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Abstract  
The SEACOAST project of the Water Resources Unit (H01) of the Institute of 
Environment and Sustainability (IES) has aimed during 2015 to monitor, model and 
assess the environmental status of the marine and coastal waters of European seas. The 
SEACOAST project assists in implementing the objectives of the Marine Strategy 
Framework Directive (MSFD) by the assessment of the marine environment through 
targeted modelling and monitoring activities. 

Specifically, the main objective of the modelling activities within SEACOAST 2015 has 
been to assess the anthropogenic and climate driven changes on the marine 
environment by using adequate numerical modelling tools that include the main 
components of the Earth System; atmosphere, ocean, land and anthroposphere. In the 
scientific jargon, an integrated modelling system of this nature is typically referred as a 
Regional Earth System Model (RESM). In this context, the marine modelling group has 
been working to develop such modelling system for the Mediterranean Sea as a 
‘benchmark’ case of EU regional seas. 

Within Deliverable 6 of SEACOAST 2015 on scenarios of the Mediterranean Sea, we have 
used a regional climate model (RCM) developed within the EuroCORDEX initiative to 
obtain atmospheric conditions for the Mediterranean region for the 21st century. 
However, before using the RCM variables to force the ocean model an intense work was 
necessary to reduce the bias in surface properties induced by model deficiencies. 

Once the present-day conditions in the basin could be satisfactorily simulated by using 
the RCM variables, this coupled atmosphere/ocean/hydrology system has been used to 
create a set of scenario simulations into the future under various emission scenarios 
(business as usual and worst case) and considering different options for freshwater 
management (associated with socio-economic scenarios).   

The objective of this work during 2015 has been to create the model system and to test 
its capability to perform in scenario mode for the Mediterranean Sea. Now that the tool 
is created and tested, it could be used to explore consequences of different policy 
options for Europe in near future in combination with expected climatic changes in the 
context of the MSFD. 
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1. Introduction  

The work carried out in the marine modeling group of SEACOAST during 2015 on the 
coupling of hydrodynamic and biogeochemical models to sustain multi-year simulations 
of future economic and climate scenarios for the Mediterranean Sea is summarized in 
Table 1.  Sixteen scenario multi-annual simulations have been run using two emission 
scenarios with two available atmospheric projections each (until year 2100) as forcing of 
the Mediterranean Sea configuration, and in combination with several freshwater 
scenarios. Work on bias correction of the atmospheric fields and hindcast scenario runs 
has also been necessary as a previous step to the scenario runs of the 21st century to 
reduce as much as possible the sources and ranges of inaccuracy in the simulations. In 
the following sections a separated description of the performed work with the main 
results is included. 

 

Emission 
scenario 

GCM 

(RCM) 

Freshwater scenarios 

Flow modifications Nutrients modifications 

(socioeconomic scenario) 

rcp 4.5 MPI 

(CCLM- EuroCORDEX) 

No change No change 

Adjusted to EP changes No change 

Best case (AM) 

Worst case (GO) 

Ec-Earth 

(CCLM- EuroCORDEX) 

No change No change 

Adjusted to EP changes No change 

Best case (AM) 

Worst case (GO) 

rcp 8.5 MPI 

(CCLM- EuroCORDEX)) 

No change No change 

Adjusted to EP changes No change 

Best case (AM) 

Worst case (GO) 

Ec-Earth 

(CCLM- EuroCORDEX) 

No change No change 

Adjusted to EP changes No change 

Best case (AM) 

Worst case (GO) 

Table 1: Scenarios for the Mediterranean Sea in 21st century. 
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2.1 Used models for the bias-correction exercise 
We have used the General Estuarine Transport Model (GETM) to simulate the 
hydrodynamics of the Mediterranean Sea. We have coupled this Mediterranean 
configuration to a biogeochemical model via the Framework for Aquatic Biogeochemical 
models (FABM). When forced with atmospheric reanalysis fields from ECMWF ERA-
Interim (Dee et al. 2011), this particular coupled model has shown to correctly simulate 
the surface characteristics (both physical and biological) of the Mediterranean basin 
during the past few decades (Macias et al. 2013; 2014a; 2014b). As a consequence even 
if reanalysis datasets may present considerable deviations from the ‘true’ weather, in 
this study the ECMWF ERA-Interim (ERAin) reanalysis is considered as ‘observations’ for 
the purposes of the bias-correction analysis presented below.  

