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Abstract 

 

The performances of the first month of the ECMWF probabilistic extended forecast and the seasonal forecast to predict 

droughts over Europe are compared. The Standardized Precipitation Index is used to quantify droughts. 

It can be shown that on average the extended forecast has higher skill than the seasonal forecast whilst both outperform 

climatology. No significant spatial or temporal patterns can be observed but the scores are improved when we focus on 

large scale droughts. 

This report further analyses several different methods to convert the probabilistic forecasts of SPI into a Boolean drought 

warning. It can be demonstrated that methodologies which convert low percentiles of the forecasted cumulative 

distribution function of SPI into warnings are superior in comparison to alternatives such as the mean or the median of 

the ensemble. This work demonstrates that around 40% of droughts in Europe are correctly forecasted one month in 

advance. 

Nevertheless, due to the lack of the significant difference between the distributions of the ensemble members for false 

alarms or misses on one hand side and correct forecasts on the other hand side, it is not yet possible to quantify the 

uncertainty of the drought forecasts. 
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1 IntrodutionDroughts impat many human ativities and environmental proesses. Theyoften spread over vast geographial regions and last for many months or evenyears (Lloyd-Hughes and Saunders, 2002). This makes them one of the ostli-est of all natural disasters (Below et al., 2007). Droughts signi�antly impateonomi setors, suh as agriultural ativities or water resoures manage-ment, espeially in vulnerable areas (Fraser et al., 2013). In partiular, fore-asts are needed to antiipate droughts and mitigate their e�ets. Deisionmakers and end users require simple and robust foreast indies whih andetet the onset, maintenane and end of the drought onditions. Droughtsan be lassi�ed under several ategories (Wilhite and Glantz, 1985): (i)hydrologial drought, whih is assoiated with the e�ets of periods of pre-ipitation de�its on surfae or subsurfae water supply; (ii) agriulturaldrought, whih links meteorologial (or hydrologial) drought to agriulturalimpats, fousing on the plant water stress, and (iii) meteorologial drought,whih is de�ned as a large-sale and prolonged rainfall de�it over one orseveral months.In this study, we will fous on meteorologial droughts based on monthlypreipitation. This timesale is a key hallenge beause it is onsidered to bea di�ult time range, whih falls between medium-range foreasting (whihis strongly related to initial onditions) and the seasonal time-sale (whihis mainly driven by oeani variables) (Vitart, 2014).Meteorologial droughts an be analysed using the Standardized Preip-itation Index (SPI, MKee et al. (1993), reommended by WMO (2012)),whih is a normalised quanti�ation of the preipitation de�it (Viente-Serrano, 2006; Dutra et al., 2013).It has been demonstrated that droughts an be foreasted using stohas-ti or neural networks (Kim and Valdés, 2003; Mishra et al., 2007). Theseforeasts an provide "reasonably good agreement for foreasting with 1-2month lead time" (Mishra and Desai, 2005). But a large part of these stud-ies do not ompare the sore of these foreasts with the foreasts providedby the preipitation �elds of the probabilisti models. Foreasts of droughtsan also be produed using Numerial Weather Predition Models (Dutraet al., 2013, 2014). Suh foreasts are highly unertain due to the haoti na-ture of the atmosphere, whih is partiularly strong at the sub-seasonal timesale (Stokdale et al., 1998; Vitart, 2014). Therefore, ensemble preditionsystems are developed whih foreast multiple senarios of future weatheronditions. Probabilisti foreasts beome partiularly important in assess-ing the risks assoiated with high-impat and rare weather events suh astropial ylones (Hamill et al., 2012), or for identifying the unertainties of2



