was imple-
mented. We tested the introduction of a multiple-class land cover
classification scheme, and a new information unmixing model for a
sub-pixel built-up areas classification scheme was proposed. They
are described in the next paragraphs.

(a) (b)

(c) (d)

Figure 5: Examples of the multiple-class land cover outputs. (a,c)
- SW of Calcutta (India) and the area of the Wanxian town (China)
as represented by the learning set Yglc. (b,d) - the output of the
GHSL multi-class product in the same areas. For legend encoding
see subsection 5.1.3.

5.1. Multiple-class land-cover/land-use
In this phase, available information extracted during the processing
is used for a multiple-class land cover extraction by maximization of
ΦE index. The Zbu, Zw0 and Zw1 scores estimated in the precedent
steps are evaluated together with ΦE related to a set of new training
classes. They are extracted from the roads available in Yosm repos-
itory and the low-resolution land cover Yglc. In the applied schema,
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the ΦE of each training class is evaluated separately considering the
specific set as positive evidence and using all the others training
classes as background for negative evidence samples. Finally, the
label of the class is evaluated by maximization of the ΦE value. For
the purpose of the experiment, the original Yglc encoding is aggre-
gated in a fewer number of classes as follows:

Forest = Yglc1 = y : Yglc ∈ {10 ∗ z : z ∈ N, 4 ≤ z ≤ 12} (6)
IrrigatedCropland = Yglc2 = y : Yglc ∈ {14} (7)

RainCropland = Yglc3 = y : Yglc ∈ {11} (8)
MosaicCroplandForest = Yglc4 = y : Yglc ∈ {20, 30} (9)
ShrubsGrassland = Yglc5 = y : Yglc ∈ {130, 140, 150} (10)

BareLand = Yglc6 = y : Yglc ∈ {200} (11)
IceSnow = Yglc7 = y : Yglc ∈ {220} (12)

Other = Yglc8 = y : y /∈
⋃
{Yglc1, . . . , Yglc7} (13)

5.1.1. Basic components
The ΦE matrices extracted from the used training sets are stacked in
a feature cube Z and then maximized. The following order was ap-
plied: Z1 = {Zbu, Zroad, Zw0, Zw1, Zglc1, . . . , Zglc8} reflecting an abstract
relevance of the specific class from the point of view of the human
settlement mapping. The first class is the built-up areas, while the
last one encodes the residuals of any other class not considered in
the classification schema. The classification procedure applies a two-
stage approach with a retro-action mechanism aiming to handle the
case where training sets may not sufficiently describe the data in-
stances (presence of unexpected new classes) or data instances may
not be able to discriminate with sufficient reliability the considered
training sets. At the first trial the maximal ΦE index is evaluated as
Zmax = max(Z1). The data domain where Zmax < 0 is considered prob-
lematic, because it is not showing strong association between data
instances and any of the training sets classes. Consequently, the
samples belonging to this data domain are added to the other train-
ing set class Yglc8, a new Zglc8 score is evaluated again accordingly
(the retro-action mechanism), and a new stack Z2 is made. Finally,
the second trial evaluates the class label as the class where the max-
imal ΦE is found L = argmax(Z2). Figure 5 shows the results of the
method for two examples in India and China.

5.1.2. Built-up areas characteristics
Let Lbu be the samples of L which are labeled as built-up by the
supervised classification process described above. They are further
reclassified by an unsupervised procedure with the purpose of dis-
criminating some main characteristics of built-up areas that can be
useful for the GHSL applications. In particular, two main character-
istics of built-up areas are evaluated in this phase: i) the amount
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of vegetation and ii) the amount of 3D roughness. The first charac-
teristic is extracted from the normalized differential vegetation index
Xndvi calculated during the process. The second characteristic Xdsm

is extracted by processing of digital surface model (DSM) input data
derived from the Shuttle Radar Topography Mission15 (SRTM) and
the ASTER Global Digital Elevation Model16 (GDEM). SRTM data char-
acterization in urban areas was firstly introduced by [17] using the
residuals of local average filtering. In the proposed approach, a new
method was adopted allowing the fusion of the two DSM sources and
reducing the false alarms in mountainous areas. A high-band-pass
filter is made by the application of opening and closing morphological
operators to both the SRTM and GDEM sources with a structuring ele-
ment of 250 meters and observation of their residuals. The maximal
opening/closing residual signal between the two sources is collected
and subsequently processed by textural contrast analysis. In partic-
ular, the pantex procedure based on grey-level co-occurrence matrix
(GLCM) was applied. The procedure aims to measure the presence
of systematic local contrast in the DSM morphological residuals, re-
ducing the false alarms and noise related to the observation of the
residuals only.
The classification schema of built-up areas characteristics based on
NDVI is made as follows:

V eryLightBU = Lbu1 = Lbu : Xndvi > 0.4 (14)
LightBU = Lbu2 = Lbu : 0.3 ≤ Xndvi < 0.4 (15)

MediumBU = Lbu3 = Lbu : 0.2 ≤ Xndvi < 0.3 (16)
StrongBU = Lbu4 = Lbu : Xndvi < 0.2 (17)

The classification schema of built-up areas characteristics based on
DSM is only applied to the samples labeled as strong built-up Lbu4 that
are presumably minimizing the noise originated from trees canopy.
The classes are defined as follows:

LowRiseBU = Lbu5 = Lbu4 : Xdsm < 25m (18)
MediumRiseBU = Lbu6 = Lbu4 : 25m ≤ Xdsm < 50m (19)
HighRiseBU = Lbu7 = Lbu4 : 50m ≤ Xdsm < 100m (20)
V eryHighRiseBU = Lbu8 = Lbu4 : Xdsm ≥ 100m (21)

Figure 6 shows the results of the proposed urban characterization
method in a sample of the Chicago (US), Tokyo (Japan), and Johan-
nesburg (South Africa) cities.

