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Small Scale AD Executive Summary

Executive Summary

Worldwide GHG emissions from livestock supply 

chains are estimated to produce 7.1 gigatonnes of car-

bon dioxide CO2 equivalent (CO2e) per annum. This 

represents 14.5% of all human-induced emissions. Of 

the total, storage and handling of manure represents 10 

per cent (FAO, 2013a). On-farm anaerobic digestion 

(AD) of manures has significant potential to capture 

methane as a renewable energy source and, as a conse-

quence, to reduce net global GHG emissions. 

Animal manure, however, is a massively under-

exploited biomass resource but presents many challen-

ges in any attempt to harness its full potential. This is 

attributable in part to the low energy density of the 

material, and also arises because agriculture worldwide 

is comprised of relatively small units of production. If 

the benefits are to be realised, strategies need to be deve-

loped for on-farm AD whatever the size of the farm. In 

many countries, subsidies are used as an inducement to 

encourage such actions on account of its high capital 

cost. 

The use of methane from agricultural biomass not 

only removes a direct source of GHG emissions, but 

also displaces the use of fossil fuels in terms of fertiliser 

and energy production, thus further reducing net GHG 

emissions. When livestock manures are used, there are 

other environmental benefits including better nutrient 

management which should be taken into account. These 

include:

•	 Improved	air	quality	from	the	replacement	of	fossil	

fuels, wood and peat

•	 Biofertiliser	availability	in	the	form	of	digestate		

•	 Resource	efficiency	(recycling	of	nutrients)

•	 Reduced	odours

•	 At	 least	 90%	 reduction	 of	 pathogens	 harmful	 to	

animal, human and plant life

•	 Reduction	in	weed	seeds	

Overall this creates a circular economy based on zero 

waste of resources

The purpose of this report 
•	 To	assist	farmers	who	are	considering	the	adoption	

of AD either to improve the overall productivity of 

the livestock enterprise or for farm diversification. It 

aims to provide the farmer with an overview of the 

types and designs of anaerobic digesters that are 

available and the factors which can affect both the 

capital and operating costs. 

•	 To	provide	policy	makers	with	an	illustration	of	the	

capital and operating costs for farm-based anaerobic 

digestion that will allow assessment of the effec-

tiveness of legislation and its impact on the adopti-

on of AD technology. 

The methodology
Four scenarios for a dairy farm of 100 milking cows 

are considered in order to demonstrate the extent to 

which energy prices, incentives and capital grants can 

influence the cost of GHG reduction through the use of 

AD for slurry management. All costs used in the examp-

les are for illustration only and can be replaced with 

those appropriate for individual countries and farms. It 

is assumed throughout that cost calculations are based 

on best practice in plant design and management inclu-

ding digestate application. The outcomes can be used by 

policy makers and regulators for guidance in making 

decisions that will maximise the potential contribution 

from AD towards meeting internal and external targets 

for the reduction of greenhouse gas (GHG) emissions. 

Concluding remarks and the way ahead 
AD is a multi-purpose process. It reduces the GHG 

emissions from the storage of the livestock manure. The 

recovered biogas replaces oil, kerosene or wood as fuels 

and in doing so reduces the release of particulates and 

toxins into the atmosphere. As a consequence, their 

detrimental effects on human health are reduced, while 

the reduction or elimination of pathogens during the 

process can lead to improved human health as well as 

animal health and productivity. These small scale plants 

wherever they are located can usually be integrated into 

a wholly sustainable farming system for the reduction of 

pollution to land, air and water.
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Extensive investigations at the international level all 

reach the same conclusion that AD is the most effective, 

indeed recommended technology for the removal of 

methane emissions from storage of livestock manure. 

There is a cautionary note that the AD process could 

potentially increase the amount of ammonia which can 

be released from the digestate into the atmosphere. 

This, however, is a matter for best practice management 

and therefore not an insuperable problem. It can be 

resolved in the main by gas tight storage of the digestate, 

as well as by the timing and method of application of 

the digestate to land as a biofertiliser. The cost calculati-

ons assume best practice in the plant design and 

management. 

There is a different attitude and psychology to the 

use of AD when it is used as a basic farm process to 

enhance the productivity and monetary value of slurry. 

Dairy farmers generally need a simple, efficient and 

minimal cost system for dealing with slurry, and pre-

ferably one that reduces net cost to the farm. The inve-

stigations show that a small AD system can meet this 

need. For the farmer, the avoided costs and a predictab-

le level of expenditure on energy, for example, are as 

important as any additional income from outside sour-

ces. This factor must not be overlooked in any evaluati-

on of these small plants. Nevertheless, there is still the 

underlying dependence on the relationship between 

capital cost, energy prices and incentives, quite apart 

from any extra costs incurred to meet national regulati-

ons. 

Conclusions to this effect have been reached by a 

number of studies made over the last three decades. 

There has been considerable progress in understanding 

process management and plant design since many of 

these studies were undertaken. It is, however, an over-

simplification to assert that high levels of incentives are 

needed to offset the high capital costs of such plants.

The driving force behind the incentive systems 

adopted by national governments is to encourage rene-

wable energy production as for example in Europe to 

replace the use of fossil fuels and so remove the sources 

of the GHG emissions. These incentives have and still 

are fulfilling that purpose. However, they fail to recogni-

se the full environmental benefit which AD can offer. 

They have not been favourable therefore to the develop-

ment of anaerobic digestion at a small scale (or indeed 

any scale) and especially manure based plants simply 

because these have been geared to electricity production 

which involves further complexity and investment in 

generation capacity. To tackle the issues of agricultural 

GHG emissions, the approach used shows a lead as to 

how AD, as the acknowledged best available technology 

for the reduction of GHGs from manure, can also be 

achieved without the combined heat and power (CHP) 

option where it fulfils the needs for heating or cooling 

within the buildings of the farmstead as a whole rather 

than the dairy in isolation.

Widespread adoption can drive the cost of small 

scale AD plants down through innovation, development 

and production and, where incentives are present, can 

allow support so that such plants can be fitted into the 

existing farming system, rather than having to alter the 

farming system in order to accommodate the digester 

and the incentive scheme. 

Given the stimulus of a favourable combination of 

capital cost, energy price and incentive at the outset, 

there is a win for the policy maker and a win felt in the 

pocket of the farmer. 

 



1. Introduction
The type of farm animal waste depends on the spe-

cies, the type of housing, the feeds used and the quanti-

ty of water which the animal consumes. The solids 

content of the waste depends on whether animal bed-

ding material is mixed with the excrement, as well as on 

the effectiveness in diverting rain water and washing 

water from the slurry or manure storage. Where the 

waste has a high solid content and is stackable, it is com-

monly referred to as manure, and where it is free-flo-

wing, it is referred to as slurry. 

Anaerobic digestion (AD) takes place when organic 

material decays in the absence of oxygen. When this is 

carried out in a controlled environment of airtight 

tanks, covered lagoons or covered ponds, this is known 

as a biogas plant or AD plant. The main benefits of AD 

are:

•	 Reduced emissions from manure management  

AD of manures and slurries can contribute signi-

ficantly to reduce agricultural pollution and mini-

mise GHG emissions from fugitive methane emissi-

ons. As much as 30% of the current emissions of 

CH4 and N2O associated with manure management 

could be mitigated by full deployment of current 

technology, including anaerobic digestion and com-

posting (European Commission, 2010a). However, 

some studies indicate that the operation of a biogas 

plant on these low energy density materials gives 

only a marginal or negative return on capital invest-

ment (MAF, 2008; Leuer et al., 2008).

•	 Methane capture and use as a clean fuel, both to 

replace fossil natural gas and more polluting solid 

fuels  

Reduction	 in	 GHG	 emissions,	 either	 directly	 or	

indirectly through fossil fuel displacement, is rarely 

considered as a criterion for providing financial 

subsidies for digester operation as a manure manage-

ment tool and means of improving farm efficiency. 

In most cases, the subsidies are heavily weighted 

towards energy output, especially electricity. This 

encourages the use of high energy value feedstocks, 

including purpose-grown crops. Yet by far the 

greatest non-crop agricultural biomass resource is 

animal slurry and manure. In the European Union 

(EU), for example, estimates indicate annual tonna-

ges around 1.4 billion tonnes (European Commissi-

on 2010b) a total annual GHG flux of 661 Mt CO2e. 

•	 Biofertiliser availability in the form of digestate  

The nitrogen content in the digestate after the AD 

process has enhanced availability in comparison 

with untreated animal manure and can offset in 

whole or in part the need to use chemical fertilisers 

which have a high energy demand in their produc-

tion. When applied to land, digestate also has a 

lower potential for the release of nitrous oxide, a 

more powerful greenhouse gas than that from 

untreated slurry (Amon et al., 2006).

•	 Resource efficiency (recycling of nutrients) 

All nutrients contained in the feedstock pass into the 

digestate and are available therefore to be recycled 

back to the land in the form of biofertiliser. This 

biofertiliser is used to replace mineral fertilisers. 

If the EU is used as an example, the average number 

of livestock units (LSU) on individual farms is less than 

100, yet about 70% of all agricultural land in the EU is 

used for livestock farming (European Commission, 

2010a). Effective management of EU manure and slurry 

therefore requires technology at an appropriate scale for 

individual farms, or the operation of the technology by 

consortia of farmers working together. An example of 

feedstock quantities needed for a digester with an out-

put of 100 kW electrical is shown in Table 1. In the case 

of dairy cow slurry, this would require almost 1,000 

cows housed all year round or more than 6,000 pigs. 

The same output could be achieved from the digestion 

of a crop such as maize grown on a land area similar to 

that needed for a herd of 100 milking dairy cows.

Animal slurry has already been depleted of much of 

its energy in the animal gut, whilst food waste and mai-
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ze are both high in energy-rich carbon components 

which have not been degraded. These two factors make 

the digestion of animal slurries a challenge because of 

the high volumes of material which need to be handled 

for the relatively small amount of energy recovered. 

However, it costs livestock farmers to store, handle and 

recycle these materials in any case and the AD process 

makes the material easier to handle whilst returning 

benefits in terms of fertiliser and energy. The area 

required to produce the daily quantity of maize needed 

to support a 100 kWe CHP will vary with the variety 

and as well as the soil and weather conditions. The area 

required to produce the daily quantity of maize needed 

to support a 100 kWe CHP assumes a yield of 40 t per 

hectare;	thus,	0.19	ha	would	be	required	on	a	daily	basis	

to produce the 7.6 tonnes of maize required, with near-

ly 70 hectares required to produce the year’s supply. The 

food waste figure assumes weekly collection of 2.1 kg 

per household.

Yet energy output, frequently expressed in the form 

of electrical energy (kWe), is usually the sole basis of 

current AD financial evaluations. It is therefore not sur-

prising that manure or slurry digestion rarely proves to 

be attractive in terms of electricity production; for 

example, a ‘typical’ livestock farm of 100 dairy cows 

only has an electricity generating capacity of approxi-

mately 10 kWe.

This brochure therefore focuses on different options 

which could be available to make the digestion of live-

stock slurry more attractive for the farmer than the 

present systems or status quo of slurry/manure manage-

ment. It also highlights other advantages which digesti-

on can offer, such as reduced GHG emissions, farm 

energy substitution, efficient nutrient recycling, and 

other environmental benefits, all of which could be the 

source of additional financial benefits.

Note: 

Throughout	 this	brochure,	costs	are	expressed	 in	GBP	

(£)	 as	 the	 currency	 of	 the	 lead	 IEA	 Bioenergy	 Task	

member country authors, in this case, the UK. For  

convenience,	 the	GBP	conversion	rates	of	all	members	

of	the	Bioenergy	Task	37	countries	are	listed	in	Appen-

dix A.
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source: Derived from Tompkins (2011); Fnr (2010)

Table 1 Comparative units required to operate a 100 kWe CHP each day

Feedstock Feedstock 
needed  

(tonne/day)

Daily Units 
needed

Unit

Dairy slurry 46.4 928 head

Pig slurry 68.4 6240 head (sows)

Food waste 8.1 26,963 household  
collections

maize silage 7.6 0.19 hectares/day



2. Small scale farm AD
For present purposes, attention is focussed on live-

stock farms, with particular examples drawn from the 

dairy sector. Figure 1, based on the European member 

countries	 of	 IEA	 Bioenergy	 Task	 37,	 shows	 that	 most	

farms have less than 50 hectares of usable agricultural 

land area (UAA). 

The amount of land required to support livestock 

depends upon climate, average temperatures, soil type, 

drainage, water availability and other factors. For dairy 

herds, a common assumption in a cool temperate cli-

mate such as the UK, is that 0.5 ha of grass or other 

forage crop is required to support 1 cow, equivalent to 

one livestock unit (1 LSU). A herd with 100 milking 

cows therefore requires at least 50 ha. Each herd is also 

likely to include younger animals referred to as so ‘follo-

wers’. The total herd size with 100 milking cows there-

fore is likely to be around 166 animals, with a land 

requirement of about 70 ha. Figure 2 shows that, with 

the exception of the UK and Denmark, average herd 

sizes are less than this in the selected Task 37 member 

countries. 

In the United States, the average dairy 

herd size is about 133 cows, even though the-

re is a growing trend towards confined animal 

feeding operations (CAFOs) with units of 

more than 1000 cows (Shields, 2010). The 

reality is that individual farms have the capa-

city to generate small amounts of electrical 

power,	 typically	 from	 about	 3.9	 kWe	 to	 100	

kWe,	 respectively	 for	 herds	 ranging	 from	 39	

to 1000 cows. If herds are housed for only 

part of the year, this poses further challenges, 

because either the AD system would only run 

for part of the year or further feedstocks 

would need to be found.

There are different digester designs which 

could be used for slurry/manure digestion on 

individual farms that aim at:

•	 Simple	and	cost	effective	plant	technology

•	 Ease	of	operation

•	 Dependable	 quality	 of	 products	 (heat,	 electricity,	

biofuel, biofertiliser)

Several plant constructors offer specially designed 

small-scale digestion systems which aim to keep invest-

ments and operating costs low. A list of suppliers of 

small-scale biogas plants is published on the website of 

IEA	Bioenergy	Task	37	(Task	37).	
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Figure 1 Distribution of farm size (ha) in selected IEA Bioenergy Task 37 member countries

Figure 2 Comparative number of dairy cows per farm in selected countries
source: Derived from European Commission (2012b)

source: Compiled from European Commission (2012a)  



3. Examples of anaerobic 
digestion technologies and 
operating conditions

Figure 3 shows a schematic diagram of an agricultu-

ral biogas plant which receives animal slurries or man-

ures. Co-feedstocks may be added, such as residues of 

animal feedstuff, spoiled silage or crops from the farm 

itself or imported from elsewhere. Typically in the EU 

and North America, the biogas produced is likely to be 

used in a combined heat and power (CHP) unit to gene-

rate both electricity and heat, although it can also be 

used in a boiler for dairy and farmhouse heating or for 

cooling. Energy is required to maintain the digester 

temperature and for operation of any electrical equip-

ment, such as for digester mixing. The second output 

from the digester is digestate, a biofertiliser (Lukehurst 

et al., 2010). Digestate has a similar volume to the origi-

nal feedstock, but has a lower organic carbon concen-

tration. Whole digestate can be separated into liquid 

and fibre portions for storage and for various applicati-

ons. 

Examples of design approaches to farm digesters are 

given below. These range from simple covered lagoon 

systems to factory pre-fabricated turn-key installations.

3.1 Continuously stirred tank reactor (CSTR)
The	continuous	stirred	tank	reactor	(CSTR)	descri-

bes a digester in which the contents are completely 

mixed and the digestate is displaced by the addition of 

fresh feedstock. This is supplied continuously to give 

steady and uniform conditions within the reactor tank. 

Most digesters of this type are in fact fed only intermit-

tently or semi-continuously, but this usually provides 

conditions similar to continuous feeding. For this type 

of digester, an average dry matter content of the feed-

stock needs about 10% total solids (TS) to facilitate 

pumping. For this reason, feedstocks with a TS content 

>15% are sometimes considered unsuitable for this type 

of digester (Görisch and Helm, 2006). In 

practice, however, provided hydrolysis and 

conversion of the feedstock solids are 

effective,	an	appropriately-designed	CSTR	

AD plant is suitable. For example, maize 

silage (~30% TS) or domestic food waste 

(~25% TS) are commonly used as feed-

stocks	 for	 CSTR	 digesters.	 In	 fact,	 since	

80% or more of the feedstock solids are 

converted to biogas, the actual solids con-

tent within the digester is typically <6% 

and it can be kept fully mixed. A schematic 

representation	of	a	CSTR	and	an	example	

of a farm digester of this type are shown in 

Figure 4.  
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Figure 3 schematic layout of a typical agricultural biogas plant (with ChP)

Figure 4 ‘CsTr’ digestion system at saugealles Fermes, 
switzerland (Photo: ErEP sA)
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3.2 Plug-flow digester
In an ideal plug flow digester (also known as a reac-

tor), the input feedstock passes through a defined path 

and will exit after a predetermined time with no inter-

mediate mixing of the tank contents. This means that, as 

fresh feedstock enters, it pushes existing material through 

the digester as a ‘plug’ with the result that the oldest 

inputs are driven out at the discharge end of the digester. 

In practice, an ‘ideal’ plug flow plant is not feasible and 

some in-tank mixing will inevitably occur. Some indivi-

dual designs incorporate moving floors or helical screws 

so as to move the material slowly through the digester in 

relation to the rate of fresh feed addition. Plug-flow 

digesters are usually configured with a high length-to-

breadth (or diameter) ratio and operate with high total 

solids content (>15% TS). The feedstock is added at one 

end of the tank and digestate removed at the other end. 

Figure 5 shows a plug-flow system which uses gas mixing 

in a circular tank with cylindrical internal baffles desi-

gned to increase the path length between inlet and out-

let: the inner compartment with the domed roof is used 

as storage for biogas. 

There are also low-cost plug-flow systems without 

any internal mechanical means of moving the plug for-

ward. This type is mainly used with slurry feedstocks. 

With these designs the reaction zone and gas collection 

are combined, either in a sealed and reinforced plastic or 

rubber bag, or by using a gas-tight cover over a lined or 

impervious lagoon excavated in the ground. The most 

common application of these is for digestion of pig and 

cattle manure and they are often operated at ambient 

temperatures in warmer climates (Figure 6), for example 

in	New	Zealand	(MAF,	2008)	and	Brazil	(Bley,	2013).

