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Abstract 

 

The performances of the first month of the ECMWF probabilistic extended forecast and the seasonal forecast to predict 

droughts over Europe are compared. The Standardized Precipitation Index is used to quantify droughts. 

It can be shown that on average the extended forecast has higher skill than the seasonal forecast whilst both outperform 

climatology. No significant spatial or temporal patterns can be observed but the scores are improved when we focus on 

large scale droughts. 

This report further analyses several different methods to convert the probabilistic forecasts of SPI into a Boolean drought 

warning. It can be demonstrated that methodologies which convert low percentiles of the forecasted cumulative 

distribution function of SPI into warnings are superior in comparison to alternatives such as the mean or the median of 

the ensemble. This work demonstrates that around 40% of droughts in Europe are correctly forecasted one month in 

advance. 

Nevertheless, due to the lack of the significant difference between the distributions of the ensemble members for false 

alarms or misses on one hand side and correct forecasts on the other hand side, it is not yet possible to quantify the 

uncertainty of the drought forecasts. 
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1 Introdu
tionDroughts impa
t many human a
tivities and environmental pro
esses. Theyoften spread over vast geographi
al regions and last for many months or evenyears (Lloyd-Hughes and Saunders, 2002). This makes them one of the 
ostli-est of all natural disasters (Below et al., 2007). Droughts signi�
antly impa
te
onomi
 se
tors, su
h as agri
ultural a
tivities or water resour
es manage-ment, espe
ially in vulnerable areas (Fraser et al., 2013). In parti
ular, fore-
asts are needed to anti
ipate droughts and mitigate their e�e
ts. De
isionmakers and end users require simple and robust fore
ast indi
es whi
h 
andete
t the onset, maintenan
e and end of the drought 
onditions. Droughts
an be 
lassi�ed under several 
ategories (Wilhite and Glantz, 1985): (i)hydrologi
al drought, whi
h is asso
iated with the e�e
ts of periods of pre-
ipitation de�
its on surfa
e or subsurfa
e water supply; (ii) agri
ulturaldrought, whi
h links meteorologi
al (or hydrologi
al) drought to agri
ulturalimpa
ts, fo
using on the plant water stress, and (iii) meteorologi
al drought,whi
h is de�ned as a large-s
ale and prolonged rainfall de�
it over one orseveral months.In this study, we will fo
us on meteorologi
al droughts based on monthlypre
ipitation. This times
ale is a key 
hallenge be
ause it is 
onsidered to bea di�
ult time range, whi
h falls between medium-range fore
asting (whi
his strongly related to initial 
onditions) and the seasonal time-s
ale (whi
his mainly driven by o
eani
 variables) (Vitart, 2014).Meteorologi
al droughts 
an be analysed using the Standardized Pre
ip-itation Index (SPI, M
Kee et al. (1993), re
ommended by WMO (2012)),whi
h is a normalised quanti�
ation of the pre
ipitation de�
it (Vi
ente-Serrano, 2006; Dutra et al., 2013).It has been demonstrated that droughts 
an be fore
asted using sto
has-ti
 or neural networks (Kim and Valdés, 2003; Mishra et al., 2007). Thesefore
asts 
an provide "reasonably good agreement for fore
asting with 1-2month lead time" (Mishra and Desai, 2005). But a large part of these stud-ies do not 
ompare the s
ore of these fore
asts with the fore
asts providedby the pre
ipitation �elds of the probabilisti
 models. Fore
asts of droughts
an also be produ
ed using Numeri
al Weather Predi
tion Models (Dutraet al., 2013, 2014). Su
h fore
asts are highly un
ertain due to the 
haoti
 na-ture of the atmosphere, whi
h is parti
ularly strong at the sub-seasonal times
ale (Sto
kdale et al., 1998; Vitart, 2014). Therefore, ensemble predi
tionsystems are developed whi
h fore
ast multiple s
enarios of future weather
onditions. Probabilisti
 fore
asts be
ome parti
ularly important in assess-ing the risks asso
iated with high-impa
t and rare weather events su
h astropi
al 
y
lones (Hamill et al., 2012), or for identifying the un
ertainties of2



the fore
asts (Buizza et al., 2005). Fore
asts on the subseasonal and seasonaltimes
ales using dynami
 models have evolved 
onsiderably over re
ent years,and demonstrate potential usefulness for predi
ting large-s
ale features andtele
onne
tions (Barnston et al., 2012; Arribas et al., 2011). The latter 
anbe used in statisti
al downs
aling methods using weather types, for exam-ple, Eshel et al. (2000) used the North Atlanti
 sea level pressure pre
ursorsto fore
ast drought over the eastern Mediterranean region. However, eventhough, the fore
asts were statisti
ally signi�
ant, with a lead time of severalmonths, they were made for a limited region that is one of the most sensitiveto weather types in Europe. even if the fore
asts are statisti
ally signi�
antfor a lead time of several months, the region studied is restri
ted and is oneof the most sensitive to weather types in Europe.Numeri
al Weather Predi
tions also produ
e fore
asts of pre
ipitation. Ingeneral, the published literature indi
ates that the a