5.1.3. Multiple-class GHSL encoding
The final legend encoding of the multiple-class GHSL schema is re-
ported below:
0 = No data
15http://www2.jpl.nasa.gov/srtm/
16http://gdem.ersdac.jspacesystems.or.jp/
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1 = Other
2 = Ice and permanent snow
3 = Bare soil and rocks
4 = Shrubs and Grassland
5 = Mosaic Croplands and Forest
6 = Rain Cropland
7 = Irrigated Cropland
8 = Forest
9 = Occasionally water / land-water interface
10 = Surface Water
11 = Roads
12 = Built-up with highly reflecting roof (associated to productive and commercial use)
13 = Very light built-up NDVI > 0.4
14 = Light built-up 0.3 < NDVI <= 0.4
15 = Medium built-up 0.2 < NDVI <= 0.3
16 = Strong built-up NDVI <= 0.2 and low rise buildings (3D roughness <25m)
17 = Strong built-up NDVI <= 0.2 and medium rise buildings (3D roughness 25-50m)
18 = Strong built-up NDVI <= 0.2 and high rise buildings (3D roughness 50-100m)
19 = Strong built-up NDVI <= 0.2 and very high rise buildings (3D roughness > 100m)

5.2. Degree of built-up
The estimation of the degree of built-up per cell is obtained by apply-
ing a fuzzy information unmixing model, the aim of the model being
the estimation of the percentage of the cell covered by a building.
The model uses as input the ΦE index of built-up Zbu, roads Zroad,
and water Zw0, together with the Xndvi index. The membership func-
tions µ are derived from linear rescaling of Z measurements inside
the [0, 1] range by application of fixed min, max parameters. Let
y = rs(x, a, b) be the linear rescaling of x with a and b being the min
and max parameters, respectively. The membership functions µ are
defined as follows:

µbu = rs(Zbu,−0.3, 0.3) (22)
µroad = rs(Zroad,−0.8, 0.8) (23)
µgreen = rs(Xndvi, 0.1, 0.8) (24)
µwater = rs(Zw0,−0.5, 0.5) (25)

The degree of built-up per cell (µbumix) was estimated by consider-
ing µroad, µgreen, and µwater as competitors of the µbu surfaces in a
geometric fuzzy intersection equation as follows:

µbumix = µbu ∗ (1− µroad) ∗ (1− µgreen) ∗ (1− µwater) (26)

where, by definition, µbumix ≤ µbu and µbumix ∈ [0, 1]. The parameters
applied in the model are tested in the experiment discussed here.
They are derived from knowledge-driven reasoning and direct inspec-
tion of experts in few scenes taken as examples. Figure 7 shows the
output of the proposed model µbumix in few examples including (a)
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Cairo (Egypt), (b) Mexico City (Mexico), (c) Harare (Zimbabwe), (d)
New Delhi (India), (e) London (UK), and (f) Minneapolis (US). Exam-
ple of µbumix outputs are also included in the Figure 3f) and Figure
4f) showing the cities of Lagos (Nigeria) and Dallas (US). In contrast
with the land cover categorical results (see Fig 3e), 4e) and 5), the
output of the building density analysis highlights the strong differ-
ences in the structure of cities, which reflect the compactness as well
as social or functional spatial segregation patterns, which however
require further analysis.
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Figure 6: Examples of built-up areas characteristics as detected by
the experiment. From top to bottom Chicago (US), Tokyo (Japan),
and Johannesburg (South Africa). Left: the output of the classifica-
tion, right: the same fused with background high resolution imagery
(source: Bing) for visual reference. For legend encoding see subsec-
tion 5.1.3.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Examples of the µbumix model output in some cities. Same
scale and same color code form blue (low), yellow-green (medium),
red (high) values. (a) Cairo (Egypt), (b) Mexico City (Mexico), (c)
Harare (Zimbabwe), (d) New Delhi (India), (e) London (UK), and (f)
Minneapolis (US).
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6. Multiple-scene information fusion

Information redundancy is common in large data classification projects.
It is originated by the fact that the same sample on the ground can
be mapped more than once from the same or different sensors at dif-
ferent times. This redundancy can be managed by information fusion
processes in order to achieve explicit objectives as keeping specific
information contents, reducing data gaps or reducing overall error
rates. Figure 2 reports about the redundancy in each data collection
processed and the table 3 shows the total redundancy in the experi-
ment. The first column of the table contains the number of available
input data scenes while columns 2 and 3 comprise the correspond-
ing number of pixels and land areas covered by these superposed
scenes. Finally, columns 4 and 5 display the percentages and cu-
mulative percentages that the areas of column 3 represent from the
global landmass.
Two main information fusion processes have been applied: one

dedicated to the production of the global mosaic and the other to
the multi-temporal information processing. They are described in the
next sections.

Number of
scenes

Number of
pixels

Area (km2) Percentage
(%)

Cumulative
Percentage

(%)
0 1,054,383 196,387.02 0.146 0.146
1 369,481 261,254.63 0.195 0.341
2 2,130,282 2,145,715.66 1.598 1,939
3 6,163,122 6,516,632.61 4.854 6.793
4 23,561,078 24,795,286.10 18.468 25.261
5 23,873,667 23,517,729.83 17.517 42.777
6 17,506,471 15,469,685.41 11.522 54.299
7 17,245,074 14,425,595.10 10.744 65.044
8 18,346,845 14,864,559.75 11.071 76.115
9 15,036,569 11,572,263.28 8.619 84.735
10 10,563,451 7,839,995.08 5.839 90.574
11 7,290,252 5,269,666.62 3.925 94.499
12 4,931,081 3,541,354.66 2.638 97.137
13 2,965,265 2,075,928.88 1.546 98.683
14 1,511,248 1,016,313.14 0.757 99.440
15 696,409 446,293.82 0.332 99.772
16 305,668 191,486.76 0.143 99.915
17 134,510 80,529.63 0.060 99.975
18 44,368 26,040.28 0.019 99.994
19 11,276 6,625.27 0.005 99.999
20 1,974 1,035.32 0.001 100.000
21 46 27.57 0.000 100.000

Grand Total 153,742,520 134,260,406.44 100.000 100.000

Table 3: Total dataset redundancy situation over land areas.

