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Some notes on elasto-plasticity models in Europlexus ancestor codes

F. Casadei. G. Valsamos, M. Larcher

November 24, 2015

These notes are based upon the report by François Frey: Le Calcul Elasto-plastique des Structures
par la Méthode des Eléments Finis et son Application a l’Etat Plan de Contrainte. Rapport N. 33,
LMMSC, Université de Liège, July 1973.

1 Introduction

This report deals with the description of an elasto-plastic material model characterized by a stress-
strain curve with hardening, i.e. monotonically increasing but irreversible beyond the elastic limit.
The limit case of a material without hardening (i.e., elastic-perfectly plastic) is included. The
model uses the differential elasto-plastic theory, the von Mises plasticity criterion and the isotropic
hardening law.

2 Plasticity

2.1 Generalities

The differential theory of plasticity (also called flow or incremental theory) assumes that the
increments of plastic deformation are function of the previous plastic deformations and are propor-
tional to the stress deviator.

This theory fits the physical behaviour of metallic materials better than the the finite theory
(also called deformation or total strain theory), which does not take into account the history of
deformation.

The basic equations are due to Prandtl (1924) and Reuss (1930). Hardening and Bauschinger
effect can be introduced. The plastic deformations are “memorized” by integrating the deformations
along the loading time history. This theory therefore depends upon the “loading path” and requires
a purely incremental resolution method.

The classical theory assumes that the material is initially isotropic and that time does not play
a role, i.e., that there are no creep or relaxation effects (“inviscid” material). It neglects thermal
effects (isothermal behaviour), dynamic effects (static or quasi-static behaviour) and large strains
(but it may consider the large displacements due to finite rotations).

The primary goal of the theory is to define the elasto-plastic constitutive equations. The
elasto-plastic problem is defined as follows. Given a structure (Figure 1), find

ui ; εij ; σij ; I

satisfying:

� equilibrium (within the domain D, on its contour C and across the elasto-plastic interface I)
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Figure 1: Elasto-plastic boundary value problem.

� continuity of displacements (within D, on C and across I)

� the linear elastic constitutive law (within the elastic sub-domain De)

� the elasto-plastic constitutive law (within the plastic sub-domain Dp)

The theory presented in the following is based on the fundamental book by Hill [1] and on the
references [2] to [14].

2.2 Simple traction test

It is assumed, as proposed by Prandtl, that the stress-strain curve σ − ε resulting from a simple
traction test can be idealized as presented in Figure 2, i.e. by supposing that:

a) The curve is linear up to point A, which represents the initial elastic limit (the physical
notions of proportionality limit and of conventional elastic limit at 0.2% strain are supposed
to coincide with point A);

b) Beyond point A, the material hardens by following a curve ABD monotonically increasing
and irreversible; i.e., if the stress at a point B diminishes, the material follows a curve that:

b1) does not present any hysteresis loop (BC ≡ CB),

b2) is linear and has the same slope as OA,

b3) touches the initial curve ABD in B for a new loading beyond point B, which represents
a new elastic limit for the path CBD;

c) beyond point D, the deformations become too large to fit into the framework of the theory,
so that the end of the curve (“large elongations” and necking) is not considered.

This curve, valid for uniaxial stress states, is fundamental because, in the following, any multi-
axial stress state will be reconducted to the uniaxial case by using the notion of equivalent quantities.
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Figure 2: Stress-strain curve in pure traction.

Furthermore, the curve exhibits an initial elastic limit (point A), a current elastic limit (point B)
and the possibility of elastic unloading starting from a plastic state (path BC). These phenomena
are found also in multi-axial stress states, under the notion of initial and current yield surface and
of elastic unloading starting from a generic plastic stress state.

