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 SUMMARY

Algae are suggested as a biomass source with significant growth rates, which may be cultivated 
in the ocean (seaweed) or on marginal land (microalgae). Biogas is suggested as a beneficial 
route to sustainable energy; however the scientific literature on algal biogas is relatively sparse. 
This report comprises a review of the literature and provides a state of the art in algal biogas 
and is aimed at an audience of academics and energy policy makers. It was produced by IEA 
Bioenergy Task 37 which addresses the challenges related to the economic and environmental 
sustainability of biogas production and utilisation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by JRC Publications Repository

https://core.ac.uk/display/38631534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A perspective on algal biogas IEA Bioenergy

A perspective on algal biogas 
Technical Brochure prepared by:
Jerry D Murphy, Bernhard Drosg, Eoin Allen, Jacqueline Jerney, Ao Xia, Christiane Herrmann

Edited by David Baxter

Published by IEA Bioenergy

Disclaimer
IEA Bioenergy, also known as the Implementing Agreement for a Programme of Research, Development and Demonstration on Bioenergy, functions within a  
Framework created by the International Energy Agency (IEA). Views, findings and publications of IEA Bioenergy do not necessarily represent the views or policies 
of the IEA Secretariat or of its individual Member countries.

Copyright © 2015 IEA Bioenergy. All rights reserved.
First electronic edition produced in 2015 
A catalogue record for this Technical Brochure is available from the British Library.
ISBN 978-1-910154-18-2 (eBook electronic edition)



A perspective on algal biogasContent

03

Executive Summary 4
Acknowledgements 4

1 Introduction 5
1.1 Macroalgae or Seaweed 5

1.1.1 Types of Seaweeds 5
1.1.2 Harvest of seaweed 6

1.1.3 Potential resource of sub-tidal seaweed 7
1.1.4 Seaweed associated with aquaculture 7

1.2 Microalgae 7

1.2.1 Classification of microalgae 7
1.2.2 Microalgae biomass production 8

1.3 Why generate biogas from algae? 8

1.3.1 Perception of biofuels and the impact on policy 8
1.3.2 Second generation biofuels 9
1.3.3 Third generation algal biofuels 9
1.3.4 Sustainability of biofuels 10
1.3.5 Objectives 10

2 Biogas from seaweed 11
2.1 Characteristics of seaweeds 11

2.2 Protein and carbon to nitrogen (C:N) ratios 11

2.3 Categorisation of seaweed 11

2.3.1 Proximate analysis 11
2.3.2 Ultimate analysis 12

2.4 Biomethane potential from seaweed 13

2.4.1 BMP results from mono-digestion of Ulva lactuca 
(green seaweed)

13

2.4.2 BMP results from mono-digestion of brown 
seaweeds

14

2.5 Storage of seaweed prior to digestion 14
2.5.1 Annual variation in specific biomethane yield in 
brown seaweed

14

2.5.2 Ensiling of seaweeds 14

2.6 Continuous digestion of seaweed with other substrates 15

2.6.1 Seaweed digestion in Solrød Kommune, Denmark 15

2.6.2 Difficulties in long term digestion of seaweed 16

2.6.3 Co-digestion of green seaweed with slurry 16

  

2.7 Gross energy yields in seaweed biomethane 16

2.7.1 Gross energy yields per hectare of  
seaweed biomethane systems

16

2.7.2 Comparison of biofuel systems on a  
gross energy yield per hectare basis

17

2.7.3 Perspective on net energy yields in  
macroalgae biomethane

18

2.7.4 Yield of seaweed to satisfy 1.25% renewable 
energy in transport in EU

18

2.8 Alternative uses of seaweed 18

3 Biogas from microalgae 19
3.1 Cultivation of microalgae 19

3.2 Cultivation systems 19

3.2.1 Open cultivation systems 20
3.2.2 Closed cultivation systems (photobioreactors) 20

3.3 Harvest of microalgae 21

3.4 Chemical composition of microalgae 21

3.4.1 Typical composition of microalgae 21
3.4.2 Manipulation of microalgae composition 22

3.5 Production of biomethane from microalgae 23

3.5.1. Biomethane potential of microalgae 24
3.5.2 Theoretical biogas yields from microalgae 25
3.5.3 Pre-treatment of microalgae 25
3.5.4. Continuous microalgae digestion 26

3.6. Synergies of microalgae production and biogas plants 27

3.6.1 Digestate as a nutrient source for  
algae cultivation

27

3.6.2. Biogas as carbon source 27
3.6.3. Microalgae as a means of upgrading biogas 28

3.7 Applications of microalgae 28

3.7.1 Microalgae as a means of capturing CO2 28
3.7.2 An alternative - cascading usage of microalgal 
biomass: the microalgal biorefinery 

29

4 Conclusions and Recommendations 31

References 33

Glossary of terms 38

Table of contents



04

A perspective on algal biogas Executive Summary

Acknowledgements
The authors are grateful for the support from Muhammad Rizwan Tabassum, Amita Jacob, Richie O’ Shea (UCC, Ireland) for providing 

useful information for this publication and to other members Task 37 for their valuable comments.

Executive Summary
There is a lot of scientific literature available on 

liquid biofuel production from microalgae; less literatu-

re is available on biogas from microalgae. Prior to 2010 

few academic papers dealt with biofuel production 

from seaweed; however since 2010 a significant number 

of papers have been published in the scientific press. 

This publication has an ambition of synthesising the 

literature, and providing a perspective, on production 

of biogas from algae.

The rationale for producing biogas from algae is 

driven by the food-fuel debate and indirect land use 

change (ILUC). The ethics in using our finite resources 

of arable land (0.2 ha of arable land per head of popula-

tion on a worldwide basis) for energy and not for food 

is dubious. Algae take bioenergy off agriculture land 

and onto our seas and oceans. Seaweed can be used to 

clean nutrient enriched water (associated with salmon 

farms for example) while microalgae may capture CO2 

from power plants.

There are numerous species of seaweed that may be 

segregated or distinguished in a number of ways; for 

example colour. The genetic difference between green 

seaweed Ulva lactuca and the brown seaweed Fucus is 

larger than that between U. lactuca and an oak tree. 

U. lactuca contains a lot of sulphur and typically has a 

carbon to nitrogen (C:N) ratio of less than 10, making 

mono-digestion extremely difficult. This is not the case 

for brown seaweeds such as laminaria; typically the C:N 

ratio and the corresponding specific biomethane yield 

increases from winter to summer and achieves a maxi-

mum C:N ratio of over 20 in late summer. Seaweed may 

be collected as a residue (such as the algae bloom asso-

ciated with the green seaweed U. lactuca); may be cast 

on beaches (such as Fucus sp. and Ascophylum nodosum) 

or may be cultivated in aquaculture systems (such as 

growing Laminaria sp. in association with salmon 

farms). A sustainable significant biofuel industry would 

probably require the scale associated with aquaculture. 

The economics of a seaweed biofuel industry are dubi-

ous as certain seaweeds are used for food and have high 

economic value. The authors believe that biogas from 

cast seaweed will have applications in the short term, 

however the quantities of seaweed required to match a 

significant portion of renewable energy are very large 

and it is as yet unknown as to how this can be achieved 

in a sustainable manner.

There are also numerous species of microalgae. 

Cultivation may take place in open ponds (which are 

open to contamination) or in closed photobioreactors 

(which are more expensive in terms of energy input and 

financial investment and operation). The C:N ratio 

tends to be lower than for seaweed, but the composition 

varies greatly from species to species and depends on 

the growing conditions and the availability of nutrients. 

For biodiesel production the ambition is to maximise 

lipid production for esterification. Lipids also yield high 

levels of biogas but microalgae with excess levels of 

lipids are not amenable to stable anaerobic digestion. 

The big advantage of anaerobically digesting microalgae 

is that neither a pure culture is needed, nor a specific 

compound (e.g. lipids for biodiesel) needs to be produ-

ced. Both these advantages can significantly reduce the 

costs of producing microalgae biomass. Microalgae may 

be used to capture CO2 produced by power plants. The 

microalgae may be digested to produce biogas; this 

however releases the CO2 when combusted. Therefore 

the benefit of capturing the CO2 from fossil fuel power 

plants is more in extending the work done by the origi-

nal fossil fuel rather than sequestering the CO2. The 

scale of raceway ponds or photobioreactors for signi-

ficant carbon capture is very large. The energy input in 

mixing, harvesting and conversion of microalgae to 

biogas is very significant and may be of a scale that more 

energy is used in the process than generated in the bio-

gas. A microalgal biogas industry is far from commer-

cialisation. Innovation is required in optimising 
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microalgae systems. Ideally they should be cultivated, 

capturing the CO2 from renewable energy such as bio-

gas facilities thereby reducing the need for biogas 

upgrading and thus improving the net energy return. 

Currently, the microalgae industry is focussed on high 

value products to offset high production costs. A more 

economic approach to producing biogas from microal-

gae is a cascade usage in a biorefinery concept: a high 

value product will yield the most significant revenue 

whereas the biomass residue would be transformed into 

biogas.

The authors consider that a viable seaweed or 

microalgae biofuel or biogas industry is a number of 

years away from providing significant quantities of 

renewable energy and much research is required in opti-

mising prospective algal biogas systems.

IEA Bioenergy Task 37 addresses the challenges rela-

ted to the economic and environmental sustainability of 

biogas production and utilisation. IEA Bioenergy is one 

of 40 currently active Implementing Agreements within 

the International Energy Agency and has the aim of 

improving cooperation and information exchange bet-

ween countries that have national programmes in bio-

energy research, development and deployment. IEA 

Bioenergy’s vision is to achieve a substantial bioenergy 

contribution to future global energy demands by acce-

lerating the production and use of environmentally 

sound, socially accepted and cost-competitive bioener-

gy on a sustainable basis, thus ensuring increased secu-

rity of supply whilst reducing greenhouse gas emissions 

from energy use. 

1 Introduction 

1.1 Macroalgae or Seaweed
1.1.1 Types of Seaweeds

There are of the order of 10,000 species of seaweed. 

Jard et al. (2013) segregates seaweeds into three broad 

types: brown, red and green seaweeds. 

•	 Brown seaweeds include for: Saccharina latissima; 

Himanthalia elongate; Laminaria digitata; Fucus ser-

ratus; Ascophylum nodosum; Undaria pinnatifida; 

Saccorhiza polyschides; Sargassum muticum. 

•	 Red seaweeds include Gracilaria verrucosa, Palmaria 

palmate and Asparagopsis armata.

•	 Green seaweeds include Codium tomentosum and 

Ulva lactuca.

Hughes et al. (2013) stress the need to differentiate 

between macroalgae of intertidal zones (between high 

and low water of tides) and sub-tidal zones (submerged 

most of the time). The species are different, as are the 

methods of harvest. Seaweeds from the intertidal zone 

would be considered cast seaweed and are traditionally 

hand harvested. Hughes et al. (2013) caution the opti-

mism of over estimating the resource of cast seaweed; it 

is a fraction of the sub-tidal seaweed. It is also typically 

found in a spread of separated remote coastal areas with 

poor transport infrastructure (Burrows et al., 2011). 

This has major implications for a viable, sustainable, 

macroalgae biofuel industry.

Figure 1 indicates cast seaweeds, collected from the 

shore in West Cork, Ireland in 2013; five of these are 

brown and one green. Despite the collective description 

of seaweed there are more genetic differences between 

Fucus (Figure 1 c) and Ulva (Figure 1f) than between 

Ulva and an oak (Cabioch and Le Toquin, 2006). Kelp is 

a common name used for species of Laminaria. Saccha-

rina latissima is also known as sugar kelp.



1.1.2 Harvest of seaweed
Seaweed has long been harvested. Brown seaweeds 

dominate the harvest with twice the volume of red 

seaweeds. Green seaweeds are less valuable and are not 

harvested in significant quantities (Werner et al., 2004). 

In 2000 the harvest on a worldwide basis of seaweed was 

ca. 11,350,000 wet tonnes (1,219,028 wet tonnes wild 

and 10,130,448 wet tonnes from aquaculture). An esti-

mate for total production of seaweed in 2010 was 

19 million tonnes (FAO, 2010). The latest estimates 

(FAO, 2014) for 2013 indicate that globally 26 million 

tonnes (wet weight) of farmed aquatic plants (predomi-

nately seaweed) were produced. There has been an 

increase of 129 % in seaweed harvested in 13 years. The 

seaweed harvest may be compared with the fish harvest. 

In 2012, 158 Mt of fish were harvested; aquaculture con-

tributed 66 Mt of this (FAO, 2014).

