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Abstract 

Transmission measurements have been performed at the neutron time-of-flight facility GELINA to determine the total cross section for 

neutron induced reactions on 
40

Ca. The experimental details, i.e. measurement conditions, sample characteristics, measurement procedures 

and experimental uncertainty components, together with the data reduction procedures are described. The experimental results including the 

full covariance information, based on the AGS-formalism, are reported following the latest recommendations of the International Nuclear 

Data Committee. This includes the information that is required to derive nuclear reaction model parameters together with their covariances 

by a least squares adjustment to experimental data.  
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Executive summary 

Transmission measurements have been performed at a 50 transmission station of the neutron time-of-flight 

facility GELINA to determine the total cross section for neutron induced reactions on 
40

Ca. These 

measurements are part of a collaboration of the Joint Research Centre and the Oak Ridge National 

Laboratory (US) to improve nuclear data for nuclear criticality safety applications. They have been 

supported by the EUFRAT project.  

This report provides the experimental details required to submit the data to the EXFOR data library which is 

maintained by the Nuclear Data Section of the IAEA and the Nuclear Energy Agency of the OECD. The 

experimental details, i.e. measurement conditions, sample characteristics, measurement procedures and 

experimental uncertainty components, together with the data reduction procedures are described. The 

experimental results including the full covariance information, based on the AGS-formalism, are reported 

following the latest recommendations of the International Nuclear Data Committee. This includes the 

information that is required to derive nuclear reaction model parameters together with their covariances by 

a least squares adjustment to experimental data. 
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1. Introduction 

To study the resonance structure of neutron induced reaction cross sections, neutron spectroscopic 

measurements are required which determine with a high accuracy the reaction cross sections and energy of 

the neutron that interacts with the material under investigation. To cover a broad energy range such 

measurements are best carried out with a pulsed white neutron source, which is optimized for time-of-

flight (TOF) measurements [1].  

 
The TOF facility GELINA [2] has been designed and built for high-resolution cross section measurements in 

the resolved (RRR) and unresolved (URR) resonance region. It is a multi-user TOF facility, providing a white 

neutron source with a neutron energy range from 10 meV to 20 MeV. Up to 10 experiments can be 

performed simultaneously at measurement stations located between 10 m to 400 m from the neutron 

production target. The electron linear accelerator provides a pulsed electron beam with a maximum energy 

of 150 MeV, an average current of about 55 µA and a repetition rate ranging from 50 Hz to 800 Hz. A 

compression magnet reduces the width of the electron pulses to less than 2 ns [3]. The electron beam hits a 

mercury-cooled uranium target producing Bremsstrahlung and subsequently neutrons via photonuclear 

reactions [4]. Two water-filled beryllium containers mounted above and below the neutron production 

target are used to moderate the neutrons. By applying different neutron beam collimation conditions, 

experiments can use either a fast or a thermalized neutron spectrum.  The neutron production rate is 

constantly monitored by BF3 proportional counters which are mounted in the ceiling of the target hall. The 

output of the monitors is used to normalize the time-of-flight spectra to the same neutron intensity. The 

measurement stations are equipped with air conditioning to reduce electronic drifts in the detection chains 

due to temperature changes.  

 

In this report results of transmission measurements carried out at GELINA with a natural calcium sample are 

described. To reduce bias effects due to e.g. dead time and background, the measurement and data 

reduction procedures recommended in Ref. [1] have been followed. The main objective of this report is to 

provide the information that is required to evaluate the total cross section for 
40

Ca in the resonance region 

and to extract nuclear reaction model parameters in a least squares adjustment to the data [1]. In the 

description of the data the recommendations of the International Nuclear Data Committee (INDC), resulting 

from a consultant's meeting organized by the Nuclear Data Section of the IAEA, are followed [5]. 

 

These measurements are part of a collaboration between the Joint Research Centre and the Oak Ridge 

National Laboratory (US) to improve nuclear data evaluations for neutron induced reactions that are 

important for nuclear criticality safety. Calcium is a concrete constituent and it is very frequently found in 

combination with uranium, either for the construction of nuclear power plants or in storage facilities for 

nuclear waste. Liquid radioactive waste is often solidified by mixing it with concrete. Calcium has strong 

neutron-absorbing properties that can affect the reactivity of systems with fissionable materials. The 

evaluated data for calcium found in the nuclear data libraries do not perform well in criticality calculations. 