2.3 Differential theory of plasticity

2.3.1 Basic hypotheses

The basic hypotheses are as follows:

A. Decomposition of the total deformations. It is assumed that the total strains εij can
be decomposed into an elastic part (suffix e), related to the the total stresses by Hooke’s law,
and a plastic part (suffix p). With Einstein’s notation on repeated indices one has therefore:

εij = εeij + εpij (1)

εeij = Hijkl σkl or σij = Dijkl ε
e
kl (2)

(with H = D−1)

This hypothesis is directly inspired by, and is a generalization of, the uniaxial traction test.
It is incorrect in large strains. Since

Dijkl = λδijδkl + µ (δikδjl + δilδjk) (3)

the second of (2) can also be written:

σij = 2µεeij + λεekkδij (4)

where δij is Kronecker’s delta and

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
≡ G (5)
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are Lamé’s constants. Furthermore, one makes the complementary hypothesis that the plastic
deformations are incompressible (they occur without changes of volume):

εpii = εp11 + εp22 + εp33 = 0 (6)

This property is confirmed by experience as long as the hydrostatic pressure remains moderate
(e.g., of the order of magnitude of the elastic limit).

B. Existence of the yield surfaces. The stress state can be represented by a point in the
nine-dimensional space of stresses. Its origin is the initial configuration of the body (assumed
stress-free) and, in its vicinity, there exists a zone where an increase of stresses dσij produces
only an increase of elastic deformations dεeij (while dεpij = 0). The boundary of this zone is
the initial plasticity or initial yield surface. It is represented by the equation:

F0(σij) = 0 (7)

When hardening occurs, this surface evolves as long as plastic deformation progresses. The
mathematical expression of these successive plasticity surfaces is called the loading function.
It defines the successive regions whose internal points represent elastic states, and whose
boundary points can lead to plastic states. The loading function depends upon the reached
stress state σij , upon the history of plastic strains εpij and upon the hardening, through a
parameter k. Summarizing:

F (σij , ε
p
ij , k) = 0 (8)

exists and is such that

F < 0 ; elastic state : dσij produces only dεeij

F = 0 ; plastic state; dσij may produce dεpij (9)

F > 0 ; inadmissible state (meaningless)

The special value F = 0 represents the plasticity condition, starting from which one may
define three different loading cases. For a given increment of the load, the corresponding
variation dF of the the loading function is:

dF =
∂F

∂σij
dσij +

∂F

∂εpij
dεpij +

∂F

∂k
dk (10)

It is recalled that, geometrically, ∂F/∂σij represents the normal to the (current) yield surface
in stress space. Starting from a point on the surface (F = 0), there are three cases:

a) dF < 0. Then F + dF < 0 and the reached state is elastic. Therefore, dεpij = 0, dk = 0
and one has a process of unloading:

∂F

∂σij
dσij < 0 , F = 0 unloading (11)

b) dF = 0 but dεpij = 0 (hence dk = 0). This process, which passes from one plastic state
to another without variation of the plastic deformations is called neutral loading:

∂F

∂σij
dσij = 0 , F = 0 neutral loading (12)
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Figure 3: Loading, neutral loading and unloading.

c) dF = 0, dεpij 6= 0, dk 6= 0. This process passes from one plastic state to another and is
called loading. In this case it is:

∂F

∂σij
dσij > 0 , F = 0 loading (13)

The Figure 3 illustrates graphically these three possibilities (scalar product).

C. Drucker’s existence postulate [5, 6]. This postulate, which is a definition of hardening,
can be expressed as follows. Let σ∗ij be the stress state at a point of a body for a given load.
Due to an external action independent from the previous load, an additional state of stress
is applied and then gradually removed. Then, during the application only, or during the
complete cycle (application then removal), the external agent produces a non-negative work.

Let σ∗ij in Figure 4 denote the existing stress state. The external agent first brings this state
onto the yield surface at point σij by following an elastic path. Then, it causes an increase
dσij of the stresses in the plastic domain by producing both elastic (dεeij) and plastic (dεpij)
strain increments. Finally, it is removed and the stress state returns to the point σ∗ij by
following an elastic path. In this cycle, the elastic work is zero, so that the work produced
by the external agent is (scalar product):

(σij − σ∗ij) dε
p
ij + dσij dε

p
ij ≥ 0 (14)

Since one can choose σ∗ij ≡ σij , one has first that (Drucker’s stability postulate)

dσij dε
p
ij ≥ 0 (15)

and then, since this second term is an order of magnitude smaller than the first one, the latter
must satisfy

(σij − σ∗ij) dε
p
ij ≥ 0 (16)

where the equalities hold in case of neutral loading. This postulate, and the inequalities to
which it leads, are particularly evident in the uniaxial traction case.
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Figure 4: Drucker’s postulate.

