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SUMMARY

This report reviews various approaches for processing of biogas plant digestate for the purpose 
of nutrient recovery. It covers both established and emerging technologies and assesses technical 
performance and where possible economics. Techniques for nutrient recovery from digestate 
are developing rapidly and aim to improve nutrient management in agriculture and in waste treat-
ment systems. 
The report is aimed at biogas plant developers and operators as well as agriculture policy makers 
and was produced by IEA Bioenergy Task 37. IEA Bioenergy Task 37 addresses challenges related 
to the economic and environmental sustainability of biogas production and utilisation.
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Improved yields from farming practice and food 

processing are necessary in order to sustain positive 

growth around the world. A key element to achieve this 

aim is adequate supply of fertiliser. 

Biogas plants produce, along with biogas, digestate, 

which is an excellent plant fertiliser, rich in both organic 

matter and in macro- and micronutrients. The physico-

chemical characteristics of digestate vary, strongly 

depending on the nature and composition of the digest-

ed substrates as well as on the operational parameters of 

the biogas processes. 

Digestate is normally used as fertiliser for crops with-

out any further processing, substituting industrially 

produced mineral fertilisers. However, the need for effi-

cient nutrient management, required by restrictions on 

manure application in areas with high livestock density, 

along with depletion of the global natural reserves of 

phosphorous and potassium, make recovery and recy-

cling of plant nutrients from manure, waste streams, and 

other resources increasingly important for farmers, tech-

nology providers, investors, and decision makers. 

This report focuses on digestate from biogas plants, 

where animal manures and slurries, crop residues, 

organic wastes and residues from agri-food processing 

industries and from other industrial processes are the 

principal substrates. 

The nutrients contained in digestate can be extracted 

and concentrated through application of a range of tech-

nologies and processes, although there is no unified 

approach in the published literature about what defines 

digestate processing for nutrient recovery. The present 

report presents the technologies that are commercially 

available. Nutrient recovery technologies are those that 

result in an end-product with higher concentrations of 

plant nutrients than the unprocessed digestate, or tech-

nologies that are capable of separating out nutrients in 

mineral form, or of creating another marketable end-

product, suitable for recycling as biofertiliser, and clos-

ing the nutrient cycle.

Digestate processing can be partial, primarily for the 

purpose of volume reduction, or it can be complete, 

refining digestate to pure water, a solid biofertiliser frac-

tion and fertiliser concentrates. While partial processing 

uses relatively simple and cheap technologies, for com-

plete processing complex methods and technologies are 

currently available with various degrees of technical 

maturity, higher energy input, and higher investment 

and operating costs.

The first step in digestate processing is to separate the 

solid phase from the liquid phase. The solid fraction can 

subsequently be directly applied as biofertiliser in agri-

culture or it can be composted or dried for intermediate 

storage and transport. Depending on the consistency of 

the digestate, screw presses or centrifuges are most com-

monly used for solid–liquid separation.

For complete digestate processing for nutrient recov-

ery, membrane technology can be used, such as nanofil-

tration and ultrafiltration followed by reverse osmosis. 

Membrane filtration produces a nutrient concentrate 

and purified (process) water. A further possibility for 

concentrating digestate is evaporation utilising excess 

heat from the biogas plant CHP unit. Nitrogen recovery 

from digestate can be carried out by ammonia stripping, 

ion exchange or struvite precipitation. Whatever the 

technology applied, complete digestate processing 

requires high energy input, use of chemical reagents 

which, along with high investment costs for appropriate 

machinery, imply considerable costs for such applications.

Due to diversified support schemes in different 

countries, it is not easy to generalise whether a specific 

technology always is feasible in connection with a biogas 

plant. Some countries stimulate biogas plant owners to 

utilise excess heat through subsidies, while others have 

not implemented such fiscal instruments. 

The techniques for nutrient recovery from digestate 

are developing rapidly, aiming to improve nutrient man-

agement in agriculture and in waste treatment systems. 

In parallel, there is a general need to increase the degree 

of commercialisation of organic fertilisers from digestate 

processing through product standardisation. 

The information contained in this report should be 

of interest to biogas and digestate producers, to livestock 

and crop farmers supplying manure to biogas plants or 

using digestate as fertiliser, to agro-food industries and 

other organic waste producers, that supply organic 

wastes to biogas plants as well as to policy makers, regu-

lators, investors and end-consumers.
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The growing awareness over the last decades about pollu-

tion problems arising from organic waste streams and 

manure management has led to restrictions for nutrient 

input per hectare in many places with intensive animal 

production around the world. Anaerobic digestion of 

animal manures and slurries is often required by nation-

al nutrient management regulations or environmental 

regulations in such areas, aiming to close the nutrients 

cycle, to improve veterinary safety, and to provide air 

quality/odour control. At the same time, depletion of 

phosphorus and potassium reserves as well as the neces-

sity to preserve and secure their future supply has 

changed the focus of digestate processing from nutrient 

removal and disposal towards nutrient recovery and recy-

cling. The techniques for nutrient recovery from diges-

tate are developing rapidly, aiming to improve nutrient 

management in agriculture and in waste treatment  

systems.