3.3 Feedstock and digester operating  
conditions

For small scale farm slurry based systems, feedstock 

pre-treatment should be kept to a minimum. However, 

pre-treatment equipment will be needed if the feedstock 

has a high percentage of straw or other fibrous material. 

In this case, it should be chopped before it is fed to the 

digester, as the long fibres increase the risk of floating 

layers which can form an undesirable crust on the liquid 

surface. Furthermore, bulky feedstocks can cause 

Figure 5 upflow (top picture) and plug (lower picture) flow 
examples of digesters (Photo: Top: ITAIPu Binacional, Brazil; 
Bottom: marches Biogas)

Figure 6 Lagoon and bag type digestion systems (Photo: top: C. Luke-
hurst; bottom: C. Bley)
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obstruction to pumps and pipes and are slow to degrade. 

If feedstocks, such as agri-industry residues or food 

waste are imported onto the farm, sufficient reception 

and suitable storage space must be provided to contain 

the material and prevent nuisance and/or pollution of 

surface or ground waters. In many countries, regulati-

ons or codes of practice are stipulated. Where both high 

TS and slurry feedstocks are available, mixing tanks or 

mixing pits can be used for homogenisation of the 

material before it enters the digester. This avoids the 

need for a separate feeding system for high dry matter 

content feedstocks. 

Some feedstocks may pose a risk to human or animal 

health. If this is the case, national regulations are likely 

to	apply,	as	for	example	the	Animal	By-products	Regu-

lation	in	the	EU	(ABPR,	2009).

Various physical, chemical or biological pre-treat-

ments are available on the market. These are intended to 

maximise methane yield. The cost effectiveness and 

energy requirements of these should be evaluated care-

fully before they are incorporated into the design, as 

they may only be cost-effective on large-scale plant. 

Methods for feedstock pre-treatment are the subject of 

a	 separate	 IEA	 Bioenergy	 report	 (Montgomery	 and	

Bochmann,	2014).

3.4 Digester temperature 
Manure-based digestion systems are most common-

ly operated in the mesophilic range (30°C to 40°C), alt-

hough it is also possible to operate at thermophilic 

temperatures of 50°C to 65°C, though 55° C is the opti-

mum temperature for the methane formation. Higher 

temperatures are not usually applied (Angelidaki and 

Ahring et al.,	 1984).	 The	 choice	 can	 have	 a	 significant	

influence on the digestion process: 

•	 The	higher	the	temperature,	the	faster	the	degradati-

on of the organic matter. Thermophilic digesters 

require shorter retention times and therefore smaller 

digester volumes can be used.

•	 Thermophilic	digesters	give	better	pathogen	inacti-

vation, and operation above 55°C at a guaranteed 

retention time can partially satisfy the requirements 

of	 the	 European	 Animal	 By-products	 Regulation	

(ABPR,	2009).	It	also	removes	the	need	for	a	pre-	or	

post-pasteurisation if materials are imported onto 

the farm. 

•	 Thermophilic	digesters	are	usually	more	sensitive	to	

changes in process conditions (e.g. temperature, pH, 

feed rate) with the consequence that, if not well-

managed, they can under-perform. This leads to a 

reduction in biogas production or even a breakdown 

of the biological system in extreme cases.

•	 The	equilibrium	of	free	ammonia	with	ammonium	

ions (NH3 NH4+) is dependent on pH and tempe-

rature in the digester. The higher the operating tem-

perature, the greater the risk of inhibiting the effici-

ency of the digestion process through free ammonia 

toxicity.

•	 There	is	an	energy	demand	associated	with	heating	

the feedstock from its storage temperature to the 

digester operating temperature. The greater this dif-

ferential, the higher the heating requirement of the 

digester. Small-scale digesters also have a higher 

surface-area-to-volume ratio with proportionately 

higher heat losses. When low methane potential 

feedstocks such as manure are used, the energy 

demand and loss from the system are critical design 

considerations. 

For most manure-fed farm digesters, where pasteurisa-

tion is not a legal requirement, mesophilic AD allows 

satisfactory degradation with reduced energy demand 

compared with thermophilic AD. 

3.5 Mixing system 
The movement of the feedstock in digesters is an 

important consideration, as it facilitates the distribution 

of micro-organisms and heat in the digester tank. In a 

CSTR,	this	feature	is	inherent	in	the	design	which	inclu-

des a mixing system. In plug flow reactors, it is necessary 

to mix fresh feedstock with digestate to ensure biological 

activity and to pre-heat before entry into the digester. In 

batch fed digesters, continual inoculation and heat 

transfer is maintained through percolation of recycled 
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digestate through the digesting mass. 

Variations	 on	 CSTR	 designs	 are	 most	 commonly	

used for manure digestion and these can be supplied 

with three main types of agitation: mechanical, hydrau-

lic and pneumatic (gas mixed). 

•	 Mechanical agitators are propellers or paddles which 

mix by rotational movement. They are susceptible to 

abrasion by materials such as grit and sand which 

can enter the digester as soil mixed with manure-

based feeds, or as contaminants of co-digestion feed-

stock which may contain metals and glass. Mechani-

cal agitators can also be fouled and seriously dama-

ged by materials that wrap around them. In a farm 

situation, this might include items such as binder 

twine or even plastic film.

 

•	 Hydraulic agitation, or jet mixing, creates a strong 

hydraulic current through the digester which induces 

mixing. In practice, digestate is withdrawn and retur-

ned through a nozzle under pressure. An advantage 

is that the mechanical equipment is located outside 

the digester and is more accessible for repair and 

maintenance. There is a risk that the device could be 

clogged by dense or fibrous digestate .

•	 Pneumatic agitation, or gas mixing, functions by injec-

ting biogas under pressure through nozzles located 

in the bottom or sides of the digester. The rising gas 

bubbles lead to different density gradients in the tank 

which bring about mixing. Gas mixing can be carried 

out using fixed or moveable gas tubes, depending on 

plant design. 

All mixing systems can, to varying degrees, be sensitive 

to actual solids concentration and fibrous feedstocks. It 

is possible to employ a combination of technologies: for 

example, gas mixing can be used as well as hydraulic jet 

mixing. As the energy consumption and therefore the 

cost implications (See Section 5) for agitation can be 

very high, it is vital that the technology is chosen and 

scaled appropriately for the size of the digester and type 

of feedstock. 

3.6 Digester process control
Control of the AD process can vary from an extreme-

ly simple system to one that is highly automated. At its 

simplest, feedstock can be moved into a storage tank or 

lagoon through a simple weir system for mixing. The-

reafter the feedstock is discharged into the digester 

(Figure 7, top). This procedure can be controlled by a 

simple timer. As an alternative, the feedstock is scraped 

by tractor into a loading area, from where it is screw-fed 

directly into the digester (Figure 7, bottom), whilst an 

output screw removes digestate to a separator so that 

liquid and solid digestate fractions can be recovered for 

separate storage. 

It is also possible to implement fully automated pro-

cess control which can further simplify the work of the 

operator and allow independent running of the plant 

during weekends and holiday periods. Where possible, 

even for small plants, some automation is recommended 

as it can help to limit the daily labour requirement. Even 

with full automation, however, the design should inclu-

de the option of manual control in case of unexpected 

events, e.g. if a unit of the plant breaks down. Process 

monitoring in biogas plants is described in detail in a 

separate	IEA	Bioenergy	publication	(Drosg,	2013).

Figure 7 Digester feeding options; Gravity feed of manure into 
the tank – top photo: s. Baumann; Feedstock augered directly 
into a digester – bottom photo: A Bywater
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3.7 Storage and Use of AD Products
3.7.1 Biogas Storage

Although biogas is produced continuously, fluctua-

tions and peaks occur and it is common practice to 

provide buffer storage capacity both to dampen this 

effect and to take into account the variable demand 

from biogas utilisation (e.g. boiler, CHP or upgrading 

unit).

A common method of storing biogas is inside the 

digester. For example, a double membrane flexible roof 

can be used, with the outer skin being inflated using a 

compressor and the inner skin expanding and contrac-

ting according to the gas production and consumption 

rate. Although convenient, this design can be susceptib-

le to heat loss through the roof if it is not insulated. This 

may be a major concern in small-scale plant or where 

outside temperatures are very low. A flexible membrane 

roof is shown in Figure 8. 

External gas storage can be a simple bell-over-water 

configuration	(Figure	9,	top)	which	effectively	acts	as	a	

process buffer and requires no energy to operate. Sepa-

rate flexible double-membrane gas holders can offer a 

convenient and price-efficient solution but, like double-

membrane tank gas storage, they have a small electricity 

demand in order to maintain a minimum gas pressure 

in	 the	 system.	A	 gas	 bag	 (shown	 in	 Figure	 9,	 bottom)	

also provides a low cost storage solution. In India, for 

example, very small bags are used to carry the biogas for 

sale in the local market. 

  

3.7.2 Biogas use
Before	use,	biogas	ideally	needs	to	be	dried	and	H2S 

removed. There are three main uses: combustion in a 

boiler for space heating or cooling, cooking or water 

heating; combustion in an engine to give combined heat 

and power (CHP); and upgrading to biomethane for 

use as a vehicle fuel or for gas grid injection.

By	 far	 the	 most	 common	 of	 these	 alternatives	 in	

Europe and North America is the use of CHP either for 

localised electricity use (off grid) or for connection to 

the grid. This brings additional income to the farm, 

with further utilisation potential of the heat recovered 

from the CHP engine. In many cases, however, this heat 

is not utilised because of the extra infrastructure 

Figure 8 Gas storage in a flexible roof (top) and in a double 
membrane gas holder (bottom) (Photos: B.Drosg (top); A. 
Bywater (bottom))

Figure 9 GrP bell-over-water gas holder (top) and simple gas bag sto-
rage at a Brazilian farm (bottom) (Photos: A. Bywater (top); D. Baxter 
(bottom))
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requirements. CHP units are available with low output 

power ratings which could meet the needs of farms with 

manure-based digesters, although these smaller units 

tend to be less efficient than larger ones. For 20 and 100 

kWe output, electrical conversion efficiencies may be 

30% and 40%, respectively (measured values, ASUE, 

2011). 

Upgrading biogas to biomethane requires removal 

of CO2 to achieve a methane (CH4) concentration of 

typically	>96%.	This	significantly	 improves	the	energy	

density of the gas and makes it usable in appliances 

designed for natural gas. Subject to local regulations, it 

can be injected into the gas grid or used off-grid in local 

applications.	Biomethane	is	also	used	as	vehicle	fuel	and	

provides better environmental performance than either 

liquid fossil fuels or indeed liquid biofuels (Persson and 

Baxter,	2015;	Svensson,	2013).	There	are	also	opportu-

nities for on farm use of upgraded biogas. There is 

growing interest in the development of small-scale 

upgrading equipment. Conventional upgrading techno-

logies such as water scrubbing, pressure swing adsorpti-

on (PSA) and membranes are already available, but are 

still generally considered expensive at the 0-100 Nm3/

hour scale. 

3.7.3 Digestate storage and post-treatment
Discharge of the digestate is the final stage of the AD 

process.	From	CSTR	type	digesters,	the	digestate	is	in	a	

liquid form and can be discharged into an existing slur-

ry storage tank or lagoon. In contrast, digestate from 

digesters designed to process high TS feedstocks is more 

like compost. The size and type of the storage required 

and the length of the storage period before land appli-

cation depends on national legislation as well as on 

geographical factors such as soil type, winter rainfall, 

crop rotation, etc. In temperate parts of Europe, for 

example,	 the	 storage	 capacity	 must	 accommodate	 4–9	

months of digestate production (Lukehurst et al., 2010).

Digestate does not form a natural crust like raw 

slurry and therefore fixed or flexible tank/lagoon covers 

should be used. These will help to avoid nutrient losses 

and pollution through ammonia emissions (ADAS and 

SAC, 2007) and prevent dilution by rainwater. The use 

of this type of system also allows residual methane to be 

captured which improves the plant‘s energy balance. 

Where full covers are not feasible, a floating cover of 

lightweight expanded clay aggregates (known as LECA 

clay pebbles) can also be used, but these can be less 

effective.

On most farms, digestate is used as fertiliser without 

any further treatment and is applied to the land with the 

same equipment that is used for slurry or for solid man-

ure. Some farms, however, use screw or belt press sepa-

rators when the liquid and dry matter is used for diffe-

rent purposes (as in the application of slurry). With a 

screw press, the resulting dry matter content of the solid 

fraction is 30-35% and the liquid fraction contains 

3-7% dry matter. This type of equipment can reduce the 

required	storage	tank	volume	by	as	much	as	29%.	The	

equipment is relatively low cost, efficient and robust. 

Digestate processing and nutrient recovery are descri-

bed	 in	 a	 separate	 IEA	 Bioenergy	 publication	 (Drosg	

et al., 2015). Selection of AD technology and how it is 

operated will determine both capital and operating 

costs which are considered in the farm context in Sec-

tion 5.
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4. Environmental Benefits 
of Anaerobic Digestion

The viability of a farm AD plant, whether a small-

scale slurry/manure based plant or a farm diversificati-

on enterprise, generally focuses on financial perfor-

mance in terms of return on capital investment. Howe-

ver, a significant underlying factor in agricultural policy 

globally is the need to reduce GHG emissions from 

manure storage. In consequence, environmental factors 

must also form part of the total assessment. 

4.1 Abatement of greenhouse gas emissions
Total annual GHG emissions from the European 

agricultural livestock sector are about 661 Mt CO2e of 

which	15-19%	could	be	prevented	through	technically	

achievable mitigation solutions including AD (Euro-

pean Commission, 2010a). Manure management is 

responsible for emissions of about 87 Mt CO2e/year 

which amounts to 13% of the total. Two-thirds of this 

(55 Mt CO2e/year) are derived from methane gas emit-

ted from storage systems. The remainder (32 Mt CO2e/

year) is in the form of N2O gas emissions. The installa-

tion of treatment processes to stabilise slurry/manure 

under controlled conditions, either aerobically or anae-

robically, is recognised as the most cost-effective means 

to reduce these emissions. Moreover, AD has the added 

benefit of capturing methane which can be used to 

replace fossil fuels for heating or cooling and/or the 

production of heat and power.

4.2 Direct avoidance of GHG emissions 
FAO (2013b) recommends the use of AD to capture 

and utilise methane emissions from manure as well as to 

generate renewable energy and enable sanitation, espe-

cially in developing countries. The purpose of this sec-

tion is to illustrate how small scale AD can contribute to 

these objectives. For illustration, the calculations below 

are based on the daily production of slurry from a dairy 

herd of 100 milking cows. It is assumed that the slurry 

can be collected and stored and therefore that the herd 

is housed for all or part of the year. Where climatic con-

ditions are favourable and agricultural practice is out-

side grazing, excreta will be deposited directly on the 

pasture. Even during this outdoor grazing period, some 

excreta will be deposited in or around the milking par-

lour and could be collected.

The GHG savings and potential energy production 

have to be calculated pro rata to the weight of total and 

volatile solids load of slurry produced. The actual quan-

tity reflects the breed and body weight of the animal, the 

nutrient content of the feed, the stage in the lactation 

and	the	milk	production	(NRCS,	2008;	US	EPA,	2012).	

As an example, dairy cows which produce between 

5,000	and	9,000	litres	per	lactation	also	produce	about	

55 kg to 64 kg of undiluted slurry/day (Defra, 2010). 

The following illustration assumes that 55 kg/head/day 

(TS	of	13.9%)	can	be	collected,	equal	to	5.5	tonnes/day	

for 100 milking cows (derived from US EPA, 2012). In 

reality, it is likely that a certain volume of water which 

has been used in the parlour may have been added to 

the slurry that reaches the digester, although this should 

be minimised. If it is assumed, for example, that 10 kg 

water/cow is added, this would take the total weight of 

the feedstock (slurry plus dirty water) for digestion to 

6,477 kg for TS of 11.8%. Any contributions from hei-

fers (10-24 months) and young stock under a year old 

are ignored in this example. It follows that the 100 mil-

king cows would produce 764 kg of total solids per day, 

of which around 636 kg (83% of total solids) are volati-

le solids (VS). The specific methane potential of dairy 

slurry lies in the range 0.110 – 0.275 m3/kg	VS	 (FNR,	

2010) and a proportion of this will be produced in any 

storage tank, pit, pond or lagoon systems. Unless this 

methane is collected, it will escape to atmosphere as a 

fugitive emission. The amount will depend upon a 

number of factors, including the type of storage system, 

the temperature and the time that the material is stored. 

For the purposes of calculations below, the specific 

methane production of undiluted dairy slurry is taken 

as 0.15 m3/kg VS. 

According to LCA studies by Styles et al. (2014) for 

each tonne of dairy slurry dry matter fed into a biogas 

plant, the emission of 1.45 tonnes of CO2e can be avo-

ided, primarily through avoided manure storage, but 
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also through replacement of mineral fertiliser, grid elec-

tricity and use of heating oil. This is equivalent to a 

“carbon credit” of 3.27 kg CO2e per kWh net electricity 

generated and compares with an achievable carbon cre-

dit	of	0.49	kg	CO2e per kWh electricity generated from 

other renewable energy sources that achieve GHG avoi-

dance only through electricity replacement.

Methane loss from storage is taken from the IPCC 

Guidelines for National Greenhouse Gas Inventories 

(IPCC, 2006). The Guidelines use three approaches 

(Tiers) to the calculations of the emissions based on the 

level of detail available. The figures used in Table 2 are 

based on a Tier 2 method, where more detailed infor-

mation is available. The estimate is calculated for liquid 

slurry at 12°C with a natural crust 

cover and uses a specific methane 

yield	(B0 value) of 0.15 m3/kg VS, i.e. 

6.36 kg VS per head. The calculated 

contribution to GHG emissions as 

CO2e from such a dairy herd based 

on anticipated methane loss is shown 

in Table 2. This value would be high-

er if the stored slurry did not form a natural crust cover 

in the slurry store. The annual loss would depend on the 

number of days of storage. 

On the basis of these assumptions, the use of the 

digester as a standard piece of farm equipment has the 

potential to avoid emission of 222 kg CO2e per day from 

100 milking cows. The captured methane is the fuel 

used to generate energy to operate the digester and to 

have a surplus for other on farm uses. An element of 

care needs to be applied to the estimates above as these 

relate to the characteristics of the undiluted slurry 

which can vary from day to day. If the local temperature 

rises higher than the prevailing average, then the quan-

tity of methane emissions can increase. 