2.3.2 Consequences of Drucker’s postulate and remarks

The inequalities (15) and (16), which are derived from Drucker’s postulate, have some fundamental
consequences on the theory of plasticity since, in practice, they determine the form of the sought
constitutive equations. Two main properties stem from the postulate:

A. Convexity. Any yield surface F = 0 is convex. This is a consequence of (16), which states
that the angle between σij − σ∗ij and dεpij cannot exceed 90°, since the scalar product is zero
or positive.

B. Normality. The vector dεpij representing the plastic strain increment is normal to the yield
surface. In fact, since σij−σ∗ij can only be located on one side of the hyperplane perpendicular
to dεpij due to (16), this hyperplane is tangent to F , and therefore dεpij is normal to F .
Furthermore, it follows that the plastic strain increment dεpij is independent of the stress
increment dσij . This normality property can be represented by the equation:

dεpij = dλ
∂F

∂σij
with dλ ≥ 0 (17)

where dλ (or simply λ), called the plastic multiplier, is a proportionality factor which, because
of (15), is non-negative. This fundamental relation is called the flow rule, or normality rule,
or the law of plastic flow. One says also that F is the plastic potential function. We
will also see that (17) is identical to Prandtl-Reuss equations if one adopts von Mises’ yield
criterion.

By replacing (17) into (15):

dσijdε
p
ij = dσijdλ

∂F

∂σij
≥ 0

but since dλ ≥ 0, then it must be ∂F
∂σij

dσij ≥ 0, i.e., one proves the condition (13) for a loading (see

also the first remark below).
From (1) and (2) one can write, using the expression (17) of dεpij :

dεij = Hijkl dσkl + dλ
∂F

∂σij
(18)

This is a general expression of the incremental constitutive equations. To particularize it, one must
know F explicitly (see sections 2.3.3 to 2.3.5 below).

6



Remarks:

a) The inequality (13) is known under the name of Prager’s condition or “consistency” condi-
tion: any change from a plastic state to another, accompanied by an increment of plastic
deformation (dεpij 6= 0) must satisfy this inequality.

b) Some authors do not accept Drucker’s postulate, because it is not rigorous from the physical
viewpoint (thermodynamics). This postulate can therefore be considered only an hypothesis,
so that any other hypothesis which can be verified experimentally is also valid.

One can thus assume, for example [7]:

1°) The existence of yield surfaces F (identical to hypothesis B of section 2.3.1 above),

2°) The existence of a plastic potential G, to which the normality rule is applied:

dεpij = dλ
∂G

∂σij

One says that this flow rule is associated to the yield (plasticity) surface, if one poses

F ≡ G

and one obtains the “associated” laws of plasticity.

Alternatively, one can assume valid the theory of plastic potential proposed by von Mises for
an element of volume, extended by Prager [8] by introducing the notion of generalized stresses
and strains, and demonstrated by Ziegler [9] for the whole body.

Whaterver the starting hypotheses, all such theories produce the same relations, which will
be shown in the following.

2.3.3 The initial yield surface

Let F0(σij) be the initial yield surface, which is function only of the stresses since no plastic
deformation has occurred yet. By assuming that:

a) the material is isotropic in its initial configuration,

b) this surface (and also the following ones) is independent from a hydrostatic stress state (hy-
pothesis A of section 2.3.1),

c) no Bauschinger effect is present initially, i.e. the initial elastic limits in traction and in
compression are equal or, more generally, F0(σij) = F0(−σij).

the surface can be written as
F0(J2, J3) = 0 (19)

where J2 and J3 are the second and third invariants of the deviatoric stress tensor sij

sij = σij −
1

3
σkkδij (20)

given by

J2 =
1

2
sijsij (21)
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Figure 5: Axonometric view of the initial yield surface.

and

J3 =
1

3
sijsjkski (22)

This surface is cylindrical if represented in the principal stress space, so that it is completely
defined by its normal cross-section. The curve representing such cross-section must be located
between the two hexagons shown in Figure 5, and must be convex.