This same ocean model with the same exact configuration is also forced at the surface 
with the atmospheric variables provided by an RCM, namely the Cosmo Climate Limited-
area Model (hereinafter CCLM) produced within the EuroCORDEX project 
(http://www.euro-cordex.net/). This RCM has been shown to provide quite accurate 
conditions for the European and Mediterranean region when using reanalysis data as 
boundary conditions and to improve water and heat fluxes over this basin with respect to 
the raw reanalysis. Three realizations of this RCM are considered here, both using the 
ERAin data as boundary conditions and using the simulations from two global circulation 
models (GCM) as lateral boundary conditions.  

We have selected two GCMs from the CMIP5 climate projections, namely: the Max Plank 
Institute MPI-ESM-LR, and EC-Earth, i.e., the Earth System Model of the EC- Earth 
Consortium (http://ecearth.knmi.nl/). A time-slice (1989–2005) of the ‘historical’ 
simulations (forced by observed natural and anthropogenic atmospheric composition) of 
both GCMs have been downscaled using CCLM and are named CCLM-MPI and CCLM-EC 
throughout the text and figures. 

 

2.2 Bias-correction techniques 
 
We have applied a bias correction technique based on a simplified version of the one 
proposed by Piani et al. (2010) and applied to climatic change simulations for Europe by 
Dosio and Paruolo (2011) and by Dosio et al. (2012). The basic principle is to find a 
transfer function (TF) that allows matching the cumulative distribution functions (CDFs) 
of modeled and observed data. With this methodology the CDFs of ‘observed’ and 
‘corrected’ model variables are equivalent while the internal variability in the 
‘uncorrected’ model variable is retained. Contrary to previous works, we use spatially-
averaged values of the ‘observed’ and ‘model’ variables over the entire Mediterranean 
Sea basin, so no spatially explicit correction is applied. 

As shown by Fig. 1 above, the main problem with forcing the ocean model with the 
atmospheric variables provided by the different RCMs runs is an underestimation of SST. 
The three main atmospheric variables that determine SST are air temperature (t2), 
cloud cover (tcc) and wind intensity (u10 and v10). Henceforth, we have applied the 
transfer function approach explained above to all these three variables. 
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2.4 Conclusions 
From this exercise it is clear that atmospheric variables from RCMs could not be directly 
used to realistically force a Mediterranean Ocean model. A pre-processing step for 
reducing the bias in atmospheric variables is, then, necessary. This bias-correction not 
only improves the representation of the surface properties of the basin but also the 
vertical structure of the water column. A complete description of the work performed on 
this bias-correction issue can be found in the publication: 

Macias, D., Garcia-Gorriz, E., Dossio, A., Stips, A., Keuler, K. (submitted) Obtaining the 
correct sea surface temperature: Bias correction of regional climate model data for the 
Mediterranean Sea. Climate Dynamics (PUBSY #: JRC97946). 

Henceforth, the atmospheric variables produced by the RCMs under future scenarios 
(described below) need to be corrected before being used to force our Mediterranean 
basin model. 
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3. Baseline scenario simulations 

As summarized in table 1, we have followed a step-by-step approach to the scenario 
runs in order to identify and quantify the individual effects of different forcings to assess 
the potential changes in Mediterranean Sea ecosystems. 

The first set of simulations (which we call ‘baseline’) aims to identify the isolated effect 
of changing atmospheric conditions.  For this set of simulations, rivers conditions (flow 
and nutrient loads) are, henceforth, kept unchanged and equal to their present values 
for the entire simulation run (continuous simulation from 2013 to 2100). Even if this is a 
very unlikely scenario (at least rivers’ flow will change according to 
evaporation/precipitation changes) it will allow to achieve our primary objective of 
isolating the direct effect of a changing climate on Mediterranean ecosystems. 

 

3.1 Coupled atmospheric-oceanic model system  
We force our Mediterranean basin-wide coupled hydrodynamic-biogeochemical model 
(e.g., Macias et al., 2014a) with the atmospheric variables provided by the RCMs already 
used in the previous section (CCLM-MPI and CCLM-EC) under two different emissions 
scenarios RCPs (Representative Concentration Pathways), rcp4.5 and rcp8.5 
(Meinhausen et al., 2011). Hence a total of four member ensemble runs are analyzed in 
this work. 

Of course, atmospheric variables from the different RCM realizations have been bias-
corrected following the techniques described in the previous section. 

