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Abstract

The performances of the first month of the ECMWF probabilistic extended forecast and the seasonal forecast to predict
droughts over Europe are compared. The Standardized Precipitation Index is used to quantify droughts.

It can be shown that on average the extended forecast has higher skill than the seasonal forecast whilst both outperform
climatology. No significant spatial or temporal patterns can be observed but the scores are improved when we focus on
large scale droughts.

This report further analyses several different methods to convert the probabilistic forecasts of SPI into a Boolean drought
warning. It can be demonstrated that methodologies which convert low percentiles of the forecasted cumulative
distribution function of SPI into warnings are superior in comparison to alternatives such as the mean or the median of
the ensemble. This work demonstrates that around 40% of droughts in Europe are correctly forecasted one month in
advance.

Nevertheless, due to the lack of the significant difference between the distributions of the ensemble members for false
alarms or misses on one hand side and correct forecasts on the other hand side, it is not yet possible to quantify the
uncertainty of the drought forecasts.
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1 Introduction

Droughts impact many human activities and environmental processes. They
often spread over vast geographical regions and last for many months or even
years (Lloyd-Hughes and Saunders, 2002). This makes them one of the costli-
est of all natural disasters (Below et al., 2007). Droughts significantly impact
economic sectors, such as agricultural activities or water resources manage-
ment, especially in vulnerable areas (Fraser et al., 2013). In particular, fore-
casts are needed to anticipate droughts and mitigate their effects. Decision
makers and end users require simple and robust forecast indices which can
detect the onset, maintenance and end of the drought conditions. Droughts
can be classified under several categories (Wilhite and Glantz, 1985): (i)
hydrological drought, which is associated with the effects of periods of pre-
cipitation deficits on surface or subsurface water supply; (ii) agricultural
drought, which links meteorological (or hydrological) drought to agricultural
impacts, focusing on the plant water stress, and (iii) meteorological drought,
which is defined as a large-scale and prolonged rainfall deficit over one or
several months.

In this study, we will focus on meteorological droughts based on monthly
precipitation. This timescale is a key challenge because it is considered to be
a difficult time range, which falls between medium-range forecasting (which
is strongly related to initial conditions) and the seasonal time-scale (which
is mainly driven by oceanic variables) (Vitart, 2014).

Meteorological droughts can be analysed using the Standardized Precip-
itation Index (SPI, McKee et al. (1993), recommended by WMO (2012)),
which is a normalised quantification of the precipitation deficit (Vicente-
Serrano, 2006; Dutra et al., 2013).

It has been demonstrated that droughts can be forecasted using stochas-
tic or neural networks (Kim and Valdés, 2003; Mishra et al., 2007). These
forecasts can provide "reasonably good agreement for forecasting with 1-2
month lead time" (Mishra and Desai, 2005). But a large part of these stud-
ies do not compare the score of these forecasts with the forecasts provided
by the precipitation fields of the probabilistic models. Forecasts of droughts
can also be produced using Numerical Weather Prediction Models (Dutra
et al., 2013, 2014). Such forecasts are highly uncertain due to the chaotic na-
ture of the atmosphere, which is particularly strong at the sub-seasonal time
scale (Stockdale et al., 1998; Vitart, 2014). Therefore, ensemble prediction
systems are developed which forecast multiple scenarios of future weather
conditions. Probabilistic forecasts become particularly important in assess-
ing the risks associated with high-impact and rare weather events such as
tropical cyclones (Hamill et al., 2012), or for identifying the uncertainties of



the forecasts (Buizza et al., 2005). Forecasts on the subseasonal and seasonal
timescales using dynamic models have evolved considerably over recent years,
and demonstrate potential usefulness for predicting large-scale features and
teleconnections (Barnston et al., 2012; Arribas et al., 2011). The latter can
be used in statistical downscaling methods using weather types, for exam-
ple, Eshel et al. (2000) used the North Atlantic sea level pressure precursors
to forecast drought over the eastern Mediterranean region. However, even
though, the forecasts were statistically significant, with a lead time of several
months, they were made for a limited region that is one of the most sensitive
to weather types in Europe. even if the forecasts are statistically significant
for a lead time of several months, the region studied is restricted and is one
of the most sensitive to weather types in Europe.

Numerical Weather Predictions also produce forecasts of precipitation. In
general, the published literature indicates that the accuracy of these forecasts
of precipitation in Europe is low skill of these precipitation fields over Europe
is low (Richardson et al., 2013; Weisheimer and Palmer, 2014) although there
are considerable spatial variations. However, such analysis tends to be per-
formed from the viewpoint of a meteorologist and does not incorporate the
non-linear transformations or specific properties that are relevant for drought
forecasting. Drought forecasts can be based on different lead times ranging
from a few weeks to several months, and the accuracy of any forecast will de-
crease with increasing lead time. The monthly time scale poses a particular
challenge because it represents the transition between medium-range fore-
casting (up to 14 days), which is strongly related to initial conditions, and
seasonal forecasting, which is largely driven by oceanic variability (Vitart,
2014).

