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Abstract

In this study we address the problem of leveraging mobile phone network-based data for the task of estimating
population density distribution at pan-European level. The primary goal is to develop a methodological framework
for the collection and processing of network-based data that can be plausibly applied across multiple Mobile
Network Operators (MNOs). The proposed method exploits more extensive network topology information than is
considered in most state-of-the-art literature, i.e., (approximate) knowledge of cell coverage areas is assumed
instead of merely cell tower locations. A distinguishing feature of the proposed methodology is the capability of
taking as input a combination of cell-level and Location Area-level data, thus enabling the integration of data from
Call Detail Records (CDR) with other network-based data sources, e.g., Visitor Location Register (VLR). Different
scenarios are considered in terms of input data availability at individual MNOs (CDR only, VLR only, combinations
of CDR and VLR) and for multi-MNO data fusion, and the relevant tradeoff dimensions are discussed. At the core
of the proposed method lies a novel formulation of the population distribution estimation as a Maximum Likelihood
estimation problem. The proposed estimation method is validated for consistency with artificially- generated data
in a simplified simulation scenario. Final considerations are provided as input for a future pilot study validating the
proposed methodology on real-world data.
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Executive Summary

The vast majority of people nowadays carries (at least) a mobile phone, and every mobile phone
is logically “attached” to the network infrastructure of a Mobile Network Operator (MNO). The
MNO infrastructure is composed of multiple radio “cells” of different size — ranging from tens of
meters up to several kilometers — and at any time the phone is logically “camped” to one cell.
Upon certain events — e.g., when initiating or receiving a phone call or SMS — the mobile phone
reveals its current cell location to the network, and the latter stores this information (permanently)
in the so-called Call Detail Record (CDR) database for billing purposes. Moreover, radio cells
are hierarchically organised into larger spatial entities called Location Areas (LAs): whenever the
phone moves from one LA to another, it informs the network, and the latter stores this informa-
tion (temporarily) in the so-called Visitor Location Register (VLR) as a routine network operation.
Therefore, both types of network-based data, CDR and VLR, embed information about the loca-
tion of every mobile phone at the level of radio cells and/or LAs. Several research work in the last
decade has shown that, in principle, it is possible to leverage network-based data from MNO to
infer human mobility patterns (e.g., periodic commutes, favorite locations, average speed). The
majority of this work has focused exclusively on CDR data, and was based on sample dataset
from a single MNO.

In this study we address the problem of leveraging network-based data (CDR and/or VLR) for
the task of estimating population density distribution at pan-European level. The primary goal
of the study was to develop a methodological framework for the collection and processing of
network-based data that can be plausibly applied across multiple MNOs. The main challenge
of this task is to design a methodology that achieves general applicability in a highly heteroge-
nous scenario, where several technical details of network configuration and data organisation
remain highly MNO-specific. To this aim, we pursue the design of an “resilient” methodological
framework, whereas the core set of functions does not rely on any non-standard MNO-specific
configuration — hence, it can be implemented by any MNO — and, at the same time, it is flexible
enough to optionally leverage additional MNO-specific network and/or data characteristics so as
to improve the fidelity of the final results to the “ground truth”. Owing to such flexibility, the pro-
posed methodology lends itself to be extended and further refined, by taking advantage of the
future evolutions of mobile network infrastructures (e.g., availability of additional data sources).

The main outcome of this study is a proposal for a systematic methodological framework for pop-
ulation density estimation based on mobile network data. In our intention, this shall represent an
initial reference for future discussion with and between experts from MNOs and public institutions,
with the goal of ultimately consolidating a realistic implementation plan. Along the process, it is
likely that the methodology proposed in this document will undergo extensions and refinements,
and in general shall benefit from technical inputs from MNO expert.



The methodology developed in this study yields several important novelties with respect to the
current state-of-the-art work in this field. In particular, we highlight the following:

e Use of extended network topology data: the proposed methodology takes in input (an ap-
proximation of) the whole coverage area of the generic radio cell, not only the antenna
tower location. Based on such data, a novel tessellation scheme is proposed that yields
more accurate results than the the classic Voronoi tessellation method.

e Beyond CDR-only data: the proposed method can be casted in different implementation
scenarios with different combinations of cell-level and LA-level location data, from both
CDR and/or VLR databases (or other proprietary systems). In this way, it supports the
CDR-only scenario — that is likely the preferred option by most MNOs — but at the same
time enables (and motivates) initial experimentation with combined CDR/VLR data fusion.

e Multi-MNO: the proposed method is designed upfront for application across different MNOs,
and for the fusion of data from multiple MNOs serving the same spatial region (e.g., same
country).

In order to facilitate the reading for non-technical experts, the present report contains an initial
introductory section about mobile networks. In this sense, the report is self-contained and does
not require frequent reference to external specialised technical sources. The proposed estima-
tion method is validated for consistency with artificially generated data in a simplified simulation
scenario. A set of final considerations are provided as input for the process of preparing a future
inter-MNO pilot study for the proof-of-concept validation on real-world data.
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Foreword

There is an increasing recognition that good policy should be grounded on solid scientific ev-
idence that is traceable, open, and participated. This is the rationale of the many open data
initiatives across the world, including the open government partnership' launched in 2011 to pro-
mote more open and accountable governance, and the Research Data Alliance? supporting open
research data. The European Union is at the forefront of these initiatives and INSPIRE? is the
legal framework adopted in 2007 to make existing environmental and spatial data more visible,
interoperable, and shared among public authorities to support environmental policy and policies
that affect the environment.

The Joint Research Centre (JRC) of the European Commission, as overall technical coordinator
of INSPIRE, is supporting the European Member States in the implementation of this key policy.
It is also assessing the interoperability between INSPIRE and the increased heterogeneity of data
sources that can support public policy, such as data from space, commercial transactions, sensor
networks, the Internet, and the public, including social media. The Big Data revolution is creating
many opportunities but also posing new challenges to public authorities, including issues of data
access, analytical methodologies, ethics and trust. The increasing shift in knowledge about so-
ciety from the public to the private sector requires new partnerships to ensure that sound policy
is still based on relevant and timely data. For example, many environmental and social policies
need to have a good understanding about population distribution to prepare strategies and as-
sess impacts. Natural disasters, like floods and earthquakes, are obvious cases but urban and
regional planning, environmental impact assessment, and the effects of environmental exposure
on health are equally important areas where using census and administrative data about the res-
ident population at night may considerably misrepresent reality at different times of day and night.
In this respect, one potential source of much more timely and accurate data about the population
distribution could come from mobile network operators, and the scientific literature shows many
cases in which this data was successfully exploited. Several European National Statistical Insti-
tutes are exploring this data source to complement their own data but access to data is often
difficult and only successful on the basis of individual ad-hoc arrangements. This is potentially
creating inequalities in the knowledge base on which to develop and assess European policy.

To address this challenge and support the activities of the European Statistical System Big Data
Task Force, the JRC commissioned this study to the Austrian Institute of Technology on a general
methodology enabling mobile network operator to process and integrate different types of network
data in their possess (e.g., anonymised Call Detail Records, Visitor Location Register data) with

"http://www.opengovpartnership.org/
2https://rd-alliance.org/
3http://inspire.ec.europa.eu/index.cfm
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the aim of estimating population density, for public policy purposes. The methodology described
in this report has been designed to be flexible and scalable, mindful of commercial sensitivity, as
well as the need to protect personal privacy and confidentiality. The proposed methodology has
been tested with a sample of synthetic data and, the next steps following publication of the report
and gathering of feedback from interested parties, will be to test it with partner mobile network
operators. In this way feasibility and costs can be properly assessed and become the basis for a
dialogue with all willing operators in Europe with a view to define a common framework for data
access and use to support public policy.
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Chapter 1

Essentials of mobile phone networks
and network-based data

1.1 Mobile Communication Technologies

A mobile cellular network is a large-scale communication network that provides wireless con-
nectivity over a large area in which Mobile Stations (MS), e.g., mobile phones, are deployed. It
consists of multiple Public Land Mobile Networks (PLMN), each one spanning a country’s territory
and typically being operated by a single Mobile Network Operator (MNO). Hereafter we will use
the term “MNQO” to refer both to the technical/administrative entity (the “network operator”) and to
the associated infrastructure (the operated network, i.e., the PLMN).

For the past 30 years, mobile communication technology has been progressively evolving, under
different international standards which have not always been compatible across different coun-
tries. While the first generation of cellular networks was developed in the 80s within national
systems (notably in Japan and the USA) with consequent cross-country compatibility issues, mo-
bile communications became a worldwide mass market during the 90s with the Global System for
Mobile Communications (GSM) system developed by the European Telecommunications Stan-
dards Institute (ETSI). GSM networks represent the“second generation” (2G) of cellular systems,
and were designed for the transition from analog to digital transmission, which ultimately enabled
voice and data traffic coexistence (e.g., Short Message Services (SMS)). In a successive evo-
lution and in light of the rise of data traffic demand, it was later upgraded (with the introduction
of GPRS and EDGE) to enhance packet-switched data communication. The universality of the
technology standards is, therefore, a relatively recent achievement, pioneered at European level
with the Global System for Mobile Communications (GSM) and followed by worldwide standard
Universal Mobile Telecommunications System (UMTS). UMTS - the “third-generation” (3G) of
mobile communication systems — was launched in 2004 for supporting Internet multimedia ser-
vices (e.g., web browsing, video streaming). Similarly to GSM, UMTS was later upgraded to
higher quality of service standards with the introduction of High Speed Packet Access (HSPA),
and UMTS penetration and coverage are now pretty advanced throughout Europe. The “fourth-
generation” (4G) system, called LTE (Long Term Evolution), has been rolled out in Europe in
2011 and it promises to meet the requirements of upcoming communication network concepts,
including the Internet-of-things (loT), smart cities, smart grid, and vehicular networks.
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Figure 1.1: High-level view of a combined 2G/3G network.

The methodology proposed in this document is based on GSM and UMTS standards and network
architecture, although, with opportune modifications, it can be adapted to other mobile commu-
nication standards, such as LTE. Hence, throughout the document, we will purposefully omit
technical details (e.g. additional components of the network architecture), under the assumption
that the method developed here can also be adapted to 4G network architectures.

Hereafter we will use the term “2G” to refer to the "GSM” access and “3G” for UMTS/HSPA access.
Most operators maintain both a 2G and 3G network infrastructure, and therefore we will refer to a
single “2G/3G” infrastructure, like the one depicted in Fig. 1.1.

1.2 Mobile Network Architecture

The network architecture is composed of two main parts: the Radio Access Network (RAN) and
the Core Network (CN). The RAN includes all the “peripheral” components, i.e. the base stations
! that transmit / receive on the radio link from / to the MSs, and their respective controllers —
called Base Station Controller (BSC) in GSM and Radio Network Controller (RNC) in UMTS. The
CN includes “back-end” equipments, whose physical location is normally concentrated at a few
sites.

It should be noted that there are actually two distinct CNs domains: the Circuit-Switched (CS),
mainly for voice calls, and the Packet-Switched (PS) for data calls. The resulting high-level archi-
tecture is sketched in Fig. 1.1. The network element that connect the CN to the RAN is the Mobile
Switching Center (MSC) in the CS domain, and the SGSN in the PS domain. At any given time,
a generic MS can be logically “attached” to the CS domain, to the PS domain, or both. Since our
primary focus is on 2G/3G MSs that support voice services (as this are more likely associated
to persons, as discussed later in Section 1.6) hereafter we will restrict our attention to the CS
domain, unless differently specified?.

"The term “base station” is used hereafter to refer to jointly to the Base Transceiver Station (BTS) in GSM and to
the Node-B in UMTS.

2The distinction between CS and PS domains is slowly vanishing, with the progressive introduction of integrated
MSC/SGSN equipments. However, for the purpose of this study it is useful to keep in mind the logical separation
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In modern networks, 2G and 3G systems coexist over the same infrastructure, as they operate
on different portions of the frequency spectrum, i.e., different bands. Every MNO is assigned
a different sub-band (or set thereof) for each system. Therefore, a generic point in space is
generally serviced by different radio access technologies (2G and 3G) and by multiple MNOs.
However, each MS can be “attached” only to one MNO and one access technology at any given
time®.

1.3 Cells

We now introduce the notion of “radio cell”, or simply “cell”. In cellular networks, geographical
radio coverage is provided by a multitude of base stations distributed across the serviced area.
Each base station services one “cell’*. Each base station services a limited portion of space,
called “cell coverage area”, or simply a “cell”. In turn, only MS terminals within a cell can connect
to the associated base station.

The transmissions from each base station are optimised according to a set of modulation param-
eters (e.g., carrier frequency in 2G, spreading code in 3G, antenna settings, transmit power) that
ultimately affect the shape of the cell. Also, in order to avoid interference, each cell operates on a
preassigned frequency band, which is different from that of the adjacent cells. Such a frequency
band allocation pattern, which is regularly repeated all over the network, can be described as a
chromatic range. Therefore, adjacent cells within a cluster can be denoted with different“colours”,
indicating the operating frequency band. Finally, every point in space may be “covered” by multiple
cells of different colours.

Moreover, due to the different transmission settings, cells may have different shapes and sizes.
The largest cells are found in 2G, with diameter in the order of a few tens of kilometers. In urban
and suburban areas, cells areas tend to cover distances between hundreds of meters (micro-
cells) and a few kilometers. Smaller cells (pico-cell and femto-cells) can be deployed at specific
high-density points, both outdoor and indoor, such as in shopping malls, train stations, airports.
Generally speaking, within each technology (2G, 3G and 4G) the cell density determines the local
network capacity, i.e., the maximum amount of data traffic that a radio network can deliver. The
latter depends on the spatial density of people, and on the intensity of their individual traffic (e.g.,
frequency and duration of phone calls and data connections). For this reason, areas with high
population density (urban areas, especially business districts) will be typically covered by many
small cells (possibly in addition to few large “umbrella cells”) while sparsely populated areas (e.g.,
countryside, forests) will be covered by few large macro-cells (see Fig. 1.2). Hence, in such a
scenario, the spatial granularity of cellular coverage varies from tens of meters (in hot-spots) to
hundreds of meters (in urban areas) up to tens of kilometers® (in the countryside), depending
primarily on the density of people, and secondarily on their traffic intensity. Since density and
intensity are time-varying — following the typical daily and weekly cycles of human activity — the

between CS and PS domains.