ura
y of these fore
astsof pre
ipitation in Europe is low skill of these pre
ipitation �elds over Europeis low (Ri
hardson et al., 2013; Weisheimer and Palmer, 2014) although thereare 
onsiderable spatial variations. However, su
h analysis tends to be per-formed from the viewpoint of a meteorologist and does not in
orporate thenon-linear transformations or spe
i�
 properties that are relevant for droughtfore
asting. Drought fore
asts 
an be based on di�erent lead times rangingfrom a few weeks to several months, and the a

ura
y of any fore
ast will de-
rease with in
reasing lead time. The monthly time s
ale poses a parti
ular
hallenge be
ause it represents the transition between medium-range fore-
asting (up to 14 days), whi
h is strongly related to initial 
onditions, andseasonal fore
asting, whi
h is largely driven by o
eani
 variability (Vitart,2014).The European Centre for Medium-Range Weather Fore
asts (ECMWF)provides two di�erent types of fore
asts for this time range: an extendedfore
ast with a lead time of up to 32 days, whi
h is issued twi
e a week, anda seasonal fore
ast with a lead time of up to 12 months, issued on
e a month.The extended range fore
ast in
orporates more re
ent model developmentsand is usually more a

urate (Vitart et al., 2008). Moreover, the seasonalfore
asting system is based on an older model 
y
le (Molteni et al., 2011).In order to exploit su
h methodologies, one needs to understand and analysethe property and skill di�eren
es between the two systems in the 
ontextof the parti
ular appli
ation. Su
h an analysis must be performed not onlybased on the numeri
al skill of fore
asting droughts, but also within the
ontext of the binary de
ision (drought fore
asted or not) to issue droughtwarnings. The latter poses a parti
ularly 
hallenge if su
h de
isions are basedon probabilisti
 fore
asts.The obje
tives of this report are to analyse the predi
tability of monthly3



drought fore
asts based on Numeri
al Weather Predi
tions and the Standard-ized Pre
ipitation Index (SPI). The extended range and seasonal fore
astingsystems will be 
ompared dire
tly and within the 
ontext of de
ision-makingframeworks. Multiple s
ores and multiple methodologies whi
h allow prob-abilisti
 fore
asts to be transformed into binary de
isions will be developedand tested.The main underlying issues are: what is the predi
tability of a droughto

urren
e based on the SPI-1, whi
h is the most useful model - the Seasonal(SEAS) or the monthly ENSemble system (ENS) for the 30-day 
umulativepre
ipitation, and what are the spatial and temporal variabilities of ea
hmodel? Adapted skill s
ores will provide information about the ability of theprobabilisti
 models to a

urately fore
ast su
h kinds of extreme events.The report is organised as follows: the datasets and method are presentedin se
tion 1; the tools and methods used are explained in se
tion 2; the resultsare dis
ussed in se
tion 3; and Con
lusions are drawn in se
tion 4.2 Data and methods2.1 Pre
ipitationObservationsThis study used a gridded pre
ipitation dataset from the ENSEMBLESproje
t and ECA & D (Haylo
k et al. 2008; Van den Besselaar et al. 2011,E-OBS Version 5), whi
h in
ludes 
ontinuously updated data from 1950 on-wards. As this analysis fo
uses on large-s
ale droughts, the spatial resolutionof this dataset (0.25 degrees) was ups
aled by averaging the 
umulative pre-
ipitation to a 1-degree grid.The data was validated by Pereira et al. (2013); Sunyer et al. (2013)who found that datasets from ECA & D show higher values for extremepre
ipitation, and E-OBS tends to smooth the data too mu
h. This 
angenerate problems when analysing intense pre
ipitation events, but appearsto be of se
ondary import for drought analysis. Daily pre
ipitation valueswere aggregated to monthly a

umulates to be able to 
ompare with monthlyfore
asts. These data are available from 1950 and are regularly updated.Nevertheless, to be 
onsistent with the data provided by the ensembles fromthe ECMWF, the hind
ast period of 1992 to 2013 was used to 
al
ulate andanalyse the pre
ipitation anomalies.
4



Table 1: ENS and SEAS 
on�gurations for the hind
ast and the fore
astperiods.Periods Evaluation Period ENS SEASHind
asts 11/1992 to 10/2012 5 members 15/51 membersFore
asts 01/11/2012 to 31/10/2013 51 members 51 membersFore
astsTwo sets of 
oupled ensemble fore
asting systems are provided by the ECMWFto fore
ast one month ahead: an extended-range monthly fore
ast and a sea-sonal fore
ast (Table 1).The results of the ECMWF monthly (32-day) extended-range ensemblefore
asting system (Vitart, 2004), hereafter ENS) have been issued twi
e aweek sin
e O
tober 2011. This model is the latest version of the ECMWFIntegrated Fore
asting System. For lead times up to day 10 the model isnot 
oupled to the o
ean and has a resolution of about 32 km (T639). Itis for
ed by persistent sea-surfa
e temperature anomalies. While beyond alead time of 10 days the resolution of the model is 
oarser (T319, 64 km),it is 
oupled to an o
ean model. The verti
al resolution remains un
hangedduring the entire simulation at 62 verti
al levels. The ECMWF provides aba
k statisti
 (Hind
asts) for ENS whi
h is a 5-member ensemble starting onthe same day and month as ea
h Thursday's real time fore
ast for ea
h ofthe past 20 years. For a more detailed des
ription see Vitart (2014).The se
ond ECMWF ensemble system used in this study is a seasonalfore
ast 
alled System 4 (Molteni et al. (2011), hereafter SEAS) that islaun
hed on the �rst day of ea
h month. It has lead times up to 13 monthsand a resolution of T255 (80 km). This model is the 2011 version of theIntegrated Fore
ast System with 91 verti
al levels. SEAS provides a ba
kstatisti
, whi
h is a 15/51 member ensemble (the number depends on themonth) identi
al to SEAS for every month from 1980 onwards. In this studyonly the �rst fore
ast month was used.SEAS and ENS are 
omposed of 50 members, whi
h are generated byperturbing initial 
onditions and physi
al tenden
ies (Molteni et al., 1996;Weisheimer et al., 2014)) and one unperturbed member. Both datasets werere-gridded to a one-degree resolution using a mass 
onservative interpolation.The two systems were 
ompared over their hind
ast periods and a fore
astperiod, as 
an be seen in Table 1. This allows for a larger sample size and amore signi�
ant 
omparison.However, while this te
hnique is robust and 
ommonly used, it has a fewdisadvantages: there are only �ve members in the ensemble of the refore
asts,5