The European Centre for Medium-Range Weather Forecasts (ECMWF)
provides two different types of forecasts for this time range: an extended
forecast with a lead time of up to 32 days, which is issued twice a week, and
a seasonal forecast with a lead time of up to 12 months, issued once a month.
The extended range forecast incorporates more recent model developments
and is usually more accurate (Vitart et al., 2008). Moreover, the seasonal
forecasting system is based on an older model cycle (Molteni et al., 2011).
In order to exploit such methodologies, one needs to understand and analyse
the property and skill differences between the two systems in the context
of the particular application. Such an analysis must be performed not only
based on the numerical skill of forecasting droughts, but also within the
context of the binary decision (drought forecasted or not) to issue drought
warnings. The latter poses a particularly challenge if such decisions are based
on probabilistic forecasts.

The objectives of this report are to analyse the predictability of monthly



drought forecasts based on Numerical Weather Predictions and the Standard-
ized Precipitation Index (SPI). The extended range and seasonal forecasting
systems will be compared directly and within the context of decision-making
frameworks. Multiple scores and multiple methodologies which allow prob-
abilistic forecasts to be transformed into binary decisions will be developed
and tested.

The main underlying issues are: what is the predictability of a drought
occurrence based on the SPI-1, which is the most useful model - the Seasonal
(SEAS) or the monthly ENSemble system (ENS) for the 30-day cumulative
precipitation, and what are the spatial and temporal variabilities of each
model? Adapted skill scores will provide information about the ability of the
probabilistic models to accurately forecast such kinds of extreme events.

The report is organised as follows: the datasets and method are presented
in section 1; the tools and methods used are explained in section 2; the results
are discussed in section 3; and Conclusions are drawn in section 4.

2 Data and methods

2.1 Precipitation
Observations

This study used a gridded precipitation dataset from the ENSEMBLES
project and ECA & D (Haylock et al. 2008; Van den Besselaar et al. 2011,
E-OBS Version 5), which includes continuously updated data from 1950 on-
wards. As this analysis focuses on large-scale droughts, the spatial resolution
of this dataset (0.25 degrees) was upscaled by averaging the cumulative pre-
cipitation to a 1-degree grid.

The data was validated by Pereira et al. (2013); Sunyer et al. (2013)
who found that datasets from ECA & D show higher values for extreme
precipitation, and E-OBS tends to smooth the data too much. This can
generate problems when analysing intense precipitation events, but appears
to be of secondary import for drought analysis. Daily precipitation values
were aggregated to monthly accumulates to be able to compare with monthly
forecasts. These data are available from 1950 and are regularly updated.
Nevertheless, to be consistent with the data provided by the ensembles from
the ECMWFEF, the hindcast period of 1992 to 2013 was used to calculate and
analyse the precipitation anomalies.



Table 1: ENS and SEAS configurations for the hindcast and the forecast

periods.
Periods Evaluation Period ENS SEAS
Hindcasts | 11/1992 to 10/2012 5 members | 15/51 members
Forecasts | 01/11/2012 to 31/10/2013 | 51 members | 51 members

Forecasts

Two sets of coupled ensemble forecasting systems are provided by the ECMWF
to forecast one month ahead: an extended-range monthly forecast and a sea-
sonal forecast (Table 1).

The results of the ECMWF monthly (32-day) extended-range ensemble
forecasting system (Vitart, 2004), hereafter ENS) have been issued twice a
week since October 2011. This model is the latest version of the ECMWF
Integrated Forecasting System. For lead times up to day 10 the model is
not coupled to the ocean and has a resolution of about 32 km (T639). It
is forced by persistent sea-surface temperature anomalies. While beyond a
lead time of 10 days the resolution of the model is coarser (T319, 64 km),
it is coupled to an ocean model. The vertical resolution remains unchanged
during the entire simulation at 62 vertical levels. The ECMWEF provides a
back statistic (Hindcasts) for ENS which is a 5-member ensemble starting on
the same day and month as each Thursday’s real time forecast for each of
the past 20 years. For a more detailed description see Vitart (2014).