2.3.4 Yield criteria

One denotes yield (or plasticity) criterion a law which explicitly defines the form of the yield surface.
The two most commonly employed criteria are:

a) the Tresca criterion (1864), that can be written (but this form is hardly usable):

4J3
2 − 27J2

3 − 9τ2eJ
2
2 + 6τ4eJ2 − τ6e = 0

where τ e is a constant representing the initial elastic limit in pure shear. If σe (also sometimes
denoted σY ) is the initial elastic limit in traction, then:

τ e = σe/2

This criterion is represented by the inscribed hexagon in Figure 5.

b) the von Mises criterion (1913), that can be written:

J2 − τ2e = 0 (23)

with
τ e = σe/

√
3 (24)

and which is represented by the circle in Figure 5.
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There are numerous interpretations of these criteria [10]. The second criterion, which better rep-
resents the bahaviour of metallic materials, will be adopted in the present work.

By replacing (24) into (23) one can write√
J2 =

σe√
3

which, by using the expression (21) of J2 becomes√
1

2
sijsij =

σe√
3

Finally, one obtains the initial yield criterion according to von Mises in its classical form:

F0 =

√
3

2
sijsij − σe = σc − σe = 0 (25)

where the scalar σc, defined as

σc =
√

(3/2)sijsij (26)

is called the von Mises equivalent stress. For any multiaxial stress state σij the corresponding
equivalent (uniaxial) von Mises stress σc(σij) can be computed by (26) and the stress state is
plastic whenever σc reaches the elastic yield limit σe.

2.3.5 Hardening rule

One denotes hardening rule a law which describes explicitly the form of the load function or, in
other terms, which defines the evolution of the successive yield surfaces. The two laws used in
common practice are:

a) The isotropic hardening law (Hill, 1950 [1]), which essentially postulates that the load
function is obtained via a uniform expansion in all directions of the initial yield surface. This
law conserves the initial material isotropy (hence its name), but is in direct contradiction
with the Bauschinger effect;

b) The linear kinematic hardening law (Prager, 1956 [11], Ziegler, 1959 [12]), which essentially
assumes that the load function maintains the same shape as the initial yield surface, but it
moves by translation in the stress space. This law partially accounts for the Bauschinger
effect, as well as for the material anisotropy induced by plastic strains.

Although the first law can be subjected to criticism, it will be retained here by noting that the
problems that we intend to solve (determination of “limit loads”) do not present load cycles, for
which the Bauschinger effect would be fundamental.

Isotropic hardening
The hypotheses for isotropic hardening are as follows:

a) The initial isotropy of the material is conserved;

b) Whatever the path followed in the space of strains in order to reach a certain stress state,
the final load function is the same.
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From these hypotheses one deduces that the load function has the same shape as the initial
yield function, that only the constant (k parameter) appearing in it becomes function of a certain
measure of the hardening, and that the experimental determination of this function is independent
of the type of loading. In other words, it can be obtained, for example, from a simple traction test.
Experimental confirmations of these hypotheses are scarce [10].

Geometrically, these hypotheses lead to an expansion (homothety) of the initial surface, which
in mathematical terms corresponds to:

F (σij , ε
p
ij , k) = 0 −→ F (σij , k) = f(σij)− σ(k) = 0 (27)

where f(σij) is the equivalent stress, also denoted σc and given by (26) for the von Mises yield
criterion, and σ(k) is the current elastic limit in pure traction. Note that the fundamental depen-
dency of F on εpij , which seems to have disappeared, is in fact maintained through k (see below),
which depends upon the history of plastic strains.