the foreasts (Buizza et al., 2005). Foreasts on the subseasonal and seasonaltimesales using dynami models have evolved onsiderably over reent years,and demonstrate potential usefulness for prediting large-sale features andteleonnetions (Barnston et al., 2012; Arribas et al., 2011). The latter anbe used in statistial downsaling methods using weather types, for exam-ple, Eshel et al. (2000) used the North Atlanti sea level pressure preursorsto foreast drought over the eastern Mediterranean region. However, eventhough, the foreasts were statistially signi�ant, with a lead time of severalmonths, they were made for a limited region that is one of the most sensitiveto weather types in Europe. even if the foreasts are statistially signi�antfor a lead time of several months, the region studied is restrited and is oneof the most sensitive to weather types in Europe.Numerial Weather Preditions also produe foreasts of preipitation. Ingeneral, the published literature indiates that the auray of these foreastsof preipitation in Europe is low skill of these preipitation �elds over Europeis low (Rihardson et al., 2013; Weisheimer and Palmer, 2014) although thereare onsiderable spatial variations. However, suh analysis tends to be per-formed from the viewpoint of a meteorologist and does not inorporate thenon-linear transformations or spei� properties that are relevant for droughtforeasting. Drought foreasts an be based on di�erent lead times rangingfrom a few weeks to several months, and the auray of any foreast will de-rease with inreasing lead time. The monthly time sale poses a partiularhallenge beause it represents the transition between medium-range fore-asting (up to 14 days), whih is strongly related to initial onditions, andseasonal foreasting, whih is largely driven by oeani variability (Vitart,2014).The European Centre for Medium-Range Weather Foreasts (ECMWF)provides two di�erent types of foreasts for this time range: an extendedforeast with a lead time of up to 32 days, whih is issued twie a week, anda seasonal foreast with a lead time of up to 12 months, issued one a month.The extended range foreast inorporates more reent model developmentsand is usually more aurate (Vitart et al., 2008). Moreover, the seasonalforeasting system is based on an older model yle (Molteni et al., 2011).In order to exploit suh methodologies, one needs to understand and analysethe property and skill di�erenes between the two systems in the ontextof the partiular appliation. Suh an analysis must be performed not onlybased on the numerial skill of foreasting droughts, but also within theontext of the binary deision (drought foreasted or not) to issue droughtwarnings. The latter poses a partiularly hallenge if suh deisions are basedon probabilisti foreasts.The objetives of this report are to analyse the preditability of monthly3



drought foreasts based on Numerial Weather Preditions and the Standard-ized Preipitation Index (SPI). The extended range and seasonal foreastingsystems will be ompared diretly and within the ontext of deision-makingframeworks. Multiple sores and multiple methodologies whih allow prob-abilisti foreasts to be transformed into binary deisions will be developedand tested.The main underlying issues are: what is the preditability of a droughtourrene based on the SPI-1, whih is the most useful model - the Seasonal(SEAS) or the monthly ENSemble system (ENS) for the 30-day umulativepreipitation, and what are the spatial and temporal variabilities of eahmodel? Adapted skill sores will provide information about the ability of theprobabilisti models to aurately foreast suh kinds of extreme events.The report is organised as follows: the datasets and method are presentedin setion 1; the tools and methods used are explained in setion 2; the resultsare disussed in setion 3; and Conlusions are drawn in setion 4.2 Data and methods2.1 PreipitationObservationsThis study used a gridded preipitation dataset from the ENSEMBLESprojet and ECA & D (Haylok et al. 2008; Van den Besselaar et al. 2011,E-OBS Version 5), whih inludes ontinuously updated data from 1950 on-wards. As this analysis fouses on large-sale droughts, the spatial resolutionof this dataset (0.25 degrees) was upsaled by averaging the umulative pre-ipitation to a 1-degree grid.The data was validated by Pereira et al. (2013); Sunyer et al. (2013)who found that datasets from ECA & D show higher values for extremepreipitation, and E-OBS tends to smooth the data too muh. This angenerate problems when analysing intense preipitation events, but appearsto be of seondary import for drought analysis. Daily preipitation valueswere aggregated to monthly aumulates to be able to ompare with monthlyforeasts. These data are available from 1950 and are regularly updated.Nevertheless, to be onsistent with the data provided by the ensembles fromthe ECMWF, the hindast period of 1992 to 2013 was used to alulate andanalyse the preipitation anomalies.
4