3The MS refers to the combination of one Subscriber Identity Module (SIM) and one Mobile Equipment (ME). A
mobile phone with dual-sim is therefore considered as two distinct MSs.

“Sometimes the term “sector” is used to refer to an individual cell, especially in GSM jargon. Throughout this paper,
we use the terms sector and cell interchangeably. Also, for the sake of a simplified terminology, a single 3-sector BTS
will be considered as a bundle of 3 co-located base stations.

*The maximum distance between the base station and a generic MS attached to it is 35 km.
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Figure 1.2: Example of multi-layer cell coverage, with increasing cell sizes (and decreasing cell
density) from inner towards outer city areas.

network coverage tends to be designed based on their peak values.

Due to the heterogeneous factors discussed above, real cellular networks do not exhibit a regular
pattern, hence cell coverage areas can be estimated only approximately. However, for the pur-
poses of this work, it is sufficient to assume that every MNO knows, at least approximately, the
expected coverage area for each cell. This information, for example, can be obtained from field
measurements and/or from simulations conducted as part of the radio planning and optimization
processes. In the worst case, a coarse estimation of the cell coverage area can be derived from
antenna configuration parameters (e.g., antenna height, beam-width, tilt).

Every cell has an associated unique identifier, the Cell Global Identification (CGl), that is broad-
cast by the base station in the whole cell area. As shown in Fig. 1.3, the CGl has a prefix structure
that allows the MS to immediately identify the country, the MNO and the Location Area (introduced
below) to which the cell belongs.

The cell area, as defined insofar, should be distinguished from the position of the antenna tower.
The tower position can be either outside or inside the cell coverage area, as depicted in Fig. 1.4
for cells A and C . Notably, more base stations can share the same tower, meaning that cells with
different areas (possibly but not necessarily overlapping) might be associated to the same tower
position, as seen in Fig. 1.4 for cells A and B.

Upon occurrence of certain events (e.g., starting a phone call), the network learns the cell-level
location of a generic MS, and stores the corresponding cell identifier — namely, the CGl— in some
internal database, as discussed below in §1.5. In other words, cell-level locations are encoded in
the form of CGl values.

1.4 Location Areas (LAs)

Neighboring cells from the same MNO are logically grouped into so-called Location Areas (LA).
Every LA is identified by a unique Location Area Code (LAC) that, together with the MNO identifier,
forms the Location Area Identity (LAI) as sketched in Fig. 1.3. The grouping of cells into LAs is
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[mcc | [ Mnc || LAC
L J
|
LAI
LAI | | cl
L J
1
cal
LAI || Rrac
L J
1
RAI

MCC = Mobile Country Code (3 decimal digits) « LAI = Location Area Identity
MNC = Mobile Network Code (2-3 decimal digits} CGI = Cell Global Identifier
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Figure 1.3: Structure of unique identifiers for Location/Routing Areas and Cells.
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Figure 1.5: Hierarchical relation between LA, RA and individual cells.

decided by the MNO and is completely independent from the “colour” of each cells. The union of
all cell areas belonging to the same LA (equivalently: sharing the same LAC prefix) defines the
geographical “footprint” of the LA, i.e., the LA-level location. In practice, the cell-to-LA assignment
is accomplished implicitly when configuring the CGl: all cells belonging to the same LA (and only
those) are assigned CGl with the same common LAC prefix. Thanks to this prefix structure,
a moving MS can easily recognise whether a cell change involved a LA changes, by simply
comparing the LAC prefix of the new and old cells. When moving to a new LA, the MS must report
this event to the network that stores the new LAl in an internal database (the VLR, introduced
below). In other words, the LA-level locations are encoded in the form of LAl values.

The notion of LA was introduced in 2G. With the deployment of 3G cellular systems, the addi-
tional notion of “Routing Area” (RA) has been introduced. Accordingly, in the PS domain, every
LA may be further divided into smaller sub-groups (up to 8) called “Routing Areas” (RA)®. The
hierarchical relation between a cell, the outer LA and the (intermediate) RA is depicted in Fig.
1.5. Furthermore, the new term “Tracking Area” (TA) has been introduced in 4G. To keep the dis-
cussion simple, we will refer hereafter only to LAs, with the understanding that the more spatially
accurate RA (or TA) information could be used instead of LA whenever available.

The typical geographical size of LAs varies across MNOs and between urban and rural areas. Our
analysis of data samples from the OpenCel1ID database [2] reveals that the median LA radius is
around 10 km in big cities, while non suburban and rural areas the median LA diameter is found
in the order of 20-25 km, with values up to 40 km (see Appendix B).

For a thorough understanding of the role of LAs, we need to introduce (a simplified view of) MS
states. In a nutshell, every MS can be found at any given time in one of two different states: active

® Some operators maintain a 1:1 mapping between RAs and LAs, and the two terms can be used interchangeably.
If instead LA are split into smaller RAs, some MSs will be tracked at LA level while others at the (finer) RA level,
depending on whether MSs are “attached” or not to the PS domain. It should be noted that, for MSs that are attached
to both PS and CS, the RA information could be included (optionally) in the CS VLR associated to the MSC, in addition
to the mandatory LA information, due to direct communication between the SGSN and MSC.
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or idle. The MS spend most of its time in the “idle” state. It switch to “active” during voice calls
and when engaged in the exchange of data packets with the network”. It switches to active state
also when exchanging signalling messages, without any trigger by the data or voice applications.
It is important to remark that, at any given time, only a small minority of all MSs are found in active
state, the vast majority being in “idle” mode [13].

There are fundamental differences in the “behaviour” of MS during idle and active states, that
translate into different levels of temporal and spatial accuracy when it comes to estimate their
location from network-side data, as explained below.

e MS in idle state. The MS is logically “attached” to one network® but is not assigned any
radio resource. The MS “listens” (the broadcast channel of) one cell, but does not transmit.
In idle states, decisions are taken autonomously by the MT: which cell to listen, and whether
and when to “jump” towards another cell (cell change), is determined autonomously by the
MS internal logic, not by the network. The MS decision logic depends on the device vendor
and is takes into account local measurements as well as past history.

By definition, MS in idle mode are passive receivers (i.e., they are not transmitting) therefore
the network has no way of detecting a cell change unless the MS decides to report this event
explicitly. The MS reports the cell change only when it enters a new LAs, while cell changes
inside the same LAs are not reported. In this way, the network can track the position of idle
MSs only at the LA level, not at the cell level.

e MS in active state. The MS is assigned radio resources and is engaged in traffic exchange
(voice, data or signalling) to and from the network. In active state, all decisions involving
radio resources are taken by network: this includes the determination of channel and cell,
as well as whether and when to “jump” (handover) to another channel or cell. In this way,
the network tracks the position of active MSs at the cell level.

From the above discussion, it should be clear that the network can “observe” the cell-level location
of each MS only at some specific times, and with a finite spatial resolution. In other words, given
the “real” trajectory of a generic MS, continuous in time and space, the cellular network acts like
a sensor that applies some form of sampling in time and quantisation in space.

1.5 Network-side data

There are several elements and subsystems within the network that maintain information about
the MS. Hereafter, we will discuss the ones more relevant for our study.

"Having a “data connection” (i.e., a PDP-context in 3G terminology) open does not imply that the MS is in “active”
state. In fact, the MS can maintain the connection (logically) open for a long time without (physical) sending or receiving
data packets, in which case it would be persist in idle state. Generally speaking, the transition from “active” to “idle” is
triggered by a short timeout (typically between 2 and 5 seconds) that is reset upon transmission or reception of new
data packets).

8Preferably their home MNO, if available, otherwise it will be “roaming” to another MNO
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1.5.1 Billing data: Call Detail Records (CDR)

For each voice and data connection (or part of it) the network elements generate “tickets” that
are sent to the billing system for charging purposes. The billing system stores these data in large
databases, normally in the MNO warehouse. The term “Call Detail Records”, and especially its
acronym “CDR™, is commonly used nowadays to indicate generically all billing records, including
those originated from data connections.

The format of CDR is not standardised [3, 15] and there is a great deal of variability across
different implementations regarding the type of data contained in every CDR, as well as other
details of the CDR generation process (e.g., whether long calls are chunked into multiple CDRs).
It is safe to assume that mobile CDR data contain at least the following information:

e International Mobile Subscriber Identifier (IMSI) (possibly encrypted).
e Starting time and duration of the call or connection.
e Type of call or connection (e.g. voice, SMS, data).

o Cell Global Identifier (CGI) of the starting cell, where the call or connection was initiated'©.

Additional data might be optionally available for specific CDR implementations. For example, in
case of handovers, CDR might include the identifiers of the subsequent visited cells, after the
starting cell. This is particularly relevant for long-lasting connections (e.g. always-on data con-
nections for mobile phones). Other additional data include the IMEI, APN (for data connections)
etc.

Historically, the CDR data were the first data source used in mobile phone data research, and still
the overwhelming majority of studies and research project rely exclusively on CDR (see e.g. the
recent survey [14].) This is mainly due to the fact that extracting CDR data for off-line processing
is technically simple, given the non-volatile nature of such data, as discussed below.

1.5.2 Visitor Location Register (VLR)

The Visitor Location Register (VLR) and the Home Location Register (HLR) are database for sub-
scriber data. The HLR stores the “permanent” subscriber parameter that are logically associated
to the Subscriber Identity Module (SIM), like e.g. the IMSI. The HLR is a central module serving
the whole MNO network, but is not very relevant for this study.

Basic VLR data

Logically speaking, each Mobile Switching Center (MSC) has its own associated VLR. The VLR
contains the “temporary” subscriber data for the MS currently “visiting” this MSC area. The most
relevant VLR data for this study are the following mandatory fields:

9The terms “Call Data Records” and “Charging Data Records” are occasionally found in the literature in association
to their common acronym “CDR”".

Ogtrictly speaking, this is not a mandatory field [3] but we expect that most if not all MNOs actually include this
information in their CDR.
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e Location Area Identity (LAI)
e Temporary IMSI (T-IMSI).

These data, and especially the LAI, are used by the basic VLR-based method described later in
§3.3.2. In addition to the mandatory fields above, some proprietary VLR implementations support
the option of storing additional details, e.g., the time and CGl of the last message received by the
MS. In case that such optional data are available, they can be used to considerably improve the
spatial accuracy of the VLR method, as discussed later in §3.3.5.

Besides the MSCs, every Serving GPRS Support Node (SGSN) has also an associated VLR.
The main difference between the VLR of circuit switching (CS) domain (traditionally associated
to voice traffic, at the mobile switching center (MSC)) and those of the packed switching (PS)
domain (associated to data traffic at SGSN) is that the latter contain the Routing Area Identity
(RAI) field instead of the LAI. A generic MS that is attached to both the CS and PS domains will
logically appear in two VLR, one for CS and one for PS. However, the distinction between CS VLR
and PS VLR might not be important in practice, since the MSC and its neighbouring SGSN might
share a single combined VLR — especially if the MSC and SGSN are themselves combined in a
single physical equipment. However, since our focus is on voice-enabled MSs, hereafter we will
refer exclusively to the VLR serving the CS domain — or both CS and PS, in case of combined
VLR.

The set of all VLR pertaining to all MSC in the MNO network collectively form a distributed
database. Therefore, hereafter we will use the singular term “VLR” to refer to the entire set of
VLR data across all MSCs.

Augmented VLR data

The standard Mobility Management procedures for 2G and 3G systems foresee the involvement
of the MSC and/or SGSN whenever the MS engages in a new data connection, voice call or
SMS and in general whenever the MS interacts with the network. During the message exchange
between the MS and the MSC/SGSN the latter learns the current MS cell location. Although it
is not mandatory for the VLR to record the cell nor the timestamp associated to such message
exchange, it is reasonable to expect that certain MNOs might decide to configure their VLR to
retain these (optional) data in addition to the mandatory LAI/T-IMSI fields'".

In this case, the VLR data is enriched with the identifier of the last “observed” cell within the
current LA along with the associated timestamp, for every generic MS. Such “augmented” VLR
would therefore merge together the two types of data that we have previously encountered, sep-
arately, in the basic VLR-only and CDR-only methods: cell-level and LA-level locations. Further-
more, augmented VLR data could provide cell-level location also for MS that did not engage in
SMS/voice/data connections, provided that they performed some kind of signalling procedure,
e.g. Location Area Update (LAU). In other words, they bear the potential to “observe” the cell-
level location of a larger fraction of MS than what is possible with CDR data. The estimation
method described later in Chapter 3 is designed to cope with the data heterogeneity deriving
from a combination of cell-level and LA-level records.