ompared to 51 members used for the realtime fore
asts. The ensemble size
an have an impa
t on skill s
ores, whi
h needs to be 
orre
ted for. Weigelet al. (2008) fa
ed the same issue when they s
ored the ECMWF refore
astsprodu
ed in 2006 - they used a 
orre
tion of the probabilisti
 skill s
ore whi
htakes into a

ount the ensemble size.2.2 Drought dete
tionIn this study the Standardized Pre
ipitation Index (SPI) is used to dete
tdroughts solely based on pre
ipitation data. The SPI was developed byM
Kee et al. (1993) and is 
urrently used in s
ienti�
 studies and operationalsystems (Guttman, 1999; Khan et al., 2008; Dutra et al., 2013, 2014). TheSPI has the advantage that it is very simple to use and provides informationabout pre
ipitation anomalies. It is also very �exible, allowing 
al
ulationsto be aggregated over di�erent spatial s
ales (from station data to large-s
aleareas) as well as temporal domains (from 10 daysâ�� to several monthsâ��
umulative pre
ipitation, Mishra and Desai (2006); Ca

iamani et al. (2007)).As this study fo
uses on the monthly times
ale, the SPI was 
al
ulatedusing monthly a

umulated pre
ipitation data (SPI-1). The SPI is usually
omputed by �tting a probability density fun
tion (often a Gamma distri-bution) to the data (Lloyd-Hughes and Saunders, 2002; Edossa et al., 2010;Dutra et al., 2013; Guy Merlin and Kamga, 2014) as illustrated in Figure 1.Through the appli
ation of an inverse normal (Gaussian) fun
tion, data aretransformed into normal spa
e with a mean of 0 and a standard deviation of1. The hypothesis that the data 
an be approximated by a Gamma distri-bution must be tested to ensure that all 
on
lusions are valid, by 
omparingthe re
onstru
ted distribution to the empiri
al one. The Gamma fun
tion
annot be �tted when only a few data points (events) or very low data val-ues (pre
ipitation) exist, be
ause in su
h 
ases numeri
al 
onvergen
e of theoptimisation pro
ess 
annot be a
hieved. Therefore, the SPI methodology
annot be applied in very arid regions.The method of the SPI was performed for ea
h grid point of the domainand built from fore
asts and hind
asts based on the ECMWF system, asshown in Figure 2The SPI value 
an be broken down into di�erent 
lasses (WMO, 2012):normal 
onditions from -1 to 1; moderate drought with SPI < -1; severedrought with SPI < -1.5; and extreme drought with SPI < -2. The timeseries of the analysed fore
asts in this report are too short to justify fo
usingon an SPI lower than -2 (last 2.3% of the distribution). This is illustrated inFigure 3, whi
h shows the signi�
ant spatial variability of drought o

urren
eusing this threshold. Based on the method used, this o

urren
e should be6
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Figure 1: Three steps of the SPI 
al
ulation: i) monthly 
umulated pre
ipi-tation; ii) empiri
al CDF and �tting of the Gamma distribution; iii) trans-formation into a normal CDF with mean=0 and SD=1. Red points indi
atean example of an SPI fore
ast of about 15 mm that be
omes an SPI-1 of-0.27.equal to 2.3% over Europe. Therefore, this study fo
uses on moderate andsevere droughts only.One strong advantage of this method is that it produ
es an unbiasedprodu
t with a homogeneous rank histogram (Talagrand Diagram) of theobserved pre
ipitation ranked onto the fore
asted pre
ipitation (Figure 4).2.3 Deriving de
ision support from probabilisti
 fore-
astsOne of the main obje
tives of this work is to provide de
ision makers andend users with a simple and robust boolean index to fore
ast the o

urren
eof drought based on a probabilisti
 fore
asting system. It is therefore impor-tant to sele
t appropriate tools to 
hara
terise the quality of the fore
asts.It is di�
ult to 
lassify these fore
asts using a very simple s
ore due to thethree dimensions of the fore
asts, as illustrated in Figure 5. Several methodsfor sele
ting a boolean solution were tested and 
ompared to a determinis-ti
 model (de�ned here as the unperturbed member of the Ensemble). A
omparison was also made with a 
limatologi
al fore
ast. Methods to derivethis index are given in Table 2 and 
an be 
ategorised into three types: in-7