The second ECMWF ensemble system used in this study is a seasonal
forecast called System 4 (Molteni et al. (2011), hereafter SEAS) that is
launched on the first day of each month. It has lead times up to 13 months
and a resolution of T255 (80 km). This model is the 2011 version of the
Integrated Forecast System with 91 vertical levels. SEAS provides a back
statistic, which is a 15/51 member ensemble (the number depends on the
month) identical to SEAS for every month from 1980 onwards. In this study
only the first forecast month was used.

SEAS and ENS are composed of 50 members, which are generated by
perturbing initial conditions and physical tendencies (Molteni et al., 1996;
Weisheimer et al., 2014)) and one unperturbed member. Both datasets were
re-gridded to a one-degree resolution using a mass conservative interpolation.
The two systems were compared over their hindcast periods and a forecast
period, as can be seen in Table 1. This allows for a larger sample size and a
more significant comparison.

However, while this technique is robust and commonly used, it has a few
disadvantages: there are only five members in the ensemble of the reforecasts,



compared to 51 members used for the realtime forecasts. The ensemble size
can have an impact on skill scores, which needs to be corrected for. Weigel
et al. (2008) faced the same issue when they scored the ECMWEF reforecasts
produced in 2006 - they used a correction of the probabilistic skill score which
takes into account the ensemble size.

2.2 Drought detection

In this study the Standardized Precipitation Index (SPI) is used to detect
droughts solely based on precipitation data. The SPI was developed by
McKee et al. (1993) and is currently used in scientific studies and operational
systems (Guttman, 1999; Khan et al., 2008; Dutra et al., 2013, 2014). The
SPI has the advantage that it is very simple to use and provides information
about precipitation anomalies. It is also very flexible, allowing calculations
to be aggregated over different spatial scales (from station data to large-scale
areas) as well as temporal domains (from 10 daysaAZ to several monthsaAZ
cumulative precipitation, Mishra and Desai (2006); Cacciamani et al. (2007)).

As this study focuses on the monthly timescale, the SPI was calculated
using monthly accumulated precipitation data (SPI-1). The SPI is usually
computed by fitting a probability density function (often a Gamma distri-
bution) to the data (Lloyd-Hughes and Saunders, 2002; Edossa et al., 2010;
Dutra et al., 2013; Guy Merlin and Kamga, 2014) as illustrated in Figure 1.
Through the application of an inverse normal (Gaussian) function, data are
transformed into normal space with a mean of 0 and a standard deviation of
1. The hypothesis that the data can be approximated by a Gamma distri-
bution must be tested to ensure that all conclusions are valid, by comparing
the reconstructed distribution to the empirical one. The Gamma function
cannot be fitted when only a few data points (events) or very low data val-
ues (precipitation) exist, because in such cases numerical convergence of the
optimisation process cannot be achieved. Therefore, the SPI methodology
cannot be applied in very arid regions.

The method of the SPI was performed for each grid point of the domain
and built from forecasts and hindcasts based on the ECMWEF system, as
shown in Figure 2

The SPI value can be broken down into different classes (WMO, 2012):
normal conditions from -1 to 1; moderate drought with SPI < -1; severe
drought with SPI < -1.5; and extreme drought with SPI < -2. The time
series of the analysed forecasts in this report are too short to justify focusing
on an SPI lower than -2 (last 2.3% of the distribution). This is illustrated in
Figure 3, which shows the significant spatial variability of drought occurrence
using this threshold. Based on the method used, this occurrence should be



Figure 1: Three steps of the SPI calculation: i) monthly cumulated precipi-
tation; ii) empirical CDF and fitting of the Gamma distribution; iii) trans-
formation into a normal CDF with mean=0 and SD=1. Red points indicate
an example of an SPI forecast of about 15 mm that becomes an SPI-1 of
-0.27.

equal to 2.3% over Europe. Therefore, this study focuses on moderate and
severe droughts only.

One strong advantage of this method is that it produces an unbiased
product with a homogeneous rank histogram (Talagrand Diagram) of the
observed precipitation ranked onto the forecasted precipitation (Figure 4).

2.3 Deriving decision support from probabilistic fore-
casts

One of the main objectives of this work is to provide decision makers and
end users with a simple and robust boolean index to forecast the occurrence
of drought based on a probabilistic forecasting system. It is therefore impor-
tant to select appropriate tools to characterise the quality of the forecasts.
It is difficult to classify these forecasts using a very simple score due to the
three dimensions of the forecasts, as illustrated in Figure 5. Several methods
for selecting a boolean solution were tested and compared to a determinis-
tic model (defined here as the unperturbed member of the Ensemble). A
comparison was also made with a climatological forecast. Methods to derive
this index are given in Table 2 and can be categorised into three types: in-
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Figure 2: Methodology to generate SPI with the ENS operational model. The
hindcasts generate the baseline and the forecast is placed in this distribution.
This allows for the provision of an SPI index relative to the grid cell or station
studied.
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Figure 3: Drought occurrence forecasts (as a percentage - top panels, or rela-
tive to the theoretical distribution - bottom panels) calculated using different
thresholds, SPI-1 < -1 (left panels), SPI-1 < -1.5 (central panels), and SPI-1
< -2 (right panels)
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Figure 4: Rank diagram of observed SPI-1 into the sorted SPI-1 forecasted
for the period of hindcast using SEAS.