"In fact, the marginal cost of storing this information in the VLR is in general small, and augmented VLR data can
be exploited to implement supplementary (non standard) functions and/or certain forms of MNO-specific optimisations.
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Figure 1.6: Schematic representation of observed trajectory for different network-based data.
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1.5.3 Other systems

For the sake of completeness we mention below additional systems that contain network-side
data but are not in the focus of this study.

e Customer Database. Every MNO maintains a data warehouse with private customer data.
These are necessary e.g. for administrative, accounting and contractual purposes. The
customer database is not to be confused with the HLR: the latter contains data associated
to the SIM (e.g., IMSI) while the former contains information directly referred to the individual
persons (identities, residential address, bank account coordinates, etc.).

e Lawful Interception. Every MNO is obliged to maintain a lawful interception system and
store certain data about the position and activity of its customers, to be made available to
law enforcement staff upon order by a judge. We assume that it is not possible to use such
systems, and the data therein, for any other purpose than legal interception and without
judge order, therefore we leave this system out of consideration.

e Location-Based Servers (LBS). Some operators deploy in their network commercial so-
lutions to deliver so-called Location-based Services to part of their customers. These sys-
tems often involve one or more LBS servers connected to the network elements. These
solutions are based on proprietary vendor technology, and their capabilities (in terms of
share of population coverage and spatial accuracy) are highly dependent on the specific
network configuration.

e Passive Monitoring systems. Some operators implement additional passive monitoring
system in support of network operation and troubleshooting (e.g. [9, 10]). These systems
observe the whole signalling and traffic exchange between the network and the MSs and
can be used to infer the location of every MS with the highest possible spatial and temporal
accuracy allowed by network-based data [13]. As these systems are proprietary and not
available at all operators, they are left out of the focus of this study. Note that however that
the location data obtained from such systems are conceptually similar to the “augmented
VLR” data discussed earlier in §1.5.2, i.e., a combination of cell-level and LA-level data,
therefore the methodology presented in Chapter 3 can be naturally applied to data obtained
with such systems, if available.

1.6 Mobile Stations # Persons

Strictly speaking, the cellular network “observes” MSs, not people, and the association between
individual persons and MS is not always 1:1 (ref. Fig. 1.7). This represents a source of error
when leveraging the mobile network to estimate density of “people”. More in detail, the following
cases are possible:

e 1:1 — the ideal case (for the purpose of this study) is a single person carrying a single
mobile device.

e 1:many — Individuals that carry multiple devices: it is becoming more and more popular
to carry more than one phone (e.g., one for private communications and another for work)
and other mobile devices like, e.g., tablets and laptop with 2G/3G/4G radio interface.
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e 1:0 — some persons do not carry any mobile phone.

e 0:1 — MS that are not associated to any person: these MS are associated to “things”, not
individual persons, and use the mobile network for machine-to-machine (M2M) communi-
cations.

The 1:many and 0:1 cases introduce positive errors (overcounting), while 1:0 introduces negative
error (undercounting). We expect that the frequency of 1:many and 1:0 cases varies across de-
mographic groups, i.e., that correlations exist between the number of personal devices and certain
demographic attributes (age and profession above all). For this reason, 1:0 and 1:many cases
are likely to introduce a bias, with certain age/professional groups under- or over-represented.

In order to mitigate (yet, not completely eliminate) the over-counting errors “0:1” and “1:many”, a
possible approach is to restrict the analysis to data from the CS domain. This will automatically
exclude those data-only devices that are designed to attach only to the PS domain. For VLR data,
this implies restricting to MSC data, and to exclude SGSN data.

Besides this initial filtering, it is possible to further mitigate the over-counting error by adopting
more sophisticated (i.e., implicit or explicit) filtering strategies. For instance, one approach is to
identify and filter out MSs that are not enabled for voice calls. This can be done by accounting
for the Type Allocation Code (TAC) code included in the International Mobile Station Equipment
Identity (IMEI) — if available in the CDR/VLR, or by integration with other data sources— from the
APN, or heuristically by simply picking MS that never engaged in a voice call during a reasonably
long observation period (e.g. over 24 hours). All the above methods tend to rely on data fields
that are optional and/or additional data sources, and their cost of implementation and effective-
ness are highly dependent on the particular network setting. In other words, it is not possible
to define a single mitigation approach that fits for all MNQOs, but this heterogeneity should not
discourage a MNO to put in place additional processing function, based on MNO-specific config-
uration, aimed at removing or anyway reducing some of the known sources of error (e.g. filtering
of M2M terminals).

Person Mobile Terminal Mobile Network
(MT) Operator (MNO)

s 0

lmanyw /5—’0
~i~e

1:0 w
& @

Figure 1.7: Possible association schemes between Mobile Stations and persons.
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Chapter 2

Measuring population density
distribution in support of public policy:
requirements and definitions

2.1 Overview of the general approach

The vast literature on mobile phone data insofar is constituted by studies conducted for a specific
purpose on datasets from a single MNO (see [14] for a recent survey). In rare cases datasets
from different MNOs were compared (e.g. [8]). One distinctive goal of this study is to develop a
methodology that allows data from different MNOs to be fused. The union of data from MNOs
across different countries would allow to produce a pan-European view of population density.
Furthermore, the proper fusion of multi-MNO data from the same country bears the potential
of improving the accuracy of the estimation within the same country along different directions,
namely: (i) increase the population coverage; (ii) mitigate the potential bias caused by MNO-
specific network configurations and (éii) improve the spatial accuracy (this point is discussed later
at the end of §3.5).

In order to be applicable to multiple MNOs, the proposed methodology must rely on data that are
commonly available at every MNO — as needed for the operation of the network and associated
mobile services — and that can be extracted at reasonable cost. Moreover, particular attention
must be paid to avoid jeopardisation of business confidentiality and user privacy.

We envision the data and computation flow depicted in Fig. 2.1, consisting of two stages. The
first stage algorithm, termed “local processing”, is run independently within each MNO: it takes in
input a set of “micro-data” and returns in output a set of highly aggregated intermediate data.

The input data are termed “micro” because every record (from CDR and/or VLR databases) is
referred to individual MS. The local processing module will take in input also network topology
data about position and coverage area (footprint) of every cell, and optionally additional data
sources available within the MNO that might help to identify and filter out MS not associated to
human users (e.g., M2M terminals).

It is important to remark that with the proposed method micro-data do not leave the MNO domain.
For every MNO, the output of the local processing module is a set of vector data that collectively
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represent the “view” of MS distribution by this specific MNO. Such data are highly aggregate over
hundreds or even thousands of MSs: it is not possible to infer from there any information about
individual MSs (location, trajectory, identity, calling patterns, etc.) and therefore such data are
free from any user-privacy criticality'. In order to preserve business confidentiality, the per-MNO
vector data must be constructed in a way to avoid leaking business sensitive information — e.g.,
about the structure and load of the MNO infrastructure, or the characteristics of his customer
basis — beyond what is already available in the public space or anyway deducible from public
sources®. However, we envision a conservative scenario where vector data from each MNO is
acquired and processed under strict non-disclosure conditions by a trusted public entity (e.g.,
the JRC or Eurostat) or some private organisation with an established trust basis with the MNOs
(e.g., the GSM Association®). The central trusted entity is in charge of combining the individual
vector data from multiple MNOs and produce a single global density map. In order to ease the
combination of multiple MNO data, vector data need to adhere to a common format.

From the discussion in Chapter 1 it should be clear that the problem of inferring the spatial people
distribution from the set of available MNO data does not have a unique solution. Starting from a
reference resolution method, such as the one described later in Chapter 3, based on a minimum
common set of data records available across all MNOs, it is possible to introduce additional
MNO-specific refinements (e.g. filtering functions for M2M terminals), leveraging additional MNO-
internal data sources (e.g., terminal type databases) in order to reduce some sources of error.
Such potential refinements are MNO-specific and cannot be applied in the same way to all MNOs
— otherwise they could be included in the “basic” version of the processing procedure, common
for all MNOs — and it is desirable that the overall methodology be sufficiently versatile to take
advantage of MNO-specific refinements, if available. In other words, the proposed methodology
should be designed according to the principle of pursuing the “best possible accuracy” given
the specific configuration of each MNO infrastructure, accepting that the actual level of accuracy
might differ across MNOs, instead of levelling down all MNOs output towards the worst-case level.

This vision fits well with the two-stage model sketched in Fig. 2.1: it is possible to tailor part of
the local processing stage to the specific MNO conditions, by including more advanced “optional”
functions that exploit the additional data that might be available at the specific MNO (but not nec-
essarily other MNOs). In other words, the local processing stage should be sufficiently “elastic”
to adapt to the heterogeneity of MNO setting, so as to exploit the potential for more accurate
estimation than the basic version whenever possible.

2.2 Definitions of “density”

The term “density” (of people) might take on different meanings. This is especially true when we
want to “measure” density, since in general the definition of “what” is measured is intimately tied
to “how” it is measured. In this section we discuss this point and define unambiguously the notion
of “density” adopted in the remainder of this document.

'Occasional records with very low value can be set to an arbitrary common minimum threshold to prevent personal
identifiability in areas with very low population density.

2In this regard, it is important to remark that a certain amount of information about the radio coverage of every
MNGOs is already publicly available, e.g. from crowdsourcing databases like OpenCellID [2].

Swww.gsma.com.
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Figure 2.1: General scheme of data and computation flow. Micro-data do not leave the respective
MNO domains. Only (intermediate) macro-data are exported by MNOs to the central organisation
for multi-MNO data fusion.

Spatial Density. Consider an ideal oracle that tracks the exact geographical point position y; (¢) of
every individual i € Z at any time ¢. We can take a snapshot y(*) & {y;(¢*), Vi} of all individual
positions at a particular reference time t*. One possible way to reduce these data is to divide
the geographic surface into a tessellation of countable units. We shall consider here a grid of
fixed-size squares, called “tiles” hereinafter, without gaps or overlapping areas between adjacent
tiles. We shall indicate by a the tile area: e.g. if tiles have 200m x 200m then a = 0.04 km?2.
The tile size should be smaller than the typical cell footprint in order to avoid introducing too much
spatial approximation error during the process of mapping cell coverage areas to the reference
grid. However, since the spatial granularity of the final estimated density depends primarily on the
(distribution of) cell and LA sizes rather than the tile size, reducing the tile size below a certain
level does not bring any gain in accuracy, while causing unnecessary additional burden on the
computation procedure.

Assume that we have an ideal measurement tool that is able to track the exact position y;(t) of
every individual at any time t. Denote by ny(¢*) the number of individuals falling in the generic
tile k at time ¢*. With these positions, we can define the spatial density in tile k as

def nk(t*)
P

Ay (t*) (2.1)
The above definition is unambiguous, and the term “density” in the sense of (2.1) is defined ex-
clusively in the spatial domain.

Probabilistic Density. Now consider a less ideal measurement tool, that is able to track individ-
ual positions only approximately. Assume that for every MS i and time ¢, it returns a bounded
region v;(t) that is guaranteed to contain the actual (unknown) point position y;(¢). Hereafter we
use the term “location” to refer to the region v;(¢). In other words, we do not know exactly the
point position y;(t), but we know that it falls within the location v;(t), formally y;(t) € v;(t). In
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practice, the location will represent (an approximation of) of the coverage area of a cell or LA,
hereafter referred to as “cell-level locations” and “LA-level locations” respectively.

For the sake of simplicity, consider a quantised geographical space where every location v;()
maps to a set of tiles on the regular reference grid. Let |v;(¢)| denote the (integer) number of
tiles enclosed by v;(t). Without any further information, we must assume that a MS i can be
found equally likely at every point within v;(¢). This means that the MS i is present (i-th uniform
probability PAC )I) in each tile within the associated location (and with zero probability outside).
We now introduce the binary indicator function d.¢,, ;) to indicate whether the generic tile k is
included in location v;(t), formally: éc,, ;) = 1 < k € v;(t). From such data, we can still define
the “density” in the generic tile k as:

I

Orev
Z kE 1(t) (2.2)

IIQ

QM—‘

wherein I denotes the total number of MS. Definition (2.2) has a different interpretation than (2.1)
as it embeds a probabilistic dimension in addition to the spatial one. In fact, the value of Ay (t*)
defined in (2.2) represents the average MS density in tile k in a scenario where the actual posi-
tion of every MS 7 is a random variable uniformly distributed within the associated location. The
meaning of “density” embodied by (2.2) is similar to the one adopted in this study.

Temporal Density. Strictly speaking, the individual point position y;(¢*) and the associated lo-
cation v;(t*) are defined unambiguously only if the time instant ¢* is univocally specified. If we
consider an extended time interval [t1,t2] of duration T’ &', — t; > 0 we must take into account
the possibility that a moving MS i visits multiple locations in this interval. To illustrate, assume
that during said interval the MS i has visited three adjacent tiles, namely ki, k2 and k3. In prin-
ciple, we could “distribute the presence” of individual ¢ to these tiles proportionally to the dwell
time, i.e., we could assign to each tile k£ a fractional weight proportional to the share of interval
T that ¢ spent in k. By summing the weights over the index i, we would obtain a new “density”
that embeds also the temporal dimension. This approach is viable only if we have full knowledge
of the exact trajectory of ¢« during the whole interval of interest, i.e., if we can observe exactly the
point position {y;(t), t € [t1,t2]} continuously over time. Unfortunately, this is never the case with
MNO data: recall from the discussion in §1.5 (see also Fig. 2.2) that the information available
from the network about the actual MS trajectory is coarse spatially (LA-level for VLR, cell-level
for CDR), and furthermore cell-level location data are incomplete temporally — since cell-level
locations are available at given sample times, upon occurrence of certain events (e.g. phone call
or SMS for CDR). Because of that, the temporal ambiguity intermingles with the spatial ambiguity
in a way that complicates the task of “distributing the presence” of moving individuals in a clear
manner. In this context, aiming at capturing the temporal dimensions of "density” — in addition to
the intrinsic spatial and probabilistic dimensions in the sense of equation (2.2) — would represent
a major complication. Motivated by this argument, for ease of simplicity we shall seek to exclude
the temporal dimension from our definition of “density”. In other words, we aim at imposing a
“static” definition of MS position — even for MSs that are actually in motion.
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Figure 2.2: High-level comparison between the spatial and temporal dimensions of cell-level and
LA-level data respectively in CDR and VLR.

2.3 Dealing with MS movements

Assume we aim at measuring the population density at a reference time t*. If we were able to
“sample” the position of all MSs at the same reference time t*, than we would simply ignore
whether each MS is moving or not at this time, and the problem of temporal ambiguity would
simply not arise. In our context, this is possible only with LA-level locations obtained from VLR:
recall that the MS must communicate to the network every change of LA (via so-called Location
Area Update procedure), therefore the LA-level location is monitored continuously in time.