China harvested 13.5 Mt of seaweed in 2013 (FAO, 

2014). In a European context, Norway and France have 

the biggest harvests; Norway harvests 120,000 tons of 

Laminaria annually; France 50,000 to 70,000 tons per 

annum (Jard et al., 2013). Traditionally in Ireland, cast 

seaweed (including for Laminaria spp., Fucus spp. and 

Ascophyllum spp.) was collected and used primarily as a 

fertiliser, but also for cattle fodder, human consumption 

and medical applications (Werner et al., 2004). Appro-

ximately 30,000 tons of A.nodosom is harvested each 

year in Ireland at a cost of € 330/t (Burton et al., 2009). 
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Figure 1: Cast seaweeds collected from the shore (a) Himanthalia elongate (b) Laminaria digitata (c) Fucus serratus (d) Saccharina latissima (e) Ascophylum 
nodosum (f) Ulva lactuca (Photos from Eoin Allen and Muhammad Rizwan Tabassum, Environmental Research Institute, University College Cork, Ireland)

a)

d) e) f)

b) c)



1.1.3 Potential resource of sub-tidal seaweed
The resource of sub-tidal seaweed is far higher than 

the resource of cast seaweed. A 2008 report suggested 

that the island of Orkney (UK) has a kelp forest of 1 

million tons covering 22,000 hectares along 800 km of 

coastline (Christiansen, 2008). This equates to 44.5 t of 

kelp per hectare. It further suggested that there are 

approximately 100,000 hectares of kelp forests in UK 

waters which could be commercially harvested. Kelp (or 

Laminaria) is typically found at depths of 8 to 30m in 

the north Atlantic. Kelps are considered optimal for 

bioconversion to energy (Chynoweth et al., 1987). 

1.1.4 Seaweed associated with aquaculture
An industry whereby seaweed could be harvested 

may be visualised in Figure 2. Harvest would consist of 

mechanised stripping of seaweed 

from suspended ropes. This 

aquaculture system is suggested as 

more likely than cast seaweeds for a 

financially viable biofuel industry 

(Hughes et al., 2013). In assessing 

the carbon balance of macroalgae 

biofuel from aquaculture, there is 

potential to include for carbon 

sequestration associated with the 

growth of seaweed (Werner et al., 

2004). In assessing the 

environmental sustainability there 

is scope to consider the role of 

seaweed farms in removing 

nutrients from eutrophic waterways. 

The industry of seaweed aquaculture could be very 

beneficial in tandem with large fish farms (such as 

salmon farms of the west coast of Ireland, Norway and 

Scotland). The industry may also benefit if associated 

with renewable energy installations such as off shore 

wind farms and tidal turbines. 

1.2 Microalgae
1.2.1 Classification of microalgae

In contrast to macroalgae, microalgae are microsco-

pically small. Figure 3 shows pure cultures of Chlorella 

sp. and Scenedesmus sp. Many microalgae species exist 

as solitary cells, but the formation of colonies, consi-

sting of several to many cells, is also common (Graham 

et al., 2009). The specialization of cells within colonies 

is highly variable, which is also the case for cell shapes 
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Figure 2: Conceptual design of seaweed farm unit associated with wind turbine adapted from (Leese, 
1976) and (Chynoweth, 2002) 

Figure 3: Pure culture of Chlorella sp., left and Scenedesmus sp., right (both - green algae; © Markus Gruber, 
IFA Tulln - University of Natural Resources and Life Sciences, Vienna)

Figure 4: Mixed sample containing representatives of 
three major algal groups.

Lyngbya sp.
(Cyanobacteria)

Cymbella sp.
(Photosynthetic stramenophiles; 
Diatoms)

Mougeotia sp.
(Green algae)



of microalgae. There are plenty of different cell shapes 

(filamentous, flagellate or simple spherical shapes), 

which are commonly used for differentiation of cells 

(Figure 4). Depending on the level of cellular 

organization and abundance of protective pigments, 

microalgae can be divided into several major groups, as 

outlined in Table 1.

1.2.2 Microalgae biomass production
Microalgae can occur in highly diverse habitats and 

grow under strongly varying environmental conditions. 

Successful cultivation of microalgae requires knowledge 

about the algal ecology in order to set up accurate grow-

th conditions. Benemann (2013) estimated amounts of 

microalgae dry matter production worldwide to be 

around 15,000 t/year (Table 2). Microalgae biomass is 

harvested from natural waters as well as cultures in arti-

ficial ponds or photobioreactors (PBRs). It is subse-

quently separated and spray- or sun-dried. 

1.3 Why generate biogas from algae?
1.3.1 Perception of biofuels and the impact on policy

The perception of biofuels, in particular first gene-

ration biofuels, has suffered greatly over the last decade. 

In the early 2000s biofuels were mooted as the panacea 

for renewable energy in transport. In particular the 

market for ethanol from maize in the USA, ethanol 

from sugar cane in Brazil, rape seed biodiesel and grain 

ethanol in continental Europe, was flourishing. The 

turning point came in 2008 when there was a significant 
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Table 1: Summary of major algal groups and their storage products (adapted from Graham et al., 2009)

Group Photosynthetic and  
protective pigments

Storage products

Prokaryotes Cyanobacteria Chlorophyll a, phycobilins, ß-carotene, 
xanthophylls

Cyanophycin granules,  
cyanophytan starch (glycan)

Eukaryotes Glaucophytes Chlorophyll a, phycobilins, ß-carotene, 
xanthophylls

Starch

Chlorarachniophytes Chlorophyll a and b, ß-carotene, other 
carotenes, xanthophylls

Carbohydrate

Euglenoids Chlorophyll a and b, ß-carotene, other 
carotenes, xanthophylls

Paramylon

Cryptomonads Chlorophyll a and c, α- and ß-carotene, 
xanthophylls

Starch

Haptophytes Chlorophyll a and c, ß-carotene,  
xanthophylls

Chrysolaminarin

Dinoflagellates Chlorophyll a and c, ß-carotene,  
xanthophylls

Starch

Photosynthetic  
stramenofiles

Chlorophyll a and c (chlorophyll a alone in 
some, ß-carotene, xanthophylls)

Chrysolaminarin, lipids

Red algae Chlorophyll a, phycoilins, α- and  
ß-carotene, xanthophylls

Floridean starch

Green algae Chlorophyll a and b, ß-carotene, lutein, 
other carotenes, xanthophylls

Plant-like starch

Table 2: Estimation of the worldwide microalgal biomass production 
(adapted from Benemann, 2013)

Algae Production (t dry matter/year) 

Spirulina 10,000

Chlorella 4,000

Dunaliella 1,000

Haematococcus 200



jump in the cost of crops which were used to make bio-

fuel; this led to food riots in some developing countries. 

This started the food-fuel debate which was reflected in 

new policy and legislation. For example in Europe the 

2003 Biofuels Directive (2003) (2003/30/EC) stated that 

5.75% of the transport fuel market (by energy content) 

should be biofuel by 2010. However, as a consequence of 

the food-fuel debate the Renewable Energy Directive 

(2009/28/EC) (RED, 2009) placed more emphasis on 

renewable energy rather than biofuels by stating that 

10% of energy in transport should be renewable by 

2020. This facilitated a change in approach, for example 

through use of Electric Vehicles. 

In June 2014, EU energy ministers agreed to limit 

the share of biofuels from cereal and other starch rich 

crops, sugar and oil crops to 7% (European Commissi-

on 2014). This poses a very difficult challenge to the 

transport fuel sector due to the unavailability of suffici-

ent commercially available second (or third) generation 

biofuel systems to deliver 3% of energy in transport 

within the EU. On the 24th February 2015, a press 

release from the Environment Committee of the Euro-

pean Parliament concluded that “advanced biofuels 

sourced from seaweed or certain types of waste should 

account for at least 1.25 % of energy con-

sumption in transport by 2020” (European 

Parliament News, 2015).

1.3.2 Second generation biofuels
Second generation biofuels are based on 

inedible parts of plants, including straw, wood 

and waste streams (EASAC, 2013). However, 

for woody lignocellulosic substrates, second 

generation biofuel technologies may be as (or 

more) energy intensive than first generation 

biofuels. Lignocellulosic material may require 

a pre-treatment stage (such as steam explosi-

on) prior to the biofuel production technolo-

gy stage. Thus the energy required in the 

second generation biofuel process may be 

greater than for the first generation process. 

The benefit of the second generation process 

is that the energy in production (or collection) 

of the substrate (as opposed to the energy required to 

make the biofuel) may be low when compared to energy 

production in food crops (ploughing, fertilising, 

harvesting). Lignocellulosic substrate such as straw may 

be cheap (maybe only transport costs) and may 

ultimately result in a cheaper biofuel (than first 

generation food based biofuel) if the capital cost of the 

more complex production process is offset by the cheap 

substrate. The primary issue with second generation 

biofuel processes is that they may not be commercially 

available by 2020, either due to cost or technology. 

1.3.3 Third generation algal biofuels 
Third generation biofuels do not require agricultu-

ral land for production. Typically third-generation bio-

fuels tend to be based on algae, which are supposed to 

have lower area requirements compared to terrestrial 

crops, such as corn, canola (rape seed) or switch grass 

(Clarens et al., 2010). According to Oncel (2013) 

microalgae show higher productivity per hectare, com-

pared to crop plants. In literature there is a very wide 

range of yields, which is partly due to the fact that cal-

culations are based on laboratory or pilot-scale data. 

Box 1 attempts to put a perspective on achievable yields.
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Box 1 
Relative yields of microalgae compared to land based crops

According to Chaumont (1993) data on microalgal productivity varies bet-
ween 10 – 50 g m-2 d-1 with an average rate of 20 g m-2 d-1. Becker (1994) pre-
sents selected data on yields of different algae, grown under outdoor conditi-
ons, ranging between 7 – 60 g m-2 d-1 of dry matter. This shows that producti-
vity can vary highly, depending on species and cultivation. A recent publication 
(Moody et al., 2014), modelling algae biomass and lipid production, underlined 
the strong influence of the climate on microalgae productivity. A growth model 
was used to determine the current near-term lipid productivity potential of 
microalgae around the world and a maximum biomass yield of 13 – 15 g m-2 
d-1 was assumed (Moody et al., 2014). The high variability of the available 
data in the scientific press makes it somewhat difficult to accurately compare 
the productivities per unit area between different algal species.

Compared to land plants, for example maize, where the whole plant is used 
for biomethane production, algae might be more productive under optimal con-
ditions. Maize can reach a yield of between 5 – 13 g m-2 d-1 (dry matter; whole 
plant) (Döhler et al., 2013). If a growing season of 6 months is assumed this 
equates to 9 – 23 t TS ha-1 a-1. Microalgae can yield up to 45 – 60 t VS ha-1 a-1 
based on year round growth under favourable conditions (Benemann, 2013).

The assumption that microalgae can devote more of their energy into trap-
ping and converting light energy and CO2 into biomass, because they do not 
generate elaborate support and reproductive structures (Darzins et al., 2010), 
has to be cautioned. According to Walker (2009) the photosynthetic efficiency 
of microalgae and C3 plants does not vary and is around 4.5% of solar energy. 
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1.3.4 Sustainability of biofuels
The Renewable Energy Directive (2009/28/EC) 

(RED, 2009) states that biofuels must achieve at least a 

60% reduction of greenhouse gas emissions compared 

to the fossil fuel displaced on a whole life cycle basis, by 

2018. As of 2015, (European Parliament News, 2013) 

indirect land use change (ILUC) must be considered in 

assessing sustainability of the biofuel system.

In the recent past a lot of attention was given to pro-

duction of biodiesel from microalgae. Although the 

potential oil yield obtained from microalgae can be 

much higher than from other sources of biodiesel (see 

Table 3), large scale production of algae based biofuels is 

not yet economically viable and as such will struggle to 

displace petroleum-based fuels in the near term (Van 

Iersel and Flammini, 2010). The European Academies 

Science Advisory Council (EASAC, 2013) produced a 

report in 2013 entitled “The current status of biofuels in 

the European Union, their environmental impacts and 

future prospects”. Microalgae are discussed in terms of 

total solids content. In open ponds microalgae generate 

concentrations of 0.5 g of dry mass per litre or 0.05% 

total solids (TS) content. In closed PBRs biomass con-

centrations of 5–10 g dry mass per litre (0.5 to 1% TS) 

may be achieved. The energy balance associated with 

removing the water from the microalgae solids to allow 

esterification to be undertaken is significant; 2.5 GJ of 

energy is required to evaporate a tonne of water. Ste-

phenson et al., (2010) suggest that the energy consump-

tion for microalgal biomass production for biodiesel 

amounts to six times the energy produced in the 

microalgae biodiesel (EASAC, 2013). 