In addition, a consistent set of covariance data is needed in support of sensitivity and uncertainty analyses.  

2. Experimental conditions 

The transmission experiments were performed at the 50 m measurement station of flight path 4 with the 

accelerator operating at 800 Hz. The flight path forms an angle of 9
o
 with the direction normal to the facet 

of the moderator viewing the flight path. The moderated neutron spectrum was used. A shadow bar made 

of Cu and Pb was placed close to the uranium target to reduce the intensity of the γ-ray flash and the fast 

neutron component. The sample and detector were placed in a acclimatised room to keep them at a 

constant temperature of 22 
o
C. A schematic view of the experimental set-up is shown in Fig. 1. The 

experimental conditions for each experiment, including the monitor counts and type of background and 

overlap filters used in the experiment, are specified in Appendix A based on a template provided in Ref. [5]. 

 

The neutrons scattered from the moderators are collimated into evacuated pipes of 50 cm diameter with 

annular collimators. A combination of Li-carbonate plus resin, Pb and Cu-collimators was used to reduce the 

neutron beam to a diameter of about 45 mm at the sample position. The sample was placed in an 

automatic sample changer at a distance of approximately 24 m from the neutron source. A 
10

B overlap 
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filter, with an areal density of 8 10
-3

 at/b, was placed to absorb slow neutrons from previous bursts. The 

impact of the γ-ray flash was reduced by a 16 mm thick Pb filter. A set of Na, Co and W black resonance 

filters were mounted in an automatic filter changer close to the sample position to determine the 

background with the black resonance technique [1].  

 

The neutron beam passing through the sample and filters was further collimated and detected by a 6.35 

mm thick and 152.4 mm diameter NE912 Li-glass scintillator. The scintillator was connected through a 

boron-free quartz window to a 127 mm EMI 9823 KQB photomultiplier (PMT), which was placed outside the 

neutron beam and perpendicularly to its axis. The detector was placed at a distance of 49.34 m from the 

facet of the moderator viewing the flight path. The diameter of the neutron beam at the detector position 

was about 85 mm.  

 

Figure 1 Schematic representation of the transmission set-up at the 50 m transmission station of GELINA. 

 

The output signals of the PMT were connected to conventional analog electronics. The anode pulse of the 

PMT was fed into a constant fraction discriminator to create a fast logic signal which defines the time the 

neutron has been detected. The signal of the 9
th

 dynode was shaped by a spectroscopic amplifier to 

determine the energy deposited by the 
6
Li(n,t)α reaction in the detector. A module was included to 

produce a fixed dead time in the whole electronics chain directly after the detection of an event. This dead 

time td = 3305 ns was continuously monitored by recording the time interval between successive pulses. 

The time-of-flight (TOF) of the detected neutron was determined by the time difference between the stop 

signal (Ts) derived from the anode pulse of the PMT and the start signal (T0), given at each electron burst. 

This time difference was measured with a multi-hit fast time coder with a 1 ns time resolution. The TOF and 

pulse height of a detected event were recorded in list mode data using a multi-parameter data acquisition 

system developed at the EC-JRC-IRMM [6]. Each measurement was subdivided in different cycles of about 

900'' each. 

 

Table 1. Characteristics of the samples used for the transmission measurements performed at GELINA. The 

uncertainties are standard uncertainties at 1 standard deviation. To calculate the areal density the 

Avogadro constant was taken as NA = 6.0221367 10
23

 mol
-1

 and the atomic mass for 
nat

Ca as ma = 40.0780 g. 

The uncertainty on the areal density is dominated by the 0.2 % uncertainty on the area, which includes an 

uncertainty due to non-perfect circular shape of the samples. 