With cell-level locations instead (from CDR or augmented VLR), the number of MS that can
be “observed” at a generic time t* is only a small fraction of the whole MS population, also
at peak hour. This is due to the fact that cell-level locations are revealed to the network only
upon occurrence of specific events (starting a phone call or SMS, engaging in a data connection,
initiating a signalling procedure etc.), therefore are observed only at specific “sampling times”.

The duality between cell-level and LA-level data in terms of temporal continuity and spatial gran-
ularity is summarised in Fig. 2.2(a).

When cell-level locations are considered (e.g., from CDR) we need to consider records along an
interval of reasonably long duration, say one or a few hours, in order to “observe” (the cell-level
locations of) a sufficiently large number of MSs. But then the problem arises: which location
to pick as representative of the position of MS ¢ during an interval of non-null duration? We
propose to pick the observed location nearest in time to the reference time t*, i.e., the cell location
with the closest timestamp to t*, subject to minimum and maximum temporal limits. Formally:
consider a generic MS i that was observed at the set of locations {v;(t1), v;(t2), ...} respectively
at the set of observation times 7 = {t1,t2...}; denote by t* & T the reference time and by
w [t* —0;,t* + 6, an observation window of duration W = 6, + 6,, around the reference time;
we define the “proxy” location ;(¢*) of MS i at time ¢* as the location observed at the nearest
observation time #*, i.e., 0;(t*) & v;(*) with:
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< argmin{|t — t*|} (2.3)
teTAW

To illustrate, consider the sample trajectory depicted in Fig. 2.3(a) that is represented in the CDR
dataset as depicted in Fig. 2.3(b). In this example, CDR data do not contain the cell location
at the reference time t4 (cell B.2), hence the observed position at closest observation time 1,
namely cell C.2, would be used as a proxy*. If VLR data are available, and we are satisfied with
LA-level locations, we can simply pick the actual LA location (ref. 2.3(c)). When both cell-level
and LA-level data are available, as with joint CDR/VLR and Augmented VLR data (ref. Fig. 2.3(d)
and Fig. 2.3(e)) it is possible to choose between the actual LA-level location and the proxy cell-
level location — the choice can be based, for example, on the basis of the time delay between
the reference time and the cell location timestamp, i.e. t4 — t; and t4 — t2 respectively for Fig.
2.3(d) and Fig. 2.3(e). Similar considerations apply for the other case depicted in Fig. 2.3 when
the reference time fall in ¢ 5.

It should be noted that, while it is certainly possible that the actual (unknown) cell location of MS
i at the exact time ¢* does not coincide with its proxy value, i.e., v;(t*) # ;(t*), nevertheless
our approach guarantees that ¢ was present at this position at some time within the observation
window W. In other words, we can interpret the error on the cell location |7;(t*) — v;(¢t*)| =
|lv; (%) — v;(t*)| as a purely temporal (rather than spatial) error. This leads to an interesting inter-
pretation of the choice between the (proxy) cell-level location and the (actual) LA-level location as
a matter of tradeoff between temporal and spatial resolution, ad sketched in Fig. 2.2(b).

“Fig. 2.3(a) could suggest the possibility of resorting to some kind of interpolation method, where an intermediate
position between the observed positions at times ¢; and ¢4 is taken as proxy value for v;(¢t*). However, when one
takes into account the various sources of spatio/temporal uncertainty — spatial quantisation in the bi-dimensional
space; unknown start and stop time of trips; unknown speed and mode of transport — and the spatial constraints due
to the underlying transportation network(s) — it becomes evident that any such “interpolation” heuristic bears a serious
risk of increasing, rather than reducing, the potential final error.
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Figure 2.3: Examples of “proxy” locations for the MS trajectory of Fig. 1.6 for two sample reference
times t4 and tp, for different network-based data. In both cases the cell-level location is not
observed at the exact reference time, therefore the MS position can be mapped to the (actual) LA
location or to the nearest-in-time observed cell location.
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Chapter 3

Measurement Methodology

In this Chapter we describe the proposed methodological framework for the task of estimating
population density from multi-MNO data. We aim at providing a framework that is general enough
to be implemented by any European MNOs — hence, does not rely on MNO-specific aspects
like network configuration, data organisation etc. — but at the same time is flexible enough to
take advantage (optionally) from potential MNO-specific improvements (e.g., availability of more
accurate location data).

The proposed methodology can be applied to one-time analyses as well as to the periodical (of-
fline) analyses, e.g., based on daily or monthly activity. In addition, the proposed approach is
suitable to continuous online analyses, although such an option requires considerably more en-
gineering efforts, especially at network modeling level, in order to ensure consistency of network
topology data accounting for changes and upgrades. As the engineering aspects remain outside
the scope of this study, hereafter we assume a static (known) network topology.

3.1 Overview of the measurement methodology

The proposed methodology relies on two distinct types of data:

o Network Topology data about the geographical location and coverage areas of radio cells.

e MS Counters of the number of MS observed (at the reference time) on every cell and LAs.
Two main contributions of this work are:

e We consider extended topology data and assume (approximate) knowledge of the whole
cell coverage area, instead of merely the (exact) tower location.

e Our method can combine MS counters at different spatial granularity, i.e., at cell-level and
LA-level, obtained from CDR and/or VLR databases, rather than exclusively cell-level data
from CDR.

The proposed measurement method can be described as a chain of intermediate data processing
stages. A high-level view of the data workflow is sketched in Fig. 3.1. Each processing stage is
detailed in the following sections of this chapter.
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Figure 3.1: Overview of the data processing workflow. The processing method f() can be applied
to a single MCD from one MNO, or to a combined multi-MNO MCD.
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The network topology data (i.e., cell maps) for each MNO are mapped to a common reference grid
in order to facilitate the fusion of data from different MNO. We recommend to adopt the INSPIRE
reference grid specified in [12] for this purpose. In fact, the INSPIRE specification provides a
common framework for harmonized and interoperable geographic localization of different types
of spatial objects and quantities, and it is specifically intended for statistical reporting purposes. It
appears to be perfectly suited for the purpose of fusing aggregated data from different European
MNOs. Furthermore, it greatly facilitates the prospective integration of multi-MNO data with other
sources of spatial data and services. Hereafter we will adopt the term “tile" to refer to a generic
spatial unit in the reference grid'.

At some point during the workflow, the generic MNO m generates a set of “map-counter” records
(bj,c;), each record referring to a different radio cell j in its network. In a nutshell, b; denotes
the map of cell j on the reference grid, while c¢; denotes the number of MS “observed” in cell j
according to the available CDR/VLR data — both elements are formally introduced in Fig. 3.5.
The whole set of map-counter records from a generic MNO m constitutes the the “Map-Counter
Dataset" (MCD for short) and will be denoted by S,,, (ref. Fig. 3.2(a)). MCD is an important
intermediate data along the data processing flow.

We can envision two possible options with respect to the subsequent processing of MCD data
from different MNOs. In the first option, depicted in Fig. 3.2(c), all MNOs would agree to pass their
MCD datasets to a central trusted entity (e.g., Eurostat or JRC). The latter would then estimate
the total density map D7 by jointly processing the union of individual MCDs from all MNOs, i.e.:

Dj=f(5,8,..)=f <U5m> (3.1)

where f() denotes the data processing method that is detailed later through sections §3.5-§3.7.

The advantage of this option is that the final density estimation can leverage in the best possible
way data diversity — in terms of spatial coverage and population coverage — across different
MNOs. Note that no privacy-critical information would be disclosed in this way, since map-counter
records are aggregate data, not micro-data. However, this approach requires every MNOs to
export information that might be regarded as critical from a business perspective (e.g., detailed
size, location and traffic load of individual cells). Although the recipient of such data would be
anyway a trusted entity, bound to non-disclosure legal constraints, it is not clear whether such
model would be accepted by MNOs.

This motivates the definition of an alternative, more conservative scenario, where the MCD pro-
cessing is split into two stages as sketched in Fig. 3.2(b) (see also Fig. 2.1). In the first stage,
each MNO computes a “partial” density map D,,, from its local MCD data, independently from
other MNOs. In the second stage, the central entity simply combines the density maps from differ-
ent MNOs into the final “global" density map Ds;. In other words, the function f() of equation (3.1)
is run by every MNO based exclusively on local data, and the (local) outputs are then exported to
the central entity for final (weighted) summation, formally:

D, = f(Sn), Vm. (3.2)

Dy => wnDy, (3.3)

"Note that in [12] the term “cell" is used to refer to the spatial grid units. In the context of the present work, this
collides with the usage of the term “cell" to denote radio coverage areas for the mobile network.
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processing of all MCDs (b) as well as for the separate processing of each individual MCD (c).
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(a) Footprint of cell j (b) Grid map b,

Figure 3.3: Cell coverage area and corresponding map on the reference grid.

wherein the weights w,,, are derived from the (normalised) MNO penetration rates.

In this model every MNO m must communicate only a density map D,,,, not the full MCD S,,.
We conjecture that the final estimate Dy, obtained in this way might be somewhat less spatially
accurate than the one that can be computed from the joint processing of the map-counter records
from all MNOs, namely D ; (we will motivate this claim later at the end of §3.5, after introducing the
notion of “section tessellation"). A comparison between these two strategies, i.e. the quantitative
assessment of the fidelity of D; and Dy versus the ground truth is an interesting direction for
future research.

3.2 Construction of cell maps

We assume that every MNO knows — at least approximately — the geographical coverage area
of every cell, i.e. the “cell footprint”. This information can be embodied in different formats across
different MNOs, and can be derived from different sources, for example “best server” maps pro-
duced during the planning process (via simulations) and/or from field measurements. In the worst
case, a coarse estimation of the cell footprint can be derived directly from antenna configuration
parameters (height, tilt, beam-width) in combination with cell tower location. Therefore, for every
cell the MNO is able to produce the associated “grid map” (refer to Fig. 3.3) by projecting its
footprint to the INSPIRE reference grid that we consider in this work [12]. Considering the typical
differences in cell/LA size between urban, sub-urban and countryside areas, it might make sense
to vary the Resolution Level of the reference grid between different types of regions. A possible
choice is to adopt Resolution Level 11 (tile size 100 meters) in urban areas, and Resolution Level
10 (250 meters) or 9 (500 meters) in sub-urban and countryside areas (refer to [12] for further
details).

3.3 Extraction of initial counters from CDR and/or VLR database

The proposed method ultimately relies on the possibility to infer the approximate location (cell
or LA) of every MS from the network databases available at the serving MNO. More specifically,
given an observation window W = [t* — 6;,t* 4 0,,] around the reference time t*, the generic MS
1 served by MNO m during the said observation is mapped to the smallest spatial unit v; that can
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be inferred from the available network database(s): the cell (identified by the CGl) if available,
otherwise the RA or (in the worst case) the LA. In this work we are not interested in individual
MS positions, but only in spatial densities, therefore such data can be immediately aggregated:
for every cell j and LA ¢ denote by c; and ¢, the total counts of MS observed in said location. In
other words, the data flows embeds two distinct stages:

e MS mapping: MS i — individual MS location v;.

e Aggregation: set of MS locations {v;} — set of cell/LA counters {c;, c/}.

In the remaining of this section we discuss the possible options for the initial MS mapping.

Two potential data sources are relevant for our study: Call Detail Records (CDR) and Visiting
Location Register (VLR). Both CDR and VLR can be regarded as databases and, in principle,
can be queried by the MNO staff.

The implementation of CDR and VLR databases varies greatly across MNOs. It is possible to
identify a minimum set of mandatory fields that are necessarily present in every CDR / VLR
implementation, since they are needed to perform standard procedures (mobility management,
billing). This basic set of mandatory fields represent a sort of “minimum common denominator”
across the CDR/VLR of different MNOs. However, when one considers the technical details of
how such basic fields are encoded, and how such data can be retrieved, important differences
between different MNOs emerge. For instance, it is not uncommon that MNOs configure their
CDR/VLR systems to store additional (optional) data fields besides the minimum common set
of mandatory fields. It is important to remark that several MNO-specific technical details about
what information is stored (on top of mandatory data) and how it is encoded determine also the
feasibility and cost of (i) extracting the data and (ii) implementing additional processing and data
correlation functions aimed at improving the quality of the final output.

To allow for flexibility, hereafter we will present a palette of different data acquisition methods,
based on different assumptions about the availability of certain data dimensions, that enable
varying degrees of estimation “quality” in terms of population coverage, spatial / temporal resolu-
tion and risk of bias. In fact, we envision a flexible scenario where each MNO can contribute with
the “best” possible data® that can be extracted at reasonable cost given the specific configuration
of its CDR/VLR databases.

3.3.1 Basic CDR-only method

In the simplest scenario, the MNO relies exclusively on CDR data, i.e., VLR data are not con-
sidered. Given an observation window W % [t* — 6;,t* + 0,] of duration W = 6, + 6,, around
the reference time t*, only MS that have been somehow active in W (e.g., received or started a
phone call or SMS) will be “observed” with this method along with their (proxy) location at the cell
level. The main advantage of this scheme is the high spatial resolution, since CDR embed only
cell-level MS location (typically, the call start CGl). The disadvantages of this scheme are:

2When a trade-off is in place between different quality criteria — e.g., spatial vs. temporal resolution, or spatial
resolution vs. risk of bias, as discussed below in §3.3.3 — the operational definition of “best” data should be adapted
to the particular application (use-case) for which the population density map is intended.
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e Incomplete (possibly small) population coverage and low temporal resolution. The fraction
of MS observed with CDR data depends on the duration W of the observation window and
on the activity behaviour of the MS population, and the latter varies with the time-of-day. The
population coverage could be very small during night time, even with observation window of
several hours. The need to increase population coverage drives towards the choice of long
observation windows (several hours) with consequent reduction of temporal resolution. The
combination of these aspects will probably hinder the viability of certain types of analysis,
e.g., time-of-day variability of population density.

e Bias due to calling habit. Generally speaking, the probability that a generic mobile phone
user starts a call, SMS or data connection depends on the type of activity (s)he is currently
engaged (working, leisure, traveling, etc.) which, in turn, depends on time and position.
Therefore, the MS call activity, hence the probability of the MS being “observed” by the CDR
method in the given temporal window, is correlated with the MS position. This introduces a
certain degree of statistical bias, i.e., under- or over-representation of particular locations.
Furthermore, as user activity patterns change in time, the structure of the bias error may
vary in time.