The total solids content within continuously mixed 

anaerobic digesters is typically less than 12 %. This is 

significantly less arduous to achieve than the require-

ment for biodiesel. This suggests that there is a strong 

potential for biogas based on microalgae to have a supe-

rior energy balance than microalgae biodiesel. A further 

advantage of biogas production from microalgae is that 

pure cultures are not needed if algae are digested in a 

biogas plant. Algal biodiesel systems on the other hand 

require microalgae rich in lipids. Thus, less effort is 

required to grow microalgae for biogas systems as 

opposed to biodiesel systems. A further option for a 

bioenergy pathway is the production of high-value pro-

ducts from microalgae in combination with conversion 

of the residual biomass to biogas. 

1.3.5 Objectives
Both microalgae and macroalgae are mooted as third 

generation transport biofuels of the future. At present 

(2015) however there is minimal commercial produc-

tion of algal biofuels. Pathways for sustainable algal 

bioenergy are not well documented (or agreed) in scien-

tific publications. Jard et al., (2013) argue that biogas 

production from seaweed is close to commercialization 

as even complex carbohydrates can be transformed 

into biogas. A perspective of the authors (of this IEA 

report) is that biogas production from microalgae 

should be less arduous than biodiesel production 

from microalgae as there is no specific requirement 

for composition or pure culture; typically biomass 

resulting from “contamination” in open ponds is 

suitable for anaerobic digestion.

The report sets out to synthesize the scientific 

literature on biogas production from algae and to 

provide a perspective on production routes to 

sustainable algal biogas.

Table 3: Comparison of some sources of biodiesel (Chisti, 2007) 

a For meeting 50 % of all transport fuel needs of the United States
b 70 % oil (by wt) in biomass
c 30 % oil (by wt) in biomass

Crop Oil yield  
(L/ha)

Land area 
needed  
(M ha)a

Percent of  
existing US 

cropping areaa

Corn 172 1540 846

Soybean 446 594 326

Canola 1190 223 122

Jatropha 1892 140 77

Coconut 2689 99 54

Oil palm 5950 45 24

Microalgae b 136,900 2 1.1

Microalgae c 58,700 4.5 2.5
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2 Biogas from seaweed
2.1 Characteristics of seaweeds

Seaweeds are characterised as having no lignin, low 

cellulose and lipid content (Morand et al., 1991; Jard et 

al., 2013). Brown seaweeds (such as Ascophylum nodo-

sum) can be rich in polyphenols which are difficult to 

degrade under anaerobic conditions and can inhibit 

anaerobic digestion (Ragan and Glombitza, 1986).

Seaweeds reproduce in a number of ways; sexual 

reproduction can take place through joining together of 

male and female gametes. Often the seaweed grows and 

divides into many small pieces (Werner et al., 2004).

Brown seaweeds are used to produce alginates. Algi-

nates are used as thickeners, gelling agents and stabili-

zers for frozen food and cosmetics (Jard et al., 2013). 

Red seaweeds are used for anti-fouling, antibiotic and 

anti-malarial applications (Werner et al., 2004).

Seaweeds are excellent indicators of pollution (Wer-

ner et al., 2004). Algae blooms of U. lactuca are an indi-

cator of eutrophication through excess nitrogen in 

estuarine waterways (Allen et al., 2013a) associated with 

non-point source pollution (run off of slurries) and 

point source pollution (sewage outfalls). However gro-

wing and harvesting of macroalgae removes nutrients 

from water and therefore can be used to reduce eutro-

phication (Hughes et al., 2013).

U. lactuca can have a sulphur content of up to 5%. 

This leads to significant levels of hydrogen sulphide 

(H2S) in anaerobic digestion. In long shallow coastal 

estuaries suffering from eutrophication and associated 

algae blooms, the “rotten egg” smell of H2S is apparent 

at low tide when the bloom is deposited on the bay 

(Allen et al., 2013a).

2.2 Protein and carbon to nitrogen (C:N) ratios
Optimum levels of a substrate’s C:N ratio for anae-

robic digestion are in the range 20:1 to 30:1. Digestion 

of nitrogenous substrates (C:N ratio less than 15) can 

lead to problematic digestion caused by excess levels of 

ammonia (Allen et al., 2013b). Protein (primary source 

of nitrogen) concentrations are low in brown seaweeds, 

whilst high in red and green seaweeds (Jard et al., 2013). 

This can lead to situations whereby U. lactuca may have 

a C:N ratio less than 10 (Allen et al., 2013a) whilst Sac-

charina latissima can have a C:N ratio of 22 (Jard et al., 

2013). 

Jard et al. (2013) describe a seasonal variation in 

protein content. S. latissima had a maximum value of 

protein in May (150 g/kg TS) and a minimum (at half 

the protein content) in summer (73 g/kg TS). Higher 

protein content leads to increased N and lower C:N 

ratios. Thus, as the summer progresses from May to 

August (in the northern hemisphere) the C:N ratio rises. 

This in turn can lead to higher biomethane potential 

assay results. Values of 204 L CH4/kg VS were recorded 

in May digesting S. latissima, rising to 256 L CH4/kg VS 

in August (Jard et al., 2013). 

  Bruhn et al. (2011) cultivated U. lactuca in ponds. 

The C:N ratio of U. lactuca was found to vary from  of 

7.9 to 24.4. Incoming irradiance was suggested as the 

controlling factor in the C:N ratio. With more light, 

seaweed accumulates more carbon (and carbohydrates) 

which leads to an increase in the C:N ratio. 

Bruhn et al. (2011) found that nitrogen starved 

U. lactuca produced more biomethane than nitrogen 

replete U. lactuca. The critical value of N of 2.17% of TS 

for maximum growth was recorded (Bruhn et al., 2011) 

while a subsistence value of 0.71% of TS as N was noted 

by Pedersen and Borum (1996).

2.3 Categorisation of seaweed 
2.3.1 Proximate analysis

Proximate analysis assesses the dry or total solids 

content, the volatile solids content and the ash content 

of the substrate. The total solids may be defined as the 

mass of material remaining after heating the substrate to 

105°C for 1 hour expressed as a percentage of the mass 

of the starting wet material. The volatile solids content 

may be defined as the mass of solids lost during ignition 

at 550°C for 2 hours in a covered crucible expressed as a 

percentage of total solids (APHA, 2005). 

Jard et al. (2013) found a TS content in brown 
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seaweeds ranging from 8.5 to 18.5% (Saccorhiza poly-

schides and Saccharina latissima respectively), in red 

seaweeds from 8.3 to 16% (Asparagopsis armata and 

Palmaria palmate respectively) and 10.1% in Ulva. Fresh 

U. lactuca had a TS content between 9.6% (Msuya and 

Neori, 2008) and 20.4% (Lamare and Wing, 2001).

In assessing a wide range of brown, red and green 

seaweeds Jard et al. (2013) found a significant range for 

VS in different seaweeds collected in France. For brown 

seaweeds the values ranged from 44.6% to 63% of total 

solids (Saccorhiza polyschides and Himanthalia elongate 

respectively) and for red seaweeds, from 51.6% to 73.8% 

(Asparagopsis armata and Palmaria palmate respective-

ly). U. lactuca had the highest volatile solid content of 

82.1%.

However, other authors showed lower values for VS/

TS ratio of Ulva. Bruhn et al. (2013) reported a VS con-

tent of 57% for U. lactuca in Denmark. Allen et al. 

(2013a) found a VS content of 58% for U. lactuca collec-

ted in June 2011 from an estuary in West Cork. It is 

suggested by Jard et al. (2013) that as the summer pro-

ceeds, the seaweed would accumulate more carbon, the 

C:N ratio would increase and the Ulva would have a 

higher VS content. However this is contradicted by Bri-

and and Morand (1997) who found a different trend in 

the variation in the volatile solids of U. lactuca; a June 

harvest resulted in an 83 % ratio of VS/TS whilst an 

August harvest yielded 65%. As the season progressed 

the biodegradability decreased. 

2.3.2 Ultimate analysis
Ultimate analysis assesses the portion of carbon, 

hydrogen and nitrogen in a dry solid sample of the sub-

strate. This allows generation of a stoichiometric equati-

on of the total solids content of the substrate. For 

example Allen et al. (2013a) found that fresh Ulva had 

25% carbon, 3.7% hydrogen, 27.5% oxygen and 3.3% 

nitrogen. The proportions yielded a stoichiometric 

equation of the Ulva sp. as C9H16O7N. Application of the 

Buswell equation allows a theoretical biogas production 

potential to be determined. Using the stoichiometric 

equation for Ulva sp. collected by Allen et al. (2013a), a 

theoretical maximum methane production of 431 L 

CH4/kg VS at 51.5% methane content is found.

Allen et al. (2015) collected seaweeds from the coast 

of West Cork in 2013. The C:N ratio for most of the 

samples were in excess of 15 with many in excess of 20. 

The optimum range for anaerobic digestion is 20:1 to 

30:1. Volatile solids ranged from a low of 8% of wet 

weight to 19% of wet weight.

Table 4: Characteristics of raw seaweeds collected in Cork in 2013 (adapted from Allen et al., 2015)

Substrate TS  
% of wet 

wt

VS  
% of wet 

wt

Ash  
% of TS

C  
% of TS

H  
% of TS

N  
% of TS

O  
% of TS

C:N  
ratio

A. nodosum 23.2 19.4 16.1 40.4 5.3 1.6 36.6 26.0

H. elongate 12.65 8.10 36.0 30.8 4.1 1.4 27.7 21.4

L. digitata 14.20 10.34 27.2 34.2 4.8 1.5 32.3 22.3

F. spiralis 19.72 13.92 29.4 36.1 4.7 2.1 27.7 17.3

F. serratus 20.07 14.74 26.6 37.1 4.8 2.4 29.1 15.5

F. vesiculosus 21.18 16.11 24.0 26.8 3.2 1.5 44.5 17.6

S. polyschides 15.25 13.11 14.0 36.1 5.0 1.6 44.3 23.2

S. latissima 15.49 10.09 34.9 29.1 3.8 1.2 31.0 24.0

A. esculenta 18.72 11.91 36.4 29.3 4.2 1.9 28.2 15.5

U. lactuca 18.03 10.88 39.7 30.0 4.4 3.5 22.4 8.5
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2.4 Biomethane potential from seaweed
2.4.1 BMP results from mono-digestion of Ulva lactuca 
(green seaweed)

Allen et al. (2013a) collected U. lactuca from West 

Cork, Ireland and assessed the biomethane potential 

(Box 2) of fresh Ulva as 183 L CH4/kg VS. The Buswell 

equation suggests 431 L CH4/kg VS. Thus the biodegra-

dibility index (BI) (see Box 2) is 42% indicating that a  

lot of energy remains in the digested material and less 

than half has been released as biomethane. Ulva typical-

ly has a low C:N ratio; all the samples sourced from 

West Cork had a C:N ratio of less than 10. Table 5 out-

lines results from BMP assays on U. lactuca. The values 

from fresh Ulva from Ireland and Denmark are very 

similar. Bruhn et al. (2011) collected U. lactuca from 

Seden Beach (Odense Fjord), Denmark. The ratio of 

VS/TS for these seaweeds were very similar (57% and 

58%). Untreated fresh Ulva collected in Ireland genera-

ted 183 L CH4/kg VS while the Ulva from Denmark 

generated 174 L CH4/kg VS. This would suggest that 

similar results can be obtained from Ulva in Northern 

Europe. However pre-treatments can vary the BMP 

result significantly. With reference to Table 5, relation-

ships may be established.

•	 Wilting is suggested as a cheap method to increase 

the TS content and as such the methane production 

per unit volume. However wilting is difficult in tem-

perate oceanic climates with significant summer 

precipitation (such as Ireland). Wilting however 

appears of little benefit compared with maceration. 