6.1. Global mosaic information fusion
As in [41], a TMS global hierarchical quad-tree tiling schema has been
adopted for combining the whole information collected by the differ-
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ent scenes in a single mosaic. TMS provides computational efficiency,
facilitating the parallelization of the mosaic process. We adopted a
nominal spatial resolution at the equator of 38.21m corresponding to
the zoom level 12 of the TMS schema which best approximates the
native 30m spatial resolution of the output. Four main mosaics are
created with the built-up index Zbu originated by the scenes belong-
ing to the four different data collections corresponding to the epochs
1975, 1990, 2000, and 2014. Moreover, the mosaic of the degree of
built-up µbumix was created for the epoch 2014 only, made of L8 data
input. Figure 8 shows the aggregated results.

Figure 8: Global mosaic of the density of buildings as estimated by
the µbumix model implemented in the experiment

Each epoch used 19,624 tiles covering the whole global landmass,
each tile having a size of 4,096x4,096 elements, corresponding to
156.54 x 156.54 nominal square kilometers on the ground. Inside
each specific collection, information gaps are filled with data from
alternative scenes if available. If several valid information outputs
were available in the same sample, a conservative composition rule
based on average was adopted assuming to increase the consistency
of the final ΦE output.

6.2. Multi-temporal processing
The process is performed in parallel for each tile of the global mosaic.
The aim of this phase is to fill remaining data gaps in the specific
epochs, and reduce, if possible, error rates. Three main steps are
performed i) determine final land/water surfaces ii) fill information
gaps still remaining, iii) determine multitemporal information by cut-
off of the Zbu index collected in the different epochs.
At the first step a voting schema was applied. Let MΣ = Mw1975 +

Mw1990 + Mw2000 + Mw2014 be the sum of the water masks collected in
the four epochs. At the level of a spatial sample, each of these 4
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water masks consists of a vector containing the assessments in the
available scenes covering that specific sample. The possible assess-
ments are water ("1"), non water ("0") and no data. Let MV D be
a layer containing the number of scenes from all the 4 epochs with
valid data ("0" or "1" values). The final water mask has the value "1"
in the samples in which the condition MΣ > 0.5 ∗MV D is fulfilled.
The second step was solved by the creation of an ideal epoch 2014,

made by filling the gaps present in the Zbu2014 with the most recent
information available in the other epochs.
The third step was solved by a hierarchical process progressively

going back in time and starting from the built-up areas as reported
in the ideal epoch 2014. At each step, if strong evidences against the
built-up hypothesis (strong negative Zbu values) are collected in that
epoch then these built-up areas are canceled becoming non-built-
up. Similarly to [53], the model is applied under the assumption
that built-up areas are monotonically spatially shrinking going back
in time (respectively expanding from past to present). As a con-
sequence, demolition and reconstruction dynamics in built-up areas
creating oscillations in the Zbu values over time are not assessed.
While this assumption is a clear limitation of the model, it is con-
sidered true for the grand majority of the global built-up areas ac-
counted in the final database. Furthermore, the assumption has the
clear advantage to reduce significantly the computational cost and
increase the statistical stability of the whole automatic change detec-
tion process. Figures 3f) and 4f) show the output of the procedure in
the cities of Lagos (Nigeria) and Dallas (US). It is worth noting that
in case of data gaps the above approach propagates the informa-
tion from the most recent available data records. Figure 9 shows the
final situation of temporal data availability after the multi-temporal
processing. From left to right, the legend encodes the availability
of data records (0 = unavailable, 1 = available) in the 2014, 2000,
1990, and 1975 collections.
The cut-off values determining the strong evidences against the

built-up hypothesis are calculated dynamically for each tile and each
epoch by observing first and second order statistics of the Zbu sam-
ples falling in the spatial domain corresponding to the zero values of
the low-resolution reference layer BUref (see details on this layer in
section 3.3). The adaptive approach tries to minimize the effects on
the Zbu scores generated by the mutual interaction of several factors
not explicitly modeled in the production process: they include mainly
i) the different sensor characteristics, ii) the data collection conditions
(season, illumination, atmosphere) and iii) the geographic conditions
(building practices patterns and materials, background land cover,
orography) present in the mosaic.

34



Figure 9: Global mosaic of the multi-temporal data availability mask
as resulting of the mosaic process.
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7. Results

This section summarizes the qualitative and quantitative assessments
of the Landsat GHSL outputs in comparison to other available geo-
information sources made by automatic satellite data classification.
In addition, it includes also the presentation of some global and se-
lected statistics.

7.1. Qualitative analysis
The qualitative assessments of the GHSL results in describing built-
up areas generally show an increase of the spatial detail and abso-
lute thematic accuracy as compared to other available global sources
made by automatic satellite data classification. Figure 10 shows a
typical behavior: from top to bottom reference topographic data
1:10K scale aggregated at 30m resolution, Landsat GHSL built-up ar-
eas detection, Meris GlobCover artificial surfaces, and MODIS urban
layer. Omission error is still observable as compared to topographic
mapping sources in detection of isolated built-up patches of 1-2 pix-
els. Furthermore, Landsat GHSL shows a tendency to saturate the
information in built-up patches greater than circa 10 pixels (300 me-
ters) as compared to reference topographic data. The phenomena is
probably linked to the fact that mainly radiometric criteria are used as
input for the classification and consequently the detection is strongly
linked to the materials of the urban fabric more than to their mor-
phology or texture. Therefore, a relatively high confusion between
built-up (rooftops) and roads or other sealed surfaces placed around
the building can be expected in this product.
The ΦE confidence to the built-up class seems reasonably stable