 

3.2 Results  
Basin-wide averaged annual sea surface temperature (SST) and primary production rate 
integrated in the upper 50m (PPR) are shown in Fig. 5 for the hindcast run (1960 – 
2012) and for the different scenarios runs (2014 – 2100). As expected, SST continuously 
increase in the different scenario runs with the two rcp4.5 runs (light colored lines in Fig. 
5) showing a mean warming of ~1°C by 2100 (i.e., a warming rate of ~0.12°C/decade 
for MPI and ~0.14°C/decade for EcEarth) and the two rcp8.5 runs (dark colored lines in 
Fig. 2a) indicating a warming of ~2.7°C by 2100 (~0.32°C/decade for both MPI and 
EcEarth). MPI-driven simulations (red lines in Fig. 5) are typically warmer than the 
EcEarth runs (blue lines in Fig. 5) for the two different scenarios considered. 
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Figure 5. Time series of mean (basin averaged) sea surface temperature (SST) for the hindcast 

(gray line) and the different simulation scenarios (color lines). 
 
 
PPR time series are quite constant during the different scenario runs (colored lines in Fig. 
6) showing no significant trend but quite a strong interannual variability. On the 
contrary, the hindcast simulation (gray line in Fig. 6) shows the transition from low to 
high PPR described and commented by Macias et al. (2014b) linked with the rivers’ flow 
and nutrients loads changes. Henceforth, and given that rivers conditions are not 
allowed to change in this ensemble of simulations, the lack of a clear trend in PPR levels 
is the expected result. 
 
Mean SST and PPR agree relatively well at the end of the hindcast (2005, which is 
created using ERAin forcing) and during the initial years of the scenario runs (colored 
lines in Figs. 5 and 6), even if in SST in some runs (especially those forced by EcEarth) 
present some small cold bias (~0.4°C). This is a clear indication that the bias-correction 
applied is working correctly and provides a good description of the initial (present-day) 
conditions in the basin. 
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3.3 Conclusions  
The four scenarios’ ENSEMBLE analyzed in this exercise points out to a very consistent 
future modification of biological production levels in the Mediterranean basin driven by a 
changing climate. In all cases, and in spite of a substantial warming of the basin, there 
are no significant changes on the mean biological production rate in the basin. This is 
consistent with the no-changing river scenario adopted and serves as further support to 
the importance of river water quality for Mediterranean Sea ecosystems (e.g., Macias et 
al., 2014b). 
 
However, also a very coherent pattern found in all scenario runs is a spatially different 
PPR anomalies, with the western basin predicted to become more oligotrophic while the 
eastern basin tends to increase its biological productivity. Such productivity changes 
seems to be linked to an alteration of the vertical stability induced by surface density 
changes. Here we must consider that in a warming future the Mediterranean not only will 
become hotter but also saltier. These two changes alter in opposite way water density 
and together will determine the future state of the basin. 
 
It is also quite clear that the inflow of ‘fresher’ waters from the North Atlantic Ocean 
through the Strait of Gibraltar plays a fundamental role in determining the extension of 
the positive/negative density anomaly areas. Those regions closer to the Strait will not 
suffer a strong surface salinity increase as the Atlantic inflow will help to stabilize its 
salinity levels. Henceforth, here the warming effect will be the most important one, 
driving the simulated decrease of surface density. In those regions farther away from 
the Strait, salinity increases due to excess evaporation will be the most relevant process 
and, therefore, explaining the density increase simulated by the ocean model. 
 
Also, some differences could be observed within the different scenarios regarding the 
extension of positive/negative density anomalies areas. For rcp4.5 ~ 33% of the basin is 
simulated to present negative density anomalies (34% for MPI and 31% for EcEarth) 
while for rcp8.5 this percentage reduces to ~ 1.4% (1.3 % for MPI and 1.5% for 
EcEarth). This numbers indicate that the effect of warming is relatively (compared to 
salinization) more important in rcp4.5 than in rcp8.5 where the increase of salinity is 
much acute and generalized. 
 
A complete description of this baseline scenario runs and associated consequences for 
the Mediterranean biological status can be obtained from the following publication: 
 
Macias, D., Garcia-Gorriz, E., Stips, A. (2015) Productivity changes in the Mediterranean 
Sea for the twenty-first century in response to changes in the regional atmospheric 
forcing. Frontiers in Marine Science, 2, 79. doi: 10.3389/fmars.2015.00079 (PUBSY # 
JRC96947) 
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Unfortunately, for the Nile the EURO-Cordex domain did not cover its catchment basin 
which is located further south in the Africa interior. Henceforth, for this river no scenario 
on water flow changes could be derived from the used data. 