The above disadvantages might be mitigated by integrating CDR data with VLR data, as explained
in the following subsections.

3.3.2 Basic VLR-only method

In this alternative extreme scenario, the MNO relies exclusively on VLR data, i.e., CDR data are
not considered. We assume here that the VLR database includes only the mandatory fields,
namely the LAI® and the T-IMSI. The main advantages of this method are:

e Complete coverage: all MSs served by the MNO network are represented in the VLR
database, for any choice of the reference observation time ¢*.

e Reduced bias: the LA-level locations encoded in the VLR does not depend on the user call-
ing habit, therefore the risk of under- or over-representation of particular locations (LA/RA
in this case) is dramatically reduced.

e Perfect temporal resolution: at any generic instant ¢ the VLR records the current LAI for
every MS. Therefore, the location of the MS can be referred exactly to the reference time
t*, rather than to a reference observation interval of duration W. In other words, VLR have
perfect temporal resolution (ref. Fig. 2.2).

The main disadvantage of this method is the low spatial resolution, since only LAl locations are
encoded in the basic VLR, with spatial resolution in the order of kilometres (in urban areas) or
even tens of kilometres in sub-urban areas (ref. to Appendix B).

3And possibly also the RAI, if the VLR is shared between the CS and PS domain, see discussion in §1.4.
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3.3.3 Comparison between basic schemes: CDR-only vs. VLR-only

The mere comparison between the advantages and disadvantages listed above for the CDR
and VLR methods clearly show that these two schemes are somewhat antipodal with respect
to the tradeoff between spatial and temporal resolution: the basic CDR-only method yields the
highest possible spatial resolution (cell level information) but with very low temporal resolution
(due to limited coverage), while conversely the basic VLR-only method combines and excellent
time resolution with the worst spatial resolution. This trade-off was depicted earlier in Fig. 2.2.
Also, CDR data (and in general cell-level locations) suffer from a considerable risk of spatial bias,
which might lead to non-negligible distortion of the final estimate. These simple considerations
tell that, if the choice between the two is given, one method might be preferable over the other
depending on the specific use-case and type of analysis required, but neither of them can be
considered “superior” to the other in the general case. In other words, neither method dominates
completely the other along the whole spectrum of performance dimensions.

However, more on the operational side, it is important to highlight one key difference between the
VLR and CDR in terms of data extraction. The CDR database is “static”, in the sense that new
CDR records are added continuously, but past records are not modified. Therefore, they can be
read off-line during pre-planned periods of minimum network load, typically during night time. In
this way, it can be easily guaranteed that the extraction of CDR data will not interfere with the
network operation. In contrast, the VLR is a “dynamic” database, as its role is to support the
network operation by serving as a sort of temporary “cache” for volatile data that are continuously
updated. Moreover, for given storage capabilities (as well as per the MNO data storage policy),
an operator might consider not to store any of the VLR location data, or to save only the data
relative to the last known location. Therefore, if one wishes to extract a snapshot of VLR locations
for the reference time t*, the VLR query must be actually accomplished on-line at the same time
t*: while relatively short delays can be tolerated, the VLR query can not be deferred indefinitely
— as is typically done with CDR data. Considering that VLR is accessed continuously by the op-
erational network equipment (mainly MSC and SGSN), particular care must be taken to avoid that
the resources consumed by the VLR query/extraction process interfere with the normal network
operation.

The main differences between the two basic methods are summarised in Table 3.1.

3.3.4 Augmented VLR data

Some MNOs might configure their VLR to maintain additional (optional) data fields besides the
current LA-level location (LAl), for instance (i) the cell-level location (CGl) and (ii) timestamp of the
last interaction with the MS. Other MNOs might collect similar data by means of other proprietary
monitoring systems (e.g., [9, 10]). We shall refer to such data as “Augmented VLR” data, as they
represent an augmentation the basic VLR data (i.e., LA-level locations for all MSs) with additional
finer-grained data (cell-level locations, but for a subset of MS).

If such data are available, for every MS the more accurate cell-level location can be used in place
of the LA-level location whenever the associated timestamp falls within the reference observation
window W. This approach merges the advantages of the VLR-only and CDR-only schemes in
the sense that it yields the best possible combination of coverage, spatial resolution and temporal
resolution allowed by network-side data. However, the risk of bias is not eliminated, because cell-
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Basic CDR data Basic VLR data Notes

Spatial resolution high (cell level) low (LA level) the spatial resolution (for both cell-
level and LA-level locations) varies
between urban and sub-urban areas

Temporal resolution low very high ref. Fig. 2.2

MS coverage possibly low very high CDR coverage possibly very low (e.g.,
at night). VLR coverage virtually com-
plete: all MS “attached” to the MNO
network are always tracked at LA
level.

Risk of bias high low Cell-level location are intrinsically cor-
related to MS activity. Bias in CDR is
due to call habit.

Data type static dynamic VLR data are volatile, i.e., old data
are continuously overwritten by new
data. In CDR new data are appended
to (not replaced by) past data.

Off-line data extraction | possible not possible CDR data query can be deferred ar-
bitrarily. VLR data must be queried
at the reference time t*, as VLR
fields are updated (overwritten) con-
tinuously. For VLR, attention must be
paid to avoid interfering with network
operation (especially critical at peak-
hour).

Table 3.1: Summary comparison between basic CDR-only and VLR-only schemes.

level locations remain conditioned to the occurrence of certain events: the difference with CDR
is that the set of event types is larger, since certain signalling procedures that would be “missed”
by CDR are instead “observed” by VLR (e.g., Location Area Update (LAU), Attach Request, etc.)
Therefore, while the bias due to calling habit is somewhat reduced in comparison with CDR,
in principle the cell-level information contained in the augmented VLR data might be affected
by additional sources of spatial bias. For example, LAU procedures are likely to occur at the
LA borders, hence cells located at the boundaries between different LA would tend to be over-
represented. In other words, the risk of bias associated to cell-level records is not due to the
adoption of a particular type of data source (CDR or VLR), but is rather intrinsic to the functional
dynamic of the mobile phone network, where the detection of cell location by the network is always
conditioned to some particular type of MS action (starting a phone call or performing a signalling
procedure) that, in general, is not completely independent from the MS location.

Similarly to the basic VLR method, also the augmented VLR method requires on-line data extrac-
tion, hence caution is needed to avoid interference with the network operation, especially at times
of peak load.

3.3.5 Joint VLR and CDR
Even without augmented VLR data, it is still possible to “merge” CDR and basic VLR data that

have been acquired independently. In general, it might not be possible to match the same MS
identifier between the two datasets: for example, the same MS might be identified with the T-IMSI
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in the VLR, and with the encrypted IMSI in the CDR. However, it is not necessary to perform a
detailed MS-by-MS matching between the two datasets: in order to avoid double counting of the
same MS between the two dataset, it is just sufficient to reduce the counter ¢, for every LA ¢ in
the VLR data by an amount equal to the sum of MS observed in the corresponding cells in the
CDR dataset. In this way, it is possible to build a single “combined” CDR-+VLR dataset from two
dataset acquired independenty.

3.3.6 Practical considerations on the practical adoption of CDR-only vs. other
methods

In practice, we expect CDR data will be available at all MNOs, owing to the simplicity of ex-
tracting static data off-line (ref. Table 3.1). Additionally, a few MNOs might be willing to pioneer
the extraction and processing of VLR data, possibly with “augmented” fields, and some of them
might decide to complement (or even replace) CDR with more accurate data extracted with other
(proprietary) monitoring systems (e.g., [9, 10]). In other words, the CDR-only case should be
regarded as the most common “minimal” scenario, not the unique one.

The methodological framework presented in the remainder of this Chapter provides a basis for
the combination of LA-level and cell-level location data, and for the experimental comparison
between the CDR-only and other approaches (combined CDR/VLR, augmented VLR) in terms
of spatial/temporal accuracy, bias, etc. Should such an experimental demonstrate a substantial
gain of complementing CDR data with VLR data (or any other combination of cell-level and LA-
level location data), the proposed methodological framework provides a reference evolutionary
platform for the incremental addition of additional data by a larger number of MNOs.

3.4 Projection of LA counters to cell counters

In a first pre-processing step the MS counter value for each LA (as obtained from VLR data) is
distributed to its cell counters. Consider a generic cell j included in zone ¢ (i.e., i € Ay). Denote
by ¢; and ¢, their respective counters before projection, and by d; the new cell counter after

projection. Recall that 3; «f > 1 brj denotes the size of of cell j on the reference grid.

There are two extreme options for projecting the value of ¢, across its component cells:

e Proportionally to the cell counter ¢;

e Proportionally to the cell area g3;.

In general, we can follow an hybrid approach where a share ~ € [0, 1] of the LA counter ¢, is as-
signed proportionally to the cell counter, and the remaining share 1 —« is assigned proportionally
to the cell area, i.e.:

d= ¢+ eI 4 (1= ) e (3.4)

> hed, Ch 2 e, Bn
In this way, the total set of cell and LA counters is transformed into a set of (projected) cell
counters:
{ce,e, j=1,....J; £=1,...,L} — {dj,j=1,...,J}
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The value of v can be seen as a “tuning knob” in the trade-off between spatial accuracy vs.
risk of bias due to call activity that is in place between LA data and cell-level data (ref. Table
3.1). At one extreme, for v = 1 the (potential) bias affecting cell-level data (e.g., from CDR) is
entirely projected on the whole LA data (from VLR). At the opposite extreme, for v = 0 the LA
data remain unbiased but at the cost of a major loss of spatial resolution. In practice, the more
convenient setting for v will depend on the relative impact of bias vs. spatial resolution for the
specific application at hand.

3.5 Cell intersection tessellation and the notion of “section”

Hereafter, we shall use the term “section” to indicate a group of adjacent tiles covered by the
same set of cells. Equivalently, each section represents the intersection area of a specific set
of cells, different sections referring to different cell sets. An illustrative example is given in Fig.
3.4, in which 4 neighboring cells originate 11 sections (out of 2* = 16 theoretically possible
combinations).

Since sections do not overlap by definition, the division into sections constitutes a (irregular)
tessellation of the area of interest. Such tessellation is different from the one resulting from a
Voronoi tessellation technique [4], which, instead, is built by considering a single reference point
for each cell (i.e., the tower location, or the centroid of the coverage area). In fact, the section
tessellation, considered in this work, takes into account the entire cell footprint and overlapping
areas with other cells, which avoids double-counting of users. Note that, in general, the number
of sections is greater than the number of cells — consequently, the section tessellation is denser
than in the Voronoi case — but still much smaller than the number of tiles (11 vs. 9 x 14 = 126 in
the toy example of Fig. 3.4).

Moreover, we introduce the notion of section motivated by the fact that it is more appropriate to
formulate the estimation problem in terms of per-section variables, rather than per-tile variables.
In fact, it can be easily seen that the MCD dataset embeds information about the distribution of MS
density across different sections, but does not tell anything about the distribution within individual
sections. In other words, from the perspective of the available measurement data, tiles within
the same section are identical, and there is no information therein that allows to discriminate
the intra-section density differences. Such loss of detail is intrinsic to the spatial aggregation (or
quantization) introduced by the network-based observation process.

The formulation of the estimation problem in terms of per-section variables, instead of per-tile
variables, is also convenient from a computation perspective. First, it brings a considerable re-
duction of the search space dimension, by more than one order of magnitude (e.g., the simulation
scenario introduced later in Section 4.3 consists of about 400 sections, versus 10,000 tiles). Sec-
ond, it prevents the numerical solution to introduce artificial density gradients within individual
sections, e.g. resulting from incorrect matrix conditioning and/or numerical instabilities. On the
negative side, this approach introduces fictitious discontinuities at the border between adjacent
sections. However, the latter can be easily counteracted in post-processing by means of a simple
smoothing filter, as discussed later in §3.7.

Generally speaking, a denser and finer tessellation (i.e., a higher number of sections of smaller
size) will lead to better spatial resolution. The former depends on the number of radio cells but
also on the topological diversity of cell footprints: both these factors increase when combining
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Map/Counter Datasets (MCD) from different MNOs. Based on this simple argument, it can be
expected that the approach of fusing intermediate MCD data from different MNOs (ref. Fig. 3.2(c))
bears the potential of achieving a more accurate estimation than the mere (weighted) summation
of density maps obtained from individual MCD (ref. Fig. 3.2(b)).

3.6 Maximum Likelihood Estimation of per-section densities

Let the variable r,, denote the probability that a generic MS is located in section n, and recall from
Fig. 3.5 that ¢,,; represents the (conditional) probability that a generic MS located in section n is
assigned to cell j. By the law of total probability it follows that the probability «; that a generic MS
is assigned to cell j is given by:

N
lj = Zanrn (3.5)
n=1
Recall that d; denotes the total number of MS assigned to each cell j, and d = [dy, ..., d;.]” the

total vector of per-cell counters. Considering that the assignment process is independent across
MSs, the vector d has a multinomial distribution:

J
Prob{d|r} = d W - H (3.6)

wherein D < Z d; is the total number of MS in the dataset. The corresponding likelihood
function is therefore (omlttmg the irrelevant multiplicative factor):

Je
£r(d) = [T ()® (3.7)
j=1
and the corresponding log-likelihood:
log £(r|d) = Zd log1j = Zd longmrn (3.8)
| |
Cell A celt AB T
|
A A‘BD I‘BD
AD
Cell T |
AC A‘CD D
Cell @ c cD
(a) Cells (b) Sections

Figure 3.4: Example of section tessellation: the different intersections of 4 cells (left) produce a
tessellation of 11 non-overlapping “sections”.
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In the considered setting, we have four types of spatial entities: tiles, cells, LAs and sections.
Hererby, we distinguish between indices for each type of spatial entity, and ways to encode
the associations (mapping) between different types. We shall use vectorial notation to
encode the cell-to-tile mapping, and set notation for the other mappings.