Figure 2: Methodology to generate SPI with the ENS operational model. Thehind
asts generate the baseline and the fore
ast is pla
ed in this distribution.This allows for the provision of an SPI index relative to the grid 
ell or stationstudied.
SPI < -1         SPI < -1.5           SPI < -2

Figure 3: Drought o

urren
e fore
asts (as a per
entage - top panels, or rela-tive to the theoreti
al distribution - bottom panels) 
al
ulated using di�erentthresholds, SPI-1 < -1 (left panels), SPI-1 < -1.5 (
entral panels), and SPI-1< -2 (right panels) 8
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Figure 4: Rank diagram of observed SPI-1 into the sorted SPI-1 fore
astedfor the period of hind
ast using SEAS.dividual, where the index is based on an individual member or per
entile;partially integrative, where the sum of individual members or per
entiles areused; and integrative, whi
h is represented by the ensemble mean. The indi-vidual types should be seen as providing 
omplementary information aboutthe intensity of the SPI-1 and the distribution of the members.The individual types have been subdivided into �ve 
lasses representing astrong dry member (Q13), a strong wet member, (Q88) or the median. Theextreme members of the distribution are not used, so as to avoid the outlierswhi
h are generally asso
iated with ensemble systems (Lavaysse et al., 2013).A threshold was de�ned for ea
h method. An SPI less than -1 (-1.5) willsele
t 16% (6.7%, respe
tively) of the normalised series. Therefore, to be
oherent, the thresholds were de�ned in su
h a way as to sele
t the samenumber of events for all the methods.2.4 Evaluation s
oresThere are a plethora of s
ores to evaluate probabilisti
 fore
asts (Nurmi,2003). In this study, we have 
hosen only those s
ores whi
h are suitable fordrought fore
asting.The Relative Operating Chara
teristi
 (ROC) s
ore was proposed by Ma-son (1982) to plot the false alarm rate against the hit rate. The obje
tiveof the ROC s
ore is to 
al
ulate the ability of the fore
ast to dis
riminate9



SPI1 observed (Oct-Nov 2011)

SPI1 forecasted (Oct-Nov 2011)

-2                           -1                            0                             1                            2Figure 5: Example of temporal evolution of four 
onse
utive weeks of SPI-1observed (top panels) and fore
asted using ENS (bottom panels) during theperiod from O
tober 2011 to November 2011.
Table 2: List of the 10 methods used to provide a boolean index for droughtfore
asting using an ensemble systemName De�nition13 per
entile (Q13) member lo
ated at the 13% of the CDF23 per
entile (Q23) member lo
ated at the 23% of the CDFmedian (MED) member lo
ated at the 50% of the CDF77 per
entile (Q77) member lo
ated at the 77% of the CDF88 per
entile (Q88) member lo
ated at the 88% of the CDFLarge spread (SpL) sum of the extreme members (Q13 + Q88)low spread (Spl) sum of the members (Q23 + Q78)Dry spread (SpD) sum of the dry members (Q13 + Q23)Flood spread (SpF) sum of the wet members (Q77 + Q88)Mean ensemble mean

10



between events and non-events. It is not bias-sensitive to the fore
ast and
an be 
onsidered as a potentially useful measure be
ause it is 
onditioned byobservations (i.e. given that a drought o

urred, what was the 
orrespondingfore
ast?). The area under the ROC 
urve 
an be 
al
ulated, with a rangebetween 0 and 1. Higher numbers indi
ate a better fore
ast.The reliability diagram, whi
h is 
onditioned on the fore
asts, is a good
omplementary s
ore to the ROC be
ause it assesses the average agreementbetween the fore
ast values and the observed values. In a reliability diagramthe fore
ast probability is plotted against the observed relative frequen
y(Nurmi, 2003). A perfe
t s
ore is asso
iated with the 1:1 line. The 
lima-tology s
ore (i.e. no resolution) 
orresponds to the mean observed frequen
y(i.e. observed relative frequen
y of y=0.159 for SPI < -1).The a

ura
y of the probability fore
asts is assessed using the Brier SkillS
ore (Brier, 1950). A skill s
ore 
an be derived by 
omparing the BrierSkill S
ore to 
limatology. The Brier Skill S
ore ranges from -in�nity to1. The higher the s
ore the more skillful the fore
ast, and any negativevalues indi
ate that the 
limatologi
al fore
ast outperforms the probabilisti
fore
ast.The abovementioned s
ores are 
omplemented by the 
orrelation of theensemble mean and the Root Mean Squared Error of the ensemble mean,whi
h are frequently used in the evaluation of seasonal fore
asts.Several s
ores deal with the 
ontingen
y table. Using this representation,both the fore
asted and observed solutions are booleans. In this study, wehave used �ve su
h s
ores. The Probability Of Dete
tion (POD, perfe
t =1) is the ratio of the observed to the fore
asted events. The False AlarmRate (FAR, perfe
t = 0) is the fra
tion of the fore
asted events that didnot a
tually o

ur. The extreme dependen
y s
ore (EDS) integrates thePOD and the FAR (Ferro and Stephenson, 2011). Finally, the Gilbert s
orebalan
es the POD and 
orre
t per
entage of 
ases (Jolli�e and Stephenson,2003; Hogan et al., 2010), and measures the fra
tion of observed and/orfore
asted events that were 
orre
tly predi
ted, adjusted for hits asso
iatedwith random 
han
e.3 Results3.1 Evaluation of the SPI 
al
ulationThe sensitive part of the SPI 
al
ulation is the step of the �tting of a distri-bution to the empiri
al distribution. In this study, the Gamma distributionis �tted to the probability density fun
tion of monthly pre
ipitation. It is11