The report outlines the prevailing techniques for 

digestate processing for the purpose of nutrient recovery. 

The aim of the report is to provide information about 

possibilities for nutrient recovery from digestate, thereby 

highlighting the potential of digestate as a sustainable 

source of nutrients for agricultural use. 

The technical information provided in the report is 

mainly based on an existing publication on digestate 

processing technologies, elaborated by University of 

Natural Resources and Life Sciences (Department IFA 

Tulln) in 2010 (Fuchs and Drosg, 2010), 

which was updated and completed with 

new information from the IEA Bioenergy 

Task 37 member countries and from avail-

able technical and scientific literature. 

Key words: nutrient recovery, digestate process-

ing, digestate conditioning, nitrogen recovery, 

phosphorus recovery, digestate use as fertilis-

er, solid–liquid separation

2.1 What is digestate?
Along with biogas, digestate is a product of anaerobic 

digestion (AD) and represents the effluent or digested 

substrate which is removed from the AD reactor (digest-

er) after recovery of biogas. Digestate is normally liquid, 

but it can also be a solid, stackable material when origi-

nating from, for example, a dry state AD process. During 

the biogas process, the substrate, which can be a mixture 

of various AD substrates or a pure monosubstrate, is 

retained inside the digester for several weeks. During that 

time it is sequentially decomposed by a variety of micro-

organisms through a complex biochemical process in the 

absence of oxygen (anaerobic conditions). Figure 1 out-

lines the interconnections between the four major steps 

taking place during AD: decomposition of organic matter 

during hydrolysis, formation of organic acids during aci-

dogenesis, formation of the main intermediate acetate 

during acetogenesis, and finally formation of methane 

during methanogenesis from either acetate or carbon 

dioxide and hydrogen. Digested substrate is removed 

from the digester tank as digestate and stored in desig-

nated containers. What makes digestate an interesting 

product is its excellent plant fertiliser qualities, based on 

a rich content of plant macronutrients including nitro-

gen (N), phosphorus (P), potassium (K), and sulphur (S), 

various micronutrients and also organic matter. Diges-

tate is normally applied as fertiliser to crops without the 

need for any further processing. 

1. Introduction 2. Digestate

Figure 1. Breakdown of the AD process  
(Madsen et al., 2011)
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2.2 Digestate characteristics – relevant for its 
use as fertiliser 

The physico-chemical characteristics of digestate 

vary, strongly depending on the nature and composition 

of the substrates as well as on the operational parameters 

of the AD process (see Annex 1). Literature (Holm-

Nielsen et al., 1997; Chantigny et al., 2007; Möller et al., 

2008; Tambone et al., 2010; Fouda, 2011) indicates that, 

when compared with raw animal manures and slurries, 

digestate generally has lower total solids (TS) and total 

organic carbon (C) content, lower carbon to nitrogen 

ratio (C:N), and lower viscosity. On the other hand, the 

pH value and the share of ammonium (NH4
+) are 

higher in digestate compared to raw animal manures 

and slurries. Some characteristics relevant for the ferti-

liser quality of digestate are outlined below. 

In Europe, the traditional substrates are agricultural/

livestock by-products (manure and slurries), biogenic 

waste (food waste, municipal organic waste, etc.), energy 

crops (maize whole crop silage, sugar beet, grass silage), 

by-products from food and agro-industries (animal by-

products from abattoirs, brewers’ spent grains and solu-

bles, etc.). More recently, residues from the bioethanol 

and the biodiesel industries are used. The influence of 

various substrate materials on digestate characteristics is 

illustrated in Table 1. These characteristics greatly influ-

ence the choice of digestate processing technology. 

The AD process conditions also influence digestate 

composition, as shown in Table 2. 