The symbols K, J, N, L denote the total number of tiles, cells, sections and LA, respectively.
We shall use a distinct index for every type of object:

e k=1,..., K the tile index.

e j=1,...,J the cell index.

e n=1,...,N the section index

e /=1,...,Lthe LA index.
Mappings and associated quantities:

e by; € {0, 1} boolean variable indicating whether tile  is included in cell j footprint.
e b; < [by,...,bx;]" the boolean vector representing the map of cell ;.

° 3 o > 1 brj the size of cell j on the reference grid, i.e., the number of tiles spanned
by cell j footprint.

e A, the set of cells included in LA /.

e V), the set of tiles included in section n and v, & |V, | the size of section n.

e Z, the set of cells defining section n and z, &' |Z, | the number thereof.

def 2Lt je 2,
nj _{ 0 if j¢Z.
pattern. More in detalil, ¢,; € [0,1] represents the probability that a generic MS in
section n is assigned to cell 5 in the generative model described in Appendix A.

a set of model parameters derived from the cell coverage

Variables and parameters:

e ¢; and ¢, the number of MS observed in cell j and LA /, respectively.

d; the MS counter for cell j after projection of LA counters (ref §3.4)

D= >_; d; the total number of MS observed in the whole network.

~ € [0, 1] a tunable parameter in the LA projection procedure described in §3.4.

x the (unknown) number of MS in tile £ and Z;, the final estimated value obtained with
the procedure described in §3.6.

Figure 3.5: Notation used in the presentation of the estimation method.
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Therefore the Maximum Likelihood (ML) estimate 7 given the data d and the model {¢,,; } is given
by the solution of the following constrained optimization:

J N
maximize Z djlog Z njTn
j=1 n=1

N (3.9)
subject to Z rn =1,
n=1
rn >0, Vn,
or, equivalently, to find:
J N
7 = arg max d;log QniTn- (3.10)
i ; ] ”; o
r|1=1

3.7 Deriving per-tile estimates

The solution 7 to (3.10) represent the estimate of (normalised) per-section counters. For every
tile k € V), in section n we derive a preliminary per-tile estimate by simply distributing of the
per-section value uniformly across the component tiles, and rescaling by D, formally:

P D

=2 VkeV, Vn (3.11)

Un

wherein v,, denotes the size (in number of tiles) of section n. Finally, a simple 2D smoothing filter
(e.g. circular gaussian) is run on the values of 4y, in order to soften the artefactual discontinuities
introduced by the hard-boundary tessellation, formally:

&= Su (3.12)

wherein S denotes the smoothing matrix.
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¥ —s(x) — > —g(y) — %

o ‘,

true value transducer acquired processor measured
(unknown) data value
true MS mobile network density estimated
density phone databases estimation MS density
network (CDR,VLR) procedure

Figure 3.6: Abstract view of a generic measurement process.

3.8 Considerations on possible sources of error

Any measurement process or involves two logically distinct stages: data acquisition and process-
ing. In the first stage, a “sensor” element (e.g., the retina or the camera) transforms some physical
quantity x related to the object or phenomenon under measurement into a “signal” (data) y, lever-
aging some physical phenomenon that relates y to 2 through a transduction function y = s(z). In
the subsequent processing stage, an “intelligent” element (e.g., the brain of the computer) applies
a processing procedure g() to the acquired data and computes the final measured value & = g(y).
The goal of the processing stage is to invert the transduction function and then reconstruct the
original quantity with the highest possible fidelity level, i.e.

) ~s()=>d=9g(y) =g(sx) =

This general process is depicted in Fig. 3.6. Generally speaking, two distinct types of error
impede the exact reconstruction of the target quantity x:

e transduction function s() being not perfectly invertible, e.g., due to quantisation or aggre-
gation.

e transduction function s() being not perfectly known, e.g., due to noise, incomplete know!-
edge of parameters, or any other unknown effect (deterministic or stochastic) taking place
in the sensor.

It is important to remark that the loss of information due to quantisation/aggregation of the trans-
duction function cannot be recovered by the subsequent processing stage. In our case, where
the “transducer” role is played by the mobile phone network, this is accounted to the unavoidable
loss of spatial detail due to the fact that MS positions can be “sensed” (at best) at the level of
individual radio cells. In this respect, note that we can still infer density gradients within individual
cells by leveraging the partial overlaps between adjacent cells — this is indeed captured by the
formulation of the estimation process in terms of per-section variables (ref. §3.5). However, no
information can be extracted about density gradients within sections and we refer to this source
of error as spatial quantisation error.
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In more concrete terms, the amount of information loss due to spatial quantisation depends
(among other factors) on the particular network configuration, and particularly on the radio cover-
age patterns, i.e., location and size of radio cells. For this reason, different MNO networks might
be “sensing” the same population with different levels of accuracy, and the network of the same
MNO might yield different accuracy in different areas.

From the perspective of the population density estimation process, the “transducer” (i.e., the
mobile phone network infrastructure) is given and cannot be changed. In other words, the spatial
quantisation error represents an irreducible error floor for any network-based estimation method.

Besides that, our knowledge of the transduction function is not perfect, and this results in an
additional source of error during the data processing stage which we call estimation error. This
is due to several factors, most prominently: (i) a certain number of simplifying assumptions in
the modelling of the network dynamics, hence in the “model” of the transduction function to be
inverted; (ii) coarsely approximated knowledge of the real cell footprints (i.e., the area effectively
serviced by a cell site); (iii) stochastic fluctuations (e.g., due to the wireless channel randomness)
and (iv) spurious correlations between the transduction process and the phenomenon under ob-
servation. The latter is particularly insidious as it introduces a systematic distortion (or bias) in
the final estimate.

Hereafter we provide a list of the main sources of errors that affect the estimation method pre-
sented in this Chapter.

e Inaccurate knowledge of cell coverage area: it is reasonable to expect that only a very
coarse approximation of the cell footprint is available to the MNO, due to the intrinsic com-
plexity and variability of the radio propagation channel.

e M2M devices: as discussed earlier in §1.6, the presence of MS for machine-to-machine
(M2M) communications may inflate the MS counters and therefore lead to an over-estimation
of population density. The problem will become more serious in the future, due to the ex-
pected growth of M2M devices served by mobile networks (“Internet of Things” paradigm).
The problem can be counteract by applying more sophisticated M2M identification and pre-
filtering routines already in the data collection stage, but unavoidably the implementation of
these routines will be highly MNO-specific.

e Biased cell-level location data: as discussed earlier in §3.3, the generation of cell-level
locations data is conditioned to the occurrence of certain events (phone call, SMS, data
connection, signalling procedure) related to the MS activity pattern. Since MS activity is not
independent from time and space, the probability that the MS location is “observed” (sam-
pled) at cell-level is correlated with the location itself (and with time). This in general leads
to possible distortions in the final estimation, i.e., over- or under-representation of certain lo-
cations at certain times. Note that (at least part of) such correlations are systematic across
different MNOs, and therefore can be perhaps mitigated but not completely eliminated by
fusing data from diverse MNOs.

¢ MNO-specific customer base: the network infrastructure of a generic MNO can observe
only part of the total population, and specifically (i) the customers of the MNO itself and
(i) customers of other MNO roaming into this network. In other words, every MNO “sam-
ples” part of the population, i.e., it can observe only a subset of all population members.
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Note that the same person can be observed by two (or more) distinct MNOs if (s)he car-
ries multiple subscriptions (e.g., a personal phone and a company phone). This leads to
over-estimation of certain user groups (e.g., professionals), which demands systematic cor-
rections. Besides duplications, attention must be paid to the fact that the customer base
composition in general differs across MNOs. This introduces distortion (bias) representa-
tion of groups, among the subscribers of each individual MNO*. However such a bias can
be reduced by jointly analysing data from different — possibly all — MNQOs within the same
market (country).

In principle, one can seek to reduce the estimation error by developing more sophisticated esti-
mation algorithms based on more accurate (and complex) models of MS-to-network interactions
and/or by leveraging external information from other systems. The quantitative assessment of the
actual magnitude of these errors in real-world data remains a central direction for future research.

“Consider for example two MNOs m; and m. that are preferred, respectively, by low-income and high-income
professionals. This “market specialisation” will cause luxury residential areas to be under-represented in m;’s data
and over-represented in my’s data.
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Chapter 4

Exemplary Results with Synthetic data

This section provides numerical results for a simplified synthetic scenario. The main goal is to
validate the correctness of the proposed method, and specifically the consistency of the maximum
likelihood (ML) estimation method described in §3.6, and at the same time illustrate visually the
type of outcome that can be expected. The simulation results presented hereafter represent the
starting point for a future in-depth analysis of the performances, complexity and, most prominently,
sensitivity of the proposed method to several real-world situations and potential sources of errors
encountered in practice. In this sense, we do not aim here at reproducing each and every aspect
of a “realistic” real-world scenario — a task that we leave for future work — but merely to illustrate
the correctness of our approach in a simplified, reasonably well-behaved synthetic scenario.

4.1 Description of simulation scenario

We consider a network consisting of a square grid of 100 x 100 tiles hosting a total of 650, 000
MS. The MS are distributed randomly according to a bivariate distribution consisting of a mixture
of three distinct Gaussian clusters, as shown in the “ground truth” map of Fig. 4.2(a).

We consider three types of cells with different footprint size and shape: (i) small sectors with 120°
beam, (ii) medium-size circular cells and (iii) large circular cells. Note that three neighbouring
120°-sectors share the same cell tower. Cells are placed randomly according to an arbitrary
design process that favour placement of more and smaller cells in most densely populated areas.
This reflects the characteristic of real-world deployments, where the spatial distribution of radio
capacity (i.e., more and smaller cells) tend to follows the maximum traffic intensity (peak-hour
traffic), and therefore correlates positively with the (maximum) population density.

We consider two distinct scenarios (Scenario #1 and Scenario #2) with two different cell coverage
patterns extracted randomly from the same process. For Scenario #2 we manually modified the
cell placement in order to introduce a strong local mismatching in a particular region, as explained
in detail later in §4.3.2.

The number of simulated cells is 56 for Scenario #1 and 117 for Scenario #2. In each scenario,
cells are arbitrarily grouped into 5 simulated LAs of different size. An excerpt of the cell/LA
footprints in Scenario #1 is depicted in Fig. 4.1.

43



CHAPTER 4. EXEMPLARY RESULTS WITH SYNTHETIC DATA

a ®llel® ] " .
® ® - -
= | L bt
* @
ﬂ q . s - -
o W
A | ’ e b Q

AP (V. ?®

Figure 4.1: Examples of cell footprints (top seven rows) and LA footprints (bottom row) used in
Scenario #1. Every square depicts the entire area of interest (toy world) with a single footprint
in black. Triplets of 120°-sectors sharing the same cell tower are plotted in consecutive squares
(see e.g. three leftmost squares in the top row).
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A synthetic assignment process emulates the extraction of cell and LA counters from combined
CDR+VLR data. The initial set of cell and LA counters is generated according to the probabilistic
model described in Appendix A: in summary, a generic MS covered by z cells attaches to a ran-
domly selected cell, all z cells being equally likely to be selected, and is assigned with probability
p and 1 — p respectively to the cell or to the corresponding LA. In our simulations we have set
p = 0.22, which is a good approximation for most networks. By considering a constant value of
the “activity probability” p we obtain a synthetic dataset free from spatial bias. This motivates the
setting v = 1 in the stage of LA counter projection (ref. §3.4).

4.2 Reference method: CDR with Voronoi tessellation

For the sake of completeness, we compare the proposed method with an alternative approach
based on Voronoi tessellation that reflects the current state-of-the-art in the research literature.

Given a set of V points called “seeds”, the Voronoi tessellation (or Voronoi diagram) assigns every
point in the area of interest to the nearest seed in terms of euclidean distance [4]. The locus of
all points assigned to one seed defines a Voronoi “region” with the shape of a (irregular) polygon.
Generally speaking, the size of a generic region scales inversely with the local seed density.

The key components of the “basic Voronoi” method adopted by most previous literature (including
the recent work by Deville et al. [8]) are:

e Only cell-level locations from CDR data are considered: LA counters (that could be ex-
tracted from VLR) are not available.

e The only spatial information associated to the cell is the location of the cell tower: no cell
footprint nor cell size data are available.

Therefore, with the basic Voronoi method all cell counters are mapped to the Voronoi region
corresponding to the cell tower, and local density is obtained by dividing this value by the size
of the region. Note that in our toy-world (as well as any real-world network) the number of cell
towers is smaller than the number of cells, since one tower can serve multiple cells (e.g., three
adjacent 120°-sectors). Generally speaking, the basic Voronoi method uses less information than
our method, and therefore it can be easily expected that it will lead to a less accurate final estimate
— the interesting question is whether the accuracy gain of our method is substantial or not.

Recall that in our toy-world the call activity p does not vary in space, hence the initial set of cell-
level counters is free from bias, and consequently the loss of information due to disregarding LA
counters has a negligible impact on the estimation of the relative spatial density. Instead, the
lack of cell footprint information represents a serious disadvantage of the basic Voronoi method
compared to our approach. For this reason, we consider also an “improved Voronoi” scheme that
takes in input the same cell footprint data as our method, but handles it in a different way. In the
improved Voronoi version, the centroid of every cell constitutes an independent seed, hence the
number of Voronoi regions equals the number of cells, not towers. Furthermore, the cell counter
is adjusted to account for the actual size of the cell footprint. A similar method was adopted in [5].