Sample ID 

 

Thickness Diameter Mass Areal density 

1 12.55 mm 60.00 mm 54.438 g 2.893 (0.006) 10
-2

 at/b 

2 15.35 mm 59.95 mm 66.212 g 3.525 (0.007) 10
-2

 at/b 

3 20.22 mm 59.98 mm 85.627g 4.554 (0.009) 10
-2

 at/b 

To avoid background originating from oxygen and carbon in calcium carbonate samples, metallic calcium 

samples were chosen. Three metallic Ca discs were used to produce a sample with a thickness of ∼ 5 cm and 

a total combined mass of 206.277 g. The characteristics of the discs are given in Table 1. They were 

encapsulated in a thin-walled aluminium container to prevent reactions with air. To compensate for the 

effect of the metallic can, data were taken with an Al empty container with similar characteristics as the 

sample container. 
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3. Data reduction 

The experimental transmission Texp as a function of the time-of-flight, denoted by tm, was obtained from the 

ratio of the counts of a sample-in measurement Cin and a sample-out measurement Cout, after subtraction of 

the background contributions Bin and Bout, respectively [1]: 

 
)t(BK)t(C

)t(BK)t(C
N)t(T

moutmout

minmin
mexp −

−
=    , (1) 

where tm denotes the measured time-of-flight. The TOF-spectra (Cin, Bin, Cout, Bout) in Eq. 1 were corrected 

for losses due to the dead time in the detector and the electronics chain. The factor K is introduced to 

account for the uncertainty due to the background. 

 

The dead time correction was based on the formula of Moore [7]. This formula accounts for possible 

variations in the beam intensity. The dead time correction factors as a function of time-of-flight for the 

sample-in and sample-out data are plotted in Fig.2. The maximum dead time correction for tm > 10
4
 was less 

than 20%. It has been demonstrated in Refs. [1,8] that bias effects resulting from such corrections are 

negligible. Therefore, the uncertainties related to the dead time correction were not propagated. 

 

Figure 2 Dead time correction factor as a function of time-of-flight for both the sample-in and sample-out 

measurements. 

All spectra were normalized to the same TOF-bin width structure and neutron beam intensity. The latter 

was derived from the response of the BF3 beam monitors. To avoid systematic uncertainties due to slow 

variations of both the beam intensity and detector efficiency as a function of time, data were taken by 

alternating sample-in and sample-out measurements in cycles of about 900'' each. Such a procedure 

reduces the uncertainty on the normalization due to the beam intensity to less than 0.25 % [1]. This 

uncertainty was evaluated from the ratios of the counts in the 
6
Li transmission detector and in the flux 

monitors. To account for this uncertainty the factor N = 1.0000 ± 0.0025 was introduced in Eq.1.  

 

The background as a function of TOF was determined by an analytical expression applying the black 

resonance technique. The factor K = 1.00 ± 0.03 in Eq. 1 introduces a correlated uncertainty component 

accounting for systematic effects due to the background model. The background as a function of TOF was 

approximated by a sum of a constant and three exponentials [1]: 

 )t(
3

t
2

t
10m

0m3m2m1 ebebebb)t(B τ+λ−λ−λ− +++=    . (2) 

where τ0 is related to the operating frequency of the accelerator, i.e. here τ0 = 1.25 ms for the accelerator 

operating at 800 Hz. The time independent contribution b0 is very small and can be estimated from 

measurements when the accelerator is not in operation. The first exponential accounts for the contribution 

due to the detection of 2.2 MeV γ-rays resulting from neutron capture in hydrogen that is present in the 

moderator. The second exponential originates predominantly from neutrons scattered inside the detector 

station. The last component is due to the detection of overlap neutrons. The free parameters in the 

analytical expression (b0, b1, b2, λ1, λ2 and λ3) were determined by a least squares fit to saturated resonance 
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dips observed in the TOF-spectra resulting from measurements with black resonance filters. The time 

dependence of the background was derived from dedicated measurements with S, Na, Cu, Co, W, Au and 

Ag black resonance filters in the beam. During the regular sample-in and sample-out runs Na, Co and W 

fixed filters were kept in the beam to continuously monitor the background at 2.85 keV, 132 eV and 20 eV, 

respectively, and to account for the dependence of the background level on the presence of the sample [1]. 

Examples of dead time corrected TOF-spectra together with the background contributions are shown in 

Figs. 3 and 4, respectively. The parameters of the analytical expression in Eq. 2 are given in Table 2. 

 

The time-of-flight tm of a neutron creating a signal in the neutron detector was determined by the time 

difference between the start signal (T0) and the stop signal (Ts): 

 00sm t)TT(t +−=    , (2) 

with t0 a time-offset which was determined by a measurement of the γ-ray flash. The flight path distance L = 

49.345 (0.004) m, i.e. the distance between the centre of the moderator and the front face of the detector, 

was derived previously from result of transmission measurements on 
238

U using the 6.673 ± 0.001 eV 

resonance of 
238

U+n as a reference [9]. 