Table 1: ENS and SEAS on�gurations for the hindast and the foreastperiods.Periods Evaluation Period ENS SEASHindasts 11/1992 to 10/2012 5 members 15/51 membersForeasts 01/11/2012 to 31/10/2013 51 members 51 membersForeastsTwo sets of oupled ensemble foreasting systems are provided by the ECMWFto foreast one month ahead: an extended-range monthly foreast and a sea-sonal foreast (Table 1).The results of the ECMWF monthly (32-day) extended-range ensembleforeasting system (Vitart, 2004), hereafter ENS) have been issued twie aweek sine Otober 2011. This model is the latest version of the ECMWFIntegrated Foreasting System. For lead times up to day 10 the model isnot oupled to the oean and has a resolution of about 32 km (T639). Itis fored by persistent sea-surfae temperature anomalies. While beyond alead time of 10 days the resolution of the model is oarser (T319, 64 km),it is oupled to an oean model. The vertial resolution remains unhangedduring the entire simulation at 62 vertial levels. The ECMWF provides abak statisti (Hindasts) for ENS whih is a 5-member ensemble starting onthe same day and month as eah Thursday's real time foreast for eah ofthe past 20 years. For a more detailed desription see Vitart (2014).The seond ECMWF ensemble system used in this study is a seasonalforeast alled System 4 (Molteni et al. (2011), hereafter SEAS) that islaunhed on the �rst day of eah month. It has lead times up to 13 monthsand a resolution of T255 (80 km). This model is the 2011 version of theIntegrated Foreast System with 91 vertial levels. SEAS provides a bakstatisti, whih is a 15/51 member ensemble (the number depends on themonth) idential to SEAS for every month from 1980 onwards. In this studyonly the �rst foreast month was used.SEAS and ENS are omposed of 50 members, whih are generated byperturbing initial onditions and physial tendenies (Molteni et al., 1996;Weisheimer et al., 2014)) and one unperturbed member. Both datasets werere-gridded to a one-degree resolution using a mass onservative interpolation.The two systems were ompared over their hindast periods and a foreastperiod, as an be seen in Table 1. This allows for a larger sample size and amore signi�ant omparison.However, while this tehnique is robust and ommonly used, it has a fewdisadvantages: there are only �ve members in the ensemble of the reforeasts,5