•	 Washing may be carried out to reduce the concen-

tration of salts which may be inhibitory to the 

Table 5: Specific Methane Yields obtained from Ulva

Ulva lactuca Pre-treatment SMY (L CH4/kg VS) Country Reference

No pre-treatment

Fresh 183 Ireland Allen et al., 2013a

Fresh 174 Denmark Bruhn et al., 2011

Fresh 128 France Peu et al., 2011

Unwashed

Unwashed Wilted 165 Ireland Allen et al., 2013a

Unwashed Macerated 271 Denmark Bruhn et al., 2011 

Washed not dried

Washed Chopped 171 Denmark Bruhn et al., 2011

Washed Milled 191 Ireland Vanegas and Bartlett, 2013

Washed Macerated 200 Denmark Bruhn et al., 2011

Washed Wilted 221 Ireland Allen et al., 2013a

Dried with size reduction

Washed and dried Chopped 241 France Jard et al., 2013

Washed and dried Macerated 250 Ireland Allen et al., 2013a

Box 2 
Biomethane Potential (BMP) test or assay

The biomethane potential test or assay is a batch test whereby a sample of 
substrate is usually introduced to a small digestion vessel (2L or less in volu-
me) with an inoculum. The vessel is heated to the mesophilic temperature 
range and mixed. Gas production is monitored over time along with compositi-
on. The result of the test is recorded in L CH4/kg VS which is termed the spe-
cific methane yield (SMY). The methodology of the test can vary. The ratio of 
substrate to inoculum is defined by the ratio of VS in both. For example Ange-
lidaki et al. (2009) suggest a minimum ratio of 2:1 (VSinoculum:VSsubstrate). The 
test continues until gas production is exhausted. If the ratio of inoculum to 
substrate is sufficient this may take 30 days or less. Typically the test is car-
ried out in triplicate to allow assessment of the range of values and statistical 
accuracy of the result to be given. Another three vessels contain only inocu-
lum allowing assessment of the SMY of the inoculum. This is deducted from 
the vessel with inoculum and substrate to yield the SMY of the substrate only. 

The biodegradibility index (BI) is defined as the ratio of the SMY recorded 
in the BMP assay to the theoretical maximum that may be achieved according 
to the Buswell equation (Allen et al., 2015).
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methanogenic bacteria. However washing does not 

appear beneficial in terms of increasing the specific 

methane yield (SMY). 

•	 Drying seems to be of great benefit. This raises the 

SMY to 241 – 250 L CH4/kg VS. It is also beneficial 

as it increases the methane production per volume 

of substrate from ca. 20m3/t to 100 m3/t (Allen et al., 

2013a; Bruhn et al., 2011)

2.4.2 BMP results from mono-digestion of brown seaweeds
The BMP results from the literature are summarised 

in Table 6. The results are varied and reflect the fact that 

the seaweed was collected from different countries, at 

different times of year, with differing day length and 

light radiation, with different levels of nitrogen in the 

water, etc. The methodology of assessing the BMP may 

also differ; employing different inoculum, different ino-

culum to substrate ratio, different reactor volumes. 

However, it can be stated that brown seaweeds (exclu-

ding F. serratus) tend to generate between 150 and  

350 L CH4/kg VS.

2.5 Storage of seaweed prior to digestion
2.5.1 Annual variation in specific biomethane yield in brown 
seaweed

Adams et al. (2011) found a peak in specific metha-

ne yield in July (northern hemisphere). From Figure 5 it 

may be noted that June to November would be a good 

time to harvest seaweed (mean yield in excess of 235 L/

kg VS) while December to May yielded mean yields less 

than 220 L/kg VS. This may lead to a necessity to ensile 

seaweed to allow a year round supply of biogas. 

2.5.2 Ensiling of seaweeds
Harvesting of seaweeds can be conducted at optimal 

times throughout the year to allow for maximum bio-

mass yield and high methane potential. However, biogas 

production at large scale is usually a continuous process 

which needs year-around supply of high-quality feed-

stock. Thus, seasonal harvest would require preservation 

of seaweed biomass. One possibility to preserve seaweeds 

is to remove moisture by drying. This is an energy-

intensive process since the TS content of most seaweeds 

at harvest is below 20%. 

Another method for wet 

preservation and storage of 

seaweed can be the preservati-

on by ensiling. Ensiling is 

widely practiced throughout 

the world to preserve agricul-

tural crops such as maize or 

grass (Wilkinson et al., 2003). 

The principle of silage preser-

vation is based on the conver-

sion of water-soluble carbo-

hydrates to organic acids, 

mainly lactic acid, by lactic-

acid producing bacteria under 

anaerobic conditions. Accu-

mulation of organic acids 

results in a reduction of the 

pH-value of ensiled biomass 

and inhibits the growth of 

Table 6: Specific Methane Yields obtained from brown and red seaweeds

Seaweed BMP Yield L 
CH4/kg VS

Country Reference

Brown Seaweeds

H. elongate 261 West Cork, Ireland Allen et al., 2015

202 Brittany, France Jard et al., 2013

L. digitata 218 West Cork, Ireland Allen et al., 2015

246 Sligo, Ireland Vanegas and Bartlett, 2013

F. serratus 96 West Cork, Ireland Allen et al., 2015

S. latissima 342 West Cork, Ireland Allen et al., 2015

335 Sligo, Ireland Vanegas and Bartlett, 2013

223 Trondheim, Norway Vivekanand et al., 2011

220 Norway Østgaard et al., 1993

209 Brittany, France Jard et al., 2013

A. nodosum 166 West Cork, Ireland Allen et al., 2015

U. pinnatifida 242 Brittany, France Jard et al., 2013

S. polyschides 255 Sligo, Ireland Vanegas and Bartlett, 2013

216 Brittany, France Jard et al., 2013

S. muticum 130 Brittany, France

Red Seaweeds

P. palmata 279 Brittany, France Jard et al., 2013

G. verrucosa 144 Brittany, France Jard et al., 2013
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undesired microorganism such as clostridia, yeasts and 

moulds in the absence of oxygen (McDonald et al., 

1991). This prevents decomposition of organic com-

pounds. Silage preservation is commonly used for 

forage production but has also been shown to be an 

appropriate method for storage of feedstock for biogas 

production (Herrmann et al., 2011). It was found that 

products of silage fermentation increase the specific 

methane yield and can compensate for storage losses 

(Herrmann et al., 2011).

Ensiling of seaweed has received little attention so 

far. Black (1955) investigated ensiling of L. cloustoni, L. 

digitata, L. saccharina and A. nodosum for animal feed 

and chemical processing purposes. It was concluded 

that these macroalgae support lactic acid fermentation 

and can be ensiled without inoculation (Black, 1955). 

However, pH-values of the seaweed silages did not 

decline below 4.8 in this study. High concentrations of 

carbohydrates in seaweeds are advantageous and can 

provide sufficient substrate to ensure a proper ensiling 

process. On the other hand, TS content in seaweed bio-

mass is low, thus, a significant decline in pH and a high 

rate of lactic acid production is necessary for efficient 

inhibition of undesirable bacteria (McDonald et al., 

1991). Furthermore, TS contents below 25% will result 

in excessive formation of silage effluent (McDonald et 

al., 1991). Since effluent contains easy digestible compo-

nents such as soluble carbohydrates, organic acids and 

alcohols, it is essential to collect and utilise the liquor in 

order to avoid large losses in biomethane potential.

2.6 Continuous digestion of seaweed with 
other substrates
2.6.1 Seaweed digestion in Solrød Kommune, Denmark 

There is not a lot of data available on long term 

digestion of seaweed. There are very few commercial 

applications of such a technology. In Solrød Kommune 

a biogas plant has been constructed and in 2014 was in 

commissioning (Solrød Kommune, 2014). The drivers 

for the facility included removal of foul odours from 

cast seaweed on the beaches, a better marine environ-

ment, reductions in nitrogen load to the sea and reduc-

tions in CO2 associated with energy production. 

The feedstocks include cast seaweed (from 20 km of 

beach); organic waste from a gelling agent production 

factory (CPKelco); food processing waste from Chr. 

Hansen A/C and liquid pig manure (Table 7). CPKelco 

produces pectin (gelling agent produced from citrus 

fruits) and carrageenan (gelling agent extracted from 

red edible seaweed). Chr. Hansen A/S is a producer of 

food cultures, probioti and enzymes.

Figure 5: Annual variation in methane potential of L.digitata in the UK in 2008 (adapted 
from Adams et al., 2011)

Table 7: Feedstocks and methane production from biogas facility at Solrød Kommune (adapted from Solrød Kommune, 2014)

Feedstock Substrate Methane production Specific 
methane 

yield

Liquid pig manure 53,200 t/a 26.6% 570,000 m3/a 9.5% 10.7 m3/t

Biomass from CPKelco 79,400 t/a 39.7% 4,590,000 m3/a 76.5% 57.8 m3/t

Biomass from Chr. Hansen 60,000 t/a 30% 810,000 m3/a 13.5% 13.5 m3/t

Seaweed 7,400 t/a 3.7% 30,000 m3/a 0.5% 4 m3/t

Total 200,000 t/a 100% 6,000,000 m3/a 100% 30 m3/t
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A significant challenge for the seaweed is sand remo-

val as the seaweed is cast. A two stage process is used: 

sieving at the beach collection followed by washing at 

the biogas plant. The specific methane yield for seaweed 

is very low; from section 2.4.1 Ulva generates 20m3 of 

methane per tonne wet weight. It is stated that the 

BMPs were taken in January which is not optimal (see 

Figure 5). No data is given on the species of seaweed, 

nor the dry or volatile solids content (Solrød Kommu-

ne, 2014).

The facility cost 85 million DKK ($11.9M) exclu-

ding the CHP plant, produces 23 GWh of electricity, 28 

GWh of energy for district heating, and generates an 

annual return from gas sales of 23 million DKK 

($3.22M). It is expected that 14 people will be involved 

in the operation of the plant and transport of the feed-

stocks and digestates. The saving to the municipality in 

greenhouse gas emissions will be of the order of 40,000 

t of CO2 per annum. 

2.6.2 Difficulties in long term digestion of seaweed
Biogas production from seaweed is innovative, chal-

lenging and does not have a lot of empirical data to 

learn from. High concentrations of sulphur, sodium 

chloride and heavy metals can lead to potential inhibiti-

on (Nkemka and Murto, 2010). Sodium chloride is a 

process inhibitor at high levels but is still required in 

small concentrations (Suwannoppadol et al., 2012). 

Sodium ions are required at levels between 100 and 350 

mg/L for healthy anaerobic digestion microbial com-

munity metabolism. However at levels of 3,500 mg/L to 

5,500 mg/L a medium inhibitory effect to methane-

producing microorganisms is caused, while a strong 

inhibitory effect occurs above 8,000 mg/L. Acclimatisa-

tion of inoculum to a high sodium concentration over a 

long period, such as 12 months to 24 months, can 

significantly increase the tolerance and reduce the lag 

phase time during AD. Alternatively, direct use of ino-

culum sourced from marine environments may be a 

cost-effective approach to reduce the sodium inhibition 

(Chen et al., 2008). It was reported that when ammonia 

levels are low that tolerance for salts can be higher 

(Hierholtzer and Akunna, 2012).

Inhibition of the digestion process can also occur 

when the C:N ratio is lower than 15. This can lead to 

increased levels of ammonia in the reactor, which can 

eventually lead to failure (Allen et al., 2013b).

2.6.3 Co-digestion of green seaweed with slurry
U. lactuca is a problematic seaweed both in that it 

reduces the amenity of the shore and that it is proble-

matic for anaerobic digestion having a particularly low 

C:N ratio and a high sulphur content. Co-digestion 

with cattle manure can overcome some of these pro-

blems (Sarker at al., 2012). Allen et al. (2014) co-dige-

sted both fresh and dried Ulva with cattle slurry in long 

term continuous digestion at laboratory 5L scale reac-

tors. Three reactors co-digested Ulva with slurry at 25%, 

50% and 75% of the VS in the feedstock. The optimum 

mix was 25% fresh Ulva and 75% dairy slurry which 

reached 93% of the biomethane potential (170 L CH4/

kg VS) at an organic loading rate (OLR) of 2.5 kg VS/

m3/d with a FOS/TAC (alkalinity ratio) of 0.3 (stable) 

and total ammoniacal nitrogen levels (TAN) of 3000 

mg/l. The worst mix was 75% fresh Ulva and 25% dairy 

slurry which could only operate at an OLR of 1 kg VS/

m3/d with a FOS/TAC of 0.45 (unstable).

2.7 Gross energy yields in seaweed  
biomethane
2.7.1 Gross energy yields per hectare of seaweed bio-
methane systems 

There is little agreement or established data on the 

yields of seaweed per hectare per annum. This obvious-

ly varies by species, by geographical location, by nutri-

ent levels, by method of cultivation, on whether the 

seaweed is cast or cultivated. Christiansen (2008) sug-

gests that a one hectare farm could yield 130 wet tonnes 

of kelp per annum. Kelly and Dworjanyn (2002) suggest 

15 t TS ha-1yr-1 for brown algae in temperate water. 