 

Table 1: Substrate parameters influencing digestate composition (adapted after Fuchs and Drosg, 2010)

Process parameter Impact on digestate composition

High amount of fresh water • high amount of digestate produced
• low salt/ammonia concentration
• low total solids (TS) content 

High amount of recirculation liquid  
(reutilisation of the liquid fraction of digestate as process water)

• lower amount of digestate produced
• high salt/ammonia concentrations
• elevated total solids (TS) content 

Short hydraulic retention time • high VFA (volatile fatty acids) concentration
• high percentage of organics in TS
• low percentage of ammonia in total nitrogen

Table 2: Process parameters influencing digestate composition (Fuchs and Drosg, 2010)

Substrate parameter Impact on digestate composition Comments

Organic wastes • low total solids (TS) content 
• low percentage of organics in TS

In general, most organic wastes show high contents of organics in 
the total solids (e.g. >90 % for food waste). This however, depends 
on the waste type. The organic content in wastes is often readily 
degradable and converted to biogas, hence leaving a lower amount 
of (inert, not utilised) organic matter in the digestate.

High amount of abattoir 
waste

• high nitrogen concentration
• high percentage of ammonia in 

total nitrogen

High amount of manure • low total solids (TS) content
• considerable nitrogen concentration

Some pig manure, sow manure, fattening pig manure will lead to 
relatively low total solids content, however cattle manure full of 
undigested plant material and bedding material will give rise to 
relatively high total solids content in the digestate. The percentage 
of ammonia in total nitrogen depends on many factors, distribution 
coefficient between types (cattle, pig, and poultry probably being 
the most relevant). Typically, no more than 50 % of the total nitro-
gen in raw cattle slurry is ammonium (based on > 200 representati-
ve manure samples (ENVO Group, 2014)).

Energy crops • high total solids (TS) content
• high percentage of organics in TS 

(VS/TS ratio)
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2.2.1 Total solids content (TS)
The content of total solids (also called dry matter) 

decreases during AD, so digestate can contain 50 % to 

80 % less TS compared to the incoming substrate (Holm 

Nielsen et al., 1997; ARBOR, 2013). The TS content of 

digestate mainly depends on the initial TS content of the 

substrate (e.g. 3 – 15 % TS for wet state AD, and up to 

30 % TS for dry state AD), as well as on the content of 

easily digestible organic matter. It is generally accepted 

that woody materials containing relatively large amounts 

of the structural plant polymer lignin have a very low 

digestibility, while substrate containing fats, sugars and 

alcohols have very high digestibility. Up to 70 % of the TS 

content of digestate can be organic, represented by vola-

tile solids (VS). This implies that digestate application on 

soils has the potential of improving soil structure through 

input of inert organic matter and fibers (primarily ligno-

cellulose), which contributes to the formation of humus 

in the medium to long term. 

2.2.2 pH value
The pH value of fresh digestate typically ranges from 

7.5 to 8.0 pH. This is higher than the average pH of 7.1 

for raw manure (ARBOR, 2013). The pH is mainly influ-

enced by the biochemistry of the AD process, while the 

characteristics of substrates will also influence it (ARBOR, 

2013, and WRAP, 2012). For example, the formation of 

ammonium carbonate ((NH4)2CO3) as well as the 

removal of CO2 as a result of the transformation of CO3
2− 

and 2 H3O
+ to CO2 and H2O, result in increased pH 

(BiotecVisions, 2012). The consumption of volatile fatty 

acids (VFA) during AD increases the pH. The same effect 

is produced by the concentrations of basic cations like 

Ca2+ and K+ (ARBOR, 2013). On the other hand, pre-

cipitation of carbonates such as calcite CaCO3 and of 

iron phosphates contribute to decreasing the pH (Hjorth 

et al., 2010). On the one hand an increased pH indicates 

the degradation of offensively smelling VFAs, which 

reduces odour emissions. On the other hand the degree 

of ammonia volatilisation increases. Consequently, diges-

tate should be immediately incorporated in soil after 

application, or even via direct soil injection to prevent 

excess ammonia emissions. However, the superior infil-

tration speed of digestate into soil compared to raw 

manure/slurry lowers the risk of excess ammonia vola-

tilisation if digestate is handled according to best agricul-

tural practice. Storage of digestate until field application 

should take place in closed storage tanks (manure storage 

tanks with flexible plastic coverage). 

2.2.3 Nitrogen content
The AD process degrades organic nitrogen com-

pounds, releasing ammonium NH4-N, which is immedi-

ately bioavailable for growing plants. The content of 

ammonium in digestate is directly related to the total N 

content in the substrate. As pig slurry has higher N-total 

and NH4-N contents than cattle slurry, this will be 

reflected directly in the digestate dominated by such sub-

strates (Holm-Nielsen et al., 1997; Fouda, 2011). Specific 

differences of nitrogen concentrations in digestate deriv-

ing from the AD of energy crops compared to digestate 

from organic waste and industrial by-products are shown 

in Figure 2 a and b. The figure shows that nitrogen con-

centrations in energy crop AD plants are rather similar, 

whereas in biogas plants co-digesting organic wastes, the 

nitrogen concentration varies widely, mainly due to vari-

ations in nitrogen contents in the respective substrates. In 

addition, process parameters such as the amount of fresh 

water and degree of recirculation can influence the total 

nitrogen concentrations. In the case of mono-digestion 

of industrial by-products, the influence of nitrogen con-

centration in the substrate is easily recognised. So is the 

influence of sulphate.