dividual, where the index is based on an individual member or percentile;
partially integrative, where the sum of individual members or percentiles are
used; and integrative, which is represented by the ensemble mean. The indi-
vidual types should be seen as providing complementary information about
the intensity of the SPI-1 and the distribution of the members.

The individual types have been subdivided into five classes representing a
strong dry member (Q13), a strong wet member, (Q88) or the median. The
extreme members of the distribution are not used, so as to avoid the outliers
which are generally associated with ensemble systems (Lavaysse et al., 2013).

A threshold was defined for each method. An SPI less than -1 (-1.5) will
select 16% (6.7%, respectively) of the normalised series. Therefore, to be
coherent, the thresholds were defined in such a way as to select the same
number of events for all the methods.

2.4 FEvaluation scores

There are a plethora of scores to evaluate probabilistic forecasts (Nurmi,
2003). In this study, we have chosen only those scores which are suitable for
drought forecasting.

The Relative Operating Characteristic (ROC) score was proposed by Ma-
son (1982) to plot the false alarm rate against the hit rate. The objective
of the ROC score is to calculate the ability of the forecast to discriminate
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Figure 5: Example of temporal evolution of four consecutive weeks of SPI-1
observed (top panels) and forecasted using ENS (bottom panels) during the
period from October 2011 to November 2011.

Table 2: List of the 10 methods used to provide a boolean index for drought
forecasting using an ensemble system

Name

Definition

13 percentile (Q13)

member located at the 13% of the CDF

23 percentile (Q23)

member located at the 23% of the CDF

median (MED)

member located at the 50% of the CDF

77 percentile (Q77)

member located at the 77% of the CDF

88 percentile (Q88)

member located at the 88% of the CDF

Large spread (SpL)

sum of the extreme members (Q13 + Q88)

low spread (Spl)

sum of the members (Q23 + QT78)

Dry spread (SpD)

sum of the dry members (Q13 + Q23)

Flood spread (SpF)

sum of the wet members (Q77 + Q88)

Mean

ensemble mean

10



between events and non-events. It is not bias-sensitive to the forecast and
can be considered as a potentially useful measure because it is conditioned by
observations (i.e. given that a drought occurred, what was the corresponding
forecast?). The area under the ROC curve can be calculated, with a range
between 0 and 1. Higher numbers indicate a better forecast.

The reliability diagram, which is conditioned on the forecasts, is a good
complementary score to the ROC because it assesses the average agreement
between the forecast values and the observed values. In a reliability diagram
the forecast probability is plotted against the observed relative frequency
(Nurmi, 2003). A perfect score is associated with the 1:1 line. The clima-
tology score (i.e. no resolution) corresponds to the mean observed frequency
(i.e. observed relative frequency of y=0.159 for SPI < -1).

The accuracy of the probability forecasts is assessed using the Brier Skill
Score (Brier, 1950). A skill score can be derived by comparing the Brier
Skill Score to climatology. The Brier Skill Score ranges from -infinity to
1. The higher the score the more skillful the forecast, and any negative
values indicate that the climatological forecast outperforms the probabilistic
forecast.

The abovementioned scores are complemented by the correlation of the
ensemble mean and the Root Mean Squared Error of the ensemble mean,
which are frequently used in the evaluation of seasonal forecasts.

Several scores deal with the contingency table. Using this representation,
both the forecasted and observed solutions are booleans. In this study, we
have used five such scores. The Probability Of Detection (POD, perfect =
1) is the ratio of the observed to the forecasted events. The False Alarm
Rate (FAR, perfect = 0) is the fraction of the forecasted events that did
not actually occur. The extreme dependency score (EDS) integrates the
POD and the FAR (Ferro and Stephenson, 2011). Finally, the Gilbert score
balances the POD and correct percentage of cases (Jolliffe and Stephenson,
2003; Hogan et al., 2010), and measures the fraction of observed and/or
forecasted events that were correctly predicted, adjusted for hits associated
with random chance.