Bruhn et al. (2011) undertook laboratory based tank 

results which suggested yields of U. lactuca of 45 t TS 

ha-1yr-1 at latitudes of 56°N (Denmark). These yields 

may be compared with grass silage yields of 10 to 15 t 

TS ha-1yr-1 (Smyth et al., 2009). Table 8 provides an 

estimation of the gross energy yields per hectare for a 

number of seaweeds and energy crops. The yields of 



A perspective on algal biogasBiogas from seaweed

17

seaweed vary greatly depending on variety and method 

of cultivation. Existing methods of growing seaweed on 

ropes with separation to allow boat travel between lines 

for harvest leads to relatively low potential yields. This 

may be noted in the first entry in Table 8 where the yield 

of laminaria is 5 t TS/ha/year. Larger yields are predica-

ted on systems that allow maximum growth per unit of 

water area. For example the European Commission 

funded research project AT-SEA is investigating advan-

ced textiles for seaweed cultivation. These textiles will be 

seeded in-house and taken to the site where seaweed 

will grow. A test facility is in place in Galway Bay, Ire-

land. It is expected that yields of 20 kg/m2 may be achie-

ved. This equates to 200 t wet weight (ww) per hectare 

per annum or approximately 30 t TS ha-1yr-1(assuming 

15% TS; see Table 4). This is not yet proven. Furthermo-

re it is expected that only 60  – 70% of a hectare would 

actually be covered by textiles. This would reduce the 

yield to ca. 130 t ww or 19.5 t TS ha-1yr-1.

2.7.2 Comparison of biofuel systems on a gross energy yield 
per hectare basis

Maize is the dominant crop used for biomethane 

production (Murphy et al., 2011). The yield per hectare 

is remarkable, particularly in warm continental sum-

mers. Fodder beet also has a high yield though it is used 

less than maize. Grass would be an optimal crop for 

biomethane production in oceanic temperate climates, 

such as Ireland (Smyth et al., 2009).

There is a wide range of data on potential yields of 

biomethane from seaweeds, but taking conservative 

values the energy yield per hectare from seaweeds could 

be of a similar order to that from grass. Obviously 

seaweed is not available for digestion in continental 

climates situated remotely from the sea. However, 

seaweed has large potential as a biogas crop in tempera-

te oceanic climates in coastal areas, where it could be 

co-digested with grasses and slurries. The exact length 

of coastline depends on the length of grid to evaluate 

the length, however according to Wikipedia, the UK has 

a BIM. Business plan for the establishment of a seaweed hatchery 
and grow-out farm. Part 2. Bord Iascaigh Mhara; 2013.

b SEAI. A review of the potential of marine algae as a source of 
biofuel in Ireland. 2009.

c Sanderson JC, Dring MJ, Davidson K, Kelly MS. Culture, yield and 
bioremediation potential of Palmaria palmata (Linnaeus) Weber 
& Mohr and Saccharina latissima (Linnaeus) C.E. Lane, C. 
Mayes, Druehl & G.W. Saunders adjacent to fish farm cages in 
northwest Scotland. Aquaculture 2012; 354-355:128-35.

d Kain J, Dawes CP. Useful European seaweeds: past hopes and 
present cultivation. Hydrobiologia 1987;151-152(1):173-81.

e Bruhn A, Dahl J, Nielsen HB, Nikolaisen L, Rasmussen MB, Mar-
kager S, et al.  Bioenergy potential of Ulva lactuca: biomass 
yield, methane production and combustion. Bioresour Technol 
2011; 102(3): 2595-604. 

f Norderhaug KM, Christie H. Secondary production in a Laminaria 
hyperborea kelp forest and variation according to wave exposu-
re. Estuar Coast Shelf Sci 2011; 95(1): 135-44.

g Yokoyama S, Jonouchi K, Imou K. Energy production from Marine 
biomass: fuel cell power generation driven by methane produced 
from seaweed. Int J Appl S. C Eng Technol 2010.

h Brinkhuis BH, Levine HG, Schlenk CG, Tobin S. Laminaria cultiva-
tion in the Far East and North America. In: Bird KT, Benson PH, 
editors. Seaweed cultivation for renewable resources. Amster-
dam: Elsevier; 1987. p. 107-46.

Table 8: Potential gross energy production per hectare per annum based on a variety of species of seaweed (Allen et al., 2015; Smyth et al., 2009; Murphy et al., 2011)

Substrate Yield (harvest) Bio-
methane 

yield

Biomethane 
yield

Gross 
Energy

t TS ha-1 yr-1  
(*t VS ha-1 yr-1)

t ww 
ha-1 yr-1

m3 CH4 
t-1ww

m3 ha-1 yr-1 GJ ha-1 
yr-1

L. digitata 5.0a 35.2 22.5 792 28

S. polyschides 22.5b 147.5 34.5 5090 181

S. latissima 30.0c 297.3 34.5 10,260 365

A. esculenta 36.0d 302.2 26.9 8130 289

U. lactuca 45.0e 249.6 20.9 5216 186

L. hyperborean 30.0 – 90.0f 6,630 – 19,890 239 – 716

L. japonica 31.0c – 80.0g 8,060 – 20,800 290 – 749

M. pyrifera 34.0d – 50.0h 13,260 – 19,500 477 – 702

Biomethane from crops

Fodder beet 16 6,624 250

Maize 19.5 5,748 217

Grass 12.5 4,303 163

Rye 2.1 732 28



18

A perspective on algal biogas Biogas from seaweed

a coastline of 19,700 km, South Korea 12,500 km,  

France 7,300 km and Ireland 6,400 km.

Table 9 provides a comparison of the gross energy 

yield from first generation liquid biofuel systems. Data 

tends to be site specific. It is difficult to be precise. The 

data expressed in Table 9 are typical values in the midd-

le of ranges. It can be stated that seaweed biomethane 

has the potential to surpass the best yields of first gene-

ration biofuels with the advantage of not requiring 

agricultural land. This is noteworthy when considering 

that 0.2 ha of arable land per person was available on 

the planet in 2011 (Murphy & Thamsiriroj, 2011).

2.7.3 Perspective on net energy yields in macroalgae bio-
methane

The net energy per hectare of seaweed biomethane 

is unknown. Typically macroalgae can be categorised 

into three cases:

1.	 U. lactuca: a residue which is detrimental to coastal 

estuaries and may require removal to ensure the 

amenity of a bay. 

2.	 Cast seaweed: seaweed collected from the shore

3.	 Aquaculture: harvesting of seaweed.

The energy necessary for “crop” production will 

increase from case 1 to case 3. If Ulva needs to be remo-

ved from a bay, the energy in transport may be neglec-

ted as the Ulva must be removed, whether it is digested 

or not. This is comparable to digestion of food waste. 

Cast seaweed is not “sowed”. The only energy in produc-

tion is harvesting and transporting. Aquaculture will 

likely require the highest energy in production. It is 

grown, harvested and transported. It is unlikely that it 

has the same level of energy in production as crops on 

land. Fertiliser, herbicides and lime should not be used 

for cultivation. Typically the seaweed will draw nitrogen 

from polluted waters (such as in close proximity to sal-

mon farms) and act as enhancers of the environment.

2.7.4 Yield of seaweed to satisfy 1.25% renewable energy in 
transport in EU

As per section 1.3.1 a press release from the Envi-

ronment Committee of the European Parliament con-

cluded that “advanced biofuels sourced from seaweed or 

certain types of waste should account for at least 1.25% 

of energy consumption in transport by 2020”. Jacob et 

al. (2015b) suggest, through preliminary calculations, 

this would require 168 Mt of seaweed per annum (pro-

ducing 34 m3 CH4/t ww); this is in excess of the present 

world harvest of 26 Mt. Considering a density of 55 t 

ww per hectare this would require an area of 2.96 M ha 

or 35% of the land area of Ireland. This indicates the 

scale of production that would be necessary for trans-

port fuel production that relies on seaweed. 

2.8 Alternative uses of seaweed
The opportunity cost of using seaweed for energy 

must be considered. The present world harvest of 

seaweed of 26 Mt has a market. Several countries inclu-

ding China, Japan and the Republic of Korea eat 

seaweed. Laminaria (kombu), Undaria (wakame) and 

Porphyra (Nori) are sold at $ 2,800/dry tonne,  

US$ 6,900/dry tonne and US$ 16,800/dry tonne respec-

tively (Jacob et al., 2015b). 

Seaweeds are also used to produce hydrocolloids and 

gelling agents in the food processing and cosmetics 

industry. An example of this is outlined in section 2.6.1 

where CPKelco produces carrageenan a gelling agent 

extracted from red edible seaweed. Other applications 

of seaweeds include bio-catalysis and bio-plastics (Jacob 

et al., 2015b). It is most likely that the optimal seaweed 

biofuel industry is associated with a bioefinery where 

products are extracted from seaweeds with biogas for 

energy as a by-product.

Table 9: Estimated gross energy production from first generation biofuel data 
from (Thamsiriroj and Murphy, 2009; Murphy and Power, 2008)

Substrate Crop yield 
per hectare

Biofuel yield Gross 
Energy

t/ha/a L/t L/ha/a GJ/ha/a

Ethanol

Wheat 8.4 375 3,150 66.5

Fodder beet 55 100 5,500 117

Biodiesel

Palm Oil 5,000 160

Rape seed oil 1,320 42

Sun flower 800 26
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3 Biogas from microalgae

3.1 Cultivation of microalgae
For sufficient growth photoautotrophic microalgae, 

like higher plants and macroalgae, need appropriate 

amounts of light, water, carbon and a variety of mineral 

nutrients. Essential elements such as nitrogen, iron, 

phosphate and silicate are required in large quantities. A 

lack of these nutrients leads to a cessation in growth. To 

ensure optimal growth, the cultivation media should 

contain nutrient levels comparable or above the C:N:P 

ratio of the algae themselves. As summarized by Fal-

kowski (2000) values between C103-137: N15-20: P1 occur 

in plankton and seawater. Principally, growth media 

should satisfy this nutrient composition, although 

nutrient amounts vary, depending on the species culti-

vated (Becker, 1994). Culture media applied in large 

scale cultivation are the same as in the laboratory, with 

modifications to meet the purpose of cultivation (Boro-

witzka, 2005). BG11 medium (Rodolfi et al., 2009) 

adapted after Rippka et al. (1979) was used in pilot sca-

le, Mann and Meyers medium and modified Ukeles 

medium were applied by Sánchez Mirón et al. (1999). 

Since synthetic cultivation media are expensive, large 

scale production of microalgae is also carried out with 

seawater (Moazami et al., 2012), artificial seawater enri-

ched with F/2 growth medium nutrients (Zhang & 

Richmond, 2003) or wastewater (Olguín et al., 2003). 

Figure 6 outlines parameters, which have to be conside-

red and adjusted according to the needs of the specific 

algae species to allow optimal growth.

 3.2 Cultivation systems
The most efficient way to produce microalgae bio-

mass economically and environmentally has yet to be 

defined. There are several approaches for producing 

microalgae biomass, which strongly differ from each 

other in terms of construction, efficiency and economy. 

Principally microalgae mass cultivation systems can 

be divided into outdoor and indoor systems; outdoor 

systems are more economic because of the utilization of 

sunlight. Another differentiation can be made between 

open and closed cultivation systems (Table 10) and bet-

ween the application of immobilized (benthic) and free 

floating (pelagic) species. 

Biomass productivity by area differs widely across 

the various cultivation systems (Pulz, 2001): open 

systems achieve a productivity rate of 10 – 25 g m-² d-1, 

closed systems 35 – 40 g m-² d-1 and thin-film systems 

80-100 g m-² d-1. 

  

Figure 6: Relevant abiotic (filled spheres) and biotic (empty spheres)  
parameters for microalgae cultivation 

Figure 7: Solar drying of microalgae on the shore of Lake Kossorom (Abdulqader et al., 2000)

Box 3 

Naturally occurring mass development of 
microalgae, such as Arthrospira platensis in 
Lake Kossorom (Chad) and its harvest and appli-
cation as food is probably the cheapest option 
to produce microalgae biomass. As estimated 
by Abdulqader et al. (2000), around 40 t of dried 
Arthrospira platensis are harvested from this 
lake per year. The geographic location is an 
important factor when using only sunlight for 
algae cultivation; light intensity decreases with 
distance from the equator.
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3.2.1 Open cultivation systems 
According to Pulz (2001) open cultivation systems 

can be divided into open vessels, natural water, inclined 

surface devices and raceway ponds (see Figure 8). Open 

systems have several drawbacks, such as, insufficient 

monitoring and control options for parameters such as 

pH, temperature, mixing and light availability. Sparged 

CO2 has a very short residence time, resulting in high 

losses and poor solubility. Furthermore seasonal varia-

tions contribute to reduced reproducibility of data. 