across sensor, seasonal, and geographical arbitrary conditions. Fig-
ures 3 and 4 show an example of ΦE estimation in different years for
cities of Lagos and Dallas, respectively. The most critical point seems
to be the processing of the 1975 MSS data. Visual analysis by ex-
perts evidenced some cases of instability and low signal-noise ratio in
the response of the classifier using this data input. The phenomena
is geographical-related: it is linked to the specific contrast between
the reflectance of the materials of the urban fabric and of the back-
ground. Typical examples of difficult situations are traditional set-
tlement patterns made by natural materials (as mud or stones) and
arid bushland background with large reflectance of the soil. Similarly,
large presence of vegetation (especially large tree canopy) in both the
settlement area and outside has been reported as creating instability
in the classification. For this reason, it is advisable to check carefully
the 1975 outputs before using it in the specific applications. While in
many cities they provide a reliable information source, they are not
considered sufficiently stable for global aggregated summaries.
Analogously to built-up baseline information, the visual inspection

of the multiple-class land cover product shows a noticeable increase
of detail respect to the spatial data used as training set. Figure 5
shows a typical setup in two examples: one area in the SW of Calcutta
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(a) (b)

(c) (d)

Figure 10: Town of Lucca, Italy. Comparison of the detail in the
description of built-up areas available from different sources: a) to-
pographic cartography at scale 1:10,000, b) Landsat GHSL c) Meris
GlobCover, and d) MODIS urban layer.

(India) and an area in the surrounding of the Wanxian town (China).
On the left the Meris GlobCover, on the right the output of the Landsat
data classification.
Visual analysis of the global product showed that some classes are

more stable than others. In particular, composite classes and classes
incorporating a temporal component are apparently poorly performed
by the classifier. They include the classes 4 Shrubs and Grassland; 5
Mosaic Croplands and Forest; 6 Rain Cropland; 7 Irrigated Cropland.
On the other hand, the classes 10 Surface Water and 8 Forest are
apparently very stable as performed by the classifier, together with
the classes 2 Ice and permanent snow and 3 Bare soil and rocks.
Figure 6 shows some examples of the results of the classifier as

regarding the built-up areas characterization. Output examples are
shown in the cities of Chicago (US), Tokyo (Japan), and Johannesburg
(South Africa): on the left the output of the classification, on the
right the same fused with background high resolution imagery (Bing)
for visual reference. Preliminary visual inspection by experts show
promising results: the high-rise building areas of the cities seem to
be correctly detected by the method implemented in the experiment,
opening a new potential area of application for satellite-derived global
digital elevation model products.

7.2. Quantitative accuracy assessment
In the experiment discussed here, the accuracy of the GHSL outputs
are evaluated only for the built-up target class. Due to the availabil-
ity of only recent cartographic reference, only the 2014 GHSL was
assessed. The assessment is largely data-driven, in the sense that
the scarcity of suitable reference data prevented the application of a
statistical sampling procedure: as a consequence, the results cannot
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be strictly considered as representative of the whole processed data
universe. Geographically, the reference sets used in the experiment
cover the entire Europe with a sampling schema and some arbitrary
cities or regions where fine-scale digital cartographic data was avail-
able.
An absolute approach is adopted in order to be able to compare

the performances of the Landsat GHSL outputs with other available
global information sources, regarding the capacity to report about
built-up areas in the available test sets. In this approach the refer-
ence data is maintained constant independently from the scale of the
information product under test. The scale and reliability of the ref-
erence data is assumed to be better than any of the products under
test. The adopted absolute approach does not adapt the reference
and the target information definition to the characteristics of the sen-
sor originating the information under test. The adaptation is typically
performed by application of some kind of generalization procedure to
the fine-scale reference data. Therefore, a more conservative assess-
ment of the accuracy is expected in this test as compared to a more
adaptive approach that is also common practice in remote sensing
literature. For comparative purposes, the same performance statis-
tics were calculated for GHSL and for other global or regional data
sets, including the Landsat-based Corine2006, GlobalLand30, FROM-
GLC, as well as the coarser resolution data sets MODIS-urban and
GlobCover. In all cases, only the classes mostly related to the GHSL
built-up were considered. As already introduced, the GHSL source
used in the test is the output of the classification of the image data
collection 2014.

7.2.1. Test with LUCAS reference data
The LUCAS data is described in section 3.4. The same data was
used also for the validation of the European Settlement Map by [16]
and hence allows a comparison with performance measures of this
higher resolution layer. In the LUCAS test, a comparative analysis
was implemented.
Table 4 shows the main results of the test. Following the con-

siderations of [26], the reporting of quantitative accuracy metrics is
based on the error matrix. The final performance statistics is reported
with a set of quality measures. The total (or overall accuracy) rep-
resents the share of all correctly classified sample units of the entire
error matrix. The Kappa analysis, introduced by [9], presents a dis-
crete multivariate technique commonly used in accuracy assessment
to statistically test if classifications are significantly different from
the reference data, being a chance corrected renormalized form of
accuracy. This very popular measure has nevertheless one disadvan-
tageous characteristic especially in our case of imbalanced datasets:
it is affected by prevalence. Consequently, we also use other two
quality measures that are skew-insensitive, thus controlling better
inflated performance estimates on imbalanced datasets. The first
one is the balanced accuracy (BA) from [7] and it corresponds to the
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Area Under the Curve from the ROC analysis in the case of a single
parametrization. The second one is the informedness (named like
this by [45] but introduced for the first time by [35]), which can be
viewed as a chance corrected unbiased renormalized form of recall
(True Positive Rate). The measure can be directly quantifiable as the
probability that an informed decision is made rather than a random
guess (chance), as stated by [46].