In order to measure the hardening and use it to obtain the explicit form of the current yield
stress σ(k), one can make two alternative assumptions ([1], [13]):

A. Work-hardening hypothesis (or hypothesis of the work of plastic strains). One defines:

dk ≡ dW p = σijdε
p
ij with W p =

∫ εpij
0 σijdε

p
ij

(W p ≥ 0)
(28)

and one poses
σ(k) ≡ f1(W p)

B. Strain-hardening hypothesis (or hypothesis of the increment of equivalent plastic strain
dεp). One defines (see Section 2.3.6 below for details):

dk ≡ dεp =

√
2

3
dεpijdε

p
ij with εp =

∫ εpij

0
dεp (29)

where the expression of dεp suited for the von Mises criterion has been used, and one poses

σ(k) ≡ f2(εp)

It can be shown that, in the case of von Mises yield criterion, these two definitions are equivalent,
i.e. that there exists a relation of the form

W p = f3(ε
p)

between the two measures W p and εp of the hardening.
In conclusion, the hardening parameter k can be eliminated in favour of the plastic deformations

εpij in the load function (8) or (27), which assumes the form:

F (σij , ε
p
ij) = σc(σij)− σ(εpij) = 0 (30)
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2.3.6 Definition of the equivalent plastic strain

A detailed description of the construction of the equivalent plastic strain increment has been given
by Berg in reference [15], which is summarized hereafter.

We assume that the yield condition is given in the form (27), where σ(k) is the current or
equivalent yield stress and depends upon the history of deformation so as to represent the hardening
of the material. It is numerically equal to the yield stress in uniaxial tension. The function f(σij)
must, of course, have the physical dimensions of a stress.

We also assume that f(σij) is a homogeneous function of degree unity in the stress components
σij . These assumptions imply that the yield locus merely expands without changing shape (isotropic
hardening) as the material hardens, with the magnitude of σ(k) determining the current size of the
yield locus.

If one assumes (as in [1]) that hardening is determined by the plastic work dW p done on the
material during each increment of plastic strain dεpij , then one may construct an equivalent plastic
strain increment to use in a theory of hardening as follows. The increment of plastic work dW p for
each increment of plastic strain dεpij is given by the first of (28), that is:

dW p = σijdε
p
ij (31)

where the σij are the stress components which satisfy the yield condition and produce the required
plastic strain increment dεpij . Now, the associated flow rule of plasticity theory requires that the
plastic strain increment lie normal to the yield surface (in the appropriate space) so that

dεpij = dλ

(
∂f

∂σij

)
f−σ=0

(32)

where dλ is a non-negative scalar multiplier.
In attempting to identify an equivalent plastic strain increment dεp, one seeks a function of the

plastic strain components dεpij with the property that the product of the equivalent plastic strain
increment and the equivalent yield stress is always equal to the increment of plastic work:

dεpσ = dW p = σijdε
p
ij (33)

By replacing (32) into equation (31)

dW p = σijdε
p
ij = dλσij

∂f

∂σij
(34)

and, since f(σij) has been assumed to be a homogeneous function of degree one, Euler’s theorem
for homogeneous functions requires that:

σijdε
p
ij = dλf = dλσ (35)

the last step coming from eq. (27). The desired relationship

σdεp = dW p = dλσ (36)

is satisfied by setting
dεp = dλ (37)

That is, the equivalent plastic strain increment is just the nonnegative scalar multiplier dλ, which
provides the generalized length of the plastic strain increment eq. (32).
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If one uses the quantity

||dε|| =
(
dεpijdε

p
ij

)1/2
=
(
dε21 + dε22 + dε23

)1/2
(38)

as a measure of the magnitude of the plastic strain increment, where dε1, dε2 and dε3 are the
principal values of plastic strain increment, then from equation (32)

||dε|| = dλ

(
∂f

∂σij

∂f

∂σij

)1/2

(39)