Other disadvantages include, high water losses due to 

evaporation; major risk of contamination by predators 

and other fast growing heterotrophs, which can lead to 

poor productivity or even a total loss of the desired 

production strain (Brennan & Owende, 2010; Kumar et 

al., 2010; Pulz, 2001; Wang et al., 2008; Ugwu et al., 

2008). In spite of all these negative aspects, the advan-

tages of open systems can still outweigh disadvantages. 

The large benefit of open cultivation systems is their 

cheap and simple maintenance (Becker, 1994). Since 

this is also the case for construction of raceway ponds, 

upscaling is easy (Christenson and Sims, 2011). There-

fore they are more often applied in large scale approa-

ches (Table 10). 

   

3.2.2 Closed cultivation systems (photobioreactors)
Among the closed systems several types of PBRs 

exist (examples shown in Figure 9). The following con-

figurations were tested for microalgal mass cultures; 

tubular reactors, laminar (or flat panel) reactors, han-

ging plastic sleeves and fermenter-like tank reactors 

(Pulz 2001). The latter are often artificially illuminated, 

while the others are, in the majority of cases, operated 

without artificial illumination. Although closed systems 

are more complex, they offer better control of crucial 

parameters and at the same time contamination is less 

likely (Carvalho et al., 2006). The main challenges in 

any PBR system are: light availability; CO2 introduc-

Table 10: Advantages and disadvantages of common cultivation systems (adapted from Pulz and Gross, 2004)

Cultivation system Advantages Disadvantages

Open •	 Cheap 
•	 Good gas exchange with the 

atmosphere (release of O2 is possible) 
•	 Easy to operate 
•	 Easy to scale up

•	 High risk of contamination (not as signi-
ficant for biogas systems) 

•	 High evaporation losses 
•	 Large area required 
•	 Light limitation if thick layers are used

Closed •	 Good control of cultivation parameters 
•	 Reduced contamination risk 
•	 Less CO2 losses 
•	 Reproducible cultivation conditions

•	 Expensive 
•	 Scale up is difficult

Figure 8: Open cultivation systems for cultivation of microalgae; left: Race way ponds at pilot-scale (© Elad Zohar, Erber Future Business GmbH); 
right: cascade system (= thin film system) (© Jiri Kopecky, Institute of Microbiology, Trebon)
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tion; O2 removal and sufficient mixing. Despite all the 

advantages, closed systems are much more expensive 

than open pond systems, if ground area is cheaply avai-

lable. 

3.3 Harvest of microalgae
A lot of harvesting techniques were developed in the 

last decades, but only a few of them were found to be 

effective at reasonable operational costs. The process of 

separating microalgae floating in a cultivation medium 

creates several difficulties. First of all, the concentration 

of cells in the culture medium is mostly quite low. 

Secondly, their size is often below 30µm. Thirdly, the 

density of cells is only slightly greater than water (Bec-

ker, 1994). This means that a lot of energy is needed to 

concentrate the algae biomass in order to separate it 

from the medium. 

 

Golueke et al. (1957) argued that alum flocculation is an 

essential step for economical harvesting of algae. Accor-

ding to Becker (1994) choosing the proper harvesting 

technique is crucial for further processing of the algae 

biomass and strongly depends on the species used (see 

Box 4). 

According to Christenson & Sims (2011) current 

harvesting methods include chemical, mechanical, elec-

trical and biological harvesting methods (Table 11). In 

the case of attached algae cultivation, mechanical harve-

sting, like scraping (Higgins & Kendall, 2012) or vacu-

uming (Craggs et al., 1996) can be applied. In these 

cases, algal biomass is already very dense and further 

concentration is most likely not necessary. 

3.4 Chemical composition of microalgae
3.4.1 Typical composition of microalgae

The chemical composition of algal cells can vary 

over a wide range, as with any higher plant. Proportions 

of different constituents are influenced by several envi-

ronmental factors. Among the most important factors 

are temperature, illumination, pH-value, mineral nutri-

ents, and CO2 supply (Becker, 1994). The components 

analyzed by most studies are carbohydrates, lipids and 

proteins (Table 12). The amount of proteins, carbohy-

drates and lipids ranged between 6 – 71, 4 – 64 and  

1.9 – 40% of total solids (TS) within the studies compa-

Figure 9: Closed pilot-scale cultivation systems for cultivation of microalgae, left: sleeve-bag photobioreactor (© Markus Gruber, IFA Tulln – Uni-
versity of Natural Resources and Life Sciences, Vienna) and right: tubular photobioreactor (© Katharina Meixner, IFA Tulln – University of Natural 
Resources and Life Sciences, Vienna)

 
Box 4 
Questions to consider, when harvesting algae biomass 
(Becker, 1994)
• What type of algae should be used: unicellular-coccoid, unicellular 

with spines or filamentous?
• Should the harvest be continuous or discontinuous?
• Is pre-concentration necessary?
• What is the required percentage of dry matter in the concentrate?
• What are the investment costs?
• What is the energy demand per cubic meter of algae suspension?
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red by Becker (1994). The high variation makes compa-

rison difficult, but generally the composition of algae 

biomass can be expected to be within the ranges given 

in Table 12. 

3.4.2 Manipulation of microalgae composition
The composition of algal biomass can be manipula-

ted by adapting growth media. This adaptation is due to 

the phenomenon of nutrient accumulation, when 

microalgae are cultivated in a nutrient deprived media. 

Table 11: Overview of different harvesting methods (Christenson & Sims, 2011) and dry solids output concentration 
(Milledge and Heaven, 2013). n.a. = not available.

Method Process Comments Dry solids  
output concen-

tration (%)

Chemical 
based 

Precipitation / flocculation −	 Addition of electrolytes or synthetic polymers to neu-
tralize negative surface charge

−	 The use of metal salts for coagulation and flocculation 
is cautioned due to potential inhibition of the specific 
methanogenic activity of methanogenic and acetogenic 
microbes 

3 – 8

Mechanical 
based 

Centrifugation −	 Centrifugal forces are utilized to separate based on 
density differences

−	P robably the most rapid and reliable method of reco-
vering suspended algae

−	 Easy to operate
−	H igh investment and operating costs

10 – 22

Filtration −	O ften used for filamentous strains
−	 For small, suspended algae tangential flow filtration is 

considered to be more feasible
−	 high costs and power requirements

2 – 27

Sedimentation −	L ow costs
−	L ow reliability because of fluctuating density of algal 

cells
−	S low

0.5 – 3

Dissolved Air flotation −	 Air is released under high pressure and forms tiny bub-
bles in the water column, which adhere to the suspen-
ded matter causing the suspended matter to float 

−	H as been proven in large scale
−	 The additional use of flocculants might be problematic 

for further processing of the algae

n.a.

Electrical 
based 

Separation based on  
electrophoresis

−	N o chemicals needed
−	H igh power requirements and electrode costs

n.a.

Biological 
based 

Autoflocculation −	H igh pH and the consumption of dissolved CO2 lead to 
co-precipitation of algal cells together with calcium 
phosphate

n.a.

Bioflocculation −	 Flocculation caused by secretion of polymers n.a.

Microbial flocculation −	 Addition of flocculating microbes n.a.
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The influence of nutrient levels in the growth media on 

the algal biomass composition was shown by Illman et 

al. (2000), where the highest lipid content (63%) was 

found in C. emersonii, grown in low nitrogen medium 

(Table 13). The highest calorific value of 29 kJ/g occur-

red in a nitrogen deprived media. 

3.5 Production of biomethane from microalgae
Microalgae may be considered an advantageous 

substrate for anaerobic digestion due to high biomass 

productivity, low ash content and the reduced competi-

tion for arable land. The choice of optimal algal strains 

can lead to faster conversion of biomass to methane. 

Table 12: Chemical composition of different microalgae expressed as a percentage of dry matter (Becker, 1994)

Strain Protein Carbohydrates Lipids Nucleic acid

Scenedesmus obliquus 50 – 56 10 – 17 12 – 14 3 – 6

Scenedesmus quadricauda 47  – 1.9  – 

Scenedesmus dimorphus 8 – 18 21 – 52 16 – 40  – 

Chlamydomonas rheinhardii 48 17 21  – 

Chlorella vulgaris 51 – 58 12 – 17 14 – 22 4 – 5

Chlorella pyrenoidosa 57 26 2  – 

Spirogyra sp. 6 – 20 33 – 64 11 – 21  – 

Dunaliella bioculata 49 4 8  – 

Dunaliella salina 57 32 6  – 

Euglena gracilis 39 – 61 14 – 18 14 – 20  – 

Prymnesium parvum 28 – 45 25 – 33 22 – 38 1 – 2

Tetraselmis maculata 52 15 3  – 

Porphyridium cruentum 28 – 39 40 – 57 9 – 14  – 

Spirulina platensis 46 – 63 8 – 14 4 – 9 2 – 5

Spirulina maxima 60 – 71 13 – 16 6 – 7 3 – 4.5

Synechoccus sp. 63 15 11 5

Anabaena cylindrica 43 – 56 25 – 30 4 – 7  – 

Table 13: Cell contents of Chlorella strains grown on Watanabe and low-nitrogen media (Illman et al. 2000)

Species Growth 
conditions

Protein (%) Carbohydrate 
(%)

Lipid (%) Calorific value 
(KJ/g)

C. vulgaris control 29 ± 2.5 51 ± 2 18 ± 2.1 18 ± 0.7

Low-N 7 ± 1.6 55 ± 3.2 40 ± 2.1 23 ± 2.1

C. emersonii control 32 ± 2.9 41 ± 2.5 29 ± 2.5 21 ± 0.7

Low-N 28 ± 3.8 11 ± 2.2 63 ± 1 29 ± 0.7

C. protothecoides control 38 ± 3 52 ± 2.3 11 ± 3.2 19 ± 1.6

Low-N 36 ± 3 41 ± 3 23 ± 1.2 24 ± 2

C. sorokiniana control 45 ± 2.9 38 ± 2.2 20 ± 1.6 21 ± 0.7

Low-N 42 ± 1.6 32 ± 2.5 22 ± 2.6 20 ± 1.6

C. minutissima control 24 ± 3.1 42 ± 3.2 31 ± 3.2 21 ± 1.2

Low-N 9 ± 2 14 ± 2.1 57 ± 2.5 21 ± 1
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Some strains possess no cell walls; some strains have 

protein-based cell walls without cellulose or hemicellu-

lose. These attributes make them more easily degradab-

le (Mussgnug et al., 2010).

Besides easy degradability, other features, like pro-

ductivity or sensitivity to contamination, have to be 

considered. If the species of choice possesses rigid cell 

walls, resistant to anaerobic digestion, the application of 

a suitable pre-treatment is necessary (see 3.5.3).

3.5.1. Biomethane potential of microalgae
Measured specific biogas yields of microalgae vary 

between 287 and 611 L/kg VS and specific methane 

yields between 100 to 450 L/kg VS (Table 14). The rea-

son for these broad ranges is that anaerobic digestion 

performance is very much strain specific, which might 

be explained by the different cell composition as well as 

the different cell wall characteristics of the strains. 

After anaerobic digestion, intact cells of Scenedesmus 

sp. were detected in samples stored in the dark (Mussg-

nug et al., 2010; Golueke et al., 1957). This can be 

explained by the fact that Scenedesmus sp. is able to grow 

mixotrophically (Girard et al., 2014). The variation in 

biomethane yields may also be explained by the influ-

ence of the differing biomethane potential (BMP) test 

methodologies.

Some practical recommendations can be found for 

digesting microalgae. According to Heerenklage et al. 