3 Results

3.1 Evaluation of the SPI calculation

The sensitive part of the SPI calculation is the step of the fitting of a distri-
bution to the empirical distribution. In this study, the Gamma distribution
is fitted to the probability density function of monthly precipitation. It is

11
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Figure 6: Bias of the SPI-1 calculated between the fitted Gamma distribu-
tion and the observed monthly cumulative precipitation (see text for details).
Regions in white are considered to be too dry to fit this distribution. Re-
gions where the bias deviates significantly from 0 (non-hatched areas) could
generate bias in the SPI calculation.

therefore necessary to set a threshold at which minimum cumulative precip-
itation can be considered significant.

Different thresholds were tested (0 mm, 1 mm, 5 mm, 10 mm and 20 mm,
not shown), and it was decided that only monthly precipitation levels greater
than 10 mm are significant. This threshold allows us to keep a large number
of events and to ignore events or regions with insignificant monthly accumu-
lated rainfall. As outlined in the methodology, fitting a Gamma distribution
to precipitation data relies on an adequate sample size (with respect to the
variability of the data). The Gamma distribution was fitted to the distribu-
tion if at least 66% of a gridpointaAZs values were significantly larger than 0
(i.e. larger than 10mm). This ensures the inclusions of a minimum number
of events to fit the distribution. These thresholds facilitated the removal of
arid areas for which the fitting of the Gamma distribution presented biased
values due to the low spread and low sampling of the time series.

The performance of the fitting procedure and all assumptions can be
analysed by investigating the resulting SPI-1 distribution. This was done
by calculating the integral of the differences between the fitted Gamma dis-
tribution and the empirical distribution. Zero values are considered to be
perfect values (no bias of the SPI-1), whereas positive or negative values in-
dicate bias and therefore give rise to doubts about the validity of the fitting
procedure. In Figure 6, the bias of the Gamma distribution is shown. It can

12
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Figure 7: (a) Correlation of the forecasted (using the mean of the ensem-
ble) and observed scores for the hindcast period (from November 1992 to
November 2012) for (a) SPI-1 and (b) RMSE.

be seen that the method is adapted in a large parts of Europe.

However, the low precipitation levels in southern Spain can create some
bias in the fitting process. This is especially true during the summer season,
and therefore the assumptions for fitting the Gamma distribution are not
validated for the entire year. This analysis shows that it will be necessary to
adapt the method, particularly over dry areas, for example by carrying out
the study only during the rainy seasons.

3.2 Validation during the hindcast period

This evaluation is based on the hindcast period (see table 1) of ENS and
SEAS. It allows for the long-term evaluation using the same version of the
model. The correlation and root mean square error of the ensemble means are
displayed in Figure 7. The mean correlation (0.32) and the mean Root Mean
Square Error (RMSE, 1.02) for ENS are better than those for SEAS (0.05
and 1.45 respectively, not shown). Neither the correlation nor the RMSE
deviate significantly from 0, suggesting that a mean monthly forecast has no
skill. In addition, the spatial variability is low, which indicates there is no
significant spatial difference in the ability of the model to predict the SPI-1
on average.

The SPI-1 values of individual ensemble members and observations were
analysed in bins to assess whether these results are also valid for extreme
events. Here, the individual ability (for each member independently) was
assessed by breaking down the forecasted and observed SPI-1 over Europe
during the hindcast period into 10 classes (from SPI-1 lower than -2, to SPI-
1 larger than +2, at intervals of 0.5). The frequency in each bin naturally

13
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Figure 8: Ratio of events following the forecasted (x-axis) and observed SPI-
1 (colour bars) over Europe using the hindcast period in relation to the
theoretical distribution. Results are standardised by the theoretical normal
distribution of events.

follows the Gamma distribution, which generates a large number of cases
centred around 0. This distribution was normalised by computing the ratio
between the empirical and the theoretical distributions. The result is shown
in Figure 8. The figure shows that the more a drought is forecasted, the more
it is observed (red bars). In addition, it should be noted that the distribution
is highly unsymmetric. This indicates that the forecasts of extreme dry events
are more accurate than the forecasts of extreme wet events. This result could
be due to the spatial and temporal characteristics of drought events that are
better simulated in a global model one month ahead.

3.3 Validation during the forecast period

The analysis of the forecast period from November 2012 to November 2013
largely confirms earlier findings of the forecasts over a significantly longer
time period, but allows for a more detailed investigation of the distributions
due to the larger ensemble number (see table 1).