Thus the equivalent plastic strain increment can be given as

dλ = dεp =

√
dε21 + dε22 + dε23√

∂f
∂σij

∂f
∂σij

(40)

for any yield locus f(σij) with which one happens to be concerned. For example, in the case of the
von Mises yield locus, eq. (27) becomes(

3

2
sijsij

)1/2

− σ = 0 (41)

For this case √
∂f

∂σij

∂f

∂σij
=

√
3

2
(42)

and the equivalent plastic strain is given by

dεp =

√
2

3
dεpijdε

p
ij (43)

which is the classical result.
Once the equivalent plastic strain has been constructued, it may be used as a variable to describe

the history of deformation upon which hardening depends. With the total equivalent plastic strain
εp given by

εp =

∫
dεp (44)

(note: dεp > 0 so that εp increases monotonically in any deformation process), one may rewrite
eq. (27) as

f(σij)− σ(εp) = 0 (45)

2.4 Incremental elasto-plastic constitutive laws

In the case of loading (dεpij 6= 0), dF = 0 can be written from (30) as:

∂F

∂σij
dσij +

∂F

∂εpij
dεpij = 0

By replacing the expression (17) of dεpij (normality rule) into the above equation, one gets:

∂F

∂σij
dσij +

∂F

∂εpij
dλ

∂F

∂σij
= 0

12



and then, solving for dλ:

dλ = − ∂F

∂σij
dσij/(

∂F

∂εpmn

∂F

∂σmn
) (46)

where for clarity the pair of dummy indexes ij has been replaced by mn in the term at the
denominator.

From (30), by noting that ∂σ(εpij)/∂σij = 0, one has

∂F

∂σij
=

∂σc
∂σij

(47)

and by replacing here the expression of the von Mises equivalent stress σc, which can be deduced
from equation (25), one has:

∂F

∂σij
=

∂

∂σij

√
3

2
sijsij =

√
3

2

∂

∂σij

√
sijsij (48)

By successively expanding the derivative of the term under square root one obtains:

∂F

∂σij
=

√
3

2

1

2
√
sklskl

∂

∂σij
(sklskl)

=

√
3

2

1

2
√
sklskl

2skl
∂skl
∂σij

(49)

=
3

2

1√
3
2sklskl

skl
∂skl
∂σij

=
3

2

1

σc
skl

∂skl
∂σij

where in the last passage the expression of σc from (25) has been used once more.
By using the definition (20) of the deviatoric stress tensor, the last term appearing in (49)

becomes:

∂skl
∂σij

=
∂

∂σij
(σkl −

1

3
σmmδkl)

=
∂σkl
∂σij

− 1

3

∂

∂σij
(σmmδkl) (50)

= δkiδlj −
1

3
δijδkl

so that:

skl
∂skl
∂σij

= skl(δkiδlj −
1

3
δijδkl)

= sklδkiδlj −
1

3
sklδijδkl (51)

= sij

13



thanks to the following notable identity involving the deviatoric stress tensor:

sklδkl = smm = s11 + s22 + s33

= σ11 −
1

3
(σ11 + σ22 + σ33) +

σ22 −
1

3
(σ11 + σ22 + σ33) + (52)

σ33 −
1

3
(σ11 + σ22 + σ33)

= 0

By replacing (51) into (49) we obtain:

∂F

∂σij
=

∂σc
∂σij

=
3

2

sij
σc

(53)

which, by noting that for a stress state on the current yield surface (F = 0) the (von Mises)
equivalent stress σc equals the current yield stress σ, can also be finally written as:

∂F

∂σij
=

∂σc
∂σij

=
∂σ

∂σij
=

3

2

sij
σ

(54)

By assuming as valid the hypothesis of work hardening (A, Section 2.3.5) one has from (28)
and by using the normality rule (17):

dW p = σijdε
p
ij = σijdλ

∂F

∂σij
(55)

which, by using the expression (54) of ∂F/∂σij becomes:

dW p = σijdλ
3

2

sij
σ

(56)

From the definition (20) of deviatoric stress tensor one has:

σij = sij +
1

3
σkkδij (57)

so that:

σijsij = (sij +
1

3
σkkδij)sij

= sijsij +
1

3
σkkδijsij (58)

= sijsij

where the identity (52) has been used in the last passage.
From the expression (25) of von Mises’ equivalent stress the previous expression becomes:

σijsij = sijsij =
2

3
σ2c =

2

3
σ2 (59)

where, as previously, we have assumed that the stress state lies on the current yield surface (F = 0)
so that σc = σ. By using (59) the expression (56) becomes:

dW p =
3

2
dλ
σijsij
σ

=
3

2
dλ

2

3

σ2

σ
(60)

= σdλ
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The hypothesis of the increment of equivalent plastic strain, or strain hardening (B, sec-
tion 2.3.5) allows us to write from (29):

dεp =

√
2

3
dεpijdε

p
ij (61)

From the normality rule (17) and the expression (54) of ∂F/∂σij we obtain:

dεpij = dλ
3

2

sij
σ

(62)

which, replaced into (61), gives:

dεp =

√
2

3
(dλ)2

9

4

sijsij
σ2

=

√
(dλ)2

3

2

sijsij
σ2

(63)

From the expression (25) of von Mises’ equivalent stress one gets:

σ2 = σ2c =
3

2
sijsij (64)

where, as previously, we have assumed that the stress state lies on the current yield surface (F = 0)
so that σc = σ. By replacing this into (63) we have:

dεp = dλ (65)

that is, the plastic multiplier dλ is equal to the increment of equivalent plastic strain dεp. This,
replaced into (62), gives the interesting relation

dεpij =
3

2

dεp

σ
sij (66)

In virtue of the equality (65), the increment of plastic work (55) can be written as

dW p = σijdε
p
ij = σdεp (67)

Let us now search for an expression of ∂F/∂εpij . From (27)

∂F

∂εpij
= − ∂σ

∂εpij
(68)

and this can be rewritten as

∂F

∂εpij
= − ∂σ

∂W p

∂W p

∂εpij
= − dσ

dW p

dW p

dεpij
(69)

From a uniaxial traction test, shown in Figure 6, one sees that

dW p = σ (dε− dεe) = σ

(
dε− dσ

E

)
(70)
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Figure 6: Uniaxial traction test.

so that

dW p

dσ
=

d

dσ

(
σdε− σ

E
dσ

)
= σ

dε

dσ
− σ

E

= σ

(
1
dσ
dε

− 1

E

)
(71)

= σ

(
1

Et
− 1

E

)
=

σ

E′

having posed

E′ =
EEt
E − Et

(72)

so that
1

E′
=
E − Et
EEt

=
1

Et
− 1

E
(73)

From (55), using (57) one can write

dW p = σijdε
p
ij

=

(
sij +

1

3
δijσkk

)
dεpij (74)

= sijdε
p
ij +

1

3
δijσkkdε

p
ij

= sijdε
p
ij

thanks to the identity
dεpijδij = dεpkk = 0 (75)

16



where the last equality expresses the incompressibility condition (6) of Section 2.3.1.
From (74) one obtains

dW p

dεpij
= sij (76)

By replacing (the inverse of) (71) and (76) into (69) we obtain

∂F

∂εpij
= −E

′

σ
sij (77)

By introducing (54) and (77) into (46), one has

dλ = −3

2

sij
σ
dσij

1

−E′ sklσ
3
2
skl
σ

=
sijdσijσ

E′sklskl
(78)

We can write

sijdσij = sijd

(
sij +

1

3
σkkδij

)
= sijdsij (79)

=
1

2
d
(
s2ij
)

since

d

(
1

3
σkkδij

)
= 0 (80)

From (26), assuming as usual that σc can be replaced by σ, one has√
3

2
sijsij = σ (81)

or

sijsij = s2ij =
2

3
σ2 (82)

and then

d
(
s2ij
)

=
2

3
d
(
σ2
)

=
2

3
2σdσ (83)

With this result, we obtain from (79)

sijdσij =
2

3
σdσ (84)