It can be easily expected that augmenting the Voronoi method with accurate cell footprint informa-
tion will improve the fidelity of the final result with respect to the basic Voronoi scheme. Here we
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are interested to compare the improved Voronoi approach with the proposed estimation method
that uses the same information — cell footprints and counters — but in a different way.

4.3 Numerical results

4.3.1 Scenario #1: a well-behaved case

The color map in Fig. 4.2(a) shows the “ground truth” distribution generated for Scenario #1,
aggregated at the tile level (K =10,000 total tiles). The three clusters A, B and C are evident.

Identification of reference bound

Fig. 4.2(b) shows the ground truth distribution aggregated at section level — recall that every
section represents the intersection area of a specific subset of cells. After passing the latter
through a smoothing filter we obtain the map in Fig. 4.2(b), which represents the output (after
smoothing) of an ideal “oracle” that knows without error the ground truth distribution at the level
of individual sections. In other words, moving from the per-tile ground truth of Fig. 4.2(a) to the
map in Fig. 4.2(c) has introduced exclusively a spatial aggregation error but no estimation error.
It is important to realise that the spatial aggregation error (at per-section level) is intrinsic to the
usage of the mobile phone network, and specifically of network-based data, for the detection
of MS locations: the unavoidable loss of spatial detail is due to the fact that MS locations can
be “sensed” (at best) at the level of individual radio cell. For this reason, given a radio network
coverage pattern (i.e., the given set of cell footprints) and without any further external information,
the “oracle” map in Fig. 4.2(c) represents the ideal reference bound against which any density
estimation method based on network data must be compared.

Output of the proposed method

In Fig. 4.2(d) we report the density map obtained by the ML estimation procedure described in
§3.6. Moving from Fig. 4.2(c) to (4.2(d)) a certain estimation error has been introduced. The
comparison between the two maps shows that the quality of the final estimate is rather good: all
three clusters are clearly distinguishable. Note that while cluster C (upper left) has been slightly
faded out, the cluster B (lower left) has been resolved very accurately. Such differences are due
to the local coverage pattern in the cluster region: the more redundant the local coverage (higher
number and smaller size of cells) the better the estimation accuracy.

Comparison with Voronoi schemes

In Fig. 4.3 we plot the results obtained by the two Voronoi schemes. As expected, the injection of
cell footprint information improves somewhat the performance of the improved Voronoi approach
compared with the basic Voronoi (compare Fig. 4.3(c) against Fig. 4.3(b)), but in both cases the
result is considerably less accurate than the proposed method. This is further confirmed by the
distribution of the absolute errors plotted in Fig. 4.4.
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(a) Ground Truth (b) GT after spatial aggregation (per-section oracle)

True population distribution over Sections (smoothed) Estimation based on MaxLH (smoothed)
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(c) GT after spatial aggregation and smoothing (d) ML estimate (after smoothing)

Figure 4.2: Spatial distributions for Scenario #1. Three density clusters are clearly visible, re-
spectively, on the right side (cluster A), on the bottom left corner (cluster B) and on the top left
corner (cluster C).

Recall from the previous discussion that the “improved Voronoi” scheme is fed with the same
topological data as the proposed scheme (full cell footprint), but it uses these data in a consider-
ably less effective manner. In other words, as with any estimation task, the quality of the solution
is not only a matter of what information is used, but also how it is used.

4.3.2 Scenario #2: a stressed scenario

Motivation

The goal of this second set of simulations is to illustrate one possible limitation of the general
approach of estimating people density from mobile phone network data. Recall the discussion

in §3.8 about the distinction between “spatial quantisation errors” and “estimation errors”, and
unrecoverable loss of information that, in principle, might be caused by the former. The previous
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Figure 4.3: Estimated distributions with Voronoi method for Scenario #1 (compare with Fig. 4.2).
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Figure 4.4: Estimation error distributions (CCDF) for Scenario #1.
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Scenario #1 has shown a case where the sum of both errors is somewhat acceptable, in the
sense that all three population clusters could be properly “sensed”, though with different levels
of accuracy. In this second Scenario #2 we provide a negative example, where a particular
configuration of the radio network coverage would cause one of the clusters to be missed.

Differences with previous scenario

In Scenario #2 we consider the same population distribution of the previous scenario but a dif-
ferent radio coverage pattern. We introduce the following two modifications with respect to the
previous scenario:

e The number of cells is higher, roughly doubled from 56 in Scenario #1 to 117 in Scenario
#2.

e We have manually repositioned some cells away from the area around cluster C in order
to create a strong local “density mismatching” between the MS density (high) and the cell
density (very low) in this specific area.

Roughly speaking, the first modification brings a potential advantage for all estimation methods
(the proposed schemes as well as the Voronoi methods), while the second one represent a seri-
ous disadvantage, as we show in the following.

Interpretation of the results

The new maps are shown in Fig. 4.5 (ground truth and proposed method) and Fig. 4.6 (Voronoi).
The fidelity of the basic Voronoi scheme remains pretty poor. It appears that the increase of cell
number (hence cell density) benefits especially the “improved Voronoi” method, particularly in the
region of cluster B that now becomes clearly visible. However, a closer comparison of Fig. 4.6(c)
with the ground truth map of 4.6(a) reveals that cluster B is being seriously overestimated by
Voronoi.

Note from Fig. 4.5(d) that cluster C has been missed by al estimation methods, including the ML
estimation approach. This is exactly the sort of “information loss” that we intended to reproduce
by purposely introducing a marked local mismatching. In fact, in Scenario #2 cluster C is covered
only by the edges of a couple of large cells, and for this reason the corresponding MS observa-
tions are “diluted” over a large area spanning the whole upper left quadrant of the toy-world area.
A close look at the “oracle” maps in Fig. 4.5(b) and Fig. 4.5(c) reveals that the disappearance
of cluster C is to be accounted to the spatial aggregation error that is intrinsic to the usage of a
mobile phone network, rather than to the subsequent data processing stage. In other words, the
problem is not due to the ML estimation algorithm failing to detect cluster C in the input dataset,
but rather to the fact that cluster C has not been captured by the network-based dataset in the
first place, due to the extreme sparsity of (local) radio coverage. However, we expect that similar
cases of strong local mismatching to be very rare (though certainly not impossible) in real-worlds
deployments.

Finally note that also in Scenario #2 the accuracy of the Voronoi method fall well behind ML
estimation (ref. also the error distributions in Fig. 4.7).
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Figure 4.5: Spatial density maps for Scenario #2. Note that Cluster C is missing already in the
“oracle” map due to the particularly “low” degree of radio coverage in that area. Consequently,
Cluster C is missed also by the final ML estimate)
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Figure 4.6: Estimated density maps with Voronoi method for Scenario #2 (compare with Fig. 4.5).
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Figure 4.7: Estimation error distributions (CCDF) for Scenario #2.
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4.3.3 Considerations about the representativeness of simulations for real-world
scenarios

Recall that the above simulation results were obtained on synthetic data generated according to a
simplified toy-model. While they cannot be taken as a final “proof” of performance with real-world
data, they are nevertheless informative and provide an initial indication of what might be expected
in a practical deployment. Here below we summarise the most important points learned from the
above results, along with some considerations and conjectures based on our expert knowledge,
with the high-level goal of motivating further experimentation with samples data from (possibly
multiple) real-world MNOs.

First of all, we remark that the good result obtained in Scenario #1 validate the correctness of the
ML estimation method formulated in §3.6. Recall that the synthetic data were produced according
to the same generative model underlying the ML estimation model (ref. Appendix A). Further
work is needed (i) to assess the sensitivity of the estimation process to various possible sources
of model mismatching encountered in real-world data (e.g., unequal cell selection probability) and
from there (ii) to develop robust estimation processes. Of particular importance is to gain a better
understanding of additional bias due to (possibly time-varying) correlations between MS location
and MS activity (for both CDR and augmented VLR data) and develop ways to counteract it. The
research along these lines must be based on real-world data, possibly from different MNOs.

Second, the “disappearance” of Cluster C (from the oracle maps in Fig. 4.5(b) and Fig. 4.5(b))
in Scenario #2 should be taken as an instructive warning of the type of information loss that in
principle might occur in areas where the radio coverage is particularly “thin” (i.e., with only few
large cells). However, we expect that such cases will occur rarely in practice and will represent
“anomalous” patterns rather than typical behaviour. In fact, real cellular networks are engineered
and regularly (re)optimised to “match” the radio capacity to the “normal” traffic density observed
locally in the peak-hour period. Occasional mismatching might be generated when a very high
number of people gather in a country area that normally yields very low traffic density. Further-
more, even in these cases one might conjecture that the impact of spatial mismatching is some-
how mitigated by an increased call activity of the people involved in that event — think for example
to real-world cases like a big one-time concert in a remote area, or a severe road congestion in
the countryside.
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Chapter 5

Summary of main findings and points
for further study

In this chapter, we summarise the main results of this study and we point out promising directions
for future work.

Importance of better network topology data

The simulation results in Chapter 4 indicate that major gains in estimation accuracy can be ob-
tained by integrating mobile operator data with additional topology data. For example, the density
estimation procedure (and likely any other spatial analysis based on mobile phone data) would
greatly benefit from the use of accurate cell coverage maps. Now, while cell coverage maps
are measured or estimated at great computational costs, coarse approximations are in general
available. In addition, any coarse approximation of cell footprint (e.g. obtained by static antenna
configuration parameters) improves the data location resolution of mere (exact) tower location,
and the simulation results presented in this study support this claim. As MNO typically possess
this information, we propose to implement internal processes so as to prepare cell coverage data
for their use in combination with CDR/VLR data for improved spatial analysis. Note also that,
when cell coverage maps are made available, the (inter-)section tessellation defined in this study
can greatly improve the results obtained by assuming a Voronoi tessellation method.

Understanding and quantifying the risk of spatial bias

In this work, we have often commented on cell-level location data being exposed to the risk of
spatial estimation uncertainty (or bias). In fact, due to the functional dynamics of the mobile phone
network, the estimation of a cell location is always conditioned to the event of a subscriber starting
a phone call or sending an SMS, whose probability of occurrence typically depends on the MS’s
context and location. Furthermore, the correlation structure between MS location and MS activity
might be varying with time. This introduces a certain risk of under- or over-representing certain
specific locations in cell-level data, leading to distorted view of the population distribution in space
and/or time.
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Notably, the problem lies exclusively in cell-level location data (both from CDR and augmented
VLR), i.e., it is contained at a small scale. For this reason, we conjecture the existence of a fun-
damental trade-off between spatial accuracy and risk of bias — a phenomenon that is somewhat
reminiscent of the bias-variance trade-off in statistics and machine learning [11].

Hence, additional work is required for a better understanding of the various sources of spa-
tial/temporal bias in real MNO dataset, and to quantify the resulting distortion in the final density
estimation. In this respect, the complexity of this task is aggravated by the fact that reference
“ground truth"data might not be available in practice, and that it might be necessary to resort
to comparative studies across different MNO, with different network configurations and customer
population characteristics. Nevertheless, the integration of dataset from different operators (e.g.,
on the basis of joint pilot studies, or projects) is deemed as a promising strategy for reducing
uncertainty and obtain accurate estimations.

Counteracting the risk of bias

Another important challenge is to develop effective approaches to counteract the spatial/temporal
bias that is possibly present in cell-level data. The adoption of adjustable parameters, such as  in
§3.4 should be considered as a very simple initial attempt to address such a problem. Alternative
approaches might consider calibration strategies based on reference data (e.g., census data [8])
or leveraging external data (e.g. land use), which, however, require additional countermeasures
to prevent error propagation across datasets.

Quantifying the cost and benefit of VLR data

Numerous case-studies investigating CDR applications demonstrate that the effort required for
the extraction and preparation of such data is affordable for many MNOs. Unfortunately, there is
no indication about the feasibility (and costs) of large-scale extraction of VLR data, nor about the
achievable gains (e.g., in terms of population coverage, reduced bias, temporal resolution) that
VLR data can bring to the task of population density estimation. As a result, further experimental
work is required to quantify the cost and the potential benefits of complementing CDR with VLR
data. The intention of this study was to provide a unified methodological basis for the joint pro-
cessing of cell-level and LA-level data, hence for the fusion of CDR and VLR, and to shed light on
the opportunity of network data exploration besides traditional CDR data sets.

Towards a multi-MNO pilot study

A number of research directions identified during this study would involve the fusion of, or at
least the comparison between, network-based data extracted by different MNOs. We do not
refer here to “raw" CDR/VLR data nor any other type of micro-data — that in our data process-
ing model never leave the MNO domain — but to highly-aggregated intermediate data: preferably
Map/Counter Dataset (MCD), or at least density maps (ref. §3.1). In order to pioneer the joint pro-
cessing of multi-MNO dataset we envision the launch of pilot projects involving different MNOs for
the coordinated extraction of sample datasets to be further processed and analysed by a trusted
entity (e.g. JRC or Eurostat). It would be highly desirable to involve in the pilot study at least
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two or three MNOs competing on the same national market. This would allow the investigation
of the relative differences in the individual MNO’s “views" (due to different network configurations
and customer basis) as well as the quantitative assessment of the relative gain — in terms of
spatial accuracy and/or bias mitigation — achieved by the two multi-MNO data fusion strategies
presented in §3.1, namely MCD fusion vs. individual map fusion.

We expect that several European MNOs will favourably consider the perspective of engaging in
a common multi-MNO pilot study, simply by considering it as an opportunity cost. Hereby, the
efforts for the preparation of a sample dataset (e.g., CDR plus cell topology data) to serve as
input for the pilot study will probably not exceed a few person-months, considering that such
data are anyway available inside MNOs — still they need to be properly prepared, curated and
pre-processed. Among expected benefits, there is a growing consensus among MNOs on the
commercial value of the data in their possess, and the federation of multi-MNO data — at least
within the limited scope of a pilot project — bears the potential to stimulate new applications,
attract new customers that are not at reach of individual MNOs, as well as European institutions
supporting public policies. We hope this study will contribute concretely to move some steps in
this direction.
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Appendix A

Reference generative model

In this appendix we detail the simple generative model underlying the model parameters in the
ML estimation procedure developed in §3.6. The same model was used to generate the synthetic
data in Chapter 4.