Figure 6: Bias of the SPI-1 
al
ulated between the �tted Gamma distribu-tion and the observed monthly 
umulative pre
ipitation (see text for details).Regions in white are 
onsidered to be too dry to �t this distribution. Re-gions where the bias deviates signi�
antly from 0 (non-hat
hed areas) 
ouldgenerate bias in the SPI 
al
ulation.therefore ne
essary to set a threshold at whi
h minimum 
umulative pre
ip-itation 
an be 
onsidered signi�
ant.Di�erent thresholds were tested (0 mm, 1 mm, 5 mm, 10 mm and 20 mm,not shown), and it was de
ided that only monthly pre
ipitation levels greaterthan 10 mm are signi�
ant. This threshold allows us to keep a large numberof events and to ignore events or regions with insigni�
ant monthly a

umu-lated rainfall. As outlined in the methodology, �tting a Gamma distributionto pre
ipitation data relies on an adequate sample size (with respe
t to thevariability of the data). The Gamma distribution was �tted to the distribu-tion if at least 66% of a gridpointâ��s values were signi�
antly larger than 0(i.e. larger than 10mm). This ensures the in
lusions of a minimum numberof events to �t the distribution. These thresholds fa
ilitated the removal ofarid areas for whi
h the �tting of the Gamma distribution presented biasedvalues due to the low spread and low sampling of the time series.The performan
e of the �tting pro
edure and all assumptions 
an beanalysed by investigating the resulting SPI-1 distribution. This was doneby 
al
ulating the integral of the di�eren
es between the �tted Gamma dis-tribution and the empiri
al distribution. Zero values are 
onsidered to beperfe
t values (no bias of the SPI-1), whereas positive or negative values in-di
ate bias and therefore give rise to doubts about the validity of the �ttingpro
edure. In Figure 6, the bias of the Gamma distribution is shown. It 
an12



(a) Correlation (b) RMSEFigure 7: (a) Correlation of the fore
asted (using the mean of the ensem-ble) and observed s
ores for the hind
ast period (from November 1992 toNovember 2012) for (a) SPI-1 and (b) RMSE.be seen that the method is adapted in a large parts of Europe.However, the low pre
ipitation levels in southern Spain 
an 
reate somebias in the �tting pro
ess. This is espe
ially true during the summer season,and therefore the assumptions for �tting the Gamma distribution are notvalidated for the entire year. This analysis shows that it will be ne
essary toadapt the method, parti
ularly over dry areas, for example by 
arrying outthe study only during the rainy seasons.3.2 Validation during the hind
ast periodThis evaluation is based on the hind
ast period (see table 1) of ENS andSEAS. It allows for the long-term evaluation using the same version of themodel. The 
orrelation and root mean square error of the ensemble means aredisplayed in Figure 7. The mean 
orrelation (0.32) and the mean Root MeanSquare Error (RMSE, 1.02) for ENS are better than those for SEAS (0.05and 1.45 respe
tively, not shown). Neither the 
orrelation nor the RMSEdeviate signi�
antly from 0, suggesting that a mean monthly fore
ast has noskill. In addition, the spatial variability is low, whi
h indi
ates there is nosigni�
ant spatial di�eren
e in the ability of the model to predi
t the SPI-1on average.The SPI-1 values of individual ensemble members and observations wereanalysed in bins to assess whether these results are also valid for extremeevents. Here, the individual ability (for ea
h member independently) wasassessed by breaking down the fore
asted and observed SPI-1 over Europeduring the hind
ast period into 10 
lasses (from SPI-1 lower than -2, to SPI-1 larger than +2, at intervals of 0.5). The frequen
y in ea
h bin naturally13
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ast period in relation to thetheoreti
al distribution. Results are standardised by the theoreti
al normaldistribution of events.follows the Gamma distribution, whi
h generates a large number of 
ases
entred around 0. This distribution was normalised by 
omputing the ratiobetween the empiri
al and the theoreti
al distributions. The result is shownin Figure 8. The �gure shows that the more a drought is fore
asted, the moreit is observed (red bars). In addition, it should be noted that the distributionis highly unsymmetri
. This indi
ates that the fore
asts of extreme dry eventsare more a