However, for the rest of the basins/rivers it is possible to compute relative changes (% 
of change) between the beginning of the forecasting period (2014 – 2019) and the end 
of the simulations (2094 – 2099). To consider also the seasonality of the potential 
changes, the climatological precipitation cycles for the first 5 years are compared to the 
climatological precipitation cycles during the last 5 years. This computation must be 
done for each RCM run (for the different GCMs and the different rcp scenarios, making a 
total of 4 scenarios). 

 

4.2 Predicted changes in nutrient loads (concentrations) 
 

Changes in nutrient loads for Mediterranean rivers are much more difficult to assess as 
they are heavily dependent on socio-economic changes. For our ocean model we are 
mainly concerned on macronutrients and, more specifically, on nitrate and phosphate. 
Although information of potential changes is very scarce there is a very relevant 
publication that could be used to our purposes, the paper by Ludwig et al. (2010). In 
there, potential changes on nitrogen and phosphate loads for different Mediterranean 
and Black Sea rivers are defined for years 2030 and 2050 under four different socio-
economic scenarios using in the Millennium Ecosystem Assessment exercise (Carpenter 
et al., 2006): 
 

Table 2. Socio-economic scenarios considered in the Millennium Ecosystem Assessment 
 
Ludwig et al. (2010) provide changes on total nutrient loads (kt y-1) for different rivers 
for each scenario shown above and for years 2030 and 2050. Henceforth those changes 
(provided in table 4 of their paper) incorporate both changes due to concentration 
alteration and because of total water flow changes. To calculate the nutrients 
concentration changes alone we need to correct the provided data with respect to the 
changes in water flows (provided in table 2 of their paper). 
 

Scenario name Description 
TG: Technogarden TG depicts a globally connected world relying strongly on 

technology and on highly managed and often engineered 
ecosystems to deliver needed goods and services. Overall, eco-
efficiency improves, but it is shadowed by the risks inherent in 
large‐scale human-made solutions. 

OS: Order from 
Strength 

OS represents a regionalized and fragmented world concerned 
with security and protection, emphasizing primarily regional 
markets and paying little attention to common goods, and with 
an individualistic attitude toward ecosystem management. 

AM: Adaptive Mosaic AM depicts a fragmented world resulting from discredited global 
institutions. It sees the rise of local ecosystem management 
strategies and the strengthening of local institutions. 
Investments in human and social capital are geared toward 
improving knowledge about ecosystem functioning and 
management 

GO: Global 
Orchestration 

GO depicts a worldwide connected society in which global 
markets are well developed. Supranational institutions are well 
placed to deal with global environmental problems. However, 
their reactive approach to ecosystem management makes them 
vulnerable to surprises arising from delayed action or 
unexpected regional changes. 
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The relative changes for each catchment under each specific scenario are compiled in 
table 3 below: 
 
Catchment TG AM GO OS 
Nutrient N P N P N P N P 
Iberia -46.2% +80% -59.96% -71.4% +65.5% +113.3% +27.5% +103.3% 

France -46.2% -49.4% -56.66% -42.71% +45.8% +18.83% +18.83% -26% 

Alpine -53.9% +6.22% -98%* -37.62% -23.8% -2.57% -2.57% +12.4% 

Adriatic -21.58% +23.6% -56.29% +12.1% +42.2% +19.48% +19.48% +30.7% 

Aegean -14.02% +8.3% -98%* -49.93% +1.84% -26.93% -26.93% -20.9% 

Syria +62.8% +25% -98%* +25% +90.94% +219.23% +219.23% +112.5% 

Nile +192% +841% -95.23% +483% +83.4% +657.3% +65% +541.3% 

Algeria +16.48% +112.9% -98%* +162.9% +83.34% +64.03% +64.01% +112.9% 

Table 3. Relative change of nutrient concentration in freshwater for the different catchments and 
under the different scenarios. Values with * are adjusted to a maximum threshold for reduction 

established at -98% 
 

As it would be very time-consuming in computer-time and difficult to run and analyze all 
four socioeconomic scenarios under the four climate models realizations (4x4=16 runs + 
4 runs with constant nutrients + 4 runs with constant water and nutrients = 24 runs), 
we will select the best (largest nutrient load reduction) and worst (largest nutrient load 
increase) socioeconomic scenarios. From our computation the best case scenario 
correspond to the AM (green boxes in table 3) and the worst case scenario to GO (red 
boxes in table 3). 
 