4.3 Indirect avoidance of GHG emissions
In addition to the direct avoidance of fugitive 

methane from slurry storage, anaerobic digestion also 

reduces GHG emissions through fossil fuel substitution 

by offsetting the emissions which would otherwise have 

resulted from the production or use of fossil fuels and 

power generation from fossil carbon. In this section, 

this offset is calculated based on the use of the biogas as 

a replacement for:

•	 Fuel/heating	oil	for	hot	water	and	domestic	heating	

only

•	 Grid	electricity/CHP

On the basis of the above, the undiluted daily slurry 

output from a herd of 100 milking cows is 636 kg/day 

volatile solids or 6.36 kg/cow. However, even if the slur-

ry is diluted, the volatile solids and the output of biogas 

will remain the same, provided that digestion conditi-

ons are not changed. The calculated energy recovered 

from the slurry is shown in Table 3. 

Table 2 Indicative CO2 equivalent for potential avoided natural 
methane emissions during storage

Unit Daily

undiluted slurry output from 100 milking 
cows (excluding water of 1000 kg)

kg 5477

kg of volatile solids assuming the  
slurry Vs concentration is 83% of Ts  
(or 11.62% of the wet weight)

kg 636

Potential methane production based  
on a specific methane potential  
0.15 m3/kg Vs

m3 95

Proportion of methane (13%) by volume 
(nm3) in biogas expected from long term 
natural digestion (IPCC Tier 2 approach) 
at 12°C

nm3 12

Convert methane to kg at sTP 
(0.715474) for mass expected from long 
term natural digestion 

kg 9

mass CO2e based on Ch4 being 25 times 
more potent as a GhG compared to CO2 

kg CO2e 222

Table 3 Data used for the calculation of indicative CO2 reduction

Unit Daily

Volatile solids from 100 milking cows/day kg 636

Total methane production nm3 95

Total energy value of methane @ 35.7 mJ/m3 mJ 3408

Total energy value of methane  
(1 mJ = 0.2778 kWh)

kWh 947
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Any water addition has the effect of reducing the 

hydraulic retention time of the digester which, in extre-

me cases, could lead to a washout of the methane pro-

ducing organisms. Of more concern, however, is the 

effect that dilution has on the amount of heat needed to 

process	 the	slurry	 in	the	digester.	Biogas	used	for	hea-

ting the digester is obviously not available for other uses 

where it can take the place of fossil fuel. Table 4 shows 

how the TS and VS concentration of the slurry is affec-

ted by water addition. If it is assumed in all further cal-

culations that 10 kg of water are used per cow for 

cleaning before milking and thereafter makes its way 

into the slurry, by the time the slurry reaches the dige-

ster this takes the effective total solids concentration to 

11.8%	and	volatile	solids	to	9.8%.	

The retention time in the digester will become criti-

cal if the TS of the slurry drops to around 6%. Dilution 

will not produce more biogas, but it will increase the 

heat required to maintain the digestion process and 

there will therefore be less biogas to displace fossil fuel 

use. Therefore, it is important to minimise water ingress 

into small digester systems. 

4.4 Use of the biogas for 
heat-only

The daily energy required to 

heat 6.5 tonnes of slurry and 

water from a temperature of 

8.45°C (the annual average 

temperature in the UK) (deri-

ved from Jain, 2013) to 40°C is 

237 kWh. The daily heat loss from the example digester 

is 73 kWh. This assumes the same annual average tem-

perature and a digester construction of concrete,  

insulated with polyurethane, and with a U value of  

0.51 W/m2/°C (derived from Jain, 2013). The U value 

relates to the rate of heat loss (formally, the U value is 

the coefficient of transmission). The U value does not 

allow for actual heat losses through pipework, imperfec-

tions in insulation, thermal bridging and variations in 

digester design. Such thermal losses make a significant 

difference on these smaller digesters and the actual heat 

losses are likely to be higher than the theoretical values. 

A U value of 0.51 W/m2/°C (watts per square metre per 

degree centigrade) represents a total process heat 

requirement	(feedstock	and	losses)	of	294	kWh.	This	is	

36% of the total post-boiler energy production of 805 

kWh. A U value of 0.66 W/m2/°C has been used in the 

following calculations in order to reflect actual heat 

losses.	These	are	typically	in	the	region	of	40%	(Bywa-

ter, 2011; pers. communication Murcott, 2013). 

In the calculations below it is assumed that the dige-

ster volume is 130 m3, with a surface area of 146 m2, and 

that it is fed at a rate of 5 kg volatile solids/m3/day. This 

gives a retention time of 24 days. The energy remaining 

for	further	use	is	495	kWh.	If	this	energy	in	the	form	of	

biogas is used as a direct replacement for fuel oil on the 

farm, further GHG savings would be made. Again, bea-

ring in mind that the digester may run all or part of the 

year, sufficient economic use for the heat would need to 

be found and this is discussed in Section 5.

The above parameters are used in Table 5 to show 

the daily CO2e emissions which can be avoided when 

biogas is used to replace heating oil. 

Table 5 Indicative CO2 reduction attributable to fuel oil replacement 
(EF = emissions factor)

Table 4 Effect of water addition on the TS and VS of dairy cow slurry

Unit Daily

Energy value of methane which 
remains after digester heating; used to 
replace fuel oil 

kWh 495

Total CO2e emissions avoided from 
use of biogas (methane) to replace 
heating oil based on an EF of  
0.269 kg CO2e / kWh (DECC, 2013)

kg CO2e 133

Water input per 
cow

L /day 0 10 20 30 40 50 60 70

TS cattle slurry % 13.9% 11.8% 10.2% 9.0% 8.1% 7.3% 6.7% 6.1%

VS % 11.6% 9.8% 8.5% 7.5% 6.7% 6.1% 5.5% 5.1%
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4.5 Use of the biogas for CHP 
The calculation below is based on a CHP of appro-

ximately 11 kWe. This is taken to have an electrical 

efficiency	of	31%	and	heat	recovery	factor	of	93%	and	

to	operate	with	a	load	factor	of	91%	or	8000	hours/year.	

For present purposes this figure is used in the calculati-

ons in Section 5, but in practice the engine performance 

will depend on the quality of biogas and the amount of 

degradation of components during operation, which 

will affect the requirements for maintenance. The time 

taken for maintenance will be reflected by the expertise 

available on the farm (see Section 5.2.2). 

The GHG savings for renewable electricity vary bet-

ween countries and the fuel mix of the electricity which 

it replaces. It is assumed that the heat available after 

feedstock and digester heating is used to replace fuel oil. 

In Table 6 below, an EF of 0.45376 kg CO2e/kWh is used 

as the basis for the electricity calculations, with a range 

in IEA Task 37 countries of 0.0022 kg CO2e/kWh (Nor-

way) to 0.67222 kg CO2e/kWh (Germany) and a world 

average of 0.662353 kg CO2e/kWh	(Brander	et al., 2011).

The results above show that 133 kg (Table 5) and 

186 kg CO2e per day, respectively, could be saved if the 

biogas is combusted in a boiler to produce heat only or 

in an engine to produce combined heat and power 

(CHP).

None of the GHG calculations above take into 

account any potential fugitive emissions of methane 

from the digestion process itself or from gas utilisation 

equipment. 

4.6 GHG savings from synthetic fertiliser 
replacement

The fertiliser savings depend on the amount of 

nutrient in the animal diet, the conversion efficiency in 

the rumen and that which remains in the faeces and 

urine. The AD process does not change the amount of 

total nitrogen (N), phosphorous (P) or potassium (K). 

Based	 on	 the	 manure	 characteristics	 used	 in	 the	 pre-

vious	 sections,	 a	 milking	 cow	 excretes	 0.29	 kg/day	 of	

total nitrogen, (US EPA, 2014). The proportion of total 

N available to the next crop can vary from 0.10 kg - 0.14 

kg depending upon its availability; e.g. 36% (Defra/

DECC,	 2011)	 or	 50%	 (FNR,	 2009),	 respectively.	 Frost	

and Gilkinson (2010) highlight the need for a cautious 

approach in any attempt to establish fertiliser savings. 

For	example,	at	the	Agri-Food	and	Biosciences	Institute	

in Northern Ireland daily samples over a whole year 

were taken of both dairy cow slurry fed into the digester 

and digestate from the storage tank. The total N and 

available N varied both in the slurry and in the digesta-

te from one day to another. The aggregated 

results showed a 20% increase in the ammoni-

um nitrate which when applied to land is 

immediately available for plant uptake.

It follows that the additional availability of 

N could reduce some of the requirement for 

imported fossil fuel based nitrogen fertiliser 

and the corresponding CO2 equivalent emis-

sions associated with its manufacture. Emissi-

on factors (EF) for N fertilizer production 

vary widely depending on the fossil fuel used 

(Wood	and	Cowie,	2009;	European	Commis-

sion, 2013). The calculations below use an EF 

value of 6.172 kg CO2e/kWh N (European 

Commission, 2013) for the production of 

urea (46% ammonium nitrate). The potential 

savings are given in Table 7. 

Table 6 Illustration of daily reductions in CO2 equivalent with an 11 kWe CHP

Unit Daily

replacement of grid electricity:
Electricity generated from 95m3 methane/day (From 
Tab. 2 above) at 31% efficiency and 91% Load Factor (LF)

kWh 264

Total CO2e saved by electricity substitution from a 
renewable source (0.45376 kg CO2e /kWh) (a)

kg CO2e 120

heat generated from 95m3 methane/day at 93%  
thermal efficiency and 91% load factor

kWh 555

Deduct the energy used for digester heating kWh 310

Total heat available to replace heating oil kWh 245

CO2 emissions displaced from use of biogas to replace 
fuel oil based on an EF of 0.269 kg CO2e/kWh (b)

kg CO2e 66

Total CO2 equivalent emissions displaced by 
CHP (a) + (b)

kg CO2e 186
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The time span over which slurry can be collected 

can vary considerably. In a cool climate, cows may be 

housed approximately 185 days a year (Defra, 2010) and 

return from pasture for milking. Under these conditions 

Defra (2010) estimates that 60% of the annual excreta 

can	 be	 collected	 (19%	 during	 the	 grazing	 period).	 In	

this situation, 2.8 tonnes of CO2e emissions potentially 

could be avoided. If the herd is housed throughout the 

whole year, the yearly emissions saving would amount 

to 4.6 tonnes. 

4.7 Estimation of the total 
savings in GHG emissions 

The total daily CO2e GHG abate-

ment values are shown in Table 8 for 

an AD system which has been 

installed principally to improve slur-

ry management. The conversion of 

the methane into heat and/or combi-

ned heat and power is the means to the end rather than 

the end in itself. Nevertheless, it demonstrates through 

the example of a herd with 100 milking cows the poten-

tial contribution to GHG reduction. 

 For both the farmer and the policy maker, the signi-

ficance of the amount by which GHG emissions can be 

reduced by AD of slurry will become apparent in Sec-

tion 6. For the policy maker, the impact is expressed as 

the marginal abatement cost (MAC) of GHG avoidance, 

and for the farmer, by the efficiency benefits costs which 

can be achieved. (See Section 5).

4.8 Emissions of nitrogen
Care needs to be taken in any attempt to compare 

the level of GHG emissions from the application of 

animal manure, in this example undiluted dairy cow 

slurry, with those from synthetic fertiliser or with dige-

state. The purpose of this section is to consider first 

nitrous oxide (N2O) and thereafter emission of ammo-

nia (NH3) which is not a greenhouse gas, but neverthe-

less is a cause of air pollution.

4.8.1 Calculation of nitrous oxide emissions
The amount of N2O released depends on the system 

of slurry/manure management. Nitrous oxide is a very 

powerful greenhouse gas, with a CO2 equivalence factor 

of 310. It is formed in slurry storage tanks and in soil 

after the application of both fossil derived and natural 

organic nitrogen fertilizer. Production of N2O during 

storage and treatment of animal slurry/manure occurs 

as a result of the combined nitrification and denitrifica-

tion.	Because	N2O production requires an initial aero-

bic reaction and then an anaerobic process, dry aerobic 

management systems are more likely to provide an 

Table 7 Indicative daily avoided emissions from the replacement of synthetic N fertiliser

Table 8 Summary of potential reduction of CO2 equivalent emissions 

Avoided CO2e emissions

heat only option:
slurry storage (Table 2) 
replacement of fuel oil (Table 5) 
replacement of synthetic n fertiliser (urea) (Table 7)

222 
133 
13

Daily total (kg CO2e) 368

Displaced or avoided per cow/LSU (kg) 3.7

From 60 % slurry recovery (Annual T CO2e) 81

From 100 % housing (Annual T CO2e) 134

ChP option:
slurry storage (Table 2) 
replacement of fuel oil and electricity (Table 6) 
replacement of synthetic n fertiliser (urea) (Table 7)

222 
186 
13

Daily total (kg CO2e) 421

Displaced or avoided (kgCO2e) per cow/LSU 4.2

From 60% housing (Annual T CO2e/year) 92

From 100% housing-365 days (Annual T CO2e/year) 154

Unit Daily

Total n in the slurry @ 0.286 kg/cow x 100 cows kg 29

Available n in the slurry @ 36% of total n kg 10

Increase in readily available n after digestion: 20% kg 2

Avoided CO2e emissions using European average EF of 
6.172 kg CO2e/kg n for urea (including transport)

kg CO2e 13

source: Derived from: Defra, 2010; us EPA, 2012; Frost and Gilkinson, 2010.
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environment favourable for N2O production than wet 

slurry stores. However, it remains uncertain how much 

N2O might be generated under these conditions. The 

tentative default IPCC emission factor value for a liquid 

slurry storage system is 0.001 kg N2O-N per kg N excre-

ted. While there is much uncertainty about N2O genera-

tion in slurry/manure management systems, it is clear 

that there is no possibility of N2O formation occurring 

while the liquid manure (slurry) is in the digester. Given 

the uncertainty, no N2O savings have been included in 

the reduction of GHG attributed to the digestion of the 

slurry and application of the digestate.

4.8.2 Ammonia-N losses from volatilisation
There is evidence to suggest that AD increases the 

concentration of available ammonia-N compared with 

that in undigested slurry. In theory, this should lead to 

greater N losses from the manure/slurry management 

system and methods of application compared with use 

of undigested material. However, results in the literature 

for NH3 losses during application are not consistent. A 

number of other factors are involved; including lower 

NH3 emissions following narrow band application, 

attributed to the lower dry matter content of digested 

manure which gives better soil infiltration. 

Sommer et al., (2006) reported significantly higher 

NH3 emissions after broadcast application of co-dige-

sted manure compared with untreated manure and this 

was believed to be due to the higher pH of digested 

manure.	Both	Amon	et al. (2006) and Wulf (2002) also 

found significantly higher NH3 emissions after sprea-

ding of digested cattle manure compared with untreated 

manure.	 Research	 in	 Canada	 (Crolla	 et al., 2013) also 

found a much higher emission factor for digestate com-

pared with slurry in one of their applications, but not in 

another. Losses are also reported to be short term and 

only continue until the digestate is incorporated into 

the soil. Other studies, including the work of Clemens 

et al., (2006), and Pain et al.	(1990),	found	no	significant	

differences between digested and undigested slurries 

during application. In practice, nitrogen losses can be 

minimised by good farming management practices. 

These can include a 15 cm layer of lightweight expanded 

clay aggregates (LECA) placed over the slurry/digestate 

(ADAS and SAC, 2007) or a covered store, together with 

appropriate application timing and use of low-emission 

spreading techniques. The latter include: 

•	 Soil	injection;	either	shallow	or	deep

•	 Surface	 application,	 followed	 by	 immediate	 incor-

poration into the soil.

4.9 Odour emissions 
Odour arises from volatile organic compounds in 

slurry, some of which are broken down during the AD 

process to form the biogas. As a consequence, less 

remains	in	the	digestate	to	cause	the	odours	(Birkmose,	

2011). Laboratory and field tests to measure odour 

units (OU)/m3, for example, in Canada (Crolla et al., 

2013), Denmark and the UK (reported in Lukehurst 

et al., 2010) compared digestate with untreated cow 

slurry. Tompkins, (2011), for example, records between 

90%	 and	 95%	 reduction	 of	 odour	 units.	 In	 Canada,	

simulation studies compared odour emissions from 

fresh and old digestate with raw slurry in spreading 

applications (Crolla, op.cit). The results demonstrated 

significantly lower odour for digestate compared with 

slurry when expressed both as a concentration (OU/m3) 

and as an odour flux (OU m2/second).

4.10 Reduction of pathogens
Major	investigations	in	Denmark	(Bendixen,	1994),	

Germany (Hass et al.,	 1995),	 The	 Netherlands	 (van	

Overbeek	and	Runia,	2011),	Sweden	(Harraldson,	2008	

and Zetterstrom, 2008) and in the UK (Tompkins, 

2011) all show the effectiveness of AD in the reduction 

of	 at	 least	 90%	 of	 slurry	 borne	 pathogens	 harmful	 to	

animal and plant health. The combination of tempera-

ture, presence of volatile fatty acids, pH and levels of 

nitrogen in the digester tank creates a hostile environ-

ment for the survival of animal and plant pathogens 

and also weed seeds.

Animal pathogens
For example, eggs and larvae of roundworms and 

gastrointestinal worms in cattle slurry do not survive 
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more than 2 days at 35°C, while it takes just 7 days to 

destroy the larvae of lungworms. Public Health Autho-

rities	 (Bendixen,	 1994),	 for	 example	 in	 Denmark	 and	

Finland	(see	Appendix	C),	show	that	at	least	90%	Strep-

tococcus faecalis (FS) do not survive after two days at a 

mesophilic temperature. If FS are killed, then the large 

number of bacteria less tolerant to heat are also killed.

The digestion process is equally effective in the inac-

tivation of viruses which cause some of the common 

diseases in cattle and also in pigs. For example, the sur-

vival times range from 3 hours for bovine viral diar-

rhoea	to	5	hours	for	Aujeszky’s	Disease	(Botner,	1991)	

and 24 hours for infectious bovine rhinotracheitis. 

In Section 5 it is not possible to establish the finan-

cial implications of the break in the pathogen cycle from 

animal to pasture and ingestion back into the animal in 

the short term. There is, however, anecdotal evidence 

that veterinary costs are reduced and that the overall 

level of herd health improves (See case study in Appen-

dix C).

Plant pathogens
Scientific tests also confirm the effective destruction 

of most crop disease-spreading spores in a mesophilic 

digester operated at 35°C, and therefore the scope to 

reduce the risk of recycling plant disease (Zetterstrom, 

2008;	 Harraldson,	 2008;	 van	 Overbeek	 and	 Runia,	

2011). Specifically, for example, the spores of Fusarium 

oxysporum which affect cereals and maize decline rapid-

ly within one day in the digester and none are present in 

the final digestate. Laboratory tests also show that pota-

to nematodes, Globula rostochiensis and G. pallida, do 

not survive after 4 and 5 days respectively in a digester 

at 35°C.