urate than the fore
asts of extreme wet events. This result 
ouldbe due to the spatial and temporal 
hara
teristi
s of drought events that arebetter simulated in a global model one month ahead.3.3 Validation during the fore
ast periodThe analysis of the fore
ast period from November 2012 to November 2013largely 
on�rms earlier �ndings of the fore
asts over a signi�
antly longertime period, but allows for a more detailed investigation of the distributionsdue to the larger ensemble number (see table 1).Figure 9a 
ompares the behaviour of the ENS members during observedextreme wet and dry events. In both 
ases, the normal distributions of theranked ensemble members are quite similar. The only di�eren
e is the shiftof fore
asted SPIs towards negative values when a drought is observed (redline) 
ompared to when wet events are observed (blue line). Nevertheless,the standard deviation (indi
ated by the barlines) highlights that there is no14
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urve using ENS and SEAS (red and bla
k lines respe
tively)for the period November 2012 to November 2013 over Europe, 
al
ulated todete
t a drought de�ned as having an SPI lower than -1 (a) or -1.5 (b). TheROC area values for the di�erent spatial resolutions are indi
ated.signi�
ant di�eren
e (signi�
an
e level of 0.9) between the two events. It isinteresting to observe that the value of the ensemble mean in
reases in linewith the observed SPI-1 (bla
k line in �gure 9b), whereas the spread of theensemble (de�ned as the standard deviation) shows little sensitivity (yellowline in �gure 9b). It 
an be 
on
luded that only the ensemble mean displaysa signi�
ant di�eren
e between wet and dry anomalies, whilst there is norelation in the standard deviation. Similar trends are observed for SEAS, butthe di�eren
e between the two 
onditional distributions are redu
ed (�gure9
 and 9d). This indi
ates that ENS has a stronger resolution than SEAS,and is therefore better able to distinguish events with a better frequen
ydistributions.These results are 
on�rmed by analysing the ROC 
urve. For the Euro-pean 
ontinent, the ROC 
urves display an improvement in relation to theâ��no skillâ�� 
urve (1:1 in �gure 10). The ROC area is slightly betterfor ENS than for SEAS (+0.4 and +0.2 for SPI-1 < -1 and SPI-1 < -1.5,respe
tively).Both ENS and SEAS present an as
ending but low reliability in dete
tingSPI-1 < -1 (Figure 11). Indeed, the observed relative frequen
ies in
reasein line with the fore
ast probabilities. The per
entage distribution of 
ases(not shown) indi
ates more events with ENS showing a larger per
entage ofmembers asso
iated with a drought than SEAS. This result indi
ates thatENS members are more 
onsistent in fore
asting extreme rainfall de�
its thanare SEAS member. Using ENS, several events are fore
asted with more than93% of members asso
iated with a drought fore
asting, whereas using SEAS,16
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(d) SEAS, 5degFigure 11: Reliability diagrams for drought dete
tion de�ned as an SPI-1 lower than -1 using ENS (toppanels) and SEAS (bottom panels) in theperiod from November 2012 to November 2013. The spatial resolution is onedegree (left panels) and 5 degrees (right panels).the maximum is 81%.The ENS and SEAS systems are better than 
limatologi
al fore
asts ofdrought events, a
hieving values of 0.14 and 0.12 respe
tively. In this 
ase,the di�eren
e between ENS and SEAS is not signi�
ant.3.4 Sensitivity to drought s
alesAlthough the analysis so far has been performed on a s
ale of 1 by 1 degree,the sensitivity to di�erent resolutions needs to be analysed, be
ause the im-pa
ts of large-s
ale droughts will be stronger. Figure 10 shows SPI-1 valuessmoothed to 3 and 5 degrees using a simple ups
aling method based on theaverage of the values. The resolution of about 1 degree has been kept to
ompare the impa
t of the resolution on the native grid. The results show a17