2.2.4 Phosphorus content
The phosphorus content of digestate is either given as 

total phosphorus or as phosphate equivalents. The AD 

process does not affect the content of phosphate in diges-

tate, which is completely dependent on the content in the 

substrate. Nevertheless, co-digesting substrate with high 

content of phosphate like pig slurries with substrate with 

lower phosphate content will consequently lower the 

phosphate content in the digestate produced due to sim-

ple dilution (ARBOR, 2013).



Nutrient Recovery 

8

2.2.5 Impurities and contaminants
The presence of impurities and contaminants in 

digestate, whether they are of physical, chemical or bio-

logical nature, is highly dependent on their abundance 

in the original substrates. The biological contaminants 

(pathogens and weed seeds) can be effectively degraded 

during the AD process to an extent, which depends on 

the process temperature and the retention time inside 

the digester. According to Angelidaki and Ellegaard 

(2003) thermophilic treatment at a temperature of at 

least 52°C and a minimum guaranteed retention time of 

10 h effectively corresponds to a controlled sanitation at 

70°C for 1 h. Most problematic weeds and pathogens are 

removed under these conditions. This is, however, not 

the case for the physical contaminants (pieces of inert 

materials or larger pieces of digestible ones) as well as 

the chemical contaminants (heavy metals and persistent 

organic pollutants), which are mainly able to pass 

through the AD process unaffected. The presence of any 

kind of impurities in digestate is a potential environ-

mental hazard and has a negative impact on its quality 

and suitability to be used as fertiliser, and on the farmers’ 

acceptance of the product (Al Seadi and Lukehurst, 

2012). Careful selection of “clean” substrates or alterna-

tive conditioning of substrates prior to AD is therefore 

the most sustainable way to avoid impurities and con-

taminants ending up in the digestate. There are quality 

standards, national certification systems, and positive 

lists of substrates already adopted in several countries, 

aiming to ensure that only high quality digestate is certi-

fied as fertiliser (Al Seadi and Lukehurst, 2012). Research 

results (Kern, 2008) indicate that the concentration of 

heavy metals in phosphorus recovered as the mineral 

struvite from digested sewage sludge is many times 

below the threshold values for crop fertiliser in Germa-

ny. The explanation is that pollutants present in the 

anaerobic sludge, such as heavy metals and persistent 

organic pollutants are not involved in the crystallisation 

process of struvite. Hence, they are present in the stru-

vite product only in minute amounts (Kern, 2008). 

Digestate

a)

Figure 2: Examples of the variation of nitrogen in the digestate of biogas plants with different substrate types (a) total nitrogen concentration in kg per ton fresh 
matter (FM), (b) ammonium nitrogen as percentage of total nitrogen). horizontally striped columns indicate digestate from typical agricultural plants, diagonally 
striped columns indicate digestate from mono-digestion of industrial by-products, and unstriped columns indicate digestate from typical waste treatment plants. 
(Source: Fuchs and Drosg, 2010)
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Figure 2a and 2b: Examples of total nitrogen concentration (TN) in the digestate of 

biogas plants with different substrate types (in kg per ton fresh matter (FM)). 

Horizontally striped columns indicate digestate from typical agricultural plants, 

diagonally striped columns indicate digestate from mono-digestion of industrial by-

products, and unstriped columns indicate digestate from typical waste treatment plants. 

(Source: Fuchs and Drosg, 2010) 
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In this report digestate processing is approached 

from the point of view of nutrient recovery and digestate 

conditioning. Here the aim is to produce a standardised 

biofertiliser (solid or liquid), where the quality and mar-

ketability of the digestate is improved. However, diges-

tate processing can also be approached from the point of 

view of digestate treatment. This approach is similar to 

wastewater treatment, where nutrients and organic mat-

ter from the effluent are removed in order to allow dis-

charge to the sewage system, to the wastewater treatment 

plant on site or to a receiving water body. In practice, 

digestate processing concepts show aspects of both 

approaches. Nevertheless, technologies where nutrients 

cannot be recovered (e.g. denitrification in aerobic 

wastewater treatment) are not considered here. Conse-

quently, the present report defines digestate processing 

for nutrient recovery as the technology that results in an 

end-product with higher concentrations of plant nutri-

ents than the unprocessed digestate, or technologies that 

are capable of separating out nutrients in mineral form, 

or of creating another marketable end-product, suitable 

for recycling as biofertiliser, thus closing the nutrient 

cycle.