Figure 9a compares the behaviour of the ENS members during observed
extreme wet and dry events. In both cases, the normal distributions of the
ranked ensemble members are quite similar. The only difference is the shift
of forecasted SPIs towards negative values when a drought is observed (red
line) compared to when wet events are observed (blue line). Nevertheless,
the standard deviation (indicated by the barlines) highlights that there is no

14
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significant difference (significance level of 0.9) between the two events. It is
interesting to observe that the value of the ensemble mean increases in line
with the observed SPI-1 (black line in figure 9b), whereas the spread of the
ensemble (defined as the standard deviation) shows little sensitivity (yellow
line in figure 9b). It can be concluded that only the ensemble mean displays
a significant difference between wet and dry anomalies, whilst there is no
relation in the standard deviation. Similar trends are observed for SEAS, but
the difference between the two conditional distributions are reduced (figure
9c and 9d). This indicates that ENS has a stronger resolution than SEAS,
and is therefore better able to distinguish events with a better frequency
distributions.

These results are confirmed by analysing the ROC curve. For the Euro-
pean continent, the ROC curves display an improvement in relation to the
aA¥no skillaAZ curve (1:1 in figure 10). The ROC area is slightly better
for ENS than for SEAS (+0.4 and +0.2 for SPI-1 < -1 and SPI-1 < -1.5,
respectively).

Both ENS and SEAS present an ascending but low reliability in detecting
SPI-1 < -1 (Figure 11). Indeed, the observed relative frequencies increase
in line with the forecast probabilities. The percentage distribution of cases
(not shown) indicates more events with ENS showing a larger percentage of
members associated with a drought than SEAS. This result indicates that
ENS members are more consistent in forecasting extreme rainfall deficits than
are SEAS member. Using ENS, several events are forecasted with more than
93% of members associated with a drought forecasting, whereas using SEAS,
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Figure 11: Reliability diagrams for drought detection defined as an SPI-
1 lower than -1 using ENS (toppanels) and SEAS (bottom panels) in the
period from November 2012 to November 2013. The spatial resolution is one
degree (left panels) and 5 degrees (right panels).

the maximum is 81%.

The ENS and SEAS systems are better than climatological forecasts of
drought events, achieving values of 0.14 and 0.12 respectively. In this case,
the difference between ENS and SEAS is not significant.

3.4 Sensitivity to drought scales

Although the analysis so far has been performed on a scale of 1 by 1 degree,
the sensitivity to different resolutions needs to be analysed, because the im-
pacts of large-scale droughts will be stronger. Figure 10 shows SPI-1 values
smoothed to 3 and 5 degrees using a simple upscaling method based on the
average of the values. The resolution of about 1 degree has been kept to
compare the impact of the resolution on the native grid. The results show a

17



75N
7ONH&V,/";%§§§§§V e
65N | BT

60N 1
55N A
50N A

45N

35N

30N

40W  30W 20w

LI

-19 =17 -15 =13 -1 -9 -7 -5 -3 -1 1 3 5 7 9 " 13 15 17 19

Figure 12: ROC anomaly (in %) in relation to the mean value of the ROC over
the domain (equal to 0.67) for the period from November 2012 to November
2013 with drought defined as a SPI-1 < -1

slight improvement of the ROC area with a coarser resolution (broken and
dotted lines in Fig. 10). The smoothed signal favours the large-scale signa-
tures that are better represented in models than the small-scale structures of
droughts. The effect of spatial upscaling can also be seen in the ROC results
as a little positive impact for SEAS for the largest forecast probabilities (Fig.
11d). However, as mentioned previously, the number of events in these cases
is low. This effect has been quantified onto the Brier Skill Score (BSS) that
goes up to respectively 0.17 and 0.14 for the 5-degree smoothed signal.

3.5 Spatial and seasonal variabilities
Spatial variability

The analysis so far has ignored the spatial and seasonal scales. Figure 12
shows the ROC anomaly for the forecast period, which is the ROC area
for each grid cell in relation to the average (0.67 for ENS). The anomaly is
preferred to the raw value to highlight regions where the ROC is improved or
reduced. A maximum variability of 20% can be observed. For the hindcast
period (not shown) this variability is much lower (at around 6%). There
is a difference in spatial patterns between the two periods, which seems to
indicate that the spatial patterns are not significant and are mainly driven
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Figure 13: Seasonal decomposition of the ROC curves for drought forecasting
(with the 5 degree smoothing) using ENS (left) and SEAS (right) over Europe
for the period from November 2012 to November 2013, with drought defined
as a SPI-1 < -1

by the extreme cases encountered during the period.

Seasonal variability

A seasonal decomposition is used to highlight the temporal variabilities. ROC
scores and curves were independently calculated for autumn (September to
November), winter (December to February), spring (March to May) and
summer (June to August) seasons - see figure 13 (for SPI-1 < -1).