Table 2 Parameters for the analytical expressions of the background correction for the sample-in and 

sample-out measurements. 

ID b0/10
-8 

ns
 

b1/10
-7

 ns
 λ1/10

-5
 ns

-1
 b2/10

-7
 ns

 λ2/10
-6

 ns
-1 

b3/10
-7 

ns λ3/10
-6 

ns
-1

 

Cin 1.25 3.58 2.94 0.209 1.35 5.47 2.70 

Cout 1.41 4.61 2.94 0.275 1.35 7.41 2.70 

 
Figure 3 Time-of-flight spectrum without sample in the beam is compared with the total background and its 

components. 

 
Figure 4 Time-of-flight spectrum with the dummy sample in the beam is compared with the total 

background and its components. 
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4. Results 

The AGS (Analysis Of Geel Spectra) code [10], developed at the EC-JRC-IRMM, was used to derive the 

experimental transmission. The code is based on a compact formalism to propagate all uncertainties 

starting from uncorrelated uncertainties due to counting statistics. It stores the full covariance information 

after each operation in a concise, vectorized way. The AGS formalism results in a substantial reduction of 

data storage volume and provides a convenient structure to verify the various sources of uncertainties 

through each step of the data reduction process. The concept is recommended by the INDC [5] to prepare 

the experimental observables, including their full covariance information, for storage into the EXFOR data 

library [11,12]. The transmission for the measurements with the Ca sample and the dummy sample are both 

delivered to the EXFOR data base. 

 

The experimental transmission resulting from the measurements on the 50 mm thick 
nat

Ca sample is shown 

in Fig. 5. The format in which the numerical data is stored in the EXFOR data library is illustrated in Table 3. 

Fig. 5 compares the experimental transmission resulting from the experiments described in this work and 

the theoretical transmission using the resonance parameters recommended in the JEFF-3.2 library. This 

figure shows obvious inconsistencies between the present data and the recommended parameters: e.g. the 

interference profile in the 20 keV region shows that the parity assignment of the 20 keV resonance as an s-

wave is not correct; below 50 keV the contribution of bound states and/or scattering radius is too large; and 

most of the resonance energies and neutron widths require an adjustment. Hence, a new evaluation of the 

parameters is required.  

 

The data in Table 3 include the full covariance information based on the AGS concept. Applying the AGS 

concept described in Ref. 10 the covariance matrix V of the experimental transmission can be calculated by: 

 T
u )(S)(SUV ηη+=    , (4) 

where Uu is a diagonal matrix containing the contribution of all uncorrelated uncertainty components. The 

matrix S contains the contribution of the components η = {N,K} creating correlated components. The total 

uncertainty and the uncertainty due to uncorrelated components are reported, together with the 

contributions due to the normalization to the neutron beam intensity (N) and background model (K).  

 

It is recommended that only the data between 200 eV and 2.5 keV and between 3 keV and 150 keV are 

used for a resonance shape analysis. The experimental details, which are required to perform an analysis of 

the data in terms of reaction model parameters, are summarized in Appendix A.  

 

Figure 5 Comparison of the experimental transmission and the transmission derived from the resonance 

parameters in the JEFF-3.2 library. For the calculations the REFIT code [13] was used. 
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Table 3 Illustration of the data structure submitted to the EXFOR data library. The first column is the energy 

that is derived from the measured time-of-flight based on the relativistic equation and a flight path length 

L= 49.345 m. The second and third column provide the time-of-flight boundaries. The final experimental 

transmission together with the total uncertainty are given in column 4 and 5. The information to derive the 

full covariance matrix based on the AGS-formalism (Eq. 4) is given in columns 6, 7 and 8: the diagonal 

elements due to the uncorrelated uncertainty components are in column 6. The data required to account 

for the correlated components S{K,N} are given in columns 7 and 8. A high number of significant digits is given 

to ensure that the resulting covariance matrix can be inverted.  