Layer Total Kappa Balanced Informedness
Accuracy Accuracy

GHSL 0.9628 0.3233 0.7767 0.5534
Corine2006 0.9548 0.2701 0.7606 0.5212
GlobalLand30 0.9488 0.2692 0.7938 0.5877
GlobCover 0.9712 0.2072 0.6173 0.2346
FROM-GLC 0.9576 0.1843 0.6493 0.2986
MODIS 0.9624 0.1581 0.6099 0.2198

Table 4: Performance statistics for GHSL (2014) and other datasets
compared to LUCAS (2012).

According to the LUCAS test in Europe, the total accuracy (TA)
is very high for all data sets, well above 95% (Table 4). However,
in this imbalanced two-class data set (built-up and non-built-up), the
built-up accounts only for a small portion of the area (< 10%). Theo-
retically, just by classifying all areas as non-built-up, a total accuracy
above 90% could be obtained. The other statistics show a more dif-
ferentiated picture. The Kappa statistics is quite low for all data sets.
The Kappa value for GHSL (0.3233) can be classified as ‘fair’ accord-
ing to the proposal of [27]: nevertheless, is the best value obtained
in the experiment with the worst being the performance of MODIS
showing a Kappa value of 0.15. Kappa, BA and Informedness clearly
show two groups of performances in the products under test. The
GHSL, GlobalLand30 and the Corine2006 layers perform very similar
with scores in Kappa, BA and Informedness greater to 0.27, 0.76,
and 0.52, in that order. In this group, GHSL is top ranking in Kappa
(0.3233), while GlobalLand30 is top ranking in both BA (0.7938) and
Informedness (0.5877). In this group of top products, only GHSL
has been produced with a highly automated procedure. The quality
drops noteworthy for GlobCover, FROM-GLC and MODIS that instead
are generated by automatic classification.

7.2.2. Test with fine-scale cartography
The reference test set consists of 1505 raster tiles with a surface of
10x10 km2 each: they are derived from available vector cartographic
sources at scale of approx. 1:10,000. Details of the test preparatory
phase are included in section 3.4. The Table 5 shows the main results
of the assessment comparing the GHSL (2014 collection) and other
available global products with fine scale cartography. The average
and standard deviation of the accuracy measures calculated per each
tile are reported. The results are almost consistent with the results
of the LUCAS test in Europe but in this case GHSL is top ranking in all
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the accuracy performances showing average TA, BA, Informedness,
and Kappa of 0.8996, 0.6718, 0.3435 and 0.3327, respectively.

Average Total Ac-
curacy

Balanced
Accuracy

Informed-
ness

Kappa ComErr OmErr

GHSL2014 0.8996 0.6718 0.3435 0.3327 0.5344 0.5414
ESA GC 2.3 0.8827 0.5368 0.0738 0.0837 0.5722 0.8701
FROM-GLC 0.8648 0.5524 0.1101 0.1054 0.6679 0.7506
GlobalLand30 0.8815 0.6495 0.2996 0.2678 0.6056 0.5627
MODIS 0.8610 0.5459 0.0919 0.0856 0.6817 0.7619
Standard
Deviation
GHSL2014 0.0964 0.1120 0.2241 0.1992 0.2215 0.3096
ESA GC 2.3 0.1278 0.0560 0.1122 0.1178 0.2302 0.2125
FROM-GLC 0.1429 0.0704 0.1424 0.1249 0.2361 0.3225
GlobalLand30 0.1146 0.1134 0.2267 0.1958 0.2026 0.3406
MODIS 0.1461 0.0688 0.1376 0.1220 0.2023 0.3185

Table 5: Performance statistics for GHSL (2014) and other datasets
compared to fine scale building footprints.

Some of the applications of the GHSL require to estimate the ab-
solute amount of built-up area per administrative units. It is thus
interesting to test the capacity of the GHSL output to predict the
real amount of built-up, being the information aggregated in spa-
tial units greater than the Landsat pixel size. Figure 11 shows the
results of a linear regression analysis between the per-tile totals of
built-up surface in the GHSL outputs (X axis) and the built-up surface
as estimated by the reference cartographic source in the same tile (Y
axes). By setting the intercept to zero, the linear equation translating
GHSL built-up surfaces to building footprints surfaces is estimated as
Y = 0.2164×X . The coefficient of determination R2 of the regression is
equal to 0.9038: therefore, the automatic GHSL output seems to be
a good estimator of the built-up surface as reported by the reference
data. Both the input data characteristics (spatial resolution) and the
information extraction methodology are factors strongly influencing
the slope or gain coefficient of the equation: they are constant in the
global processing experiment discussed here. Subsequently, accord-
ing to these results the GHSL output seems to be a good candidate
for estimation of the global built-up areas figures.
The same analysis can be performed using the sub-pixel estima-

tion of the degree of built-up µbumix for the epoch 2014 as defined
in the chapter 5.2. In this case, the linear equation translating
GHSL µbumix surfaces to building footprints surfaces is estimated as
Y = 0.2267 × X, with the coefficient of determination R2 of the re-
gression equal to 0.9143. Both the gain and the R2 parameters of
the linear regression are slightly increasing. These results show that
the GHSL µbumix model provides a better approximation of the built-
up surfaces estimated by the fine-scale building footprints sources,
as compared to the standard GHSL classification output. These are
very preliminary results: further work must be done for systematic
assessment of the parameters driving the equation 26 of the model.
Figure 12 shows the results of the analysis of the percent com-
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Figure 11: Comparison of BU per tile in the GHSL layer and in the
reference.

mission and omission errors of the GHSL built-up class, respectively,
using the building footprints as reference. The built-up percent er-
ror per tile (Y axis) is plotted together with the density of built-up
as estimated by the reference data (X axis). Both commission and
omission errors are very unstable in low-density tiles showing high
variability of results in settlement patterns with built-up density <
5%: this is due to the presence of a random constant error in the
GHSL output and the relative nature (percent respect to the total
built-up surface) of the errors rates as calculated in this assessment.
More interestingly, it can be observed that the commission error sta-
bilizes at building densities greater than 5% with an average built-up
relative commission rate of 0.34. This value is probably linked to
the same factors influencing the systematic gain coefficient observed
in the linear regression analysis previously discussed. Moreover, it
is interesting to observe that the GHSL relative omission error rates
are strongly (inversely) correlated with the density of the settlement
patterns to be detected. As a consequence, according to these pre-
liminary results the built-up surfaces associated to rural and scat-
tered low-density settlement patterns are expected to be relatively
under-represented in the GHSL output evaluated here. The capacity
to discriminate such spatially scattered information is strongly linked
to the resolution power of the input sensor: therefore, large margins
of improvement are expected to be achieved from the adoption of
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higher resolution data input for the production of the GHSL, as in a
possible next GHSL option including Sentinel data input.