ompared to 51 members used for the realtime foreasts. The ensemble sizean have an impat on skill sores, whih needs to be orreted for. Weigelet al. (2008) faed the same issue when they sored the ECMWF reforeastsprodued in 2006 - they used a orretion of the probabilisti skill sore whihtakes into aount the ensemble size.2.2 Drought detetionIn this study the Standardized Preipitation Index (SPI) is used to detetdroughts solely based on preipitation data. The SPI was developed byMKee et al. (1993) and is urrently used in sienti� studies and operationalsystems (Guttman, 1999; Khan et al., 2008; Dutra et al., 2013, 2014). TheSPI has the advantage that it is very simple to use and provides informationabout preipitation anomalies. It is also very �exible, allowing alulationsto be aggregated over di�erent spatial sales (from station data to large-saleareas) as well as temporal domains (from 10 daysâ�� to several monthsâ��umulative preipitation, Mishra and Desai (2006); Caiamani et al. (2007)).As this study fouses on the monthly timesale, the SPI was alulatedusing monthly aumulated preipitation data (SPI-1). The SPI is usuallyomputed by �tting a probability density funtion (often a Gamma distri-bution) to the data (Lloyd-Hughes and Saunders, 2002; Edossa et al., 2010;Dutra et al., 2013; Guy Merlin and Kamga, 2014) as illustrated in Figure 1.Through the appliation of an inverse normal (Gaussian) funtion, data aretransformed into normal spae with a mean of 0 and a standard deviation of1. The hypothesis that the data an be approximated by a Gamma distri-bution must be tested to ensure that all onlusions are valid, by omparingthe reonstruted distribution to the empirial one. The Gamma funtionannot be �tted when only a few data points (events) or very low data val-ues (preipitation) exist, beause in suh ases numerial onvergene of theoptimisation proess annot be ahieved. Therefore, the SPI methodologyannot be applied in very arid regions.The method of the SPI was performed for eah grid point of the domainand built from foreasts and hindasts based on the ECMWF system, asshown in Figure 2The SPI value an be broken down into di�erent lasses (WMO, 2012):normal onditions from -1 to 1; moderate drought with SPI < -1; severedrought with SPI < -1.5; and extreme drought with SPI < -2. The timeseries of the analysed foreasts in this report are too short to justify fousingon an SPI lower than -2 (last 2.3% of the distribution). This is illustrated inFigure 3, whih shows the signi�ant spatial variability of drought ourreneusing this threshold. Based on the method used, this ourrene should be6
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Figure 1: Three steps of the SPI alulation: i) monthly umulated preipi-tation; ii) empirial CDF and �tting of the Gamma distribution; iii) trans-formation into a normal CDF with mean=0 and SD=1. Red points indiatean example of an SPI foreast of about 15 mm that beomes an SPI-1 of-0.27.equal to 2.3% over Europe. Therefore, this study fouses on moderate andsevere droughts only.One strong advantage of this method is that it produes an unbiasedprodut with a homogeneous rank histogram (Talagrand Diagram) of theobserved preipitation ranked onto the foreasted preipitation (Figure 4).2.3 Deriving deision support from probabilisti fore-astsOne of the main objetives of this work is to provide deision makers andend users with a simple and robust boolean index to foreast the ourreneof drought based on a probabilisti foreasting system. It is therefore impor-tant to selet appropriate tools to haraterise the quality of the foreasts.It is di�ult to lassify these foreasts using a very simple sore due to thethree dimensions of the foreasts, as illustrated in Figure 5. Several methodsfor seleting a boolean solution were tested and ompared to a determinis-ti model (de�ned here as the unperturbed member of the Ensemble). Aomparison was also made with a limatologial foreast. Methods to derivethis index are given in Table 2 and an be ategorised into three types: in-7



Figure 2: Methodology to generate SPI with the ENS operational model. Thehindasts generate the baseline and the foreast is plaed in this distribution.This allows for the provision of an SPI index relative to the grid ell or stationstudied.
SPI < -1         SPI < -1.5           SPI < -2

Figure 3: Drought ourrene foreasts (as a perentage - top panels, or rela-tive to the theoretial distribution - bottom panels) alulated using di�erentthresholds, SPI-1 < -1 (left panels), SPI-1 < -1.5 (entral panels), and SPI-1< -2 (right panels) 8
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SPI1 observed (Oct-Nov 2011)

SPI1 forecasted (Oct-Nov 2011)