3.1 Overview of digestate processing technologies
Digestate processing involves the application of dif-

ferent technologies. These technologies are mostly com-

parable to existing technologies from manure process-

ing, sewage sludge treatment, and wastewater treatment. 

Digestate processing can be partial, primarily for the 

purpose of volume reduction, or it can be complete, 

refining digestate to for example pure water, a solid 

biofertiliser fraction, and fertiliser concentrates. 

The first step in digestate processing is to separate the 

solid phase from the liquid phase. In order to distinguish 

the different fractions in digestate processing, the term 

‘digestate’ or ‘whole digestate’ is used in the report for 

the untreated effluent from the biogas plant, and “solid 

fraction”, respectively “liquid fraction” for the products 

of the solid–liquid separation. The solid fraction can 

subsequently be directly applied as biofertiliser in agri-

culture or it can be composted or dried for intermediate 

storage and viable transport. To enhance solid–liquid 

separation, flocculation or precipitation agents can be 

added.

While partial processing uses relatively simple and 

cheap technologies, for complete processing different 

methods and technologies are currently available, with 

various degrees of technical maturity, higher energy 

input, and higher investment and operating costs. For 

nutrient recovery, membrane technology, such as nano- 

and ultrafiltration followed by reverse osmosis, can be 

used (Fakhru’l-Razi, 1994; Diltz et al., 2007). Membrane 

filtration produces a nutrient concentrate and purified 

Figure 3: overview of viable options for digestate processing (Source: Fuchs and Drosg, 2013)

3. Digestate processing for nutrient recovery
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process water (Castelblanque and Salimbeni, 1999, Klink 

et al., 2007). The liquid digestate can also be purified 

through aerobic biological wastewater treatment (Cama-

rero et al., 1996). However, because of the high nitrogen 

content and low biological oxygen demand (BOD), 

addition of an external carbon source is often necessary 

in order to achieve sufficient denitrification. A further 

possibility for concentrating digestate is evaporation 

with excess heat from the biogas plant CHP unit. In 

order to reduce the nitrogen content in the digestate, 

ammonia stripping (Siegrist et al., 2005), ion exchange 

(Sánchez et al., 1995) or struvite precipitation (Uludag-

Demirer et al., 2005; Marti et al., 2008) have been pro-

posed. Whatever technology is applied, advanced diges-

tate processing in most cases requires high energy input 

and chemical reagents. Together with increased invest-

ment costs for appropriate machinery, considerable 

treatment costs also arise. An overview of viable diges-

tate processing technologies is given in Figure 3. 

3.2 Applied processes at industrial scale
As illustrated above (Figure 3) a very broad range of 

technologies are currently being applied for digestate 

processing, depending on the boundary conditions. Up 

to now, no market leading technology has evolved. The 

most abundant approach is solid–liquid separation of 

digestate, where, depending on the consistency of the 

digestate, screw presses or centrifuges are most com-

monly applied. Solid–liquid separation can be improved 

by the addition of precipitating agents. 

Among the technologies for further treatment of the 

liquid fraction of digestate, membrane purification is 

the only process that can achieve a degree of purification 

that can allow direct discharge to receiving waters. It is 

also among the most frequently applied approaches in 

more complex digestate processing facilities in Germany, 

Switzerland, and Austria (Figure 4). Nevertheless, mem-

brane purification is the most expensive technology, 

with high potential for optimisation in large-scale appli-

cations. If excess heat is available, evaporation is an 

interesting option, although it gives rise to some contro-

versy. In Germany digestate processing technologies 

using heat (e.g. evaporation, drying) are being used 

more frequently due to the subsidies for waste heat uti-

lisation at biogas CHPs. Evaporation of the liquid frac-

tion of digestate is a rather robust technology, however, 

if the liquid fraction contains considerable amounts of 

fibrous material it is necessary to remove this before-

hand to avoid clogging in the heat exchangers. Other 

technologies that are less commonly applied include 

ammonia stripping, ion exchange, solar drying, etc. 

Figure 4: overview of the distribution of industrial-scale applications for further treatment of the liquid fraction of 
digestate in germany, Austria and Switzerland, Status from 2009 (Fuchs and Drosg, 2013)

Biological treatment
(+ subsequent treatment)

Membrane treatment
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Co-treatment in a municipal
wastewater treatment plant

Aerobic treatment + ultrafiltration
+ reverse osmosis

Membrane bioreactor
+ reverse osmosis



The standard utilisation of digestate is application as 

fertiliser and soil conditioner in agriculture, horticulture, 

forestry etc. Direct application is possible immediately 

following its removal from the digester (whole digestate) 

without the need for any further processing. 