Figure 12: Relative built-up commission (left) and omission (right)
error rate as a function of built-up density in the sample tile.

The GHSL results discussed here and the FROM-GLC share the
same type of data input, the same scale and the same aim of au-
tomatic control of the production procedure. As reported in [21],
the FROM-GLC experiment adopted the state-of-the-art classification
techniques in the remote sensing community including the conven-
tional maximum likelihood classifier (MLC), J4.8 decision tree classi-
fier, Random Forest (RF) classifier and support vector machine (SVM)
classifier. Thus FROM-GLC is a good candidate for a comparative
analysis assessing the effects on accuracy of the new classifier im-
plemented for the GHSL production. According to the preliminary
evidences collected in the experiment, the introduction of the new
symbolic machine learning (SML) approach and associative analysis
techniques makes a significant step forward in the accuracy of the
derived automatic products. From the Table 5, an increase of 0.0348
and 0.1194 of the mean TA and BA, respectively, are expected as con-
sequence of the adoption of the new SML techniques for the GHSL
production. Even more considerable are the estimated effects in the
Informedness and Kappa measurements that show average values
three times higher than in the case of FROM-GLC. As regarding the
built-up commission and omission error percent rates, an average
reduction of 0.1335 and 0.2092 are expected, in that order, as reper-
cussion of the adoption of the new classifier. On the overall, these
results are a confirmation of the findings collected in [43] during the
experimental design phase of the new classifier.

7.3. Cross comparison
This section is dedicated to the results of the cross-comparison tests
undertaken on three different datasets that show some similarity with

42



the GHSL Landsat in scale and thematic contents, but cannot be con-
sidered as absolute reference for validation.

7.3.1. ESM
In this test, the GHSL outputs created from the Landsat data of the
epoch 2014 are compared with the European Settlement Map (ESM)
output. The objective of the study is to understand the relations
between the two information outputs, which have differences in the
sensor, in the scale, and in the image features used as input of the
classification. In particular, a use scenario linked to policy support
indicators is taken. From this perspective, the satellite-derived in-
dicators are typically aggregated to spatial units corresponding to
administrative boundaries, that are linked to specific decision making
processes. In the test described here, the information is aggregated
in 1342 regions corresponding to the level 3 of the Nomenclature of
Territorial Units for Statistics (NUTS) defined by the European Union
statistical office (EUROSTAT)17. Figure 13 shows the linear regres-
sion between the total of built-up estimated by the spot data (X axis)
and the same information as estimated by the Landsat GHSL of the
epoch 2014 (Y axis). According to these results a strong linear cor-
relation between the two data sets can be observed. A coefficient
of determination R2 equal to 0.88 is obtained by a linear regres-
sion setting the intercept to zero. Moreover, the Landsat-made out-
puts seems to detect systematically more built-up surfaces than the
outputs made by using textural and morphological criteria on high
resolution Spot data. The gain of the linear regression equation is
estimated as 1.92 for the whole data processed. Most presumably,
this gain value is the resultant in the trade-off of two main factors
originated by the different sensor and method characteristics: i) the
decrease of the sensitivity (of Landsat vs Spot) in detection of scat-
tered built-up structures and ii) the inflation of built-up surface totals
(of Landsat vs Spot) in compact built-up areas. In the latter case,
the Spot-generated built-up information differentiates between the
buildings and roads or open spaces due to the higher sensor reso-
lution (2.5 meters). This is done thanks to the possibility to exploit
connected-component-based, morphological descriptors of the im-
age. In the 30m resolution input Landsat data this is not applicable,
and the same surfaces are aggregated to the built-up area class.

7.3.2. NYU Urbanization Project
In this subsection, the results of the cross-comparison between the
Landsat GHSL outputs and the baseline data from the Urbanization
Project of the New York University (NYU) [2] are presented. The
main objective of the test was to collect some preliminary information
about the behavior of the GHSL outputs produced by the experiment
in the epochs 1990 and 2000, where no other reference data was
available.
17http://ec.europa.eu/eurostat/web/nuts/overview
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Figure 13: Estimated built-up surfaces in the ESM (2012) and GHSL
(2014) outputs

The test reported here uses in input the Zbuβ membership to the
class built-up estimated by the GHSL workflow for each scene of each
collection (see section 4.3 for details). The GHSL built-up mask used
for calculation of the agreement with the NYU classified data is calcu-
lated with a neutral cutoff as M = Zbuβ ≥ 0. A subset of 152 Landsat
satellite scenes was selected for the test from the whole NYU data,
by application of the following conditions: i) selection of the epochs
1990 and 2000, and ii) maximum 12 months of difference between
the data collection time of the GHSL and the NYU scenes. The aim of
the test is to control the consistency between the two outputs in the
epochs 1990 and 2000 that have no other reference available in the
GHSL assessment.