4.3 Effects on the Mediterranean Sea ecosystems 
 

We are still in the process of running the 16 simulations (4 modifying the flow and 8 
modifying the nutrients loads) for the period 2090-2100. Initial results seems to indicate 
that the modifications of the amount of freshwater has far reaching consequences in 
terms of SST anomalies and PPR modifications. On the contrary the change in nutrients 
load has much restricted consequences in the ecosystems. 
 
However, it is still very early to draw any definitive conclusion from these scenario runs. 
At the present time, our modelling system is able to simulate changes associated to the 
change of lateral forcing. This is fundamental for the planned work for the following 
years (see section below).  

 
 
 
 
 
 
 
 
 
 



 

 

 
19

5. Future work  

Once the marine modelling framework has been tested and validated during 2015 on 
scenario mode, we plan to start using this system in two different but interlinked ways: 
 

5.1 Testing potential consequences of policy implementations on 
freshwater management 
We have started a productive collaboration with our colleague hydrologists in H01 in 
order to use their predictions of hydrological models for the near future (H2030), 
regarding freshwater quantity and quality, in our Mediterranean Sea configuration. The 
integration between the GREEN model and our system is on its way and, hopefully, we 
will start using the data provided by them as inputs to our ocean model during 2016. 

 

5.2 Exploring consequences of marine management plans on 
Mediterranean ecosystems 
In parallel to the future work mentioned in section 5.1, we would like to start using the 
modeling system to explore potential consequences of different policy options on marine 
management. We are in conversations with the policy DGs (mainly DG ENV) in order to 
define a set of policy scenarios (e.g., marine aquaculture) that should be interesting to 
be tested in the context of the MSFD. 
 
This planned future work demands, however, a substantial change of the ocean model 
setup. On the one hand the temporal horizon changes, as for policy testing a much more 
reasonable horizon is ~15 years (hence H2030), so no more centennial projections are 
foreseen. On the other hand, and to explore consequences on the coastal area, it is 
necessary to increase model resolution in order to be able to resolve local processes. 
This will require a higher computation demand, a considerable burden of technical work 
to prepare the system and, very probably, a new set of problems to be solved during the 
first few months of next year.  
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6. Conclusion  

The work performed by the SEACOAST marine modelling team during 2015 has allowed 
to develop, build up and test a model framework for the Mediterranean Sea Earth 
System, including atmosphere, marine hydrodynamics and biogeochemistry, and 
hydrology. This modelling system is ready to be used on scenario mode, in order to 
assess the consequences of anthropogenic and climate-driven changes on the marine 
ecosystems in the context of the implementation of the Marine Strategy Framework 
Directive. 

At this stage of development, collaborative work, constructive discussions and sharing  
information with other scientists (i.e., the hydrology group within JRC IES-H01, and the 
fisheries group in JRC IPSC-G03) and policymakers (DG ENV) will allow to further 
develop policy-relevant simulations to identify and evaluate potential consequences of 
EU policy implementations. 

Outside JRC and the Commission, this work is being also appreciated by different 
scientific communities, especially by those involved in regional climate modelling. Our 
impact-oriented approach and applications are considered as an example by many EU 
scientists.  
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List of abbreviations and definitions  

 

AM: Adaptative Mosaic socioeconomic scenario 

CCLM: Cosmos Limited-area Model 

GCM: Global Circulation Model 

GETM: General Estuarine Transport Model 

GO: Global Orchestration socioeconomic scenario 

GREEN: hydrological model 

MLD: winter Mixed Layer Depth 

OS: Order from Strength socioeconomic scenario 

PPR: Primary Production Rate 

RCM: Regional Climate Model 

RCP: Representative Concentration Pathways 

RESM: Regional Earth System Model 

rcp4.5 & rcp8.5: greenhouse gases emission scenarios  

SST: Sea Surface Temperature 

tcc: total cloud cover 

TG: Technogarden socioeconomic scenario 

t2: air temperature 

u10: zonal wind velocity 

v10: meridional wind velocity 
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Figure 4. a) Mean annual winter (JFM) mixed layer depth (MLD in m) for the ERAin 
forced run. b) Mean annual winter (JFM) mixed layer depth (MLD in m) for the CCLM-
ERAin forced run. c) Mean annual winter (JFM) mixed layer depth (MLD in m) for the 
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in m) for the CCLM-MPI forced run. e) Mean annual winter (JFM) mixed layer depth (MLD 
in m) for the CCLM-MPI corrected forced run. f) Mean annual winter (JFM) mixed layer 
depth (MLD in m) for the CCLM-EC forced run. g) Mean annual winter (JFM) mixed layer 
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