The four ROC areas are very similar, and the four distributions are iden-
tical for ENS, which means that the ability to forecast droughts is identical
throughout the year. By contrast, SEAS shows some differences between
the seasons, with a small improvement of the forecast during autumn. As
identical interpretations can be derived for the SPI-1 < -1.5, they are not
shown.

3.6 Index performance

Figure 14 shows the POD and the FAR for ENS and SEAS. POD indicates
that, on average, one out of three drought events in Europe are correctly
forecasted one month in advance. This is significantly better than both the
climatology forecast (16%) and the deterministic forecast (around 25%, green
line in Fig. 14).

The highest POD is achieved by using the 13 percentile (7" member of the
ranked ensemble distribution), and the product using Q13 and Q23 (noted
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Figure 14: Probability of detection (POD, in green) and False alarm ratio
(FAR, in red, per fect=0) for different methods used to detect drought (x-
axis), using ENS (left) and SEAS (right). Lines indicate the scores of the
deterministic model (unperturbed member of the ensemble).

SpD). The mean of the ensemble (last point on the right of each graph),
which is used widely, is not the best method to detect droughts.

The POD values of the wettest members of the ranked distribution (Q77
and Q88 in Fig. 14) give the worst results of all methods, which indicates
that there is little consistency between the extreme dry and wet members.
The FAR displays low variability between the methods, but each of these
are better than the deterministic solution (red lines). It is also worth noting
that, using the ENS, the driest members are associated with a decrease of
FAR in relation to the dry members. This could be explained by the previous
scores that show a larger consistency between the members. However, it can
also be due to a technical effect; because the number of events selected is
constant, these scores could be dependent on each other.

The highest EDS is achieved for the driest members (Q13 and Q23, Fig.
15), whereas the wettest members (Q77 and Q88) have the lowest scores.
The score of the ensemble mean is better than that of the median. Even if
the POD and FAR differences are partially statistically significant, the im-
provement of the EDS for the driest members is significant for all differences
larger than 0.04.

ENS and SEAS are reliable (see Fig. 11), and hence a method of detection
could be simply based on the percentage of ensembles that predict a drought.
In total, ten different percentage thresholds were selected. Figure 16 shows
the rate of 'percent correct’ increases in line with the percentage used for
both models (black points in Fig. 16a and 16¢). The trend is in agreement
with the positive reliability found previously. The percent correct increases
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Figure 15: Extreme Dependency Score (EDS) for the 10 methods used to
forecast a drought (x-axis, see table 1 for more details) using the ENS (left)
and SEAS (right) ensemble system. Black lines indicate the score of the
unperturbed member.

in line with the percentage used for both models (black points in Fig. 16a
and 16¢). That means that the greater the number of members forecasting
a drought, the greater the possibilty of observing a drought. However, with
an increasing threshold, the number of misses also increases (provided by the
POD value, red lines in Fig. 16a and 16¢). For example, if the threshold
to determine a drought is defined with the 10% of members associated with
a drought forecasting, around 80% of droughts that occurred were correctly
detected (red points), but more than 50% of the forecasted droughts are false
alarms. On the other hand, if the threshold of detection is defined with a
percentage larger than 70%, the percentage correct is about 85%, but the
POD is close to 3%. Based on this result, the user can tune the percentage
to the false alarm ratio of misses cases that is acceptable.

The maximum Gilbert score (Fig. 16b and 16d) is achieved for a threshold
of 30% for ENS and 40% for SEAS. The number of missed events becomes
too high with a larger percentage threshold, whereas for lower percentage
thresholds the errors are associated with false alarms.

3.7 Assessment the uncertainties of the forecasts

Several previous studies (He et al., 2009; Palmer, 2000; Georgakakos et al.,
2004; Doblas-Reyes et al., 2009) have shown that probabilistic simulations
can provide additional information to assess the uncertainties of the simu-
lation. The idea here is to estimate the quality of the forecast based on a
specific behaviour of the simulation. The characteristics of the ensemble in
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Figure 16: (a) POD (red) and percent correct (black) using different per-
centage of members to forecast a drought event using ENS. (b) Gilbert score
(see text for more details) for different percentage used to forecast a drought
using ENS. Lines indicate the score of the deterministic model (unperturbed
member). (¢) and (d) same as (a) and (b) using SEAS.
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Figure 17: Mean SPI-1 and standard deviation of the ranked members fol-
lowing the four conditions in the contingency table (see table 2 and text for
more details): hits (green), false alarm (red), misses (blue) and correct neg-
ative (black line), using ENS. Vertical lines indicate the members used for
the boolean drought detection methods.

the four different cases of the contingency table were analysed. This table
was compiled using the threshold of SPI-1 < —1 to detect a drought, and
the forecast method was based on the median of the members.