Dataset type Epoch Count of ID Average Stdv

Complete
1990 79 0.943 0.04923
2000 73 0.933 0.04708

Grand Total 152 0.939 0.04830
Excluding 1990 75 0.951 0.03248
the worst 2000 67 0.943 0.03005

10 sample cases Grand Total 142 0.947 0.03153

Table 6: Agreement of GHSL and NYU by GHSL epoch (total accuracy
by scene - middle point ENDI threshold ("0" value))

Table 6 shows the agreement between the GHSL and the NYU clas-
sification outputs measured as total accuracy using the NYU data as
reference. In the assessment a per-pixel approach is taken, and the
GHSL data is reprojected in the NYU data that is maintained constant.
In the 1990 and 2000 epochs, an average agreement of 0.943 ± 0.04
and 0.933 ± 0.04 is estimated, correspondingly, producing an overall
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agreement of 0.939± 0.04. If the ten worst sample cases are excluded
from the assessment, the overall agreement increases to 0.951± 0.03
and 0.943 ± 0.03 for the 1990 and 2000 epochs, in that order. It is
worth noting that the two sources don’t share the same geocoding
(ortho-rectification) process and as a consequence no sub-pixel spa-
tial consistency can be expected. This contributes to decrease the
expected thematic agreement as measured by the per-pixel assess-
ment. According to these results the thematic agreement between
the two sources seems to be generally high, with very few exceptions
that should be analyzed case by case and are not reported here.

Figure 14: Estimated built-up surfaces in the NYU and GHSL outputs,
(left) epoch 1990, (right) epoch 2000

Figure 14 shows the results of a linear regression analysis between
the per-scene total built-up surfaces estimated by the NYU data (X
axis) and the built-up surfaces estimated by the GHSL (Y axis), for
the two epochs 1990 and 2000, respectively. A strong linear cor-
relation can be observed in both 1990 and 2000 epochs, showing a
coefficient of determination R2 equal to 0.87 and 0.92, respectively.
The 1990 epoch shows a relatively weaker correlation. The GHSL out-
puts seems to detect systematically more built-up surfaces than the
NYU baseline. The gain of the linear regression equation is estimated
as 1.58 and 1.31 for the 1990 and 2000 epochs, respectively.

7.3.3. GeoNames
A global omission rate test was done using the populated place names
as derived from the GeoNames project. The populated place dataset
has been cleaned to remove the spatially overlapping features or fea-
tures whose spatial precision was assessed as low during the data in-
gestion phase. The resulted Geonames dataset consists in more than
2.5 million populated place points. No filtering was applied based on
the population size of the settlement. Consequently all kind of set-
tlements were included. The test was done by measuring how many
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populated places points receive a not-built-up class label from the
satellite-derived assessment, and comparing it with the total num-
ber of points in the reference data base. There are no information
about the global completeness of the specific source: consequently
no commission test can be done. Nevertheless, for some applications
including population spatial modeling the omission ratio is already an
interesting quality measurement. For a total of 2, 665, 314 populated
places included in the global assessment, a total of 1, 263, 944; 133, 580,
and 187, 343 were labeled as built-up, urban or artificial surfaces by
GHLS2014, MODIS, and FROM-GLC source, in that order. This pro-
vides an estimated omission ratio of 0.52578, 0.94988, and 0.92971 of
the GHSL2014, MODIS, and FROM-GLC outputs, respectively. The
results show a clear increase of the precision in detecting populated
places using automated satellite classification processes as regard-
ing GHSL2014 in comparison with MODIS and FROM-GLC. While for
MODIS a scale and generalization issue can play a role, the FROM-
GLC data is at the same scale of the GHSL2014. On the other side,
the test shows the challenges that still need to be addressed for the
complete mapping of the whole populated places of the globe using
satellite data input. This can be an example of composite indicators
including satellite-derived information and potentially supporting the
monitoring of SDGs.

7.4. Aggregated results
In this section, some global and selected statistics are presented that
relate the built-up areas given by Landsat GHSL with some social-
economic variables (as population level and Gross Domestic Product
(GDP) per capita).

7.4.1. Global statistics
Figure 15 shows the global trends on built-up areas and population
as assessed by the experiment using Landsat data input. The black
points are derived from the GHSL assessment of the epochs 1990,
2000, and 2014. The global built-up area assessment of the epoch
1975 is considered underestimating the built-up areas as detected
in the successive epochs because of two main factors: i) a worse
sensor characteristics, and ii) the presence of large data gaps (no
data available) in the 1975 collection. According to this assumption,
only the data of the epochs 1990, 2000, and 2014 have been used
for estimating the parameters of the curve linking global population
and built-up areas: a polynomial 2-degree curve fitting was used in
the example. Given the trends learned in the 1990, 2000, and 2014
epochs, the built-up areas of 1975 have been estimated using the
global population in that year, while the built-up areas in 2050 have
been extrapolated by using the value of 9.6 billion of people projected
for 2050 by UN 18. In the Figure 15 the difference between the global
18World Population Prospects: 2015 Revision http://www.un.org/en/development/

desa/population/events/other/10/index.shtml
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built-up areas detected and estimated in the 1975 collection is noted
as sensor gap that is quantified to be the 23.78% of global built-up
surface as estimated for this epoch. The Table 7 reports about the
final assessments of population and built-up surfaces done during the
experiment. The global population figures in column (2) are derived
from the World Bank (WB) source. Column (3) shows the total of
built-up surface accounted by the Landsat data processing. Column
(4) displays the built-up surface as estimated by the polynomial curve
fitting on the epochs 1990, 2000, and 2014. Column (5) reports
about the average built-up surface per capita as estimated in the four
epochs. The surfaces reported in the columns (3,4,5) are expressed
at Landsat scale. The columns (6) and (7) report about the global
built-up surfaces and built-up per capita expressed at the scale of
building footprints with a generalization of 1 : 10, 000. These numbers
have been calculated by application of the corrector coefficient equal
to 0.2164 to the Landsat surfaces, as estimated by the regression
analysis reported in the section 7.2.2.