The degrees to which inactivation of pathogens as 

well as the eggs and larvae of parasites in the farm dige-

ster, which lead to animal and plant disease, has a two-

fold significance: 

•	 The	digester	breaks	the	cycle	of	infection	from	ani-

mal to pasture and ingestion back to animal

•	 The	digester	provides	a	natural	destructive	process	

for pathogens, etc., which are becoming increasingly 

resistant to anti- bacterial and anti-viral drugs.

Weed seeds
Recent	work	by	Johansen	et al. (2013) confirms from 

laboratory tests that a digester, whatever its scale, is also 

effective in the reduction of seven common weeds 

which are competitive with arable crops. These include 

Solidago canadiensis	 (Golden	 Rod).	 Avena fatua (Wild 

Oat), Sinapsis avensis (Charlock) Brassica napus (Oil 

Seed	Rape),	Amsinckia micranta (Common Fiddleneck) 

and Fallopia convovulus	 (Bindweed)	 all	 of	 which	 are	

killed in less than a week. The seeds of Chenopodium 

album (Fat hen) survive in decreasing proportion up to 

11 days, after which there are no viable seeds in the 

digestate. Johansen et al. (2013) notes that in developing 

countries, farmers can make use of all kinds of plant 

material, including roadside weeds, for energy produc-

tion without the risk of spreading weed seed and para-

sites on to farmland via the digestate. 
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5. Financial viability 
Irrespective of the type of AD plant, its financial 

viability depends on the balance between capital and 

operating costs, the income or the avoided expenditure 

from the use of the biogas, the added value of nutrients 

in the digestate and the quality and characteristics of the 

feedstock. In terms of energy balance for small scale AD, 

the design and operation must ensure that process load 

and heat losses are minimised in order to maximise 

availability of biogas for other uses.

5.1 Capital costs
In this section, no account is taken of any fiscal sup-

port for the purchase of the plant. The discussion is 

based on the actual capital costs of AD plants. These 

include civil engineering works, process equipment, 

storage tanks, electrical and mechanical parts, the bio-

gas conversion technology and any connections to the 

gas, electricity or heat distribution networks. To these 

costs must be added all the costs incurred in feasibility 

studies, planning or permit application and any envi-

ronmental assessment and licences. These extra costs 

can typically add 10 – 15% to the costs covered in a 

contractor‘s tender document (Anderson Centre, 2010). 

It is important for the farmer to have some aware-

ness of the spread of the capital costs and to consider 

the degree to which the selection of the digester design 

and feedstock can affect that cost. The first German 

study	 (FNR,	 2005)	 estimated	 45%	 (range	 21-69%)	 of	

capital costs are attributable to civil works and tanks, 

49%	 (range	 34-65%)	 to	 mechanical	 and	 electrical	

equipment and installation as well as 6% 

(range 6-7%) to gas use technology, usual-

ly the CHP. The authors of these reports 

acknowledge, however, that there is little 

commonality in how costs are allocated 

between the first two categories. Civil 

engineering costs can also be substantially 

reduced on small-scale farm plants when 

it is possible to use existing farm machin-

ery and labour for ground preparation 

and other construction work (see the Case 

Study in Appendix C). Grid connection costs which 

vary widely from country to country, as well as who 

pays the costs according to local/national regulations, 

and so are not taken into account in this report. Possib-

le grid connection costs must nevertheless be taken into 

account by anyone planning a biogas project.

Capital costs can be expressed in various ways. The-

se include the cost per kWe capacity or per m3 digester 

volume, or as in the US, as a cost per cow (Leuer et al., 

2008). The different ways in which costs are expressed, 

the different currencies used and the different periods 

over which construction occurs make estimation and 

comparison of the capital costs of AD very difficult. 

Thus, the discussion below focuses on examples of costs 

for three options and should be regarded as illustrative, 

rather than definitive:

•	 Electricity/CHP

•	 Biogas	upgrading	to	biomethane

•	 Biogas	use	for	heat

5.1.1 The CHP option
For the purpose of comparison, capital costs are 

expressed in a monetary unit per kWe and are based on 

data from over two hundred AD plants which range in 

capacity from 30 kWe to over 1 MWe. Those illustrated 

below are for plants which have been the subject of 

financial	and	technical	surveys	in	Germany	(FNR,	2005;	

FNR,	2009),	Austria	(Laaber,	2011)	and	France	(Bastide	

et al., 2010). The ranges of costs as well as average and 

median	 values	 are	 given	 in	 Table	 9.	 These	 figures	 are	

based on currency conversion rates (Appendix A) and 

have not been corrected to take account of annual infla-

tion. In the case of France 80 plants were identified 

Table 9 Indications of range of capital costs of agricultural plants

Source No. of 
plants

Range cost  
£/kWe

Average Median

Germany (Fnr, 2005) 59 £1,010 – £6,411 £2,677 £2,487

Germany (Fnr, 2009) 61 £1,307 – £5,247 £2,646 £2,707

Austria (Laaber, 2011) 41 £1,979 – £4,748 £3,476 £3,327

France (Bastide, 2010) 30 £1860 – £8600 not available not available

uk (Jain, 2013) £3,000 – £6,915 not available not available
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(Bastide	et al., 2010), from which a sample of 30 were 

selected for more detailed analysis, the results of which 

are	used	in	Table	9.	Those	for	the	UK	have	been	collated	

from plant owners and constructers, as no formal data 

are available. 

Care has to be taken in the use of these data, as the 

plants can vary widely in design and range in size from 

less than 100 kWe to more than 1 MWe capacity. For 

example, the median cost of the Austrian and German 

plants smaller than 250 kWe is £3,223/kWe while, con-

trary to expectation, the median cost for those smaller 

than 100 kWe is only marginally higher at £3,383/kWe. 

Further exploration of the costs reveals that there is 

greater variation between the highest and lowest costs 

of plant of a similar size than there is between all plants 

of either smaller than 250 kWe, or indeed below 100 

kWe. 

While such figures based on capital cost/kWe are 

sometimes used by a bank to evaluate a farmer’s case for 

a loan to build a plant or at policy level to compare the 

cost of AD with other bioenergy technologies, it is 

unsafe to use them at their face value. It is not a compa-

rison between like with like, even for plants of a similar 

size. For example, the high cost of some digesters in 

France is often attributable to the need for farms to 

install reverse osmosis for ammonia recovery in 

response to nitrogen overload in soils. Factors which 

contribute to cost variations include:

•	 Choice	of	 feedstock	and	any	pre-processing	equip-

ment 

•	 Methane	potential	of	the	feedstock	and	its	effect	on	

digester volume

•	 Cost	of	grid	connection

•	 Costs	 for	 compliance	 with	 national	 permitting,	

planning, bio-security and safety regulations

These are all important issues for prospective AD 

plant purchasers who need to know what is included in 

the offer price of a plant and the how the price can be 

minimised.

5.1.2 Biogas upgrading to biomethane
A second option is to upgrade biogas to produce 

biomethane, although this is more often considered for 

plants with a high volumetric output of biogas. Typical-

ly, a digester for manure which serves 100 LSU is only 

likely to produce around 5-6 m3/hour of biogas and 

upgrading units with a capacity less than 300 m3/hour 

are still uncommon. This is evident in the list of upgra-

ding plants on the IEA Task 37 website (http://www.

iea-biogas.net). However, such small plants do exist, for 

example	in	Brazil	(Figure	10),	India	(Vijay	et al., 2013),  

the UK and Finland. The 10-30 m3/hour Finnish upgra-

ding unit, developed and commercialised by Metener, is 

described in Appendix C. Upgrading units of this size 

could be suitable for farms, but the capital costs can 

range between £233,000 and £361,000. 

Figure 10 small biomethane upgrading plant in Brazil; top: pilot bio-
methane upgrading plant which serves a co-operative of 33 family 
farms with an aggregate of 100 Lsu, Capital cost: £66,000, Biogas 
throughput: 5 nm3/hour (Photo: ITAPu Binacional, Brazil, 2014); bot-
tom: biogas is transported through a pipeline to link the farms to a 
central ChP adjacent to the new upgrading plant.(Photo: Clare Luke-
hurst)

Source No. of 
plants

Range cost  
£/kWe

Average Median

Germany (Fnr, 2005) 59 £1,010 – £6,411 £2,677 £2,487

Germany (Fnr, 2009) 61 £1,307 – £5,247 £2,646 £2,707

Austria (Laaber, 2011) 41 £1,979 – £4,748 £3,476 £3,327

France (Bastide, 2010) 30 £1860 – £8600 not available not available

uk (Jain, 2013) £3,000 – £6,915 not available not available
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5.1.3 Biogas for heat
Instead of either CHP or upgrading, the simplest 

option is to use the biogas to replace fuel oil, bottled gas 

or electricity where this is used for cooking, heating and 

hot water or cooling. This third and globally most 

widespread option considers direct heat utilisation, in 

which the biogas is used to heat the digester to process 

the slurry and to displace the use of fossil fuels on the 

farm. This requires, as a minimum, a boiler as an inte-

gral part of the AD plant. A typical cost for a 25 kW cast 

iron boiler for a 100 LSU farm is £3,200 with an addi-

tional £300 for a heat exchanger. Operating costs should 

be in the range £300 to £1,000 for a twice yearly clean 

(Note: the lower operating cost is used in the calculati-

ons that follow). 

Capital cost alone, however, is only one part of the 

equation and needs to be considered in relation to ope-

rating costs before any investment decisions can be 

made.

5.2 Operating costs
The purpose of this section 

is to focus on the level and ran-

ge of operating and mainte-

nance (O&M) costs which can 

occur and the extent to which 

they can vary from one plant to 

another and indeed between 

AD plant construction compa-

nies in the way in which they 

are set out in tender docu-

ments. Some quote the actual 

energy consumption for indivi-

dual items of equipment and 

typical maintenance costs. 

Others express these costs as a 

percentage of total capital cost. 

For present purposes, the latter 

approach is adopted for the 

calculations in Section 5.3. This 

approach overcomes what are 

in effect costs specific to indivi-

dual plants. In large measure, the operation and main-

tenance costs relate to the design and complexity of the 

plant. The areas of these costs are summarised in Table 

10 below. 

5.2.1 Digester related costs
Energy consumption is considered first in order to 

highlight those areas where plant design and manage-

ment efficiency may be able to reduce these costs. The 

electricity used to drive the moving parts can either be 

supplied from an external source or from the CHP. If 

the latter, calculations from the survey data show that 

on the 41 farms for which data are available, the 

demand can vary between 5% and 20% of that which is 

produced	with	an	average	at	7.5%	(FNR,	2009).	In	these	

cases, the higher demands are attributed to the amount 

of energy needed for specific feedstock preparation. The 

choice of equipment affects the process electricity 

demand.

Table 10 Elements of digester operational cost

Labour and any feedstock costs must also be taken into account.

Digester operation: 
•	 Energy consumption 

•	 routine maintenance

•	 Electricity costs based on operational time and efficiency of equip-
ment such as agitators or gas pumps, macerators, mixers,  pumps, 
heat exchangers, automatic valves, blowers for flexible roofs and 
cushions to store gas (except bell over water configurations), dige-
state separators (if included)

•	 repair or replacement of pumps, pipework/valves, feedstock chop-
pers and mixers, heating system, control system, digestate separa-
tors (if included)

•	 Checks for fugitive emissions to prevent gas leaks (and loss of 
saleable output)

•	 monitoring and control system calibration, replacement and repair

•	 Gas use/conversion 
technology

•	 Gas cleaning or scrubbing and consumables
•	 servicing, parts replacement and maintenance 
•	 major overhauls as specified in manufacturer’s recommendations

General expenses 
•	 Finance related 
•	 health & safety 
•	 Other

•	 repayment of loans & interest charges, insurance, licences 
•	 Education and training/process management development, etc.,
•	 soil, feedstock and digestate analyses, where required. 
•	 Consumables for process optimisation, where used
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Routine	maintenance	costs	of	moving	parts,	pumps,	

mixers, macerators and other elements are similar to 

those of any other farm machinery and often of a pre-

ventative character. However, these costs will increased 

significantly if damage to equipment is caused by grit, 

stones and other debris in the feedstock.

5.2.2 Maintenance of the gas conversion technology
If a CHP unit is included, the supply company 

usually specifies the frequency and type of work which 

needs to be undertaken. The extremes are indicated 

below:

•	 Full	 maintenance	 contracts	 are	 available	 in	 which	

costs are cited at £1.05 and £1.25 per operating hour 

for 23 kWe and 30 kWe capacity engines, respective-

ly. This contract covers remote control by the sup-

plier, all consumables and spares, a guarantee of 

operating time and complete engine replacement 

after a given number of operating hours 

•	 In	 contrast,	 farmers	 can	 undertake	 much	 of	 the	

engine servicing. In our analysis of German practice 

on	 the	 farms	 for	 which	 data	 are	 available	 (FNR	

2009),	the	total	(O&M)	costs	appear	to	be	subsumed	

under the heading ‘parts and maintenance’ but rela-

te to the plant as a whole and not specifically to the 

CHP. Nevertheless, it seems to be substantiated by 

the fact that only 10 out of 2,500 farmers who 

purchased a CHP also purchased a maintenance 

contract (Schnell Motoren, 2013).

The calculations in Section 

5.3 use a figure for CHP servicing 

of £0.03 per kWh which has been 

derived from a number of sup-

plier quotations and Jain (2013). 

This is based on 2008 data. It 

assumes that the farmer will do 

most of the CHP maintenance 

work.

The maintenance costs can 

also be exacerbated by the level of 

hydrogen sulphide (H2S) in the 

biogas. This may not only invalidate a manufacturer’s 

warranty, but can also cause damage through corrosion 

in the engine. Table 11 below shows examples of 

methods which can be used to minimise these problems 

and examples of their respective costs. 

5.2.3 Boiler and heat system maintenance
In contrast to the costs which can be incurred for a 

CHP, the maintenance cost of biogas boilers is signi-

ficantly less. For present purposes it is based on the 

personal knowledge from three companies with over 40 

years’ experience of the construction and maintenance 

of biogas plants and biogas boilers. The total cost of 

boiler and subsequent equipment servicing ranges in 

total between £300 and £1,000 for the twice yearly clean 

(Mulliner, 2013, Murcott, 2013, Chesshire, 2013).

5.2.4 Labour
Farm digesters need to be simple, easy to operate 

and to fit seamlessly into the daily labour routine of the 

farm. In fact, the time taken to operate a digester 

installed to improve the efficiency of slurry manage-

ment can take no longer or even less time than the status 

quo – the farm’s current system. If crops are included, as 

on most German farms, the length of time to manage 

the digester increases, with 40% to 55% of total digester 

labour time spent on feedstock preparation. Experience 

recorded on 32 Austrian farms showed a range between 

1-2 hours/day for slurry only digesters, with a marginal 

increase on the farms where crops are co-digested with 

Table 11 Comparative material costs for hydrogen sulphide removal*

*Derived from tender documents

Method Cost £/Nm3 of 
biogas

Cost £/kg

Air injection into the gas storage space <0.001 n/a

Oxygen from a bottle 0.04 n/a

Iron oxide pellets for absorbing 0.3-0.5 kg/kg h2s 
added to the feedstock

0.001 0.20

Ferric oxide pellets added to the feedstock 0.01 0.53

Active carbon absorbing 0.1-0.3 kg/kg h2s as a 
biogas filter 

0.023 2.72
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the manure (Walla & Schneeberger, 2005). Some time 

may also be required where farmers are required to 

complete returns for compliance with statutory regula-

tions. This can be quite time consuming.

The case study in Appendix C achieved very sub-

stantial labour savings where the biogas replaced wood 

chip heating.

5.2.5 Feedstock costs
Slurry only plants are unlikely to incur any signi-

ficant additional costs because they are usually already 

equipped with much of the slurry handling equipment. 

They will have machinery or contract arrangements to 

spread the slurry/digestate but, in order to comply with 

best practice in digestate use, specialist equipment such 

as that used for shallow injection may need to be 

purchased.

If additional feedstocks are used, these will normally 

incur a cost. In the UK, for example, chicken or pig 

manure is often imported for its fertiliser value. Prices 

can vary according to local conditions and demand. If 

this same manure is digested prior to application, it may 

incur some storage or mixing costs. However, if the 

slurry is augmented by, for example, grass, maize silage 

or other crops in order to enhance the energy output, it 

will incur a production cost whether grown on the farm 

or purchased from outside. This needs to be taken into 

account. As an illustration, McInry et al., (2011) recor-

ded the variations in the production costs for grass 

silage	 of	 between	 £19	 and	 £24	 per	 fresh	 tonne	 when	

produced under different management systems. UK 

maize production costs ranged between £23 and £28 per 

fresh tonne in 2014 on yields of 37-44 tonnes/ha.

Such figures should be used with caution, as there 

can be losses between the field and silo and during the 

period of storage which can affect the methane yield 

and therefore the overall profitability. For maize, the 

highest gas yields can be obtained when it is fully ripe 

(Amon et al., 2007; Amon et al., 2012). However, if for 

example maize is used to lengthen a crop rotation, such 

as between the cereals and oil seed rape, there can be 

pressure to harvest early so that the next crop can be 

planted. In such cases, there can be a marginal reduc-

tion in its potential gas yield and, therefore, potential 

income (see Murphy et al. (2011) and Al Seadi et al. 

(2013) for further information on biogas potential from 

crops).

5.2.6 General expenses and external costs
General expenses include interest rates on capital 

borrowing, insurance premiums, operator training 

costs, general consumables, safety equipment calibrati-

on, checking and repair, laboratory tests, permitting/

licenses and local or national taxation. A number of 

these costs are unrelated to the performance of the plant 

and will have to be met whether or not the plant is ope-

rational.

Plant and equipment depreciation is usually inclu-

ded in the financial assessment of an AD plant and it 

may be accounted for in many ways. One approach is to 

take into account the life of individual plant compon-

ents such as the tanks, pumps and CHP. Typically, the 

life span of these components can range between 8 and 

22 years, depending upon the projected life of the asset 

(NRCS,	2007;	CAEEDAC,	1999).	A	simpler	method	is	to	

take a straight-line depreciation for the plant as a whole, 

with or without a residual value. On farms where the 

prime function of the digester is to process slurry and 

therefore increase farm efficiency, digester depreciation 

is likely to be treated in a similar fashion to that of any 

slurry storage tank which is written off over a period of 

20 years. The same approach is taken for repayment of 

any loan and the interest charges. In practice, the lifeti-

me of some AD plants has proved to be much longer. In 

fact, there are a number of gas stirred digesters in the 

UK	constructed	in	the	1970s,	1980s	and	1990s	which	are	

still	 in	operation	(Bywater,	2011)	 long	after	their	costs	

have been paid back. 