-2                           -1                            0                             1                            2Figure 5: Example of temporal evolution of four onseutive weeks of SPI-1observed (top panels) and foreasted using ENS (bottom panels) during theperiod from Otober 2011 to November 2011.
Table 2: List of the 10 methods used to provide a boolean index for droughtforeasting using an ensemble systemName De�nition13 perentile (Q13) member loated at the 13% of the CDF23 perentile (Q23) member loated at the 23% of the CDFmedian (MED) member loated at the 50% of the CDF77 perentile (Q77) member loated at the 77% of the CDF88 perentile (Q88) member loated at the 88% of the CDFLarge spread (SpL) sum of the extreme members (Q13 + Q88)low spread (Spl) sum of the members (Q23 + Q78)Dry spread (SpD) sum of the dry members (Q13 + Q23)Flood spread (SpF) sum of the wet members (Q77 + Q88)Mean ensemble mean
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between events and non-events. It is not bias-sensitive to the foreast andan be onsidered as a potentially useful measure beause it is onditioned byobservations (i.e. given that a drought ourred, what was the orrespondingforeast?). The area under the ROC urve an be alulated, with a rangebetween 0 and 1. Higher numbers indiate a better foreast.The reliability diagram, whih is onditioned on the foreasts, is a goodomplementary sore to the ROC beause it assesses the average agreementbetween the foreast values and the observed values. In a reliability diagramthe foreast probability is plotted against the observed relative frequeny(Nurmi, 2003). A perfet sore is assoiated with the 1:1 line. The lima-tology sore (i.e. no resolution) orresponds to the mean observed frequeny(i.e. observed relative frequeny of y=0.159 for SPI < -1).The auray of the probability foreasts is assessed using the Brier SkillSore (Brier, 1950). A skill sore an be derived by omparing the BrierSkill Sore to limatology. The Brier Skill Sore ranges from -in�nity to1. The higher the sore the more skillful the foreast, and any negativevalues indiate that the limatologial foreast outperforms the probabilistiforeast.The abovementioned sores are omplemented by the orrelation of theensemble mean and the Root Mean Squared Error of the ensemble mean,whih are frequently used in the evaluation of seasonal foreasts.Several sores deal with the ontingeny table. Using this representation,both the foreasted and observed solutions are booleans. In this study, wehave used �ve suh sores. The Probability Of Detetion (POD, perfet =1) is the ratio of the observed to the foreasted events. The False AlarmRate (FAR, perfet = 0) is the fration of the foreasted events that didnot atually our. The extreme dependeny sore (EDS) integrates thePOD and the FAR (Ferro and Stephenson, 2011). Finally, the Gilbert sorebalanes the POD and orret perentage of ases (Jolli�e and Stephenson,2003; Hogan et al., 2010), and measures the fration of observed and/orforeasted events that were orretly predited, adjusted for hits assoiatedwith random hane.3 Results3.1 Evaluation of the SPI alulationThe sensitive part of the SPI alulation is the step of the �tting of a distri-bution to the empirial distribution. In this study, the Gamma distributionis �tted to the probability density funtion of monthly preipitation. It is11



Figure 6: Bias of the SPI-1 alulated between the �tted Gamma distribu-tion and the observed monthly umulative preipitation (see text for details).Regions in white are onsidered to be too dry to �t this distribution. Re-gions where the bias deviates signi�antly from 0 (non-hathed areas) ouldgenerate bias in the SPI alulation.therefore neessary to set a threshold at whih minimum umulative preip-itation an be onsidered signi�ant.Di�erent thresholds were tested (0 mm, 1 mm, 5 mm, 10 mm and 20 mm,not shown), and it was deided that only monthly preipitation levels greaterthan 10 mm are signi�ant. This threshold allows us to keep a large numberof events and to ignore events or regions with insigni�ant monthly aumu-lated rainfall. As outlined in the methodology, �tting a Gamma distributionto preipitation data relies on an adequate sample size (with respet to thevariability of the data). The Gamma distribution was �tted to the distribu-tion if at least 66% of a gridpointâ��s values were signi�antly larger than 0(i.e. larger than 10mm). This ensures the inlusions of a minimum numberof events to �t the distribution. These thresholds failitated the removal ofarid areas for whih the �tting of the Gamma distribution presented biasedvalues due to the low spread and low sampling of the time series.The performane of the �tting proedure and all assumptions an beanalysed by investigating the resulting SPI-1 distribution. This was doneby alulating the integral of the di�erenes between the �tted Gamma dis-tribution and the empirial distribution. Zero values are onsidered to beperfet values (no bias of the SPI-1), whereas positive or negative values in-diate bias and therefore give rise to doubts about the validity of the �ttingproedure. In Figure 6, the bias of the Gamma distribution is shown. It an12