Year WB Popu-
lation [per-
sons]

GHSL Land-
sat BU [m2]

estimated
Landsat BU
[m2]

estimated
Landsat
BU [m2
per per-
son]

estimated
C10K BU
[m2]

estimated
C10K BU
[m2 per
person]

1975 4.03946E+09 3.08779E+11 4.05165E+11 100.30 8.76777E+10 21.71
1990 5.25428E+09 5.32197E+11 5.32197E+11 101.29 1.15167E+11 21.92
2000 6.07504E+09 6.29508E+11 6.29508E+11 103.62 1.36225E+11 22.42
2014 7.09653E+09 7.74530E+11 7.74530E+11 109.14 1.67608E+11 23.62
2050 9.60000E+09 1.29988E+12 135.40 2.81293E+11 29.30

Table 7: Global assessments of population and built-up surfaces

7.4.2. Selected Statistics
Figure 16 shows different development patterns of some top GDP
ranking countries as they can be observed by the data extracted dur-
ing the experiment. On the horizontal axis, there are the population
counts for the years 1990, 2000, and 2014 (source: WB). Corre-
spondingly, in the vertical axis there is the estimated Landsat built-up
surface per capita as estimated by the experiment. Vertical patterns
are originated by built-up area expansion without comparable popu-
lation growth: it can be associated to mature economies. According
to these empirical results this is the pattern of France, Germany, Italy,
Japan, and Russia. UK is a particular case of this cluster showing an
almost stable behavior in both built-up area per capita and popula-
tion. A completely different development pattern can be noticed in
another cluster including Brazil, India, and China. In these cases a
dominant horizontal or slightly positive sloped behavior can be ob-
served. It can be associated to recent dynamical economies, with
significant population growth rates and increasing average housing
standards expanding the built-up surface per capita. US is stand-
ing apart in the top left of the picture, showing the highest built-up
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Figure 15: General trends on global built-up areas as measured dur-
ing the experiment

surface per capita associated to significant population growing rates
conditions.
Figure 17 shows an example of possible integration between social-

economical variables and satellite-derived measurements. The coun-
tries with population greater than 30 millions of inhabitant have been
selected in the example. On the vertical axis and the horizontal axis,
correspondingly, the GDP per capita (source: WB 2013), and the
built-up area per capita (as derived from GHSL epoch 2014) are rep-
resented. A clear correlation between the two measures can be ob-
served, with interesting deviations. For example, Ukraine and South
Africa display as outliers showing much higher built-up surface per
capita than what could be expected by their GDP. In Ukraine, the ex-
planatory factors can be related to large emigration rates producing
abandoned built-up structures, and consequently increasing anoma-
lously the average built-up surface per capita. In South Africa, the
anomaly in the model can be interpreted as the impact of governmen-
tal social settlement programs dedicated to low-income population
and increasing the average housing standards.
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Figure 16: Patterns of development trends in the top 10 Countries as
GDP (WB 2013). In the horizontal axis the population counts, while
vertical axis the Landsat built-up surface per capita. Years 1990,2000
and 2014 are assessed from the corresponding GHSL 30m resolution
data collections
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Figure 17: Relation between GDP per capita (X axis) and Landsat
built-up surface per capita (Y axis). The GDP source is WB 2013.
The built-up surface per capita 2014 was assessed from the GHSL
30-m-res data collection and population data from the WB source
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8. Conclusions

A new global human settlement map was extracted from Landsat
satellite data and is referred to as Global Human Settlement Layer
(GHSL). The Landsat GHSL is the most spatially global detailed data
available today dedicated to human settlements, and it shows the
greatest temporal depth. More generally, the GHSL includes several
innovative features shortly listed below: i) it largely relies on a new
classification method based on symbolic machine learning, ii) it is the
first known attempt to classify global MSS data for any use, and iii) it
is the first known attempt to derive global settlement volume using
digital elevation model data.
The first assessments of the results seem to be encouraging and

showing an improvement in terms of spatial detail and thematic con-
tents, respect to the open and free information available today at
global level. Some examples of use of the new information as base-
line for the design of new development indicators are provided show-
ing a promising new area of application of remote sensing data anal-
ysis. Only the GHSL core information about the built-up class was
quantitatively assessed in the experimental setup presented here.
The accuracy of the GHSL in detection of built-up areas derived from
building footprints at scale 1:10.000 was always best ranking respect
to available global alternatives made by automatic satellite data clas-
sification approaches. Cross comparison with the historical spatial
information (epochs 1990, 2000) produced in an extensive stratified
sample of global cities showed high degree of agreement with the
automatic GHSL multi-multitemporal output. The core methodology
for image information extraction developed in the experiment is de-
signed to be scalable to massive data scenarios requiring distributed
parallel processing infrastructures. The design of the core classifica-
tion method is pixel-based and is well compatible with the multi-scale
image data cubes as proposed by some advanced satellite data pro-
cessing dedicated infrastructures.
According to the results collected here, a substantially positive

answer can be provided to the first two basic questions reported in
the Introduction and placed in the background of the experiment:
i) the possibility to increase the detail of the available global infor-
mation layers describing human settlements and using open satellite
data input and ii) the possibility to improve the automatic control (re-
peatability, cost sustainability) of the information production process.
Nevertheless, the information products described in this manuscript

remain mostly experimental. From an operational use perspective,
some main challenges must be addressed. The main ones are listed
below:

1. The insufficient availability of global test sets with the right scale,
temporal attribute and reliability of the thematic information,
that can be suitable for a statistically correct validation and as
support for the improvement of the product;

2. The insufficient availability of global multi-sensor comparative
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studies focused on human settlement and allowing to under-
stand the systemic inter-sensor bias and gain functions linking
the information results obtained from different input imagery.

3. The insufficient availability of image data in the 1975 collection
processed in the experiment (data gaps, stability of results),
despite the strategic importance of the information of the epoch
1975 for understanding global trends;

4. The unavailability of global digital elevation models having a
temporal dimension, thus allowing the measurement of volu-
metric changes in the cities at the scale tested in the experi-
ment.

These critical points will design the road map of the priority areas
for improvement of the GHSL information with the help of the remote
sensing community.
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