5.3 Estimation of financial viability
For slurry management, the concept of financial 

viability has different meanings to different people. For 

the farmer, it is defined for present purposes as the abi-

lity of an AD plant to offer a long term improvement in 

the farm efficiency at no greater cost per cow than the 

current system of slurry storage (the status quo). 

The purpose of this section is to compare the costs 
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of the AD with the status quo where slurry is stored, for 

example in an open steel tank, and applied to land in 

accordance with national regulations. The example 

taken is for a 130 m3 digester serving a 100 cow milking 

herd and under what conditions slurry management 

can pay for itself or indeed make a profit. 

5.3.1 Basis for the financial calculations
Before	any	attempt	can	be	made	to	assess	the	poten-

tial viability of the small scale AD as a sustainable 

replacement for an open slurry store it is first necessary 

to take into account the cost of the plant, the source of 

capital and any income which may be forthcoming. The 

aim of this section therefore is to set out the assumpti-

ons upon which the financial analyses are made. These 

relate to the capital cost and revenue as well as the ope-

ration and management. The calculation of the latter 

draws upon experience in Austria and Germany (see 

Section 5.2), which has been reinforced with the know-

ledge of individual experts in the design, construction 

and operation of very small scale AD plants suitable for 

slurry only.

The total methane output produced from the slurry 

during digestion provides the starting point as the total 

methane resource produced. This is shown in Table 12. 

About 33% of the energy is used to process the slurry in 

the digester. Thereafter the greater proportion is either 

used for space and water heating /cooling or used to 

operate an 11 kW CHP engine for the length of the 

period during which the slurry or other feedstock is 

accessible. 

The first step is to establish what the plant will cost 

and how the farmer will pay for it. There are many per-

mutations as to how the funding package can be pieced 

together. However, the advice for present purposes 

given by the agricultural business section of a major 

bank provides the basis for the calculations. This advo-

cates, as realistic, that 20% of capital is provided from 

the farmer’s own assets, with the remaining 80% on 

loan as a farm/efficiency development from an agricul-

tural lending bank.  This loan would be repayable over 

20 years in equal parts, secured against the asset value of 

the farm and subject to a bank’s personal knowledge of 

the farmer’s credit rating. An interest rate of 3.5% 

would apply as the same as that used for agricultural 

improvement	schemes.	Both	the	interest	and	depreciati-

on also would then be accounted for in 20 equal instal-

ments over the lifetime of the plant just as in the case of 

a slurry tank. In practice part of the capital cost may be 

secured from grant aid (See Section 7) or as interest free 

loans in those countries which offer this form of sup-

port but it is not included in the calculations below.

For present purposes it is assumed there are two 

revenue sources from which the capital and operating 

costs are repaid – direct income from energy sales and/

or incentives and indirect from the avoided costs. The 

latter can be secured from the on-farm use of the biogas 

to displace fossil fuel based energy and the 20% increase 

in the amount of available N fertiliser (see Section 4.6).

This otherwise must be purchased from an external 

supplier. Many AD plants which are developed for farm 

diversification, accept agricultural and agri-food indu-

stry residues for which the farmer receives a 

gate fee. This option however lies outside the 

scope of this brochure. The focus of this 

investigation is on the role of the AD as a 

sustainable system to replace open slurry 

tanks and from a policy viewpoint to reduce 

GHG emissions from slurry storage. 

Any attempt to establish where and how 

an AD can benefit the farmer financially is a 

difficult undertaking and the results need to 

be used with care. The evidence which is 

Table 12 Data used as the basis for calculation of costs and income from energy sales.

a Derived from section 5 Table 3
b Derived from section 5 Table 4

Unit (per day) Daily 
output

Volatile solids in slurrya kg 636

Total Ch4
a nm3 95

Total energy valuea kWh 947

Process heat requirementb kWh 310
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presented below is for illustration and should not be 

taken out of context. The sensitivity analysis identified 

some 650 possible permutations. It is however, unreali-

stic to attempt to show the complexity of the factors 

involved, therefore for the purpose of illustration the 

interaction of three elements are explored in Tables 

15-17. These are the effect of capital cost, energy prices 

and incentives. The impact of these three interrelated 

factors is exemplified through four scenarios. The 

assumptions which underlie the calculations are detailed 

in Table 13. 

The ‘100 cow’ farm slurry digester with or without CHP 

is now rare, therefore the capital and operating costs 

used in the Tables 18-20 are based on the best data avai-

lable. 

In the first three scenarios, it is assumed that all the 

land is used to support the dairy herd either for grazing 

or for the production of winter feed such as grass and/

or maize silage, barley or fodder beet. In reality many 

farms at the end of the period of housing the cows may 

have ‘left over’ silage, sweepings of spilled animal feed or 

grain which can supplement the slurry. This, however, is 

difficult to quantify and for 

this reason is not taken into 

account. The calculations 

below can be regarded as a 

base or worse case situation. 

The 130 m3 AD plant is 

installed as an advanced 

slurry management and 

nutrient recycling system. It 

is considered as a standard 

piece of farm equipment 

just as a milking parlour or 

any other piece of farm 

machinery used to improve 

the efficiency of the farm. 

Each country has its 

own incentives for the use 

of AD (see Section 6) and 

therefore all cost data used 

in the Tables below are spe-

cific to the particular 

examples. However, the 

method of calculation is 

transferable, so that the 

costs experienced on an 

individual farm, irrespecti-

ve of its location, can be 

used in place of those used 

in the text examples. In rea-

lity, an individual farm may 

already have some form of 

slurry storage on which a 

loan may be at some stage 

Table 13 Scenarios used for the cost calculations

scenario 1 
specialist dairy farm with 
100 milking cows housed 
185 days. Biogas combu-
sted in a boiler. All land is 
used as pasture and for 
forage crops

heat : 
(a) Incentive to process 

manure for removal 
of Ch4 from emission 
to atmosphere 

(b) Incentive for supply 
to dairy and average 
sized farmhouse 

Assumes:
All heat for beneficial use
(a) heat to process manure for removal 

of Ch4 from emission to atmosphe-
re

(b) use of all saleable heat for dairy 
and household needs as well as 
livestock drinking water. replace-
ment of heating oil at  £0.035/
kWh/l-1 and incentive of £0.076

scenario 2 
The same specialist dairy 
farm but with slurry avai-
lable 365 days. Biogas 
combusted in a boiler. 
Land use as above

heat: 
(a) No incentive to  

process manure for 
removal of Ch4 

(b) Incentive of £0.076 
for dairy and farm-
house replacement 
of heating oil only

Assumes: 
(a) Total dairy, domestic and livestock 
drinking water heat demand satisfied 
during the winter (185 days) as above 
and continued demand fo domestic 
and dairy hot water for further 180 
days. Beneficial use of 77% of availab-
le heat to replace heating oil as above

scenario 3 
The same specialist dairy 
farm but with slurry avai-
lable 365 days. Biogas 
combusted in a 11 kW 
ChP (The cost and condi-
tions of grid connection 
vary from country to coun-
try and therefore have not 
been included.)

Incentives for:
(a) Electricity sold to the 

farm and house(s) 
and surplus sold off 
farm to the grid

(b) heat used on the 
farm 

Assumes: 
ChP operates 91% of time at 31% 
efficiency. Farm electricity demand 
40,000 kWh and replaces this amount 
bought in from grid at £0.11. Any 
excess exported to grid at £0.465/
kWh. Incentive £0.1013/kWh for all 
electricity produced. All heat used to 
replace heating oil as above with an 
incentive of £0.076 /kWh

scenario 4
100 cow milking herd on 
a mixed farm. herd 
housed 185 days and slur-
ry supplemented in sum-
mer with crop , etc. to 
maintain year round ChP 
operation

Electricity and heat 
incentives as above

Assumes: 
(a) slurry available as in scenario 1   
(b) supplemented with 736 kg of for 
example grass, maize, cereals, fruit 
and vegetables.
(c) no extra land available to buy or 
rent therefore extra feedstock 
purchased at £40/tonne
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of repayment. In the real situation therefore this will 

need to be taken into account in the farmer’s own cal-

culations but for illustration here existing loans are 

ignored.

5.3.2 The status quo – installation of a slurry tank
In practice, slurry storage can vary from a clay or 

high density polyethylene (HDPE) lined lagoon as the 

cheapest storage option, through to steel or concrete 

tanks which are more expensive. Open lagoons capture 

much more rainwater and this leads to higher spreading 

costs than for storage tanks. Although environmental 

legislation requires increasingly that slurry stores are 

covered, the assumption here is that slurry stores are 

open. Operational costs are estimated at 1% of capital 

cost and costs are incurred for mixing and pumping of 

slurry prior to spreading, but these costs could vary 

widely in practice. 

In those areas where slurry storage is regarded as a 

“farm waste” the legal requirement for a given number 

of days of storage can be perceived as an extra financial 

burden, and for this reason is shown in red in Table 14. 

In practice it can be argued that slurry is really an asset 

when used as a biofertiliser, but for present purposes the 

total nutrient value both before and after digestion is 

assumed to be the same and therefore is not included in 

the financial calculations below. Although storage is still 

required for an AD plant, the associated cost can be 

reduced by covering the digestate storage which makes 

it possible to recover further biogas and keep out rain-

water. It is also possible to reduce the size of the tank if 

the solids are separated. This is easier to do with digesta-

te than with undigested cow slurry.

5.3.3 Effect of variations in capital costs
Parameters for the 130 m3 base case 100-cow dige-

ster have been described above. These take into account 

the operating costs as a percentage of capital cost (see 

Section 5.2) as well as direct and indirect revenue 

streams which are specific for each scenario. For the 

purposes of the illustration, capital cost is defined as the 

total cost of the installation including all the elements 

necessary to operate the system. For present purposes this 

lies in a range between £100,000 and £300,000. It is ack-

nowledged that in reality it may be difficult for a dige-

ster technology supplier to build the 100-cow digester 

within this range, without the benefits of volume cost 

reductions. However, it is on the assumption that such a 

situation can be achieved. 

5.3.4 Effect of variations in energy prices
The background price of energy is a critical factor as 

to whether a digester is profitable, or at least of no 

greater cost than the status quo. Table 15 illustrates the 

4 scenarios for an AD system with a capital cost at 

£100,000 to £250,000 where energy prices range from 

50% to 200% of the June 2015 levels in the UK (shown 

as 100% in italics in Table 15). The base case therefore is 

modelled for the avoided costs at £0.11 per kWh for 

electricity, £0.62 per kg N and £0.42 per litre (equivalent 

to	10.9	kWh)	for	fuel	oil	which	amounts	to	£0.385/kWh.	

It is assumed for illustration that energy prices (electri-

city, oil and fossil fuel fertiliser – N) rise at the same rate, 

although in practice this may not be the case. The farm 

will replace its own needs of 40,000 kWh/year by gene-

rating its own electricity and export the rest (Scenarios 

3-4). This figure is rounded up from a dairy farm use of 

about	 1	 kWh/cow/day	 (Trimble,	 2009),	 and	 a	

farmhouse demand of approximately 

3,300 kWh/year (Ofgem, 2011). For simplicity, 

it is also assumed that a proportion of the 

saleable heat (which is not used to process the 

slurry) from the boiler or CHP can be used 

during very cold winters, for example to heat 

drinking water for animals, although in reality 

this may not always be the case. In Table 15 

three situations with regard to profitability are 

Table 14 Indicative cost for slurry storage

1 Data provided by tank suppliers

Capital cost installed 1 £55,000

Assume 20% farmer’s own capital £11,000

Bank loan for 80% capital cost £44,000

yearly costs: 
repayments of bank loan (at 3.5%) 
Depreciation over 20 years
maintenance cost @1% of capital cost

£3,062
£2,750
£550

Total annual payment £6,362

Cost per cow £63.62
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highlighted and colour coded to facilitate interpretati-

on: 

If it is assumed that there is no change in operating 

cost or incentives, the effect of quite small variations in 

energy prices can make a significant difference to the 

potential viability of the plant. In all cases the installati-

on of a digester can turn slurry into a financial asset if 

the digester can be installed for £100,000. Also it still 

reduces the cost of slurry storage per cow even when the 

capital expenditure increases 

to £150,000. If oil prices return 

to their January 2014 level 

when	crude	oil	was	$97	a	bar-

rel, roughly double that of July 

2015, the slurry and heat only 

digesters at £150,000 can also 

yield an income of between 

£7,434 and £8,744, equivalent 

to £74.34 and £87.44 when the 

avoided cost of £63.62 per cow 

is also taken into account. 

Such benefit is dependent 

upon whether the incentive 

recognises the role of the dige-

ster in removal of the GHG or 

whether it only takes into con-

sideration the saleable energy. 

At £200,000 the slurry only 

digester offers no financial 

benefit for the farmer unless 

the energy prices double. 

However, if the £200,000 

system includes an 11 kW 

CHP which operates year 

round it can give a profit of 

£8,178 when the avoided costs 

are taken into account. It has 

in fact a greater potential than 

Scenario 4 if there is a need to 

supplement the slurry with 

imported feedstock. These  

calculations have not taken 

into account any effects of 

inflation.

5.3.5 Effect of variations in incentives
Differing heat incentive payments per kWh are 

examined first as shown in Table 16. Here the heat 

incentive varies from the base case (in italics) of £0.076 

per kWh, and any changes are expressed as a percentage 

of this level. 

Without the heat incentive the slurry only options 

are not viable despite their contribution to the reduc-

Table 15 Effect of energy prices (electricity, fuel oil and fertiliser) on digester profitability

Scenario 1 2 3 4
Energy Cost slurry, 185 days 

housing, boiler 
with incentive 
on total heat 

slurry, 365 days 
housing, boiler, 

on saleable heat

slurry, 365 days 
housing, ChP & 
incentive on eli-

gible heat

slurry, 185 days 
housing, ChP & 

heat, top up with 
crop in summer

£100K digester
50% £901 -£113 £6,937 £4,487
100% £2,886 £2,647 £10,966 £9,040
110% £3,283 £3,199 £11,772 £9,950
120% £3,679 £3,750 £12,578 £10,861
130% £4,076 £4,302 £13,384 £11,771
200% £6,855 £8,166 £19,025 £18,144
£150K digester
50% -£4,883 -£5,897 £1,153 -£1,296
100% -£2,898 -£3,137 £5,183 £3,256
110% -£2,501 -£2,585 £5,988 £4,166
120% -£2,104 -£2,033 £6,794 £5,077
130% -£1,707 -£1,481 £7,600 £5,987
200% £1,071 £2,382 £13,241 £12,360
£200K digester
50% -£10,666 -£11,681 -£4,630 -£7,080
100% -£8,682 -£8,921 -£601 -£2,528
110% -£8,285 -£8,369 £205 -£1,617
120% -£7,888 -£7,817 £1,011 -£707
130% -£7,491 -£7,265 £1,816 £203
200% -£4,713 -£3,402 £7,457 £6,577
£250K digester
50% -£16,450 -£17,464 -£10,414 -£12,864
100% -£14,466 -£14,705 -£6,385 -£8,312
110% -£14,069 -£14,153 -£5,579 -£7,401
120% -£13,672 -£13,601 -£4,773 -£6,491
130% -£13,275 -£13,049 -£3,967 -£5,580
200% -£10,497 -£9,186 £1,673 £793

Key to shading:

Farmer benefits: AD generates new income from slurry
Farmer benefits: AD reduces the cost (£ per cow) of slurry storage compared with the status quo
no financial benefit: AD is a loss maker
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tion of GHG emissions. In contrast the effect of an 

incentive for heat with variations up to £0.152 shows 

how at the current level (£0.076) the heat only digesters 

offer a financially more attractive proposition for the 

farmer than the installation of an uncovered storage 

tank. Even at a 20% decrease in the incentive for heat 

the farmer is still financially better off than with an 

uncovered slurry tank, but only if the capital cost is kept 

below £150,000. At £200,000, possibly a more realistic 

level, the simple option where the AD readily fits into 

the existing farm operations it would need an increase 

of £0.03 incentive to make it worthwhile for the farmer 

to install the AD to prevent GHG emissions from slurry 

storage.

In all the above discussions the key issue is to focus 

on the AD system as an alternative to an open slurry 

store. In that situation, all the values (shaded in green) 

offer the farmer a financially better option than his pre-

sent situation, but of course the pro rata payments of 

any existing storage system will need to be taken into 

account. A key issue is for the digester suppliers to bring 

the capital costs down to below £200,000 and for incen-

tives to remain constant for long enough to allow time 

for suppliers to move towards bulk production of simple 

systems.

The sensitivity analyses 

above illustrate the complexi-

ty and close interaction which 

exists between capital costs, 

energy (fuel oil/electricity) 

prices, the level of incentives 

and their impact on the finan-

cial viability of small scale 

farm digesters. For simplicity 

of illustration, the incentives 

offered by just one Task 37 

member country are used in 

the Tables above. It is, howe-

ver, important to demonstra-

te the variation in both the 

level and combinations of 

incentives which are experi-

enced elsewhere (Persson and 

Baxter,	 2015)	 and	 how	 these	

can affect the financial per-

formance of a small AD 

plants. A capital cost of 

£150,000 is used as an illu-

stration for comparison. All 

other factors remain constant. 