(a) Correlation (b) RMSEFigure 7: (a) Correlation of the foreasted (using the mean of the ensem-ble) and observed sores for the hindast period (from November 1992 toNovember 2012) for (a) SPI-1 and (b) RMSE.be seen that the method is adapted in a large parts of Europe.However, the low preipitation levels in southern Spain an reate somebias in the �tting proess. This is espeially true during the summer season,and therefore the assumptions for �tting the Gamma distribution are notvalidated for the entire year. This analysis shows that it will be neessary toadapt the method, partiularly over dry areas, for example by arrying outthe study only during the rainy seasons.3.2 Validation during the hindast periodThis evaluation is based on the hindast period (see table 1) of ENS andSEAS. It allows for the long-term evaluation using the same version of themodel. The orrelation and root mean square error of the ensemble means aredisplayed in Figure 7. The mean orrelation (0.32) and the mean Root MeanSquare Error (RMSE, 1.02) for ENS are better than those for SEAS (0.05and 1.45 respetively, not shown). Neither the orrelation nor the RMSEdeviate signi�antly from 0, suggesting that a mean monthly foreast has noskill. In addition, the spatial variability is low, whih indiates there is nosigni�ant spatial di�erene in the ability of the model to predit the SPI-1on average.The SPI-1 values of individual ensemble members and observations wereanalysed in bins to assess whether these results are also valid for extremeevents. Here, the individual ability (for eah member independently) wasassessed by breaking down the foreasted and observed SPI-1 over Europeduring the hindast period into 10 lasses (from SPI-1 lower than -2, to SPI-1 larger than +2, at intervals of 0.5). The frequeny in eah bin naturally13
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(d) SEAS, 5degFigure 11: Reliability diagrams for drought detetion de�ned as an SPI-1 lower than -1 using ENS (toppanels) and SEAS (bottom panels) in theperiod from November 2012 to November 2013. The spatial resolution is onedegree (left panels) and 5 degrees (right panels).the maximum is 81%.The ENS and SEAS systems are better than limatologial foreasts ofdrought events, ahieving values of 0.14 and 0.12 respetively. In this ase,the di�erene between ENS and SEAS is not signi�ant.3.4 Sensitivity to drought salesAlthough the analysis so far has been performed on a sale of 1 by 1 degree,the sensitivity to di�erent resolutions needs to be analysed, beause the im-pats of large-sale droughts will be stronger. Figure 10 shows SPI-1 valuessmoothed to 3 and 5 degrees using a simple upsaling method based on theaverage of the values. The resolution of about 1 degree has been kept toompare the impat of the resolution on the native grid. The results show a17



Figure 12: ROC anomaly (in %) in relation to the mean value of the ROC overthe domain (equal to 0.67) for the period from November 2012 to November2013 with drought de�ned as a SPI-1 < -1slight improvement of the ROC area with a oarser resolution (broken anddotted lines in Fig. 10). The smoothed signal favours the large-sale signa-tures that are better represented in models than the small-sale strutures ofdroughts. The e�et of spatial upsaling an also be seen in the ROC resultsas a little positive impat for SEAS for the largest foreast probabilities (Fig.11d). However, as mentioned previously, the number of events in these asesis low. This e�et has been quanti�ed onto the Brier Skill Sore (BSS) thatgoes up to respetively 0.17 and 0.14 for the 5-degree smoothed signal.3.5 Spatial and seasonal variabilitiesSpatial variabilityThe analysis so far has ignored the spatial and seasonal sales. Figure 12shows the ROC anomaly for the foreast period, whih is the ROC areafor eah grid ell in relation to the average (0.67 for ENS). The anomaly ispreferred to the raw value to highlight regions where the ROC is improved orredued. A maximum variability of 20% an be observed. For the hindastperiod (not shown) this variability is muh lower (at around 6%). Thereis a di�erene in spatial patterns between the two periods, whih seems toindiate that the spatial patterns are not signi�ant and are mainly driven18
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Table 3: Contingeny table (in perentages) obtained using the median ofENS to foreast a drought. An observed drought is de�ned as having an SPI-1 lower than -1, and a foreasted drought is de�ned as having an ensemblemedian that is lower than the 16th perentile. The seond values of eah aseindiate the ensemble spread, and its standard deviation is given in braketsdrought observedyes nodrought yes 4.4% / 2.31 (0.4) 10.7% /2.37 (0.4)foreasted no 10.4% / 1.99 (0.4) 74.5% / 1.88 (0..3)the members during hits and false alarms are ompared. In that ase, there isno signi�ant di�erene. The average and the distribution of the mean SPI-1of the ensemble is the same. These results are in agreement with Table 3,whih quanti�es the ensemble spread for eah ase of the ontingeny table.Based on these results, it appears impossible to evaluate the unertainties ofthe ensemble simulation assoiated with a boolean deision.4 Spatial and temporal variabilities of SPI-1A model of the early warning of drought over Europe will be tested in 2015using atmospherial preditors (suh as geopotential and temperature in thefree troposphere), whih are better represented in the model than preipita-tion. In order to ahieve this objetive, a preliminary study was arried outto haraterise the spatial and temporal variabilities of SPI-1 over Europe.The priniple omponent analysis (PCA), using the empirial orthogonalfuntions (EOF) is the most appropriate tool to perform this kind of study.To illustrate this �rst ongoing step, Figure 18 and 19 illustrates the twomain omponents of the SPI in Europe during the oldest period of the year(from November to Marh) that spans 1992 to 2012. In the �rst mode, thepattern is assoiated with a high variability of SPI-1 loated over Denmarkand northern Germany. Droughts ourred in this area during the beginningof the period (i.e. around 1995) and more reently (strong rainfall de�it in2012). The seond mode is entred in the northern part of Finland. Here wereorded at least 8 episodes of strong rainfall de�its (SPI-1 lower than -1).Based on these identi�ed modes and temporal variabilities, preditors will beidenti�ed by �nding atmospherial variabilities that are highly orrelated tothem.
24