(2010) and Golueke et al. (1957) thermophilic digestion 

of microalgae leads to higher biogas yields than meso-

Table 14: Methane and biogas production from different microalgae species measured by BMP tests (adapted after 
Mussgnug et al. (2010); Sialve et al. (2009) and Heerenklage et al. (2010))

Species Temp. [°C] Biogas prod. 
[L/kg VS]

CH4 prod. 
[L/kg VS]

CH4 con-
tent [%]

Literature

Arthrospira platensis 481 ± 14 293 61 Mussgnug et al., 2010

Chlamydomonas reinhardtii 587 ± 9 387 66 Mussgnug et al., 2010

Chlorella kessleri 335 ± 8 218 65 Mussgnug et al., 2010

Chlorella vulgaris 28 – 31 310 – 350 68 – 75 Sanchez and Travieso, 1993

Dunaliella salina 505 ± 25 323 64 Mussgnug et al., 2010

Dunaliela 35 420 Chen, 1987

Euglena gracilis 485 ± 3 325 67 Mussgnug et al., 2010

Nanochloropsis spp. 38 388 312 80.5 Schmack, 2008

Scenedesmus obliquuus 287 ± 10 178 62 Mussgnug et al., 2010

Spirulina 35 320 – 310 Chen, 1987

38 556 424 76.3 Schmack, 2008

Spirulina maxima 35 190 – 340 Samson and LeDuy, 1983

Mixed algae sludge  
(Clorella-Scenedesmus)

35 – 50 170 – 320 62 – 64 Golueke et al., 1957

50 500 Not specified Golueke et al., 1957

35 405 Not specified Oswald et al., 1960

45 611 Not specified Golueke et al., 1959

35 100 – 140 Yen et al., 2007

Green algae 38 420 310 73.9 Schmack, 2008
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philic digestion. Zamalloa et al. (2012) noted that ther-

mophilic digestion of Scenedesmus obliquus resulted in a 

biogas production 1.3 times that of mesophilic digesti-

on. Drying of microalgae reduces biogas yields and is 

therefore not recommended. A decrease of 20% was 

reported by Mussgnug et al. (2010) and a comparable 

decrease of 16% was shown by degradation tests of Tre-

traselmis sp. 

3.5.2 Theoretical biogas yields from microalgae
High lipid contents in the biomass can be advan-

tageous because the theoretical biogas yield from lipids 

is generally higher (1390 L/kg VS) than proteins (800 L/

kg VS) or carbohydrates (746 L/kg VS) (VDI 4630 

2006). Microalgal biomass is of different composition to 

other biomass, therefore these yields must be adapted in 

order to prevent overestimation of the overall process 

feasibility. A recent publication recalculated theoretical 

methane yields for microalgal biomass giving 1014, 446 

and 415 L/kg VS for lipids, proteins and carbohydrates 

(Heaven et al., 2011). Excess lipid and/or protein con-

tents are not desirable as they can lead to accumulation 

of ammonia and long chain fatty acids (LCFAs), which 

are important inhibitors of anaerobic microorganisms 

(Chen et al., 2008). 

3.5.3 Pre-treatment of microalgae
Some microalgae contain very thick cell walls, which 

can make anaerobic digestion quite challenging. The 

thickness of the relatively stable cell wall of Chlorella 

pyrenoidosa is for example 0.1 to 0.3 µm (Northcote et 

al., 1958). If a specific strain is considered suitable for 

biogas production due to high productivity, a pre-

treatment step may allow higher biogas production 

rates and yields. Table 15 gives an overview of different 

pre-treatment methods to improve anaerobic degrada-

bility of sludge. These methods are also applicable for 

microalgae. Schwede et al. (2013) showed that thermal 

pre-treatment of Nannochloropsis salina, prior to anae-

robic digestion, significantly increased the methane 

yield. It could also be shown that the type of storage of 

the microalgae can have a significant effect on the 

methane yield (Gruber-Brunhumer et al., 2015).

In activated and primary sludge treatment, different 

technologies have been successfully applied to pre-treat 

biomass to increase the methane yield (Carrère et al., 

2010). These pre-treatments could be used for microal-

gae to enhance their anaerobic digestion. Alzate et al. 

(2012) tested the anaerobic digestion of three microal-

gae mixtures. Pre-treatments included thermal, ultra-

sound, and biological treatment. Biological pre-treat-

ments showed negligible enhancement of CH4 produc-

tivity (Alzate et al., 2012). The highest CH4 increase 

(46 – 62%) was achieved by thermal hydrolysis. The 

optimum temperature of this pre-treatment depended 

on the microalgae species (Alzate et al., 2012). The 

ultrasound pre-treatment increased the CH4 producti-

vity up to 24% at 10,000 kJ/kg TS; no further increase in 

productivity was noted at higher energy input (Alzate et 

al., 2012). In Figure 10 the effect of ultrasound pre-

treatment on cells of Chlorella vulgaris can be seen.

It should be cautioned that parasitic demands of  

10 MJ/kg TS is probably more than 50% of the energy 

in the starting substrate and as such will be significantly 

more than 50% of the energy in the biogas produced. 

This has major implications for the net energy in 

microalgae biogas and the sustainability of the bioener-

gy system.

Figure 10: Chlorella vulgaris before (left) and 
after (right) ultrasound pre-treatment  
(© Markus Gruber, IFA Tulln –University of 
Natural Resources and Life Sciences, Vienna)
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The influence of low temperature thermal  

(50–57°C) and freeze-thaw on algal digestion were stu-

died by Kinnunen et al. (2014); they showed that both 

pre-treatments promoted protein hydrolysis and 

increased methane yields by 32–50% when digested at 

20°C, compared to digestion of untreated microalgal 

biomass. The application of high pressure treatment by 

a French press or enzymatic treatment also increased 

methane yields compared to untreated C. vulgaris as 

shown by Heerenklage et al. (2010). 

3.5.4. Continuous microalgae digestion
According to Murphy and Thamsiriroj (2013) the 

optimal reactor design and configuration is a function 

of the feedstock characteristics. For fermentations with 

2 – 12% TS continuously stirred tank reactors (CSTRs) 

are commonly used (e.g. Figure 11). The solids concen-

tration of microalgae, harvested by mechanical harve-

sting methods (Table 11), is in the range 0.5 – 27% 

(Christenson & Sims, 2011), which makes it suitable for 

digestion with a CSTR. Hydraulic and solid retention 

time (HRT and SRT) are key parameters in anaerobic 

processes (Sialve et al., 2009) and should be high 

enough to allow the active microbial population, espe-

cially methanogens, to remain in the reactor. Insuffici-

ent HRT would limit hydrolysis.

Table 16 highlights studies, which investigated 

methane production in continuous systems operated 

with microalgae biomass. 

The highest methane 

yield was 310 L/kg VS. 

Sialve et al. (2009) sho-

wed that the methane 

yield strongly depends 

on the species and cultu-

re conditions. As before, 

the effect of experimen-

tal conditions on results 

must be considered. The 

proportion of methane 

in the biogas is in a simi-

lar range (68 to 74%) for 

the majority of the stu-

dies, regardless of species 

and operating conditions; this indicates a good quality 

of conversion of the algal organic matter into methane 

(Sialve et al., 2009).

Semi-continuous digestion of Scendedesmus sp., 

grown in an open raceway pond was carried out by Tran 

et al. (2014). A specific methane yield of 130 to 140 L 

CH4/kg VS added was achieved. The accompanying low 

VS destruction of 30% was attributed to the recalcitrant 

nature of the specific microalgal species and insufficient 

short retention times. A remedy would be longer reten-

tion times and/or application of pre-treatment methods 

(Tran et al., 2014). 

Table 15: Overview of pre-treatment methods to improve sludge anaerobic degradability, 
(adapted after Carrère et al., 2010)

Pre-treatment method Options

Thermal hydrolysis (>100°C) − Different temperatures

Mechanical treatment − Ultrasound

− Lysis-centrifuge

− Liquid shear (collision plate, high pressure 
homogenizer)

− Grinding

Chemical pre-treatment − Oxidation

− Alkali treatments

Biological pre-treatments − Enzymes

− Predators

Figure 11: Continuous biogas fermentation at laboratory scale
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3.6. Synergies of microalgae production and 
biogas plants
3.6.1 Digestate as a nutrient source for algae cultivation

Digestate produced during fermentation processes 

contains high amounts of nutrients (Fuchs & Drosg, 

2013) which could be utilized for microalgae cultivation 

(Franchino et al., 2013). Different microalgae strains 

(Neochloris oleoabundans, C. vulgaris and Scenedesmus 

obliquus) were cultivated on digestate obtained from a 

pilot anaerobic digester treating a mixture of cattle slur-

ry and raw cheese whey. C. vulgaris cultivated in an 1:10 

dilution showed the best performance and all three 

strains almost completely removed different nitrogen 

forms and phosphate within 11 days (Franchino et al., 

2013). 

Utilization of anaerobically digested microalgae 

effluent as a nutrient source for algae cultivation for-

ming a closed nutrient loop system is another approach 

(Erkelens et al., 2014). Erkelens et al. (2014) showed that 

growth of Tetraselmis sp. on microalgae digestate is pos-

sible, but not as effective as in F/2 media, which was 

used for comparison.

The specific composition of digestate might be a 

challenge for microalgae cultivation. Excess concentra-

tions of nutrients can have a negative effect on algal 

growth. For example, high ammonia concentrations of 

more than 1 g/L, which can occur in digestate, can inhi-

bit photosynthesis (Abeliovich and Azov, 1976). Strong 

coloration of digestate can adversely affect growth 

efficiency of the algae due to reduced transparency. Tur-

bidity of the growth medium has a negative influence 

on growth rates (Wang et al., 2010). 

3.6.2. Biogas as carbon source
Biogas plants produce different types of CO2-rich 

exhaust fumes, which could be utilized for algae cultiva-

tion. One source could be combined heat and power 

(CHP) units, other options are the usage of off-gas 

obtained by upgrading of biogas or untreated biogas. 

Usually the CO2 content of most flue gases is between 3 

and 15% (IPCC, 2005). Exhaust fumes originating from 

agricultural biogas plants have a relatively high CO2 

content of ca. 12% (Pfeifer and Obernberger, 2006). 

These gases have been shown to be suitable as car-

bon source for microalgae cultivation (Travieso et al., 

1993). Several projects aiming to cultivate microalgae 

by application of CO2 from flue gas were presented by 

Van Iersel and Flammini (2010). 

According to Doucha et al. (2005) about 50% of flue 

gas decarbonization can be attained in their outdoor 

open thin-layer photo-bioreactor and the production 

costs of algal biomass could be 15% lower with the help 

of flue gas utilization. NOX and CO gases had no nega-

tive influence on the growth of Chlorella sp. 

Figure 11: Continuous biogas fermentation at laboratory scale

Table 16: Methane and biogas production from different microalgae species measured by continuous fermentation trials (adapted after Sialve et al., 2009)

Species Temp. [°C] HRT [d] OLR [g 
VS/L*d]

CH4 prod. [L/
kg VS]

Biogas 
prod. [L/kg 

VS]

CH4  
content 

[%]

Literature

Tretraselmis (fresh) 35 14 2 310 419 – 431 72 – 74 Asinari Di 
San Marzano 
et al., 1982Tretraselmis (dry) 35 14 2 260 351 – 361 72 – 74

Tretraselmis (dry) + 
NaCl 35 g/L

35 14 2 250 338 – 347 72 – 74

Spirulina maxima 35 33 0.97 260 361 – 382 68 – 72 Samson and 
LeDuy, 1982



28

A perspective on algal biogas Biogas from microalgae

3.6.3. Microalgae as a means of upgrading biogas
Carbon dioxide biofixation using microalgae via 

efficient photosynthesis (Eq. 1) offers an alternative 

approach to upgrade biogas (Ho et al., 2011; Zhao and 

Su, 2014).

A lot of previous studies have reported carbon 

dioxide biofixation of flue gas, produced from coal-

fired power plants, by high-growth rate microalgae 

(Cheng et al., 2013; Pires et al., 2012; Stephenson et al., 

2010; Zhao and Su, 2014). Only a few studies have 

focused on carbon dioxide biofixation of biogas (Praja-

pati et al., 2013). Mann et al. (2009) used microalgae to 

directly upgrade biogas and found that the carbon 

dioxide content in biogas can be greatly reduced (by up 

to 97%) using Chlorella sp., but the photosynthetic oxy-

gen (approximately 20%) made the gas mixture poten-

tially explosive. This gas mixture needs high energy 

input and expensive processes to remove oxygen from 

gaseous transport fuels (Chaemchuen et al., 2013; Ryc-

kebosch et al., 2011). Similar studies by others rein-

forced the oxygen content as in the range of 10 to 24% 

(Converti et al., 2009; Kao et al., 2012a).