Figure 12: ROC anomaly (in %) in relation to the mean value of the ROC overthe domain (equal to 0.67) for the period from November 2012 to November2013 with drought de�ned as a SPI-1 < -1slight improvement of the ROC area with a 
oarser resolution (broken anddotted lines in Fig. 10). The smoothed signal favours the large-s
ale signa-tures that are better represented in models than the small-s
ale stru
tures ofdroughts. The e�e
t of spatial ups
aling 
an also be seen in the ROC resultsas a little positive impa
t for SEAS for the largest fore
ast probabilities (Fig.11d). However, as mentioned previously, the number of events in these 
asesis low. This e�e
t has been quanti�ed onto the Brier Skill S
ore (BSS) thatgoes up to respe
tively 0.17 and 0.14 for the 5-degree smoothed signal.3.5 Spatial and seasonal variabilitiesSpatial variabilityThe analysis so far has ignored the spatial and seasonal s
ales. Figure 12shows the ROC anomaly for the fore
ast period, whi
h is the ROC areafor ea
h grid 
ell in relation to the average (0.67 for ENS). The anomaly ispreferred to the raw value to highlight regions where the ROC is improved orredu
ed. A maximum variability of 20% 
an be observed. For the hind
astperiod (not shown) this variability is mu
h lower (at around 6%). Thereis a di�eren
e in spatial patterns between the two periods, whi
h seems toindi
ate that the spatial patterns are not signi�
ant and are mainly driven18
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omposition of the ROC 
urves for drought fore
asting(with the 5 degree smoothing) using ENS (left) and SEAS (right) over Europefor the period from November 2012 to November 2013, with drought de�nedas a SPI-1 < -1by the extreme 
ases en
ountered during the period.Seasonal variabilityA seasonal de
omposition is used to highlight the temporal variabilities. ROCs
ores and 
urves were independently 
al
ulated for autumn (September toNovember), winter (De
ember to February), spring (Mar
h to May) andsummer (June to August) seasons - see �gure 13 (for SPI-1 < -1).The four ROC areas are very similar, and the four distributions are iden-ti
al for ENS, whi
h means that the ability to fore
ast droughts is identi
althroughout the year. By 
ontrast, SEAS shows some di�eren
es betweenthe seasons, with a small improvement of the fore
ast during autumn. Asidenti
al interpretations 
an be derived for the SPI-1 < -1.5, they are notshown.3.6 Index performan
eFigure 14 shows the POD and the FAR for ENS and SEAS. POD indi
atesthat, on average, one out of three drought events in Europe are 
orre
tlyfore
asted one month in advan
e. This is signi�
antly better than both the
limatology fore
ast (16%) and the deterministi
 fore
ast (around 25%, greenline in Fig. 14).The highest POD is a
hieved by using the 13 per
entile (7th member of theranked ensemble distribution), and the produ
t using Q13 and Q23 (noted19
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tion (POD, in green) and False alarm ratio(FAR, in red, per fe
t=0) for di�erent methods used to dete
t drought (x-axis), using ENS (left) and SEAS (right). Lines indi
ate the s
ores of thedeterministi
 model (unperturbed member of the ensemble).SpD). The mean of the ensemble (last point on the right of ea
h graph),whi
h is used widely, is not the best method to dete
t droughts.The POD values of the wettest members of the ranked distribution (Q77and Q88 in Fig. 14) give the worst results of all methods, whi
h indi
atesthat there is little 
onsisten
y between the extreme dry and wet members.The FAR displays low variability between the methods, but ea
h of theseare better than the deterministi
 solution (red lines). It is also worth notingthat, using the ENS, the driest members are asso
iated with a de
rease ofFAR in relation to the dry members. This 
ould be explained by the previouss
ores that show a larger 
onsisten
y between the members. However, it 
analso be due to a te
hni
al e�e
t; be
ause the number of events sele
ted is
onstant, these s
ores 
ould be dependent on ea
h other.The highest EDS is a
hieved for the driest members (Q13 and Q23, Fig.15), whereas the wettest members (Q77 and Q88) have the lowest s
ores.The s
ore of the ensemble mean is better than that of the median. Even ifthe POD and FAR di�eren
es are partially statisti
ally signi�
ant, the im-provement of the EDS for the driest members is signi�
ant for all di�eren
eslarger than 0.04.ENS and SEAS are reliable (see Fig. 11), and hen
e a method of dete
tion
ould be simply based on the per
entage of ensembles that predi
t a drought.In total, ten di�erent per
entage thresholds were sele
ted. Figure 16 showsthe rate of 'per
ent 
orre
t' in
reases in line with the per
entage used forboth models (bla
k points in Fig. 16a and 16
). The trend is in agreementwith the positive reliability found previously. The per
ent 
orre
t in
reases20
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y S
ore (EDS) for the 10 methods used tofore
ast a drought (x-axis, see table 1 for more details) using the ENS (left)and SEAS (right) ensemble system. Bla
k lines indi
ate the s
ore of theunperturbed member.in line with the per
entage used for both models (bla
k points in Fig. 16aand 16
). That means that the greater the number of members fore
astinga drought, the greater the possibilty of observing a drought. However, withan in
reasing threshold, the number of misses also in
reases (provided by thePOD value, red lines in Fig. 16a and 16
). For example, if the thresholdto determine a drought is de�ned with the 10% of members asso
iated witha drought fore
asting, around 80% of droughts that o

urred were 
orre
tlydete
ted (red points), but more than 50% of the fore
asted droughts are falsealarms. On the other hand, if the threshold of dete
tion is de�ned with aper
entage larger than 70%, the per
entage 
orre
t is about 85%, but thePOD is 
lose to 3%. Based on this result, the user 
an tune the per
entageto the false alarm ratio of misses 
ases that is a

eptable.The maximumGilbert s
ore (Fig. 16b and 16d) is a
hieved for a thresholdof 30% for ENS and 40% for SEAS. The number of missed events be
omestoo high with a larger per
entage threshold, whereas for lower per
entagethresholds the errors are asso
iated with false alarms.3.7 Assessment the un
ertainties of the fore
astsSeveral previous studies (He et al., 2009; Palmer, 2000; Georgakakos et al.,2004; Doblas-Reyes et al., 2009) have shown that probabilisti
 simulations
an provide additional information to assess the un
ertainties of the simu-lation. The idea here is to estimate the quality of the fore
ast based on aspe
i�
 behaviour of the simulation. The 
hara
teristi
s of the ensemble in21
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ent 
orre
t (bla
k) using di�erent per-
entage of members to fore
ast a drought event using ENS. (b) Gilbert s
ore(see text for more details) for di�erent per
entage used to fore
ast a droughtusing ENS. Lines indi
ate the s
ore of the deterministi
 model (unperturbedmember). (
) and (d) same as (a) and (b) using SEAS.
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Figure 17: Mean SPI-1 and standard deviation of the ranked members fol-lowing the four 
onditions in the 
ontingen
y table (see table 2 and text formore details): hits (green), false alarm (red), misses (blue) and 
orre
t neg-ative (bla
k line), using ENS. Verti
al lines indi
ate the members used forthe boolean drought dete
tion methods.the four di�erent 
ases of the 
ontingen
y table were analysed. This tablewas 
ompiled using the threshold of SPI-1 < −1 to dete
t a drought, andthe fore
ast method was based on the median of the members.The mean SPI-1 of the 51 ranked members for the four 
ases are illus-trated in Fig. 17. During 
orre
t negative events (i.e. where droughts wereneither fore
asted nor observed), where more than 70% of the events are lo-
ated, a normal distribution is observed with a mean slightly larger than 0.During the missed 
ases, the median is very 
lose to 0 and the distributionof the ranked members is very 
lose to the ensemble mean. In addition, thespread of the members is displayed (barbed lines) and shows the in
reaseof the spread for extreme members and the fa
t that the two distributionsbe
ome indistinguishable. That means that the response of the model is nodi�erent to a normal distribution. So it is not signi�
ant to �nd a spe
i�
 be-haviour of the model to assess the missed events. Finally, the distribution of23