Figure 18: Coe�ient of determination (top left), orrelation oe�ient (topright) and temporal evolution of the prinipal omponent (PC, bottom) ofthe �rst mode of the SPI-1 observed in Europe during the old season (fromNovember to Marh) from 1982 to 2012.
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Figure 19: Same as Figure 18 for the seond mode of the EOF. TThis modeexplains 10% of the total variane.

26



5 ConlusionsThis study provides the �rst assessment of the preditability of meteorologialdroughts over Europe and of the ability to issue an early warning of suhdroughts with a one month lead time. The analysis is based on the onemonth foreast of the SPI-1 from the preipitation outputs provided by twoECMWF ensemble systems. In a �rst step the ability to foreast SPI-1 fromthe ensemble outputs was tested, showing that
• The reliability of the ensemble is better than the limatology,
• The spatial variability of the sores an reah up to 20% over Europeand the seasonal variability is not signi�ant. Nevertheless, we notea large variability of the ensemble sore depending on the events thatourred,
• Ensemble models are better at foreasting large-sale droughts, usinga spatial smoothing up to �ve square degrees.In a seond step the ability to provide a robust Boolean index for droughtforeasting was analyzed. The best method is de�ned by using a threshold of30% of ensemble members assoiated with a drought. In that ase, slightlymore than 40% of the droughts observed are foreasted orretly one monthahead, with only 25% of false alarms. This is signi�antly better than usingthe limatology (16%) or the deterministi models (around 25%). Finally,this study has shown that there is no possibility to provide unertaintiesassoiated with the boolean index.By providing the �rst global assessment of meteorologial drought fore-asting in Europe, this work will be partiularly useful by providing a benh-mark omparison for future studies that ould be developed using othersmethods, suh as those based on atmospheri preditors, whih are betterrepresented in the seasonal models. It ould farther be useful to investigatethe use of moving windows of 10-day umulative preipitation to detail thetemporal behaviour of the foreasted SPI-1. As the foreast skills are betterfor short lead times, an SPI-1 lower than -1, explained by a strong dereasein preipitation at the beginning of the period, should be more reliable.AknowledgementsThe author would like to thanks Jürgen Vogt (JRC) and Florian Pappen-berger (ECMWF) for their valuable omments and suggestions. This dou-ment has been improved by Gráinne Mulhern (JRC) by orreting the text.27
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