The mean SPI-1 of the 51 ranked members for the four cases are illus-
trated in Fig. 17. During correct negative events (i.e. where droughts were
neither forecasted nor observed), where more than 70% of the events are lo-
cated, a normal distribution is observed with a mean slightly larger than 0.
During the missed cases, the median is very close to 0 and the distribution
of the ranked members is very close to the ensemble mean. In addition, the
spread of the members is displayed (barbed lines) and shows the increase
of the spread for extreme members and the fact that the two distributions
become indistinguishable. That means that the response of the model is no
different to a normal distribution. So it is not significant to find a specific be-
haviour of the model to assess the missed events. Finally, the distribution of
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Table 3: Contingency table (in percentages) obtained using the median of
ENS to forecast a drought. An observed drought is defined as having an SPI-
1 lower than -1, and a forecasted drought is defined as having an ensemble
median that is lower than the 16th percentile. The second values of each case
indicate the ensemble spread, and its standard deviation is given in brackets
drought observed

yes no

drought  yes | 4.4% / 2.31 (0.4) | 10.7% /2.37 (0.4)
forecasted no | 10.4% / 1.99 (0.4) | 74.5% / 1.88 (0..3)

the members during hits and false alarms are compared. In that case, there is
no significant difference. The average and the distribution of the mean SPI-1
of the ensemble is the same. These results are in agreement with Table 3,
which quantifies the ensemble spread for each case of the contingency table.
Based on these results, it appears impossible to evaluate the uncertainties of
the ensemble simulation associated with a boolean decision.

4 Spatial and temporal variabilities of SPI-1

A model of the early warning of drought over Europe will be tested in 2015
using atmospherical predictors (such as geopotential and temperature in the
free troposphere), which are better represented in the model than precipita-
tion. In order to achieve this objective, a preliminary study was carried out
to characterise the spatial and temporal variabilities of SPI-1 over Europe.
The principle component analysis (PCA), using the empirical orthogonal
functions (EOF) is the most appropriate tool to perform this kind of study.

To illustrate this first ongoing step, Figure 18 and 19 illustrates the two
main components of the SPI in Europe during the coldest period of the year
(from November to March) that spans 1992 to 2012. In the first mode, the
pattern is associated with a high variability of SPI-1 located over Denmark
and northern Germany. Droughts occurred in this area during the beginning
of the period (i.e. around 1995) and more recently (strong rainfall deficit in
2012). The second mode is centred in the northern part of Finland. Here we
recorded at least 8 episodes of strong rainfall deficits (SPI-1 lower than -1).
Based on these identified modes and temporal variabilities, predictors will be
identified by finding atmospherical variabilities that are highly correlated to
them.
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Figure 18: Coefficient of determination (top left), correlation coefficient (top
right) and temporal evolution of the principal component (PC, bottom) of
the first mode of the SPI-1 observed in Europe during the cold season (from
November to March) from 1982 to 2012.
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Figure 19: Same as Figure 18 for the second mode of the EOF. TThis mode
explains 10% of the total variance.
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5 Conclusions

This study provides the first assessment of the predictability of meteorological
droughts over Europe and of the ability to issue an early warning of such
droughts with a one month lead time. The analysis is based on the one
month forecast of the SPI-1 from the precipitation outputs provided by two
ECMWEF ensemble systems. In a first step the ability to forecast SPI-1 from
the ensemble outputs was tested, showing that

e The reliability of the ensemble is better than the climatology,

e The spatial variability of the scores can reach up to 20% over Europe
and the seasonal variability is not significant. Nevertheless, we note
a large variability of the ensemble score depending on the events that
occurred,

e Ensemble models are better at forecasting large-scale droughts, using
a spatial smoothing up to five square degrees.

In a second step the ability to provide a robust Boolean index for drought
forecasting was analyzed. The best method is defined by using a threshold of
30% of ensemble members associated with a drought. In that case, slightly
more than 40% of the droughts observed are forecasted correctly one month
ahead, with only 25% of false alarms. This is significantly better than using
the climatology (16%) or the deterministic models (around 25%). Finally,
this study has shown that there is no possibility to provide uncertainties
associated with the boolean index.

By providing the first global assessment of meteorological drought fore-
casting in Europe, this work will be particularly useful by providing a bench-
mark comparison for future studies that could be developed using others
methods, such as those based on atmospheric predictors, which are better
represented in the seasonal models. It could farther be useful to investigate
the use of moving windows of 10-day cumulative precipitation to detail the
temporal behaviour of the forecasted SPI-1. As the forecast skills are better
for short lead times, an SPI-1 lower than -1, explained by a strong decrease
in precipitation at the beginning of the period, should be more reliable.
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