Consider a generic MS ¢ placed in section n and attached to the network of the mth MNO at the
reference time t*. Recall that Z,, represents the set of cells covering (each tile of) section n, and
zn, the number thereof. Every MS can be camped only in a single cell at any given time, and in
case that multiple cells are available (z,, > 1) we assume that every cell has the same probability
of being selected. Hence:

. . . if j¢& 2,
Pnj = Prob{MS i camped in cell j | MS i located in section n} = { 291 :f j i =

Pu;

section n

S

cells covering section n

Figure A.1: Scheme of the simple probabilistic model for MS-to-location assignment underlying
the estimating method described in §3.6.
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The fact that MS i was camping to cell j is a necessary but not sufficient condition for ¢ to be
“observed" in cell j by the network measurement process. More precisely, MS i can be assigned
to three different locations: the cell j itself (in the best case), the associated RA or the greater LA
(in the worst case), as depicted in Fig. A.1. In practice, several factors concur to determine the
mapping area for MS i: (i) which source databases are considered by the measurement process
(CDR and/or VLRY); (ii) the configuration of the MS (e.g., whether it is attached exclusively to the
CS domain or to the PS domain too) and (iii) the recent activity pattern of the MS (e.g., whether it
has performed voice calls in the reference observation interval). As discussed earlier in §3.3, the
MS activity is not independent from the current MS location, and this introduce a certain risk of
bias, due to possible over- or under-representation of specific locations. In the simple generative
model we disregard these types of correlations.

Formally, consider a cell j included in LA Z, i.e., j € A;. Denote by p,, < 1 the activity coefficient

in section n, i.e.
pn & Prob{MS i active | MS i located in section n}.

By assuming that every MS is observed either in the respective cell of LA (for the sake of simplicity
we do not consider RA here), it holds that:

£ Prob{MS i observed in cell j | MS i located in section n}

/
an
=Prob{MS i observed in cell j | MS i camped in cell j, located in section n}
-Prob{MS i camped in cell j | MS i located in section n}

=PnPnj-

In the simple generative model we assume an uniform activity coefficient, i.e:
Pn=p, Vn. (A.1)
With this simplifying assumption, the optimal value of the projection factor is v = 1 (ref. §3.4),

and therefore the probability that a generic MS located in section n is mapped to the (projected)
counter d; reduces to ¢,; = pn;-
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Preliminary analysis of LA sizes from
OpenCellID database

The mobile network can track the position of all MSs in active or idle mode at least at the level
of Location Areas (see Sect. 1). Moreover, although the position of active MSs is known at
cell level, this information is not necessarily included in the VLR. This section aims to provide a
rough estimation of the spatial granularity of localizations at LA level based on a large dataset of
concurrent GPS position and Cell-ID (equivalently: CGl) recordings. Such a dataset is provided
free of charge by OpenCellID [2].

The OpenCellID database

OpenCellID is a large collaborative project collecting GPS location data for cell identifiers (Cell-
ID), with the main application of providing power-efficient and fast location information to mobile
devices. As of August 2014, over a billion measurements were collected, which are publicly
available under a free Creative Commons license [2]. The data is collected fully automatically
by registered users via various smart phone apps. Although this database is primarily intended
to provide a mapping from given cell ids to geo-locations, we use it in this study to estimate the
localization error - i.e. the spatial granularity - of device localizations based on cells or Location
Areas.

However, since OpenCellID data are collected by volunteers, compiled automatically and pro-
vided free of charge, there is no guarantee regarding the quality of the data. Typical errors in the
OpenCellld database include

e Erroneous cell-IDs: occasionally the recorded cell ids are wrong. Typically in these cases,
the cell id, local area code (LAC) and mobile network code (MNC) are mixed up. In practice,
the erroneous cell-IDs do have only few GPS measurements attached and can be easily
filtered out by introducing a threshold to the number of measurement records for each cell.

e Unrealistic cell sizes: The GPS measurements of some cells are distributed across a whole
country which is clearly unrealistic. The reason for this type of errors is not known to the
authors. One possible explanation for such phenomena are so-called “Cell-On-Wheels"
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(COW) or “Cell In A Box" (CIAB). These mobile antennas are used by MNOs to provide
temporary service with temporary equipment, e.g. to cover increased demand at specific
events. Since mobile antennas can change their position and covered area, their ID will
be attached to GPS measurements which vary greatly over time and can yield a distorted
picture of actual cell sizes.

e “Antenna dragging": This type of data artifact seems to be caused by devices not updating
the cell id during a trip, reporting the original cell id throughout and wrongly attaching it to
GPS measurements.

e Qutliers: Often, antennas with a number of plausible and consistent measurement points
have additional GPS positions attached that are far away from the other measurements and
are obviously wrong (often they are often not even in the same country).

Moreover, dependencies between measurements collected by the same contributor can intro-
duce distortions, but the OpenCel1ID database does not include any identifier of the device nor
the person having collected the GPS and cell measurements. Robustly estimating LA sizes from
the OpenCel11D data in the presence of such errors and biases therefore involves an initial prepro-
cessing step for data cleansing, and remaining noise is coped with by employing robust statistics
to analyse the spatial extents of cells and LAs.

Analysis method

To alleviate biases towards “heavy contributors” and dependencies between successive mea-
surements during a trip or repeated measurements at the same location, we apply the following
filtering scheme:

e for each cell in the mobile network only one measurement per hour is retained, and all
additional measurements are discarded;

e in a spatial 10m-by-10m grid only one measurement per grid-cell is retained, and all addi-
tional measurements are discarded.

Furthermore, cells and LAs with too few measurements are not included in the analysis:

e Cells with less than 20 retained measurements are discarded;

e LAs with less than 10 different cells having a sufficient number of measurements are ex-
cluded from analysis.

For the remaining Location Areas we define a robust centroid using only the retained measure-
ments. While the median is a common robust measure for one-dimensional location, it does not
generalize easily to higher dimensions. Several such generalizations are known [7], and for our
analyses we use the centerpoint, which is defined as a point for which each hyperplane through
the centerpoint divides the point cloud into two subsets such that the smaller of these subsets
has at least a diﬂ fraction of the points. The algorithm provided in [6] provides a fast probablistic
approach for computing centerpoints.
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Total Urban Areas Rural Areas
Country | #LAs #measurements \ #LAs #measurements | #LAs #measurements
Germany | 2028 122,253,897 | 334 14,252,655 | 1694 108,001,242
France | 350 1,246,915 | 126 362,792 | 224 884,123
ltaly | 115 167,912 57 77,878 58 90,034
Austria | 290 2,776,196 66 470,561 224 2,305,635

Table B.1: Number of LAs and measurements used for LA size estimation.

We characterize the size of a Location Area by the distances of each of the retained GPS mea-
surement to the centerpoint, and to cope with outliers we use the 90" percentile of these dis-
tances as robust statistic. The distribution of the obtained LA size estimations can help to get a
picture of the spatial granularity of localizations based on Location Area IDs, e.g. for the purpose
of estimating population densities. An example of a Location Area and its estimated size based
on OpenCellID measurements is shown in Figure B.1. Figure B.2 shows the estimated spatial
extents of all the LAs of one german mobile operator, which had enough data available to be
included in this analysis.

+

LE

(@) (b)

Figure B.1: Example of measurements of a single Location Area in the OpenCellID database:
a) Zooming out reveals outlying GPS measurements (red dots) with large distances to the robust
centerpoint (yellow star). b) The convex hull of the measurements within the 90" percentile of
distances to the centerpoint (green dots) approximates the spatial extent of the Location Area.

Results

We applied the analysis method described above to four different countries: Germany, France,
Italy, and Austria. In our analysis we included the networks of all MNOs operating in these coun-
tries. Since the sizes of cells and Location Areas differ significantly between urban and rural
areas, we computed the size distributions for urban and rural areas separately. Location Areas
belonging to urban areas were identified by matching their center point to a map of densely pop-
ulated areas, which is publicly available at [1] and depicted in Fig. B.3. The number of LAs and
measurements used for this analysis in each of the four contries is shown in Table B.

The resulting LA size distributions are shown in Figure B.4. The median of the LA size in urban
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Figure B.2: Estimated spatial extents of all the LAs of one german mobile operator, which had
enough data available to be included in this analysis.

areas is about 9km in Germany, about 10km in France and Italy, and about 6.5km in Austria. In
rurals areas the median LA size estimation was about 18km in Germany, about 20km in Italy and
Austria, and about 26km in France.
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Figure B.3: Densely populated areas used for the analysis of Location Area sizes in urban and
rural areas (data taken from [1].

Germany France
1 1
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
w 05 w 05
0.4 0.4
0.3 0.3
02 urban areas 0.2 urban areas
0.1 rural areas 0.1 rural areas
00 10 20 30 40 50 60 70 80 90 100 00 10 20 30 40 50 60 70 80 90 100
km km
Italy Austria
1 1
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
w 05 w 05
0.4 0.4
0.3 0.3
0.2 urban areas 0.2 urban areas
0.1 rural areas 0.1 rural areas
00 10 20 30 40 50 60 70 80 90 100 o0 10 20 30 40 50 60 70 80 90 100

km km

Figure B.4: Emprical CDF of Location Area sizes in Germany, France, Italy, and Austria.
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List of Acronyms

APN Access Point Name

BSC Base Station Controller

BTS Base Transceiver Station

CDR Call Detail Record

Cail Cell Global Identifier

CN Core Network

CS Circuit Switched

GGSN Gateway GPRS Support Node

HLR Home Location Register

IMEI International Mobile Equipment Identity
IMSI International Mobile Subscriber Identity

LA Location Area
LAC Location Area Code
LAI Location Area ldentity

LAU Location Area Update
MCC Mobile Country Code
MCD Map/Counter Dataset (*)
MNC Mobile Network Code
MNO  Mobile Network Operator
MS Mobile Station

MSC Mobile Switching Center
PLMN  Public Land Mobile Network
PS Packet Switched

RAN Radio Access Network

RA Routing Area

RAC Routing Area Code

RAI Routing Area Identity

RNC Radio Network Controller
SIM Subscriber Identity Module
SGSN  Serving GPRS Support Node
SMS Short Message Service
TA Tracking Area

TAC Type Allocation Code
T-IMSI  Temporary IMSI

VLR Visiting Location Register

(*) This acronym was defined in this document and is not part of the standard 3GPP terminology.

63 of 65



Bibliography

[1] Natural earth data. www.naturalearthdata.com. Accessed: 2015-01-10.
[2] OpenCelllD. http://opencellid.org. Accessed: 2014-10-20.

[8] ETSI TS 132 215. Charging data description for the packet switched (ps) do-
main. In http: //www. etsi. org/ deliver/etsi_ ts/132200_ 132299/ 132215/ 05.
09.00_60/ts_ 132215v050900p. pdf.

[4] F. Aurenhammer. Voronoi diagrams — a survey of a fundamental geometric data structure.
ACM Computing Surveys, 23(3), 1991.

[5] Center for Spatial Information Science — Univ. of Tokyo. A study on urban mobility and
dynamic population estimation by using aggregate mobile phone sources. http://www.
csis.u-tokyo.ac.jp/dp/115.pdf.

[6] K. L. Clarkson, D. Eppstein, G. L. Miller, C. Sturtivant, and S.-H. Teng. Approximating center
points with iterative radon points. Int. J. Comput. Geom. Appl., 357(06), 1996.

[7] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Verlag, 1987.

[8] P. D. et al. Dynamic population mapping using mobile phone data. PNAS, 111(45), Novem-
ber 2014.

[9] F. Ricciato. Traffic monitoring and analysis for the optimization of a 3g network. IEEE Wire-
less Communications — Special Issue on 3G/4G/WLAN/WMAN Planning, 13(6), December
2006.

[10] F. Ricciato et al. Traffic monitoring and analysis in 3G networks: lessons learned from the
METAWIN project. Elektrotechnik & Informationstechnik, 123/7/8, 2006.

[11] J. Friedman. On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Mining and
Knowledge Discovery, 1(1), 1997.

[12] INSPIRE Thematic Working Group Coordinate Reference Systems and Geographical
Grid Systems. D2.8.1.2 Data Specification on Geographical Grid Systems — Tech-
nical Guidelines. http://inspire.ec.europa.eu/documents/Data_Specifications/
INSPIRE_DataSpecification_GG_v3.1.pdf. Accessed: 2015-03-27.

[13] A. Janecek, D. Valerio, K. A. Hummel, F. Ricciato, and H. Hlavacs. The cellular network as
a sensor: From mobile phone data to real-time road traffic monitoring. IEEE Transaction on
Intelligent Transportation Systems, 2015.

64



BIBLIOGRAPHY

[14] F. Pantisano and M. Craglia. Mobile network operator data to support urban planning and
management. JRC working document, 2015.

[15] S. Tartarelli, N. d’'Heureuse, and S. Niccolini. Lessons learned on the usage of call logs
for security and management in ip telephony. IEEE Communications Magazine, 48(12),

December 2010.

65 of 65



European Commission
Joint Research Centre — Institute for Environment and Sustainability

Title: Estimating population density distribution from network-based mobile phone data

Author(s): Fabio Ricciato, Peter Widhalm, Massimo Craglia and Francesco Pantisano

2015 - 65pp. —21.0 x 29.7 cm



JRC Mission

As the Commission’s
in-house science service,
the Joint Research Centre’s
mission is to provide EU
policies with independent,
evidence-based scientific
and technical support
throughout the whole

policy cycle.

Working in close
cooperation with policy
Directorates-General,

the JRC addresses key
societal challenges while
stimulating innovation
through developing

new methods, tools

and standards, and sharing
its know-how with

the Member States,

the scientific community
and international partners.

Serving society
Stimulating innovation
Supporting legislation