Although both Germany 

(post July 2014) and Austria 

have higher incentives for 

electricity than the UK, the 

latter can also receive an 

incentive for any heat which 

Table 16 Effect of heat incentive variations on digester profitability at varying levels of capital expenditure

Scenario 1 2 3 4
heat incentive slurry, 185 days 

housing, boiler 
with incentive 
on total heat

slurry, 365 days 
housing, boiler, 

on saleable heat

slurry, 365 days 
housing, ChP & 
incentive on eli-

gible heat

slurry, 185 days 
housing, ChP & 

heat, top up with 
crop in summer

£100K digester
0% (£0.0) -£8,427 -£6,877 £4,950 £700
80% (£0.0608) £623 £742 £9,763 £7,372
100% (£0.076) £2,886 £2,647 £10,966 £9,040
120% (£0.0912) £5,148 £4,551 £12,170 £10,708
140% (£0.1064) £7,411 £6,456 £13,373 £12,375
200% (£0.152) £14,198 £12,170 £16,983 £17,379
£150K digester
0% (£0.0) -£14,211 -£12,661 -£834 -£5,084
80% (£0.0608) -£5,161 -£5,042 £3,979 £1,588
100% (£0.076) -£2,898 -£3,137 £5,183 £3,256
120% (£0.0912) -£636 -£1,232 £6,386 £4,924
140% (£0.1064) £1,627 £672 £7,589 £6,592
200% (£0.152) £8,415 £6,386 £11,199 £11,595
£200K digester
0% (£0.0) -£19,995 -£18,445 -£6,618 -£10,867
80% (£0.0608) -£10,944 -£10,826 -£1,804 -£4,196
100% (£0.076) -£8,682 -£8,921 -£601 -£2,528
120% (£0.0912) -£6,419 -£7,016 £602 -£860
140% (£0.1064) -£4,157 -£5,112 £1,805 £808
200% (£0.152) £2,631 £603 £5,415 £5,812
£250K digester
0% (£0.0) -£25,779 -£24,228 -£12,401 -£16,651
80% (£0.0608) -£16,728 -£16,610 -£7,588 -£9,980
100% (£0.076) -£14,466 -£14,705 -£6,385 -£8,312
120% (£0.0912) -£12,203 -£12,800 -£5,182 -£6,644
140% (£0.1064) -£9,941 -£10,895 -£3,978 -£4,976
200% (£0.152) -£3,153 -£5,181 -£369 £28
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is used beneficially. This makes the very small scale (11 

kW) more attractive than the current tariffs in Germany 

and Austria where the median cost of plants below 100 

kW	is	£2,707	and	£3,327	(Table	9)	respectively.

Table 17 illustrates how the use of the AD as an alter-

native to open tank slurry storage can be attractive with 

the appropriate level of incentive in those countries 

where the heat incentive is independent of that for elec-

tricity. The heat only option readily fits into the farming 

system without the need for land use change, acquisiti-

on of extra land or exposure to the risk of volatile prices 

for the purchase of feedstock from elsewhere.  

The farmer benefits financially and the policy maker 

opens up a wider field from which to secure GHG 

reductions. Under current regimes which link any heat 

incentive to CHP, a huge untapped resource is potenti-

ally missed and wider recycling of this huge resource 

through AD technology for these many livestock farms 

cannot be realised. It is a ‘win-win’ for both the farmer 

and the policy maker. For the farm, it involves

•	 No	change	in	dairy	herd	management

•	 No	land	use	or	landscape	change

•	 Long-term	energy	security	

•	 A	long-term	cushion	against	fossil	fuel	price	fluctua-

tions

•	 Non	 quantifiable	 benefits	 such	 as	 pathogen	 kill	

which is reflected in improvements in animal health 

and productivity. (See Appendix C - Case study of 

Kalmari Farm.)

The question then is how far incentives can help to 

reduce the estimated 87 Mt CO2e from livestock manure 

management in Europe (European Commission, 

2010a). The advantages of AD to process this huge, but 

dispersed quantity of manure could be exploited not 

only in Europe but worldwide.

Table 17 Comparative financial performance in each scenario with different levels of national incentive 

Scenario 1 2 3 4
Digester capital cost £150,000 slurry, 185 days 

housing, boiler 
with incentive on 

total heat

slurry, 365 days 
housing, boiler, 

incentive on 
saleable heat

slurry, 365 days 
housing, ChP

slurry, 185 days 
housing, ChP & 

heat, top up with 
crop in summer

Austria1 @ £0.15 -£14,211 -£12,661 £3,867 -£383
Germany1 (<75kw) Pre 07/2014 @ £0.20 -£14,211 -£12,661 £8,693 £4,443
Germany1 (<75 kW) Post 07/14 @ £0.15 -£14,211 -£12,661 £3,867 -£383
Ireland (<500 kW) 
ChP @£0.12
non ChP@ £0 .09 -£814 -£1,383

£8,096 £6,597

switzerland1 (<50 kW) @£0.36 -£14,211 -£12,661 £24,137 £19,887
uk2 ( <250 kW)
£0.10132  ChP 
heat incentive @ £0.076 -£2,898 -£3,137

£5,183 £3,256

1  A heat incentive is available only for the ChP option
2 see Table 15 for ChP
2 From Table 15
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6. Policy background
Since	 the	mid-1990s,	policy	emphasis,	especially	 in	

Europe, hinges on reducing the pace of climate change. 

For this purpose, incentives have been introduced to 

encourage the production of renewable energy, inclu-

ding that from AD. It has however, focussed particularly 

on	electricity	and	biofuels.	Ragwitz	et al. (2007) evalu-

ated the role of the incentives and the extent to which 

these were successful in stimulating production. It was 

shown that those EU governments which offered sup-

port per kWh and stability of support over several years 

resulted in the fastest growth of renewable energy

It is clear that an AD plant offers considerably more 

than renewable energy. In the case of the small scale 

farm plants, the purpose is to improve the productivity 

of the slurry as well as to increase the efficiency of the 

farm and to reduce GHG emissions. Prior to the 

emphasis on renewable energy, the European “Council 

Regulation (EEC) No. 797/85 of 12 March 1985 on 

improving the efficiency of agricultural structures” (Euro-

pean	Commission,	1985)	permitted	capital	grant	provi-

sion for the installation of new or the improvement of 

existing farm equipment. This aimed inter alia to pre-

vent pollution from farm effluent and provided the first 

stimulus for the use of AD for the improved use of 

animal manure. This is a similar situation, for example 

to	 that	 in	 Brazil	 (Itaipu	 Binacional,	 2009)	 and	 many	

other countries (Global Methane Initiative, 2006).

However, this form of support in Europe was dis-

continued	in	1994.	In	1997,	the	EU	White Paper (COM 

97/500,	European	Commission,	1997)	for	a	community	

strategy and action plan identified the need for all sec-

tors of the economy, including agriculture, to contribu-

te to national targets for the reduction of GHGs. The 

subsequent legislation and related incentives embraced 

AD as one of many technologies which could be used to 

help to meet mandatory targets. These thereafter provi-

de the framework within which AD, irrespective of the 

scale of the plant, operates and include:

•	 EC	 2001/77/EC	 (Renewable	 Electricity	 Directive,	

2001) on the promotion of electricity from rene-

wable sources in the internal energy market. This 

sets the framework within which AD as one such 

technology operates.

•	 Directive	2008/98/EC	(Waste	Framework	Directive,	

2008) lays down the definitions of waste which inter 

alia apply to feedstocks such as the residues of agri-

processing and food. It also sets the waste hierarchy 

which, among other things, directs biodegradable 

waste from landfill and towards composting, AD 

and energy recovery. The use of a landfill tax to dri-

ve the redirection of the waste serves as incentive to 

the advantage of large scale commercial AD plants 

to charge gate fees. Such plants lie outside the scope 

of this brochure.

It has already been illustrated (Section 4) on a daily 

basis how small scale AD for slurry storage on a farm 

with 100 milking cows can avoid emissions of green-

house gases. Table 18 takes the calculations further to 

illustrate the contributions which can be made in a year 

by just one herd of 100 milking cows where the digester 

is installed as a slurry storage system. This demonstrates 

from a policy viewpoint the potential of what can be 

achieved when AD becomes a standard piece of farm 

equipment on a livestock farm.

Table 18 Potential contribution of small scale AD to the reduction of GHG emissions

Scenario 1 2 3 4
Energy Cost slurry, 185 days 

housing, boiler, 
incentive on total 

heat

slurry, 365 days 
housing, boiler, 
incentive  on 

excess

slurry, 365 days 
housing, ChP & 

heat

slurry, 185 days 
housing, ChP & 

heat, top up with 
crop in summer

Tonnes CO2e/year 76 119 151 125
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Table 19 Range and type of incentives within the Bioenergy task 37 member countries (NB. All incentives are given in the currency of the individual country. For conversion factors see Appendix A)

Incentive Type Incentive Details Notes

Electricity related Feed in tariffs (FIT)

Basic rates/kWe

Electricity  
certificates

Commercial spot 
market sales at  
auction

The ‘virtual power 
plant’

rates vary from country to country (see Persson and Baxter, 2015)

Index-linked guaranteed price over a defined time period. Banded in relation to the 
kWe capacity with a higher level for smaller plants; e.g. uk £0.1013 /kWh for <250 
kWe, Austria 0.1950 €/kWh for < 250 kW and minimum 30% manure; Denmark 
0.056 €/kWh -minimum 50% fresh weight manure; France 0.1182-0.2110 €/kWh for 
AD plants; German tariff before July 2014, 0.25 €/kWh for < 50kWe and; post July 
2014, 0.2373 €/kWh for <75 kWe only and must use 80% fresh weight of man-
ure; Ireland 0.15 €/kWh for <500 kWe; switzerland 0.28 ChF/kWh for <50 kWe; the 
netherlands 0.07 €/kWh increases in 6 phases to 0.15 €/kWh (not kWe capacity limited).

names vary from country to country, number issued/mWh varies; purchased by users 
which cannot meet statutory obligation for carbon reduction. Bidding process/auc-
tions, e.g. average price range 170-220 sEk/mWh in sweden; £42/mWh in uk 

Competitive bidding at auction can double or treble a wholesale price where electrici-
ty is exported to grid. Better suited to the larger producers; power purchase companies 
can act as a co-operative for sale of block supply from a number of small producers

swiss innovation, serves 65 farmers who are already linked into a sales cooperative, 
manages small outputs, sells certificates, etc. through an intelligent control system 
with modern technology. (mutzer, 2013)

For currency conversion see Appendix A
Currency in Euro except where other-
wise stated

After contract secured minimal risk 
except where e.g. poor digester 
management or feedstock failure. 
Payments can be supplemented whe-
re heat used beneficially (see ChP 
below)

Alternative to FITs; prices depend on 
supply and demand; adverse effect if 
large buyers install own renewable 
ChP and flood the market 

similar risk to supply and demand led 
bid price; supplements the income 
derived from FIT incentive

recent initiative; interest spreading 
among farmers; dependence on efficien-
cy of the central management company

supplement 
examplesv

heat to increase 
ChP efficiency

Agricultural bonus 
including manure

Conditions attached to encourage beneficial use of heat; e.g. switzerland 0.025 ChF/
kWh for <50 kWe added to base rate tariff, but non-detachable from the ChP; uk 
£0.076 

Germany prior to July 2014, no bonus for <75 kWe plants; for <150 kWe 0.06-0.08  €/
kWh; post July 2014, basic bonus only dependant on crop and manure mix; Post July 
2014, no bonus (see above) switzerland 0.18 ChF/kWh for <50 kWe norway 250 
nOk/dry tonne manure

moderate/high risk of tariff reduc-
tions during planning and building

see also Table 20

non ChP 
 incentives

Biomethane feed 
into gas grid

heat only

Varies between countries; e.g. sweden tax exemptions and consumption incentives; 
uk £0.068/kWh for gas to grid: voluntary support programme by swiss Gas Associati-
on to achieve 399GWh biomethane in 6 years; for netherlands (see Persson and Bax-
ter (Eds), page 42, 2015)

E.g. £0.076 for producers with <200 kWth capacity, applies to domestic and business 
consumers in uk; Ireland 0.11 €/kWh for non-ChP application for <500 kWth; nether-
lands total budget sum available 

regular payments; can be reduced as 
policy targets met

DECC, 2013

Tax incentives used to encourage biogas energy, eg exemption from carbon and energy taxes; value-
added taxes on renewable electricity sales; priority allocation for parking places, etc. 
In the netherlands, for example, the self-consumed electricity from renewable ener-
gies is free of tax

In sweden, used as alternative to 
feed in tariffs

Investment Grants and loans some governments offer up-front payments, e.g. in sweden up to 45%; France 38% 
for demonstration plants; England and Wales, up to £30,000 for feasibility studies 
and loan for up to 50% capital cost (England only) capital grant for demonstration 
plants in uk. 

Also offered by companies e.g.in Brazil Itaipu Binacional (2009) with emphasis on 
clean water/manure management.From Eu via Common Agricultural Policy regional 
Development Funds

Loans of up to 50% of capital cost for 
<250 kW mainly manure and slurry 
based plants (England only)

Available to schools, colleges and 
communities

Carbon credits Agricultural and 
community develop-
ment

Widely used e.g. in India, China and other Asian countries; preferential low interest 
rates, education and health programmes incorporated (see www.snvworld.org); 
Tradable Certificates awarded per tonne carbon reduced; claimed by governments 
from the united nations Convention on Climate Change Clean Development mecha-
nism for developing countries

regular payments made to 
households for quantity of CO2e redu-
ced (approx.  
6 tonne/year)

Environment manure linked Package of grants, loans and energy payments to reduce water pollution e.g. Brazil 
(op. cit.) included with education and sustainable agriculture;  norway manure pay-
ment 250 nOk /tonne Ts not tied to ChP; see also Development programmes (van 
nes, 2006) and http://www.snvworld.org
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Where a crop is used to supplement the slurry in 

summer it is noticeable that the GHG emissions  saving 

is 17% less than a slurry only option where the slurry 

can be collected year round. This can be attributed to 

the energy used to grow and transport the crop. This 

potential also needs to be viewed in the global context of 

the	conclusions	reached	by	the	FAO	(2009)	and	of	the	EC	

Joint	 Research	 Centre	 (European	 Commission,	 2010b).	

These reports show that AD is the most effective process 

for reducing GHG emissions from livestock manure. 

There follows an illustration of the range of support 

mechanisms which are used and how these may affect 

the adoption of AD primarily to process animal slurries 

and manures.

6.1 Incentives offered
Incentives can take a number of forms and are avai-

lable generally for renewable electricity/CHP generation 

or aimed at the biofuels sector including the production 

of	 biomethane.	 In	 contrast,	 in	 Brazil	 for	 example,	 the	

driver for AD is an environmental one, primarily for the 

improvement of water quality, and initiatives include 

education programmes on how to build a sustainable 

future	for	the	farm	and/or	the	community	(Bley,	2013).

Where capital costs are high and energy prices low, 

incentives provide a way to support implementation of 

the technology as a means of reducing GHG emissions 

and to support the farmer in bearing the burden of 

mitigating GHG emissions. As energy costs increase, 

digester building costs increase (since the costs of steel 

and other components are directly related to the price 

of energy), and thus financial support during times of 

relatively low energy prices is necessary, as illustrated 

above.	Table	19	summaries	the	examples	of	the	range	of	

incentives which serve to stimulate the adoption of AD 

and, in particular for the small scale farm plants. Within 

the tariff systems, some countries add bonus payments 

to encourage other actions such as landscape conserva-

tion or land reclamation which are of social benefit. 

Inclusion of manure as a feedstock also attracts such a 

bonus. Table 20 illustrates some of the differences in the 

manure payments attached to the electricity tariff and 

also includes the examples of those which ‘stand-alone’ 

unrelated to CHP. The German tariff prior to July 2014 

is denoted in the table below by the ‘strike through’, in 

order to illustrate how incentives can change with, in 

this case, almost immediate implementation. In con-

trast, Norway makes a tonnage payment to process 

manure, the aim of which is to encourage the use of the 

energy on the farm where it is produced. 

Table 20 Examples of incentives which would apply to manure based digesters

Incentive Type Incentive Details Notes

Electricity related Feed in tariffs (FIT)

Basic rates/kWe

Electricity  
certificates

Commercial spot 
market sales at  
auction

The ‘virtual power 
plant’

rates vary from country to country (see Persson and Baxter, 2015)

Index-linked guaranteed price over a defined time period. Banded in relation to the 
kWe capacity with a higher level for smaller plants; e.g. uk £0.1013 /kWh for <250 
kWe, Austria 0.1950 €/kWh for < 250 kW and minimum 30% manure; Denmark 
0.056 €/kWh -minimum 50% fresh weight manure; France 0.1182-0.2110 €/kWh for 
AD plants; German tariff before July 2014, 0.25 €/kWh for < 50kWe and; post July 
2014, 0.2373 €/kWh for <75 kWe only and must use 80% fresh weight of man-
ure; Ireland 0.15 €/kWh for <500 kWe; switzerland 0.28 ChF/kWh for <50 kWe; the 
netherlands 0.07 €/kWh increases in 6 phases to 0.15 €/kWh (not kWe capacity limited).

names vary from country to country, number issued/mWh varies; purchased by users 
which cannot meet statutory obligation for carbon reduction. Bidding process/auc-
tions, e.g. average price range 170-220 sEk/mWh in sweden; £42/mWh in uk 

Competitive bidding at auction can double or treble a wholesale price where electrici-
ty is exported to grid. Better suited to the larger producers; power purchase companies 
can act as a co-operative for sale of block supply from a number of small producers

swiss innovation, serves 65 farmers who are already linked into a sales cooperative, 
manages small outputs, sells certificates, etc. through an intelligent control system 
with modern technology. (mutzer, 2013)

For currency conversion see Appendix A
Currency in Euro except where other-
wise stated

After contract secured minimal risk 
except where e.g. poor digester 
management or feedstock failure. 
Payments can be supplemented whe-
re heat used beneficially (see ChP 
below)

Alternative to FITs; prices depend on 
supply and demand; adverse effect if 
large buyers install own renewable 
ChP and flood the market 

similar risk to supply and demand led 
bid price; supplements the income 
derived from FIT incentive

recent initiative; interest spreading 
among farmers; dependence on efficien-
cy of the central management company

supplement 
examplesv

heat to increase 
ChP efficiency

Agricultural bonus 
including manure

Conditions attached to encourage beneficial use of heat; e.g. switzerland 0.025 ChF/
kWh for <50 kWe added to base rate tariff, but non-detachable from the ChP; uk 
£0.076 

Germany prior to July 2014, no bonus for <75 kWe plants; for <150 kWe 0.06-0.08  €/
kWh; post July 2014, basic bonus only dependant on crop and manure mix; Post July 
2014, no bonus (see above) switzerland 0.18 ChF/kWh for <50 kWe norway 250 
nOk/dry tonne manure

moderate/high risk of tariff reduc-
tions during planning and building

see also Table 20

non ChP 
 incentives

Biomethane feed 
into gas grid

heat only

Varies between countries; e.g. sweden tax exemptions and consumption incentives; 
uk £0.068/kWh for gas to grid: voluntary support programme by swiss Gas Associati-
on to achieve 399GWh biomethane in 6 years; for netherlands (see Persson and Bax-
ter (Eds), page 42, 2015)

E.g. £0.076 for producers with <200 kWth capacity, applies to domestic and business 
consumers in uk; Ireland 0.11 €/kWh for non-ChP application for <500 kWth; nether-
lands total budget sum available 

regular payments; can be reduced as 
policy targets met

DECC, 2013

Tax incentives used to encourage biogas energy, eg exemption from carbon and energy taxes; value-
added taxes on renewable electricity sales; priority allocation for parking places, etc. 
In the netherlands, for example, the self-consumed electricity from renewable ener-
gies is free of tax

In sweden, used as alternative to 
feed in tariffs

Investment Grants and loans some governments offer up-front payments, e.g. in sweden up to 45%; France 38% 
for demonstration plants; England and Wales, up to £30,000 for feasibility studies 
and loan for up to 50% capital cost (England only) capital grant for demonstration 
plants in uk. 