Finally, by using (26) and (84), the expression (78) of dλ becomes

dλ =
sijdσijσ

E′sklskl
=

2
3σ

2dσ

E′ 23σ
2

=
dσ

E′
(85)

By using (82), (78) becomes

dλ =
sijdσijσ

E′sklskl
=
sijdσijσ

E′ 23σ
2

=
3

2

sijdσij
E′σ

(86)
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Let us now search a convenient expression of dσij . From Hooke’s law (2)

dσij = Dijkldε
e
kl (87)

or, with (1)
dσij = Dijkl

(
dεkl − dεpkl

)
(88)

With the normality rule (17) this becomes

dσij = Dijkl

(
dεkl − dλ

∂F

∂σkl

)
(89)

and by means of (54)

dσij = Dijkl

(
dεkl − dλ

3

2

skl
σ

)
(90)

Introducing this expression into (86) gives

dλ =
3

2

sij
E′σ

Dijkl

(
dεkl − dλ

3

2

skl
σ

)
=

3

2E′σ
Dijklsijdεkl −

9

4E′σ2
dλDijklsklsij (91)

Now, in analogy with (4) we can write

Dijklskl = 2µsij + λsmmδij = 2Gsij (92)

since smm = 0 according to the identity (52) and µ = G (shear modulus).
Furthermore, from (3) we obtain

Dklij = λδklδij + µ (δkiδlj + δkjδli) = Dijkl (93)

so that
Dijklsij = Dklijsij (94)

and, for analogy with (92)
Dijklsij = 2Gskl (95)

By replacing (95) and (92) into (91)

dλ =
3

2E′σ
2Gskldεkl −

9

4E′σ2
dλ2Gsijsij

=
3G

E′σ
skldεkl −

9G

2E′σ2
dλsijsij (96)

and by using the expression (82) of sijsij

dλ =
3G

E′σ
skldεkl −

9G

2E′σ2
dλ

2

3
σ2

=
3G

E′σ
skldεkl −

3G

E′
dλ (97)

From (97) one obtains

dλ

(
1 +

3G

E′

)
=

3G

E′σ
skldεkl (98)
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and then

dλ =
3G

(E′ + 3G)σ
skldεkl (99)

The normality rule (17) and (54) yield

dεpij =
3

2
dλ
sij
σ

(100)

which, by using (99), becomes

dεpij =
3

2

sij
σ

3G

(E′ + 3G)σ
skldεkl

=
9G

2 (E′ + 3G)σ2
sijskldεkl (101)

By replacing this into (88)

dσij = Dijkl

(
dεkl −

9G

2 (E′ + 3G)σ2
sklsmndεmn

)
= Dijkl

(
δkmδln −

9G

2 (E′ + 3G)σ2
sklsmn

)
dεmn (102)

since
dεkl = dεmnδkmδln (103)

By using (93) and the identity
Dijklδkmδln = Dijmn (104)

we obtain finally, from (102)

dσij =

[
Dijmn −

9G2

(E′ + 3G)σ2
sijsmn

]
dεmn (105)

which is the relationship that we were trying to establish. It can be noted that, by using this
relation in a finite increment procedure, the approximation introduced is on the term (sijsmn)/σ2,
which is typically evaluated (only) at the beginning of each time step, while in reality it varies
during the step.

By using the measure (29) of the hardening, one has:

∂F

∂εpij
= − ∂σ

∂εpij
= − ∂σ

∂εp
∂εp

∂εpij
= − ∂σ

∂εp
sij
σ

(106)

The ratio dσ/dεp can be found from a traction test. In fact, in such a case dεp22 = dεp33 = −dεp11/2
(due to (6), plastic incompressibility), dεpij = 0 (for i 6= j), so that:

dεp ≡ dεp11
Figure 6 shows that one has

dσ = Et dε

where Et is the tangent modulus of elasticity. Then, by (1):

dσ = Et(dε
e + dεp) = Et(dσ/E + dεp)

from which one gets:
1

dσ/dεp
=

1

Et
− 1

E
=

1

E′
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