However, digestate is rather dilute with respect to 

nutrients, which makes the costs of transportation rela-

tively high compared to conventional fertiliser. Other 

significant costs are related to investments in storage 

capacity, required by environmental regulations in many 

countries, like for instance in the case of Denmark, Ger-

many and France, where not only the nutrient input per 

hectare is restricted, but also the period of application is 

limited to the growing season. 

Nevertheless, many crop cultivaters agree that syner-

gistic effects arise from applying digestate as organic fer-

tiliser compared to conventional fertiliser. 

4.1 Legal frameworks 

At EU level, the European Nitrate Directive 91/676/

EEC limits the annual load of nitrogen that can be 

applied to agricultural land in EU member states. In 

many parts of Europe and around the world, livestock 

production is intensive, concentrated in areas with lim-

ited land available for manure application. This creates a 

permanent excess of nutrients, making such areas highly 

vulnerable from the point of view of nutrient pollution 

of ground and surface waters. When animal feed is being 

imported to such a region, efficient nutrient handling 

becomes even more crucial. Restrictions on the nutrient 

input per hectare require the excess nutrients to be recov-

ered, exported, and recycled outside the vulnerable areas. 

To deal with the problem, digestate processing technolo-

gies, aiming first of all at volume reduction and nitrogen 

removal, have consequently been implemented in many 

places during the last decade. 

More recently, also concerns regarding phosphorus 

surplus from manure application in many areas and 

excessive levels of phosphorus found in surface and 

ground waters have greatly increased demand for nutri-

ent management and export of excess of nutrients.

4.2 Resources management
An ever growing aspect of digestate processing is its 

contribution to effective resource management. Nutri-

ents recovered from digestate are important as a sustain-

able source of phosphorus and potassium. The natural 

reserves of phosphates and potassium are concentrated 

in few areas around the globe and extracted through 

mining activities. It is estimated that the easily available 

resources of phosphorus will be depleted by the end of 

this century (Neset & Cordell, 2012), while the global 

demand for nutrients will increase continuously, creating 

an imbalance between availability and demand, with the 

consequence of rising prices for essential plant nutrients 

(Vaneeckhaute et al., 2013). 

4.3 Logistics
Storage, transport, handling and application of diges-

tate as fertiliser imply significant costs for farmers, due to 

its large volume and low nutrient concentration com-

pared with its fertiliser value. For small to medium-scale 

biogas plants, transportation of substrate and digestate 

accounts for roughly 33 % of the overall biogas produc-

tion costs (Bojesen et al., 2014), which makes transport 

minimisation a crucial cost reduction criterion.

Significant transportation costs savings can be real-

ised for the farmers and crop cultivators associated with 

a biogas plant, if the tanker trucks collect raw manure 

from stables and deliver digestate in storage tanks nearby 

the fields where digestate is to be applied. Hence, indi-

vidual parties should settle on a fair distribution of the 

transportation costs in order to optimise savings for the 

farmers.

4.4 Product standardisation
Up to now, the market for organic fertilisers produced 

through digestate processing is poorly developed in most 

countries. From the point of view of commercialisation 

of organic fertiliser from agricultural substrates, this 

should be feasible if there is a suitable legal frame. For 

industrial wastes, the legal situation will depend on the 

origin of the waste and the process in question. It is nev-

Nutrient Recovery Drivers for digestate processing for nutrient recovery
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ertheless expected that in the near future, the degree of 

commercialisation of organic fertilisers from digestate 

processing will increase. Local policies and markets 

influence the marketability of compost and dried diges-

tate. Quality standards and legislation for fertilisers and 

compost products need special consideration. Especially 

in the case of digestate originating from co-digestion of 

industrial waste and household waste, the presence of 

heavy metals, persistent organic pollutants and other 

chemical pollutants may be a barrier for marketing of 

digestate products. It must be emphasised that these 

consumer-induced barriers are often not based on quan-

tifiable parameters, rather on social attitude towards 

waste and its inherent heterogeneity. Legal frameworks 

in most countries stipulate the quality conditions for the 

marketing of waste based digestate products.

4.5 Other drivers
Because of high water content, application of whole 

digestate (as well as of raw animal slurries) could lead to 

“soaking” of land in very rainy, humid climates or in 

water sensitive areas. Such conditions too, make diges-

tate processing for nutrient concentration attractive.

Solid–liquid separation is the most frequent first step 

in digestate processing. Only in very few cases, whole 

digestate is processed without a prior solid–liquid sepa-

ration step (e.g. drying of whole digestate). The princi-

ple of solid–liquid separation is shown in Figure 5. 