Also offered by companies e.g.in Brazil Itaipu Binacional (2009) with emphasis on 
clean water/manure management.From Eu via Common Agricultural Policy regional 
Development Funds

Loans of up to 50% of capital cost for 
<250 kW mainly manure and slurry 
based plants (England only)

Available to schools, colleges and 
communities

Carbon credits Agricultural and 
community develop-
ment

Widely used e.g. in India, China and other Asian countries; preferential low interest 
rates, education and health programmes incorporated (see www.snvworld.org); 
Tradable Certificates awarded per tonne carbon reduced; claimed by governments 
from the united nations Convention on Climate Change Clean Development mecha-
nism for developing countries

regular payments made to 
households for quantity of CO2e redu-
ced (approx.  
6 tonne/year)

Environment manure linked Package of grants, loans and energy payments to reduce water pollution e.g. Brazil 
(op. cit.) included with education and sustainable agriculture;  norway manure pay-
ment 250 nOk /tonne Ts not tied to ChP; see also Development programmes (van 
nes, 2006) and http://www.snvworld.org

Plant capacity Rate Limits

norway not limited 250 nOk/t Ts manure Enshrined in law; annual rate 
negotiated between Government 
and farmers

switzerland < 50 kW 0.18 ChF/kWh Linked to electricity

England and 
Wales

< 250 kW
< 200th kW

0.075 £/kWh
0.075£/kWh

use of heat from ChPheat only 
non ChP

Ireland (non ChP) < 500 kW 0.11 €/kWh not specifically for manure

Germany 

< 75 kW
< 150  kW  
All plants 

0.20  0.2373 €/kWh
0.04  Post July 2014  0.0 €
0.04  Post July 2014  0.0€

Linked to electricity
must include fresh weight manure: 
> 80%
> 60% manure 
> 60% manure  

Austria < 250 kW 0.1950 €/kWh basic tariff must include minimum  
30% manure

Denmark 0.056 €/kWh basic tariff must include minimum  
50% manure

source: derived from Persson and Baxter, 2015
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The increase in the numbers of plants in operation 

in each Task Member country has been reported in the 

biennial	Country	Reports	(2015)	for	the	IEA	Bioenergy	

Task 37 member countries. 

6.2 The impact of incentives
The effect of the various fiscal supports needs to be 

set in the context of policies on climate change, energy, 

waste and agriculture. The impact of waste policy and 

especially the redirection of food waste from landfill 

have particular importance for larger commercial scale 

biogas plants where a pasteuriser is an integral compo-

nent. For small manure based farm plants of <100 kWe, 

food waste usually has to be excluded due to additional 

capital cost of pasteurization. However, it should be 

noted that, with appropriate regulatory support, the 

Hub and PoD model of anaerobic digestion is an excel-

lent way to minimise ‘waste miles’ and effectively recyc-

le nutrients from organic materials such as food waste 

back to land. A Hub and PoD is where farms act as a 

Point of Digestion (PoD) and the farm feedstocks are 

supplemented with centrally pasteurised local food 

waste and similar organic feedstocks 

which have been processed at a Hub 

(Banks	 et al., 2011, Cropgen, 2011) in 

line	with	the	Animal	By-product	Regu-

lation	(2009)	(see	also	Defra,	2015).

The intention here is to show 

examples of how incentives have been 

used and their direct or indirect effect. 

Three aspects are considered:

•	 The	quantity	of	renewable	electrici-

ty produced from biogas to replace 

that derived from fossil fuels 

•	 The	 capacity	 and	 numbers	 of	 AD	

plants constructed 

•	 The	tonnes	of	CO2e removed from 

circulation 

Attention in this Section is focussed 

on the practical role of the incentives 

on the reduction of GHG emissions. 

However, the success by which the poli-

cy objective is achieved depends on the capacity of 

individual farms or any other businesses to build an AD 

plant. Incentives designed to encourage AD for rene-

wable energy, and particularly electricity/CHP is illu-

strated first, and thereafter those which are independent 

of electricity. 

6.2.1 Electricity/CHP related
It lies beyond the scope of this brochure to carry out 

any detailed analysis of the contribution of AD in the 

context of climate change or the total amount of energy 

from fossil fuel which is replaced. However, the twice 

yearly	 publications	 of	 the	 IEA	 Bioenergy	 Task	 37	

(Country	 Reports,	 2015)	 track	 the	 number	 of	 plants	

installed and the growth in the output of electricity 

measured either as energy (GJ) or in the output of 

MWh. The situation in Germany is used below as a case 

study to illustrate:

•	 Effect	 of	 the	 incentives	 on	 the	 development	 of	 the	

biogas industry, 

•	 Consequences	related	to	land	use	

•	 Redirection	to	favour	small	manure	based	plants

Figure 11: Installed capacity and number of plants in relation to incentives. 
source: scheftelowitz et al., 2014
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Figure 11 shows the dramatic increase in plant capa-

city associated the tariff changes made under the 2004 

Amendment of the Renewable Energy Sources Act (EEG). 

There is also a slow increase in the number of plants 

in the 70-150 kWe range, but a general decline in the 

number of plants where 80% of the feedstock by fresh 

weight is animal manure. Analysis of the raw data for 63 

farms	(FNR,	2009)	revealed	that	only	one	of	those	farms	

installed a <150 kWe digester/CHP even when the tariff 

including bonuses increased from £0.10 to £0.16 per 

kWh. It would be safe to conclude that even a £0.20 

tariff is not sufficient to encourage the construction of 

these small plants in Germany. In July 2014, this tariff, 

the only surviving incentive for on-farm biogas, was 

reduced to £0.15. 

The increase in the number and size of plants is just 

part of the impact. Maize, with its high yields and bio-

gas potential is often the feedstock of choice. This can 

lead in turn to side effects:

•	 The	feedstock	required	needs	more	land	than	a	farm	

has available 

•	 	If	imported,	the	plant	owner	no	longer	has	control	

of feedstock supply and its price.

•	 Further	adverse	effects	are	reported	such	as	land	use	

change. Where demand for maize destined for AD is 

intense, it has led to a shortage of affordable land to 

grow forage crops for the livestock farms. 

Lease rentals per hectare in parts of Northern Ger-

many have risen by 140% during the period between 

2008 and 2012. This is attributed to competition for 

land to grow maize for energy. As a result, some dairy 

farms have changed from the use of local silage to 

imported	 soya	 meal	 from	 Brazil	 (Klawitter,	 2012).	 In	

Austria, Walla and Schneeberger (2005) previously 

reported this trend towards an increase in plant capaci-

ty and similarly a move away from manure-based AD to 

produce heat for the farm to larger, mainly crop-based 

facilities.	By	2007,	about	83%	of	the	Austrian	farms	also	

were	based	predominantly	on	maize	(Braun	and	Kirch-

mayr, 2008). However, where the maize is used to extend 

the crop rotation, especially between cereals and oil seed 

rape, then it has a positive benefit for the maintenance of 

soil health and suppression of weed growth, as well as 

the minimisation of crop pathogens. The use of maize in 

this context can improve husbandry practice.

For the policy maker: 
•	 Incentives	stimulated	the	growth	of	the	German	AD	

industry and the output of electricity. In Austria, 

there is a similar response to the feed-in tariff under 

the	Eco-electricity	Act	2002	(Braun	and	Kirchmayr,	

2008). The UK, too, has experienced growth in the 

AD sector since the introduction of incentives over 

the past 5-7 years.

•	 AD	industry	growth	with	dependence	on	crop	feed-

stocks such as maize is a high risk strategy. This is 

exemplified by an 83% increase in maize cost/tonne 

within the 12 months between October 2006-2007 

(Weiland,	2008;	Braun	and	Kirchmayr,	2008).	This	is	

attributed to the increase in costs for diesel, synthe-

tic fertiliser and crop protection, together with that 

for haulage (Delzeit et al., 2012). It is a response to 

policy, the exploitation of which offered the chance 

of a profitable new farm enterprise at the feedstock 

price which prevailed when the plant was built.

Government reaction to the risks to biogas produc-

tion and therefore to renewable electricity output gene-

rally led to an increase in the level of the incentives 

under	 the	2009	German	EEG	 law.	Overall,	 tariffs	were	

raised to offset the increase in variable costs of maize 

and so cushion the biogas plants from the especially 

high maize prices which were outside the farm control. 

Thereafter, the next law, EEG 2012, shifted the tariffs 

away from maize and used them to encourage the deve-

lopment of <75 kWe farm plants where 60% of the 

feedstock must be manure (Delzeit et al., 2012) It also 

provided a manure bonus of either £0.06 or £0.05 for 

plants of <500 kWe and >500 kWe respectively when 

manure formed 60% or 80% by weight of the feedstock 

(Delzeit et al., 2012). 

There is also evidence that incentives influence 

equipment	suppliers.	For	example,	R&D	in	some	con-

struction companies focus on the production of a range 

of low cost small plants <100 kWe. However, for examp-

le, this focus turned to 75 kWe designs (Schmack 

GmbH, pers. comm., 2012), to be in line with the new 
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tariff band introduced in 2012. Similarly, one German 

supplier of <50 kWe dual-fuelled biogas engines has 

ceased to offer those at the smaller end of the scale in 

order to concentrate on marketing a 75 kWe model and 

larger systems up to 500 kWe capacity (Schnell Moto-

ren, pers. communication, 2013). 

The new 2014 German EEG law is regarded as the 

start of an energy shift by the Minstry for Economy and 

Energy but, more dramatically, it is a severe blow to 

their biogas industry.

6.2.2 Non electricity/CHP related
There are other fiscal incentives which have particu-

lar application to the very small scale manure based 

plants. Examples of other financial support in IEA  

Task 37 member countries for biogas upgrading for 

vehicle use and gas grid injection are given in Persson 

and	 Baxter	 (2015).	 However,	 of	 greater	 relevance	 for	

present purposes is the Swedish approach to give tan-

gible ‘public good’ incentives which are felt in the pok-

ket of biomethane users. This includes, for example, 

reduced vehicle taxation, as well as free parking places. 

If applied to the small scale farm AD plants, the range of 

very small upgrading systems 

of <10 Nm3/hour  have the 

potential to reduce dependence 

on diesel fuel, not only for use 

on the farm, but also for 

vehicles engaged in the farm 

business. Such incentives also 

support rural areas where small 

local vehicle refuelling stations 

have been closed, necessitating 

vehicle owners to travel further 

to refuel. Such plants already 

operate in parts of India, Sri 

Lanka	and	Brazil.

6.3 Contribution of incentives to GHG 
abatement

Up to this point, the discussion has hinged on the 

use of incentives as a policy mechanism to support 

renewable energy production including that from AD. 

Even before any potential GHG emissions from com-

pounds of nitrogen are taken in account (see Section 4), 

there is a clear consensus at the global level that AD is 

an effective, indeed recommended means by which to 

reduce GHGs from livestock manure: 

•	 Through	emissions	from	storage

•	 By	replacement	of	fossil	fuel	based	fertiliser

•	 Through	 the	 production	 of	 renewable	 energy	 to	

replace that from fossil fuels 

  

This is quite apart from its contribution to the 

maintenance of a sustainable system of agricultural and 

environmental management. However, the incentives 

above recognise only the emissions which arise from the 

direct replacement of fossil fuel based energy. Another 

aspect to the evaluation of the GHG emissions reduc-

tion involves the cost of CO2e emissions and this cost 

needs to be taken into account when assessing value for 

Table 21 Marginal Abatement Cost (MAC) examples (Profit/cost per tonne CO2e mitigated)

Scenario 1 2 3 4
Example Capital cost slurry, 185 days 

housing, boiler, 
incentive on 

total heat

slurry, 365 
days housing, 
boiler, incenti-
ve on excess

slurry, 365 days 
housing, ChP & 

heat

slurry, 185 
housing, ChP & 

heat, top up with 
crop in summer

Tonnes CO2e /year 76 119 151 125
MAC cost with no incentives – Energy: electricity (£0.11) & oil (£0.42) at  October 2014 price

(a)
£100k digester -111 -58 33 6
£150k digester -187 -106 -6 -41
£200k digester -263 -155 -44 -97

MAC cost with electricity incentive @ £0.1013/heat @ £0.076 – Energy at October 2014 prices  
(see Table 17)

(b)
£100k digester 38 22 73 72
£150k digester -38 -26 34 26
£200k digester -114 -59 -4 -20
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money which AD can offer. This is known as the margi-

nal abatement cost (MAC) where:

An illustration of MACs based on the experience of 

one country (UK) is shown in Table 21. This concept is 

transferable to other countries that have different ener-

gy prices and incentives. In simple terms, where there is 

no incentive the cost of GHG abatement has to be cove-

red by the farmer, in which case the farmer can only 

justify the installation of a digester if it offers a signi-

ficant improvement in the productivity of the slurry.

The MAC figures shown in red in unshaded cells 

(Table 21) predict losses associated with installation of 

an AD plant, and thus a farmer would be unlikely to 

make an investment in AD. However, for plants up to 

£150,000 even without incentive there can be a win-win 

situation for the farmer and the policy maker with just 

an 11 kWe CHP if slurry only or slurry supplemented 

with other feedstock is available year round. In this 

situation the farmer still carries the costs of GHG 

reduction policy.

If there is an incentive, as for example at the levels 

used for illustration in Table 21, an AD plant, even with 

a capital cost up to £200,000 could be financially attrac-

tive. An incentive can change the position dramatically 

from loss to profit, but the farmer still carries part of the 

costs for CO2 abatement. If the AD system can bring 

financial benefit to the farmer, even with a small incen-

tive, this gives good value for money to the policy 

maker.	 Based	 on	 a	 Life	 Cycle	 Assessment,	 Styles	 et al. 

(2014) reached the same conclusion using an example 

of a 133 cow herd from which the slurry is stored in an 

open lagoon. In the latter case, a £0.20 incentive for 

electricity would cost the tax payer £60 per tonne CO2e 

saved. When this is compared with off shore wind ener-

gy	 with	 an	 incentive	 of	 £0.9	 /kWh,	 the	 cost	 of	 GHG	

abatement is £182 per tonne. Independent of the 

approach taken, it is contended that small scale farm AD 

offers good value for money. An incentive which recog-

nises the whole process for managing the reduction of 

GHGs from livestock manure, and not tied to electricity 

or CHP, can create the demand to stimulate production, 

bring down capital cost and ultimately have the poten-

tial to remove the need for incentives for energy in iso-

lation. 

Agri-environment schemes were first introduced 

into	EU	agricultural	policy	during	the	late	1980s	as	an	

option	to	be	applied	by	Member	States.	Since	1992,	the	

application of agri-environment programmes has been 

compulsory for Member States in the framework of 

their rural development plans. The United States has 

also	 recently	 issued	a	‘Biogas	Opportunities	Roadmap’	

(USDA, 2014) as part of a larger strategy to reduce 

emissions of greenhouse gases.

The farm‘s profit or loss

kg or tonnes of CO2e abated
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7. Concluding remarks and 
the way ahead 

Extensive investigations at the international level all 

reach the same conclusion that AD is the most effective, 

indeed recommended technology for the removal of 

methane emissions from storage of livestock manure. 

There is also a cautionary note that the AD process 

could potentially increase the amount of ammonia 

which can be released from the digestate into the 

atmosphere. This, however, is a matter for best practice 

management and therefore not an insuperable problem. 

It can be resolved in the main by the gas tight storage of 

the digestate, as well as by the timing and method of 

application of the digestate to land. The cost calculati-

ons in the preceding section assume best practice in the 

plant design and management. These approaches are 

taken as standard practice in the foregoing pages. 

There is no technical limitation on the scale of AD, 

as demonstrated by the millions of digesters in China 

and the Indian sub-continent which serve both the 

energy needs of families or small rural communities 

and are equally important for their social and economic 

development. Livestock manure is a key element in such 

schemes and is reinforced by its scope to add value to 

both human waste and crop residues. AD is a multi-

purpose process. It reduces the GHG emissions from 

the storage of the livestock manure, the recovered bio-

gas replaces oil, kerosene or wood as fuels and so redu-

ces the release of particulates and toxins into the 

atmosphere. As a consequence, their detrimental effects 

on human health are reduced, while the reduction or 

elimination of pathogens during the process can lead to 

improved human health as well as animal health and 

productivity. These small scale plants wherever they are 

located can usually be integrated into a wholly sustai-

nable farming system for the reduction of pollution to 

land, air and water.

The evidence presented in this report considers the 

potential financial implications for the adoption of AD 

for the reduction of GHGs which arise from the storage 

and handling of livestock manure on small scale dairy 

farms. 

The approach to adoption of AD at small scale dif-

fers from when it is installed as an alternative farm 

energy enterprise or as a commercial plant. There is a 

different attitude and psychology to the use of AD when 

it is used as a basic farm process to enhance the produc-

tivity and monetary value of slurry. On such a dairy 

farm, the slurry tank, or other storage system, is a major 

cost without any income. Dairy farmers generally need 

a simple, efficient and minimal cost system for dealing 

with slurry, and preferably one that reduces net cost to 

the farm. The investigations in these pages show that, in 

appropriate circumstances, a small AD system can meet 

this need. For the farmer, the avoided costs and a pre-

dictable level of expenditure on energy, for example, are 

as important as any additional income from outside 

sources. This factor must not be overlooked in any eva-

luation of these very small plants. Nevertheless, there is 

still the underlying dependence on the relationship 

between capital cost, energy prices and incentives, quite 

apart from any extra costs incurred to meet national 

regulations. 

Conclusions to this effect have been reached by a 

number of studies made over the last three decades. 

There has been considerable progress in understanding 

process management and plant design since many of 

these studies were undertaken. It is, however, an over-

simplification to assert that the high levels of incentives 

are needed to offset the high capital costs of such plants. 