Direct biogas upgrading by microalgae can be 

restricted by photosynthetic oxygen production. Xia et 

al. (2015) suggested an indirect biogas upgrading system 

which employs microalgae in a two-stage process, com-

prising carbon dioxide capture by carbonate solution 

and carbonate regeneration by microalgae cultivation, 

as shown in Figure 12 (Xia et al., 2015). In the first stage, 

carbon dioxide can be efficiently captured by a carbona-

te solution under alkaline conditions whereby bicarbo-

nate is formed. In the second stage, bicarbonate is used 

as a carbon source for microalgae cultivation. Conversi-

on of bicarbonate to carbon dioxide yields hydroxide 

and increases pH, leading to carbonate production (Chi 

et al., 2011). Therefore, carbonate can be regenerated 

from bicarbonate after carbon dioxide biofixation by 

microalgae. The microalgae strains used in this system 

would need to be resistant to high pH. Microalgal 

strains grown in saline lakes, such as Arthrospira, Syn-

echococcus and Dunaliella, can be used in halophilic and 

alkaliphilic systems. For instance, Arthrospira platensis 

and Arthrospira maxima can be cultivated with sodium 

concentration of 0.2–1.2 M Na+ (or 4,600 – 27,600 mg 

Na+/L or 11,700–70,200 mg NaCl/L) and pH of 8.0–9.5. 

The mixture of microalgae and bacteria also has the 

potential to upgrade biogas. Bahr et al. (2014) reported 

that a mixed culture of microalgae and hydrogen sul-

phide oxidising bacteria could allow simultaneous cap-

ture of carbon dioxide by microalgae, whilst consuming 

photosynthetic oxygen by hydrogen sulphide oxidising 

bacteria (Bahr et al., 2014). Some further issues may 

need to be solved to commercialise such a process. First-

ly, the oxygen content in upgraded biogas could be 

increased due to variation in hydrogen sulphide content 

in the biogas and the variation in the population of 

microalgae and hydrogen sulphide oxidising bacteria. 

This may necessitate a further oxygen separation pro-

cess. Secondly, high methane or hydrogen content in 

biogas can inhibit microbial growth (Kao et al., 2012b).

3.7 Applications of microalgae
3.7.1 Microalgae as a means of capturing CO2 

Jacob et al. (2015a) investigated CO2 capture from 

coal combustion using three cultivation systems, tubu-

lar PBR, a flat plate PBR and a raceway pond. Assump-

tions were made that the PBRs could capture 80% of the 

CO2 while the raceway pond could capture 50% of CO2. 

The model was based on a 1GWe power plant burning a 

bituminous coal (energy value of 24GJ/t) producing 

6.77 million tonnes of CO2 per annum by producing 

2.69 million tonnes of volatile solid microalgae per 

annum in the PBRs. 

This would require 34,000 ha of flat plate PBR 

(Jacob et al., 2015a). The gross energy in biogas from 

the microalgae was estimated to be 35% of the primary 

energy in the coal. However questions were raised about 

the energy input to microalgae cultivation. The tubular 
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PBR has a very poor ratio of energy input to energy 

output (Jacob et al., 2015a). The system with the best 

energy input to energy output ratio was the raceway 

pond but this only captured 50% of CO2. 

3.7.2 An alternative – cascading usage of microalgal bio-
mass: the microalgal biorefinery

In the last decade more attention has been paid to 

conversion of microalgal biomass to biofuels (Chisti, 

2007). This option is not yet economically feasible and 

according to Hingsamer et al. (2012) is expected to be 

unprofitable in the short to medium term. A more eco-

nomic approach for producing biogas from microalgae 

is a cascade usage in a biorefinery concept: a high value 

product will yield the most significant revenue whereas 

the biomass residue will be transformed into biogas.

IEA Bioenergy Task 42 (IEA, 2014) defines a biorefi-

nery as a sustainable processing of biomass into a spec-

trum of bio-based products (food, animal feed, chemi-

cals, and materials) and bioenergy (biofuels, power and/

or heat). There are various pathways for utilizing algae 

biomass or algae derived components in combination 

with energy production.

Considering the enormous biodiversity of microal-

gae and recent developments in genetic and metabolic 

engineering, algae are suggested to represent one of the 

Figure 12: Biogas upgrading by microalgae (adapted from (Xia et al., 2015))
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most promising sources for new products and applica-

tions (Harun et al., 2010). Microalgae are the basis for a 

wide variety of products (Figure 13). When whole algal 

biomass is used as a source of protein or as health food, 

residual biomass will not be available for biorefinery 

purposes. Microalgae residual biomass will be available 

as a source of biofuel, for example after extraction of 

certain valuable compounds such as pigments or enzy-

mes, or after application of microalgae for therapeutic 

agents. An overview of the current usage of microalgae 

for deriving different products is given in Table 17.

Table 17: Microalgae species with high relevance for biotechnological applications (adapted after Pulz & Gross 2004)

Microalgae Main producers Application and product Price 

Spirulina sp. China, India, USA, Myanmar, 
Japan

Human nutrition Animal  
nutrition Cosmetics 

36 €/kg

Phycobiliproteins 11 €/mg

Chlorella sp. Taiwan, Germany, Japan Human nutrition Cosmetics 36 €/kg

Aquaculture 50 €/L

Dunaliella salina Australia, Israel, USA, Japan Human nutrition Cosmetics 
ß-carotene

215 – 2150 €/kg

Aphanizomenon flos-aquae USA Human nutrition –

Haematococcus pluvialis USA, India, Israel Aquaculture 50 €/L

Astaxanthin 7150 €/kg

Crypthecodinium cohnii USA DHA oil 43 €/g

Shizochytrium USA DHA oil 43 €/g

Figure 13: Overview of possible products from microalgae (© Markus Gruber, IFA Tulln –University of Natural Resources  
and Life Sciences, Vienna)
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4 Conclusions and  
Recommendations

Technology Readiness Level (TRL) is a parameter 

that describes the technology maturity of a process or 

system; TRL values range from 1 (very basic research) to 

9 (technology ready for commercialization). TRL is an 

apt concept when discussing algal biofuels. In February 

2015 the Environment Committee of the European Par-

liament stated that “Advanced biofuels sourced from 

seaweeds or certain kinds of wastes should account for 

at least 1.25 per cent of energy consumption in trans-

port by 2020“ (European Parliament News, 2015). This 

statement would suggest that seaweed biofuel is at a 

high TRL (8 or 9). Indeed Jard et al. (2013) argue that 

biogas production from seaweed is close to commercia-

lization. Coupling this with the EU Alternative Fuel 

Infrastructure Directive which requires compressed 

natural gas dispensing stations at a minimum spacing of 

150 km across the EU by 2020 would suggest that 

upgraded biogas from seaweed, injected into the gas 

grid is a third generation biofuel heavily supported by 

the EU with an ambition of significant scale in the next 

5 years.

However there are very few seaweed digesters at 

commercial scale. There are a myriad of seaweed species 

and numerous potential pathways to produce energy 

from seaweed. Long-term anaerobic digestion may be 

problematic due to sand deposition in digesters and due 

to salinity. The environmental consequence of provi-

ding transport fuel from seaweed to the EU (at around 

1.25%) has yet to be assessed. Preliminary calculations 

would set this number at close to 168 Mt of seaweed per 

annum (Jacob et al., 2015b) which is significantly in 

advance of the present world harvest of 26 Mt. It is 

unlikely that cast seaweed will be harvested to satisfy 

this demand; in the short term the impact could be 

intolerable and legal authorization for the harvest 

would very likely not be granted. The more likely scena-

rio is new cultivation, more than likely associated with 

salmon farms. It is not yet known which species would 

be best suited. Numerous parameters (such as the 

method of cultivation, the species of seaweed, the yields 

of seaweed per hectare, the time of harvest, the method 

of harvesting, the suitability of seaweed to ensiling, the 

gross and net energy yields in biogas, the carbon balan-

ce, the cost of the harvested seaweed, the cost of the 

produced biofuel) have not been assessed. In reality it 

could not be said that the system is at a TRL greater than 

5. Much research is required. A definite pathway needs 

to be agreed for seaweed biofuels. 

For microalgae the TRL may be even lower than for 

seaweed. A very big issue is the source of the biomass. 

Where is it produced? A recent paper by Jacob et al., 

(2015a) suggests that 34,000 ha of flat plate PBR would 

be required to capture 80% of the emissions of a 1 GWe 

coal fired power station. If this were digested it could 

produce 35% of the primary energy in the coal, however 

the energy input in pumping the microalgae in the PBR 

could be higher than the energy output in the form of 

biogas. Other issues with microalgae include the length 

of the growing season, the lack of light (and growth) by 

night . Optimal temperatures are of the order of 27°C. 

This will not be attainable in temperate oceanic climates 

and may limit the technology to tropical or Mediterra-

nean climates. Raceway ponds would appear to be the 

most likely cultivation pathway from an energy perspec-

tive (Jacob et al., 2015a). Contamination may be of issue 

for microalgal biodiesel but this would not be a problem 

for microalgal biogas. Contamination of the microalgae 

species with higher trophic lifeforms and other species 

of microalgae is not a problem for anaerobic digestion. 

The energy balance of biogas systems may also be better 

than biodiesel systems as biogas can be made from wet 

sources (removing the need for drying) and lipids do 

not need to be extracted as for biodiesel. However 

numerous questions need to be answered before deci-

ding on an optimal microalgal biogas system. It is likely 

that innovative integrated systems will be required to 

optimise algal biogas systems. This may include cou-

pling bioenergy systems with microalgae production in 

scrubbing the CO2 from combustion systems. It may 

involve use of microalgae to upgrade biogas (indirecty 

with a bicarbonate/carbonate cycle), to use anaerobic 

digestate as growth media and co-digesting the microal-
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gae produced with slurries and agri-food wastes. 

Numerous options need to be evaluated to reach opti-

mal algal biofuel pathways, including: 

•	 The particular species of algae

•	 The cultivation or harvesting techniques

•	 Pre-treatments for algae

•	 Configuration of biodigester system

•	 Composition of produced biogas (hydrogen or 

methane)

•	 Choice of co-substrates

•	 Integration of technology with other technologies.

It can be said that the TRL for microalgal biogas is 

below 4. Energy and carbon balances are not known. 

The cost of produced biogas is not known. It may well 

be that biorefineries are required to allow financially 

sustainable biofuel systems. The undoubted benefit of 

algal biofuels is the high energy yields per unit of area of 

sea (not land), the separation of bioenergy from agri-

cultural land and the lack of indirect land use change 

effects.
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Glossary of terms
Alkalinity ratio  

The Alkalinity ratio is a titration measurement with sulphuric 
acid and determines the ratio of the intermediate alkalinity (IA) 
caused by organic acids over the partial alkalinity (PA) caused by 
the bicarbonates. In the English literature it is called the IA/PA 
ratio, however, also other terms such as VFA/bicarbonate, VFA/
ALK or Ripley ratio are in use. In German literature the parame-
ter is called a FOS/TAC.

BMP 
Tests for measuring the biochemical methane potential (or bio-
methane potential) are mainly used to determine the possible 
methane yield of a feedstock. These tests also provide informati-
on on the anaerobic degradability of a feedstock, including the 
degradation rate. In addition, a first rough evaluation of the 
presence of inhibitory components can be made.

CSTR 
Continuously stirred tank reactor. This is a type of digester which 
is regularly stirred and the substrate as well as the microbe con-
centration should be the same throughout the entire reactor. The 
design concept of a CSTR is different to that of, for example, a 
plug flow reactor.

HRT 
The hydraulic retention time (HRT) is the average time during 
which the feedstock remains in the biogas digester. As in practice, 
the large majority of existing plants are CSTR reactors and do not 
show special retention systems for microbial biomass, the retenti-
on time of the microbes in the system can be assumed equal to 
the HRT.  

Mesophilic
A mesophilic biogas process normally takes place between 
36-43°C.

OLR 
The organic loading rate (OLR) is given in kg VS m-3 d-1 or kg 
COD m-3 d-1 and stands for the amount of organic material 
which is fed daily to the biogas plant. The critical issue with this 
parameter is that with increased OLR the possibility of acidifica-
tion by organic overload increases.  

Thermophilic 
A thermophilic biogas process normally takes place between 
50-65°C.

TS 
For estimation of the water content of a feedstock, total solids 
(TS) are determined; this parameter is also called dry matter 
(DM). Analysis involves drying the sample to constant weight in 
a drying chamber at 103 to 105°C.  

VS 
In order to determine the amount of organic material in a samp-
le the volatile solids (VS) are determined, this parameter is also 
called organic dry matter (ODM). In general, this determination 
is carried out together with the TS determination described 
above. The sample is dried to constant weight in a drying cham-
ber at 103 to 105°C. Then the sample is ignited to constant weight 
in a muffle furnace at 550°C. The VS is calculated by subtracting 
the ash from the total solids. 
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