In order to establish the best solid–liquid separation 

process, the focus has to lie on finding the right technol-

ogy (or technology combination) for an efficient but 

cost-effective solid fraction separation step. Especially 

for consecutive membrane treatment, but also for evap-

oration, the right degree of separation of the solid frac-

tion from the digestate is essential (for enhanced solids 

removal see section 5.5).

Typical ranges for the distribution of the main con-

stituents between the solid fraction and the liquid frac-

tion are provided in Figure 6. The separated solid frac-

tion can be applied directly for agricultural purposes 

with the advantage of considerably lower transport costs 

due to the reduced water content. Another advantage is 

that the solid fraction can be stored under much simpler 

conditions. As an alternative to direct land application 

further stabilisation and transformation into a market-

able product can be achieved, e.g. through drying or 

composting. Typically the solid end-products obtained 

are used as a biofertiliser. Another application, the pro-

duction of pellets for heating purposes, is currently the 

subject of investigations. However, with regard to the 

high nitrogen content and associated increased NOX 

emissions, the suitability of the pellets for thermal recov-

ery is not yet sufficiently clarified.

Figure 5: Solid–liquid separation step in digestate processing (Source: Fuchs and Drosg, 2010)

5. Solid–liquid separation – the 
first step in digestate processing
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The major fraction deriving from the separation step 

is the liquid fraction. Depending on the characteristics of 

the whole digestate and the efficiency of solids removal, 

its composition is subject to wide variation. Frequently, 

part of the liquid fraction is recycled to adjust the dry 

matter concentration of the input substrate (Resch et al., 

2008). For the remaining liquid fraction, there are a vari-

ety of recovery and treatment options. In the simplest 

case, it is spread on agricultural land. Here the advantage 

of solid–liquid separation can be that a solid fraction 

gives rise to improved storage and residues management 

logistics. Nevertheless, further treatment with the aim of 

volume reduction and recovery of nutrients can be 

applied. In most cases, these objectives will be achieved 

only through a sequence of several steps. As a general 

rule, the necessary procedures are relatively complex and 

therefore expensive. 

5.1 Screw press 
 Screw press separators (see Figure 7) are often used if 

the digestate has high fibre content. In Figure 8 the 

detailed set-up of a screw press separator is shown. A 

screw presses the fibres against a cylindrical screen. The 

liquid fraction of digestate leaves the separator through 

the sieve. Because of the increasing diameter of the screw 

the pressure is increases as the fibres advance along the 

separator. Finally, the solid fraction (containing the 

fibres) exits at the end of the separator, where the resist-

ance can be adjusted mechanically. The degree of separa-

tion can be influenced by the mesh size of the screen, 

smaller particles (diameter of 0.5–1 mm) remain in the 

liquid (Weiland, 2008). 

Unlike decanter centrifuges, screw press separators 

cannot separate small sludge particles from the digestate. 

If the digestate contains mainly fibres, the amount of 

solid fraction that will accumulate is dependent on the 

Figure 7: Screw press separator (Source: Fuchs and Drosg, 2010)

Figure 8: Detailed set-up of a screw press separator (Source: Fuchs and Drosg, 2010)

Figure 6: Distribution of the principal constituents after solid–liquid separation (data 
based on own investigations and various references; adapted after Bauer et al. (2009)) 

Liquid fraction Solid fraction



Nutrient Recovery Solid–liquid separation – the first step in digestate processing

14

dry matter content of the digestate. Bauer et al. (2009) 

found a correlation between dry matter content in diges-

tate and the amount of solid fraction accumulated  

(Figure 9). 

The separation efficiency of different components in 

the digestate was investigated by KTBL (2008). In Table 

3, an overview of the observed separation efficiency is 

given. The advantages of a screw press separator com-

pared to the decanter centrifuge are the low investment 

costs (approximately 20,000 € for a 500 kWel biogas 

plant, Bauer et al, 2009) and low energy consumption 

(0.4 – 0.5 kWh/m³, Fuchs and Drosg, 2010).

With respect to nutrient distribution, Table 4 shows 

the calculated percentage of nutrients in the solid phase, 

as function of degree of TS separation by means of a 

screw press, on the base of field data from agricultural 

biogas plants (Wendland, 2009). 