The previous pages have shown what constitute the 

capital costs and where the operating costs lie. The far-

mer needs an awareness of how best to match the feed-

stock, in this case slurry, with the choice of plant design. 

In	Europe	and	Brazil	for	example,	many	companies	are	

working to bring down these costs and match their 

digesters to meet the needs of the small farms.

The driving force behind the incentive systems 

adopted by national governments is to encourage rene-

wable energy production as for example in Europe to 

replace the use of fossil fuels and so remove the sources 

of the GHG emissions. These incentives have and still 
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are fulfilling that purpose.  However, they have not been 

favourable to the development of anaerobic digestion 

on a small scale and especially manure based plants, 

simply because these have been geared to electricity 

production which involves further complexity and 

investment in generation capacity. To tackle the issues 

of agricultural GHG emissions, the approach used in 

these pages gives a lead as to how AD, as the acknow-

ledged best available technology for the reduction of 

GHGs from manure, can be achieved through the non 

CHP option where it fulfils the needs for heating or 

cooling within the buildings of the farmstead as a who-

le rather than the dairy in isolation.

Widespread adoption can drive the cost of small 

scale AD plants down through innovation, development 

and production and, where incentives are present, can 

allow support so that such plants can fit into the exi-

sting farming system, rather than having to alter the 

farming system in order to accommodate the digester 

and the incentive scheme. 

The incentive schemes in place in Europe have led to 

the development of a biogas industry which has allowed 

farms to become energy enterprises, primarily with the 

use of purpose-grown biomass. The focus has certainly 

shifted from the use of AD as a technology to derive 

resource and environmental benefit from the manage-

ment of manures. Even in the UK, which now offers 

incentives for heat use, the competing incentives which 

make ‘energy farming’ so financially attractive are 

unlikely to shift the current trend away from larger and 

financially more lucrative schemes. In practice, there are 

some co-digestion plants which were constructed as 

mainly slurry AD systems but have excluded slurry from 

the current operation and converted the plants to ope-

rate on food waste and crops.  

Slurry is a huge undervalued resource which is pre-

sent on very large numbers of widely dispersed farms. 

Countries such as Denmark, Austria, Switzerland and 

Germany already offer an extra incentive to encourage 

the inclusion of manure. Alternatively, a set percentage 

of manure can be included in the feedstock mix to qua-

lify for the bonus. This is progress. However, there are 

thousands upon thousands of dairy, pig and poultry 

farms, all of which contribute to the estimated 87Mt of 

CO2e emissions from livestock manure in Europe. These 

explorations have highlighted a wide policy gap for 

which the installation of small scale AD plants to reduce 

GHG emissions from slurry storage has the potential to 

make in aggregate a considerable contribution to the 

reduction of GHG emissions from livestock manure 

and at the same time improve the efficiency of the farm. 

The attraction for the farm is that the AD process adds 

value to the slurry so that it can generate income to 

offset some of the overheads of the dairy herd or to 

reduce those costs when compared with the status quo.

Given the stimulus of a favourable combination of 

capital cost, energy price and incentive at the outset, 

there is a win for the policy maker and a win felt in the 

pocket of the farmer. Agri-environment schemes were 

first introduced into EU agricultural policy during the 

late	1980s	as	an	option	to	be	applied	by	Member	States.	

Since	 1992,	 the	 application	 of	 agri-environment	 pro-

grammes has been compulsory for Member States in 

the framework of their rural development plans. The 

structures are in place to capitalise on the use of small 

AD plants so they become standard pieces of farm 

equipment which turns slurry into a resource. 
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Appendix A - Currency Conversions 

Currency conversions from 1 GB Pound Sterling (£) 
(reference date: 27th October 2014) 

Appendix B - Livestock Unit Coefficients

A Livestock Unit is usually defined in terms of feed 

requirements. The ratios in the table below are based on 

metabolisable energy requirements, with one livestock 

unit being considered as the maintenance of a mature 

black and white dairy cow yielding an average annual 

milk yield.

1. To calculate the stocking density of grazing live-

stock, allowances should strictly be made for variati-

on in output e.g. yield per cow or live weight gain 

per head, and also for quantities of non-forage feed 

consumed by each category of stock.

2. To calculate the total Livestock Units on a farm, the 

appropriate Livestock Units should be multiplied by 

the monthly average livestock numbers, except in 

the case of lambs and purchased stores where 

throughput should be used.

3.	 Because	of	the	range	in	breed	and	type	of	animal	in	

any one category (e.g. Friesian/Holstein and Chan-

nel Island dairy cows) the results obtained from the 

use of these figures must be interpreted with care.

Australian Dollar (AuD) nd

Brazilian real (BrL) 4.08

Danish kroner (Dkk) 9.46

Euro (€) 1.27 Applies to Austria, Fin-
land, France, Germany, 
Ireland, netherlands,

norwegian krone (nOk) 10.67

south korean Won (krW) 1,695.20

swedish krona (sEk) 11.06

swiss Franc (ChF) 1.53

us Dollar (usD) 1.61
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These are ratios for converting numbers of animals 
into Livestock Units

Appendix C– The Kalmari farm experience
Introduction
This case study of Kalmari Farm in Finland illustrates 

how an enterprising farmer used his initiative and prac-

tical skills to lower the costs of building a biogas plant 

and a biogas upgrading system to produce vehicle fuel.

The information for this case study is provided by 

Metener Ltd, the commercial company founded by the 

farmer in 2002. Metener Ltd delivers process and con-

struction planning, automation, biogas and biomass 

treatment equipment and pipe systems, as well as biogas 

utilisation equipment (www.metener.fi).

The Kalmari experience
Mr Erkki Kalmari is the 11th generation of his family to 

farm this land since 1666. The farm is situated in the 

small village of Laukä in Central Finland about 15 kilo-

metres to the north of Jyväskylä. The farm is mainly 

dairy and includes 70 ha of fodder and other crops.

Mr	 Kalmari	 built	 the	 first	 digester	 in	 1998	 when	 the	

farm had about 100 LSU (40 cows and about 60 herd 

replacements, as well as a beef herd). The reasons Mr 

Kalmari decided to build a digester were:

•	 To	replace	expensive	electricity	purchased	from	the	

national grid 

•	 To	avoid	the	labour	intensive	tasks	required	to	har-

vest and chip the wood from the estate which was 

required as fuel for the boiler to provide heating and 

hot water

•	 To	 improve	 the	 hygiene	 standards	 associated	 with	

manure management

The digester was constructed using equipment and 

materials which were already on the farm or could be 

found locally at little or no cost. Table C1 summarises 

details	and	performance	of	the	digester	as	built	in	1998.	

It is impossible to establish the full cost of the plant, as 

all the time used to find the components and the labour 

for the construction were absorbed into the daily run-

ning of the farm. However, anecdotal evidence suggests 

that	 it	 cost	 about	 9,000	 Euro	 to	 acquire	 the	 various	

components. 

archive.defra.gov.uk/foodfarm/farmmanage/advice / see also FAO (nd) Tropical Livestock units - Food and 
Agriculture Organization http://www.fao.org/ag/againfo/programmes/en/lead/toolbox/mixed1/

Type of Stock Livestock
Units

Cattle
Dairy cows 1.00
Dairy Bulls 0.65
Beef Cows 0.75
Beef Bulls 0.65
heifers in calf 0.80
Other Cattle (excluding intensive 
beef systems)

0 – 12 months 0.34
12 – 24 months 0.65
over 24 months(a) 0.80

Barley Beef 0.47
Poultry
Cocks, hens, pullets in lay 0.0017
Pullets one week to point of lay 0.0030
Broilers 0.0017
Other table chicken 0.004
Turkeys 0.005
Ducks, geese, other poultry 0.003
Sheep 0.08
rams
Lowland ewes 0.11
upland ewes 0.08
hill ewes 0.06
store lambs, under 1 year 0.04
Breeding ewe hogs, 6 to 12 
months

0.06

Other sheep over 1 year 0.08
Pigs
Boars 0.35
Breeding sows 0.44
Gilts in pig 0.20
maiden gilts 0.18
Other pigs 0.17
Other Livestock
horses 0.80
Breeding female goats 0.16
Other goats 0.11

source: Defra (2010) Definitions used in farm business management.
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Between	1998	and	2002,	it	is	estimated	that	the	digester	

saved the farm between 27,000 and 31,000 Euro (Table 

C 2). 

Measurements of Faecal Streptococci and Coliform 

bacteria populations showed digestion to reduce these 

by	98%	and	99%	respectively	 compared	with	 those	 in	

the feedstock slurry (residence time in the digester was 

22 days at 35°C). These data are summarised in Figure 

C1 below which also illustrates that there was no 

regrowth of pathogens after six months of covered sto-

rage before the digestate was applied to land. 

At first, this was a slurry-only digester with a total feed-

stock of 1680 t/year available from the livestock on the 

farm during the period of housing. From 2001, the farm 

secured a supply of 60 t/year of confectionary residues. 

When required, these residues were delivered by tractor 

and trailer from the local sweet factory to maintain the 

biogas output to meet the farm’s energy demand. This 

feed supplement yielded a 35% increase in biogas out-

put at no extra cost for the farm. This laid the foundati-

on in 2002 for the second development stage – the 

addition of a micro high pressure water scrubber to 

upgrade the biogas to biomethane and the installation 

of the first farm biomethane filling station in Finland. 

The upgrading system served only the farm and was not 

connected to a gas grid. Additions to the plant made in 

2002 are summarised in Table C3. 

Mr Kalmari designed and built the biomethane upgra-

ding plant himself and again made use of recycled parts 

and/or those which could be purchased ‘off the shelf ’ 

from builders merchants and similar sources. For vehic-

le	use,	 the	biogas	was	upgraded	to	95%	methane	con-

tent and pressurized to 270 bar. In 2002, Mr Kalmari 

purchased a Volvo V70 car which was already modified 

to a dual fuel system which operated on biomethane 

and	diesel	fuel	–	the	first	in	Finland.	By	2006,	biometha-

ne was sold mainly to neighbours who operated an 

‘honesty box’ system.

Table C1 Details and performance of the Kalmari plant in 1998

Table C2 Examples of the benefits achieved from the digester 
(for 1998-2002 prices)

Figure C1 Quantity of pathogens in untreated cow slurry, digestate after digestion and 
digestate after storage for six months 

Feedstock: 6 tonnes slurry/day, 
Digester tank: 150 m3, including 20 m3 for gas storage
Operating temperature: mesophilic 35°C 
Retention time: 20-22 days
Biogas output: 25 m3/t of slurry
Methane content: 60-65%
Equipment included:  

80 kW gas boiler,
15 kWe ChP unit

Activated carbon to reduce h2s from 300-500ppm 
to 10-30ppm for the ChP engine only

(source: Luostarinen, J. (2001). Farm-scale biogas production in northern Europe, 
available at: www.valorgas.soton.ac.uk/Pub_docs/iit_131213_metener.pdf)

The original digester installed in 1998 (Photo: metener Oy)

self-sufficiency in heat and 
electricity, even during the 
coldest winters

replaced wood chips and logs 
cut from the farm estate 

reduced cost of fuel bills:
a) Labour

b) heat

c) Electricity

Labour cost for harvesting, cutting 
and feeding wood fuel to meet 
demand for 300 kWh of heat @ 
average price 50 – 60 €/mWh
15,000 – 18,000 €/year

7,000 €/year

reduction in fertiliser bills 
(includes the addition of 
sweet factory residues used 
from 2001)

5,000 – 6000 €

reduced veterinary bills not quantifiable, but better  
animal health and higher milk 
yields per cow
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The year 2008 marked the start of the third develop-

ment phase which involved an increase both in the 

quantity of feedstock and its biogas output. Hitherto, 

the farm had taken as much of the sweet factory resi-

dues as it needed to maintain its self-sufficiency for heat 

and power and for upgrading to biomethane. After 

2008, the farm received the entire confectionary residue 

which the factory produced. This was delivered by trac-

tor and trailer in 7-8 tonne loads to fit with the produc-

tion level in the factory. The increased annual input of 

feedstock in 2008 is summarised in Table C4 Inputs and 

outputs for the Kalmari AD plant (post-2008). This 

increase resulted in increased biogas output and this 

made it possible to expand biomethane output. Up to 

this point, although the biomethane was available for 

sale to neighbours, few took the opportunity because 

the Finnish Government imposed a 10,000 Euro tax on 

biogas cars unless the required written permission for 

ownership had been secured in advance from the State 

Treasurer. This tax was rescinded in 2006, after which 

biogas cars paid the same tax as petrol cars and the 

demand from neighbours gained momentum. 

In 2008, the main change was the construction of the 

new 1,000 m3 digester. This was retrofitted into 

an existing concrete slurry lagoon, the sides of 

which were raised a further two metres in height 

with the same type of concrete slabs as those 

used for the original lagoon. A submersible stir-

rer and heat exchangers were installed and the-

reafter the whole tank was also closed with a 

concrete cover. The design capacity of the new 

digester was planned to allow for further growth 

in demand for vehicle fuel and therefore for an 

increase in feedstock from which to produce the 

biogas (this would have the effect of reducing 

the retention time given in Table C5). Other compon-

ents which were added included an extra 1,500 m3 cove-

red gas tight post-storage tank for the digestate and 

biogas. New equipment for biogas upgrading to bio-

methane was constructed, together with a larger vehicle 

fuelling facility. The main changes to the plant in 2008 

are summarised in Table C5. 

The 120 m3 tank (a converted road tanker used to trans-

port heavy fuel oil) which had previously served as the 

digester was converted into the pasteuriser. There were 

no additions to the CHP system or to the boiler. The 

farm had become entirely self-sufficient for heat and 

electricity even during the coldest winters. The plant 

was fully automated and the labour input reduced to an 

hour or two a day. 

In 2011, the Kalmari Farm opened its first metered 

public biomethane filling station for the commercial 

sale of the vehicle fuel and a capacity to serve 200 cars 

(Figure C2). However, by 2013, the number had 

increased to 300 regular customers, about 80 of whom 

were from the local area. 

By	this	stage,	the	feedstock	range	had	been	widened	to	

make use of other available residues in order to secure 

Table C3 2002 additions to the original Kalmari AD plant

Table C4 Inputs and outputs for the Kalmari AD plant (post-2008)

Characteristic of the 2002 development
The 120 m3 original digester with gas storage remains in use as well as 
the 15 kWe ChP

Additions: 1 To the digester and CHP
90 m3 Feedstock concrete slab mixing tank
25 kWe self-converted diesel engine for operation with biogas

Addition 2 Biogas upgrading plant and biomethane filling station:
high pressure water scrubber to process 8 nm3/h of biogas
Compressors 
Volvo Bi-fuel V70 private car purchased for personal use Biomethane  
filling station for the farm car and  available for neighbours to use

Input: Feedstock mix
Cow manure 
Confectionary residues 
Agri-industrial residues
some silage and grass

Quantity/year
2,000 m3

200 m3

300 m3 
50 t 

Total annual input/year 2,500 m3 + crop as required

Outputs:
End products of the mix:
Electricity
heat
Biomethane for use as vehicle fuel

105 mWh
350 mWh
1,000 mWh

Figure C2 Patented metener biogas upgrading technology (J. Läntelä) (left) and 
kalmari Farm’s new fully commercial biogas filling station (O. Pakarinen) (right)
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sufficient gas output to meet the demand for the self-

sufficiency of the farm and the workshops on site, as 

well as to develop the growing biomethane market. 

Under the current licence regulation, the farm is limited 

to a maximum of 500 m3 of agri-industrial residues.

The addition of the agri-industrial residues and food 

waste (Table C6) required alterations to the plant design 

and additional space for digestate and biogas storage. 

Inclusion of non-agricultural residues in the 

feedstock also required the addition of a 

pasteuriser	for	compliance	with	the	EU	ABPR	

Regulation	(2009).

It is not possible from available data to calcu-

late the net financial benefit to the farm wit-

hout details of the operating costs. However, 

Table C6 shows the importance of the avoided 

expenditure over the first nine years and the 

growth of new income thereafter. 

The sales income from vehicle fuel increased 

dramatically with the installation of the larger 

biogas upgrading system and a filling station 

for metered sale to the public. Vehicle fuel 

income has now overtaken that from the live-

stock which provided the basis for this plant. The whole 

success of the Kalmari experience is particularly note-

worthy in that the avoided expenditure was the princi-

pal incentive rather than reliance upon government 

subsidy.

See IEA success story “Pioneering biogas farming in 

Central Finland” for further information (http://www.

motiva.fi/files/7682/success-story-kalmari2012.pdf) 

Table C5 Plant characteristics/modifications, 2008

Acknowledgement: IEA Bioenergy Task 37 would like to thank Juha Luostarinen, Metener Oy, for the provision and 
verification of the data used above and Mr Erkke Kalmari for the use of his farm data.

Financial benefit Stage 1
1998 - 2001

Stage 2
2002 - 2007

Stage 3
2008 - 2011

Comments

Avoided expenditure:
Electricity

heat 

Car fuel
Tractor fuel
Artificial fertiliser replacement
reduced expenditure on  
veterinary bills

7,000

15,000 -18,000

2,000
0

5,00O - 6,000
not quantified

10,000

18,000 - 20,000

2,000
0

5,000 - 6,000
not quantified

13,000

18,000 - 20,000

6,000
Circa 1,000

5,000 - 6,000
not quantified

Combined effect of 
electricity price 
increase and increase 
farm consumption
Includes heat from 
the ChP and boiler

Sub-total avoided  
expenditure (a)

29,000 - 35,000 35,000 - 38,000 43,000 - 46,000

new income sources:
Electricity export
heat
Biomethane for vehicle fuel
Extra litres of milk
Gate fees

0
0
0

not quantifiable
0

0
0

12,000
not quantifiable

0

0
0

90,000
not quantifiable

5,000

Sub-total new income (b) 0 12,000 95,000

Total financial benefit (a) + (b) 29,000 - 35,000 47,000 - 50,000 138,000 - 141,000

Plant characteristics
Digester volume 
Digester temperature (no change)
retention time 
Digestate storage tank  with 6 months space 
and gas store
ChP (no change)

Gas boiler used for hot water, space heating 
and grain drying (no change)
Pasteuriser (previously used as the 120 m3 
digester tank)
Biogas upgrading: high pressure batch water 
scrubber 
steel gas storage bottles  and vehicle filling 
station

Capacity:
1000 m3

mesophilic: 35°C 
100-150 days 
1500 m3

25 kWe 
50 kWth
80 kWth

70°C 

50 nm3 /hour 

Table C6 Summary of annual financial benefits 1998 – 2011 (Euro)
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