Table 3: Contingen
y table (in per
entages) obtained using the median ofENS to fore
ast a drought. An observed drought is de�ned as having an SPI-1 lower than -1, and a fore
asted drought is de�ned as having an ensemblemedian that is lower than the 16th per
entile. The se
ond values of ea
h 
aseindi
ate the ensemble spread, and its standard deviation is given in bra
ketsdrought observedyes nodrought yes 4.4% / 2.31 (0.4) 10.7% /2.37 (0.4)fore
asted no 10.4% / 1.99 (0.4) 74.5% / 1.88 (0..3)the members during hits and false alarms are 
ompared. In that 
ase, there isno signi�
ant di�eren
e. The average and the distribution of the mean SPI-1of the ensemble is the same. These results are in agreement with Table 3,whi
h quanti�es the ensemble spread for ea
h 
ase of the 
ontingen
y table.Based on these results, it appears impossible to evaluate the un
ertainties ofthe ensemble simulation asso
iated with a boolean de
ision.4 Spatial and temporal variabilities of SPI-1A model of the early warning of drought over Europe will be tested in 2015using atmospheri
al predi
tors (su
h as geopotential and temperature in thefree troposphere), whi
h are better represented in the model than pre
ipita-tion. In order to a
hieve this obje
tive, a preliminary study was 
arried outto 
hara
terise the spatial and temporal variabilities of SPI-1 over Europe.The prin
iple 
omponent analysis (PCA), using the empiri
al orthogonalfun
tions (EOF) is the most appropriate tool to perform this kind of study.To illustrate this �rst ongoing step, Figure 18 and 19 illustrates the twomain 
omponents of the SPI in Europe during the 
oldest period of the year(from November to Mar
h) that spans 1992 to 2012. In the �rst mode, thepattern is asso
iated with a high variability of SPI-1 lo
ated over Denmarkand northern Germany. Droughts o

urred in this area during the beginningof the period (i.e. around 1995) and more re
ently (strong rainfall de�
it in2012). The se
ond mode is 
entred in the northern part of Finland. Here were
orded at least 8 episodes of strong rainfall de�
its (SPI-1 lower than -1).Based on these identi�ed modes and temporal variabilities, predi
tors will beidenti�ed by �nding atmospheri
al variabilities that are highly 
orrelated tothem.
24



Figure 18: Coe�
ient of determination (top left), 
orrelation 
oe�
ient (topright) and temporal evolution of the prin
ipal 
omponent (PC, bottom) ofthe �rst mode of the SPI-1 observed in Europe during the 
old season (fromNovember to Mar
h) from 1982 to 2012.
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Figure 19: Same as Figure 18 for the se
ond mode of the EOF. TThis modeexplains 10% of the total varian
e.
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5 Con
lusionsThis study provides the �rst assessment of the predi
tability of meteorologi
aldroughts over Europe and of the ability to issue an early warning of su
hdroughts with a one month lead time. The analysis is based on the onemonth fore
ast of the SPI-1 from the pre
ipitation outputs provided by twoECMWF ensemble systems. In a �rst step the ability to fore
ast SPI-1 fromthe ensemble outputs was tested, showing that
• The reliability of the ensemble is better than the 
limatology,
• The spatial variability of the s
ores 
an rea
h up to 20% over Europeand the seasonal variability is not signi�
ant. Nevertheless, we notea large variability of the ensemble s
ore depending on the events thato

urred,
• Ensemble models are better at fore
asting large-s
ale droughts, usinga spatial smoothing up to �ve square degrees.In a se
ond step the ability to provide a robust Boolean index for droughtfore
asting was analyzed. The best method is de�ned by using a threshold of30% of ensemble members asso
iated with a drought. In that 
ase, slightlymore than 40% of the droughts observed are fore
asted 
orre
tly one monthahead, with only 25% of false alarms. This is signi�
antly better than usingthe 
limatology (16%) or the deterministi
 models (around 25%). Finally,this study has shown that there is no possibility to provide un
ertaintiesasso
iated with the boolean index.By providing the �rst global assessment of meteorologi
al drought fore-
asting in Europe, this work will be parti
ularly useful by providing a ben
h-mark 
omparison for future studies that 
ould be developed using othersmethods, su
h as those based on atmospheri
 predi
tors, whi
h are betterrepresented in the seasonal models. It 
ould farther be useful to investigatethe use of moving windows of 10-day 
umulative pre
ipitation to detail thetemporal behaviour of the fore
asted SPI-1. As the fore
ast skills are betterfor short lead times, an SPI-1 lower than -1, explained by a strong de
reasein pre
ipitation at the beginning of the period, should be more reliable.A
knowledgementsThe author would like to thanks Jürgen Vogt (JRC) and Florian Pappen-berger (ECMWF) for their valuable 
omments and suggestions. This do
u-ment has been improved by Gráinne Mulhern (JRC) by 
orre
ting the text.27
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