 

E/ eV tl / ns th / ns Texp �� AGS 

     �� SK SN 

198837.4 8000 8002 0.892 0.0103 0.0101 -0.0000288 0.00223 

… … … … … … … … 

8.180 1247232 1247360 0.852 0.1313 0.1273 -0.0319624 0.00213 

8.178 1247360 1247488 0 0 0 0 0 

… … … … … … … … 

1.28 3149760 3149824 0 0 0 0 0 
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Appendix A 
SUMMARY OF EXPERIMENTAL DETAILS 

 

A. EXPERIMENT DESCRIPTION 

 Main Reference 
 [1,2] 

Facility 
GELINA [3] 

Neutron production 
  

Neutron production beam Electron  

Nominal average beam energy 100 MeV  

Nominal average beam current 55 µA  

Repetition rate (pulses per second) 800 Hz  

Pulse width 1 ns  

Primary neutron production target Mercury cooled depleted uranium  

Target nominal neutron production intensity 3.4 10
13

 s
-1

  

Moderator 
  

Primary neutron source position in moderator Above and below uranium target  

Moderator material 2 water filled Be-containers around U-target  

Moderator dimensions (internal) 2 x (14.6 cm x 21 cm x 3.9 cm)  

Mass H2O  

Temperature (K) Room temperature  

Moderator-room decoupler (Cd, B, …) None  

Other experimental details 
  

Measurement type Transmission  

Method (total energy, total absorption, …) Good transmission geometry [4] 

Flight Path length (m) 

 (moderator – detector: face to face distance) 

L = 49.345 m    

Flight path direction   9
o
 with respect to normal of the moderator 

face viewing the flight path 

 

Neutron beam dimensions at sample position 45 mm in diameter  

Overlap suppression 
10

B overlap filter (0.008 at/b)  

Other fixed beam filters Na, Co, W, Pb (16 mm)  

Detector 
  

Type Scintillator (NE912)  

Material Li-glass  

Surface Dimensions 152.4 mm in diameter  

Thickness (mm) 6.35 mm in thick  

Detector(s) position relative to neutron beam In the beam  

Sample 
  

Type (metal, powder, liquid, crystal) Metal  

Chemical composition   

Areal number density (at/b) 

Isotopic composition (at%) 

nat
Ca: (10.97 ± 0.02) x 10

-2
 

40
Ca (96.941), 

42
Ca (0.647), 

43
Ca (0.135), 

44
Ca 

(2.086), 
46

Ca (0.004), 
48

Ca (0.187) 

 

Temperature 22 
o
C  

Sample mass (g) (206.277 ± 0.002) g (see table 1)  

Geometrical shape (cylinder, sphere, …) Cylinder  

Nominal surface dimension  60 mm diameter (see table 1)  

Nominal thickness (mm) 48 mm (see table 1)  

Containment description Al canning  

Additional comment 

 

Stack of 3 discs  
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Data Reduction Procedure 
 [4,5] 

Dead time correction Done (< factor 1.2)  

Back ground subtraction Black resonance technique  

Flux determination (reference reaction, …) -  

Normalization  1.000 ± 0.0025  

Detector efficiency  -  

Self-shielding -  

Time-of-flight binning Zone length  bin width 

 6240 2 ns 

 4096 4 ns 

 4096 8 ns 

 4096 16 ns 

 4096 32 ns 

 4096 64 ns 

 6144 128 ns 

 28672 64 ns 

 

 

Response function 
  

Initial pulse Normal distribution, FWHM = 2 ns  

Target / moderator assembly Numerical distribution from MC simulations [6,7] 

Detector Analytical function defined in REFIT manual [8] 

   

 

B. DATA FORMAT 

 

 Colu

mn 

Content Unit Comment 

1 Energy eV Relativistic relation using a fixed FP length of 49.345 m 

2 TOFmin ns Low TOF-bin boundary 

3 TOFmax ns High TOF-bin boundary 

4 Texp  Transmission 

5 Total Uncertainty   

6 Uncorrelated uncertainty  Uncorrelated uncertainty due to counting statistics 

7 SN-vector  Normalization (uN/N = 0.25 %) 

8 SK-vector  Background model (uK/K = 5 %) 

 

Comments from the authors: 

The AGS concept was used to derive the experimental transmission 

 

outout

inin
exp

BKC

BKC
NT

−
−

=  

and to propagate the uncorrelated uncertainties due to counting statistics and the uncertainty due 

to the normalization (uN/N = 0.25 %) and background model (uK/K = 3 %).  

The quoted uncertainties are standard uncertainties at 1 standard deviation 

The transmission of the measurements with the Ca sample and dummy Al-container are both given. 
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