5.2 Decanter centrifuge
Decanter centrifuges (see Figure 10) are frequently 

applied in digestate processing. They are used to separate 

small particles and colloids from the digestate. In addi-

tion, they can be used to separate the majority of the 

phosphorus contained in digestate with the solid frac-

Figure 9: relationship between the dry matter content in the inflow and the proportion 
of liquid phase (pooled data from screw extractor and rotary screen separator experiments). 
(Source: Bauer et al, 2009)

Table 3: Typical separation performance of screw press separators (KTBL, 2008)

Percentage of 
fresh matter

[%]

Degree of separation [%]

TS VS COD NH4-N TN PO4-P K

Solid fraction 10.0 48.1 56.3 48.8 9.2 17.0 21.8 10.0

Liquid fraction 90.0 51.9 52.4 51.2 82.0 83.0 78.0 90.0

Table 4: Distribution of TS and nutrients in slurry, solid and liquid fraction after separation (Wendland, 2009)

TS
[%]

TN
[g kg-1]

NH4-N
[g kg-1]

P2O5
[g kg-1]

K2O
[g kg-1]

Slurry (average) 6.5 5.1 3.2 2.3 5.5

Solid fraction 24.3 5.8 2.7 5.0 5.8

Liquid fraction 5.7 4.9 3.0 2.3 6.2

Figure 10: Decanter centrifuge 
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tion (Møller, 2001). There are several commercial brands 

of decanter centrifuges in use today for digestate separa-

tion, with similar performances. In Figure 11 the detailed 

set-up of a decanter centrifuge is shown. The digestate 

enters the centrifuge via a central inlet and is fed into the 

centre of the centrifuge. The particles are separated by 

the centrifugal force. The separation performance 

depends on the particle size and shape, the difference in 

density between particles and fluid, as well on the fluid 

viscosity. The separated particles accumulate on the walls 

of the cylinder and are transported and fur-

ther compressed by a screw. At the final outlet 

(right-hand side in Figure 11) the solid frac-

tion leaves the decanter. On the left side, the 

clarified liquid leaves the decanter. Energy 

consumption is rather high (3 – 5 kWh/m³, 

Fuchs and Drosg, 2010), compared with other 

solid–liquid separation technologies.  

In Tables 5 and 6 technology test results of 

the GEA Westfalia decanter centrifuge are 

shown (DANETV, 2010). The test was made 

on 5 batches of minimum four hours each, 

with a fixed start and end time for each batch. 

For each batch the weight or volume of input digested 

biomass, liquid output fraction and solid output fraction 

were measured and concentrations of solids and nutri-

ents were determined by analysing representative samples 

of the inlet flow and the two outlet flows. During the  

5 batch tests, the decanter centrifuge treated 283 m3 of 

digestate, corresponding to an average capacity of 

13.72 m3 biomass treated per hour.  

A specific example of the effect of digestate separation 

by decanter centrifuge is given in Table 7.

Figure 11: Detailed set-up of a decanter centrifuge (Source: Fuchs and Drosg, 2010)

Table 5: Digestate separation by decanter centrifuge – average content of total solids, ashes, volatile solids, 
suspended solids and pH over 5 batches (adapted after DANETV, 2010)

Fraction TS  
[%]

Ash  
[%]

VS*  
[%]

Suspended solids 
[g/L]

pH 
[-]

Input digestate 4.85 1.46 3.39 35.0 7.64

Liquid fraction 2.31 0.82 1.49 8.4 7.94

Solid fraction 27.66 6.46 21.20 not relevant 8.12

* Values for volatile solids are not measured but calculated as the difference between total solids and ashes.

Table 6: Digestate separation by decanter centrifuge - average concentrations of nutrients over 5 batches (adapted after DANETV, 2010)

Fraction TN   
[g kg-1]

NH4-N   
[g kg-1]

Org N* TP
[g kg-1]

Total sulphur
[g kg-1] 

Input digestate 4.08 2.87 1.21 0.94 0.42

Liquid fraction 3.49 2.63 0.86 0.31 0.29

Solid fraction 8.15 4.50 3.65 6.52 1.56

* Values for organic nitrogen are not measured but calculated as the difference between total-N and ammonium-N.
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5.3 Belt filters
Belt filters can be used for digestate processing. There 

exist two types: belt filter presses and vacuum belt filters. 

A belt filter press can be seen in Figure 12. It consists of 

a closed loop of textile belt wound around cylinders. 

Digestate is applied continuously at the start of the belt 

filter. The first pre-dewatering occurs by gravitation. In 

the next step material is 

pressed between two filter 

belts. Subsequently varying 

mechanical forces are applied 

so that the filter cake is dewa-

tered further. Finally the 

dewatered cake is removed 

from the filter belt by a 

mechanical device. The filter 

belt is then cleaned by spray-

washing (often filtrate is used for washing) and is then 

used again for filtration. 

The second option is a vacuum belt filter, as illus-

trated in Figure 13. In vacuum belt filters, digestate is 

applied onto a filter belt and vacuum is applied to its 

underside, whereby water is sucked through the filter 

and the filter cake remains on the belt.  

Table 7: Separation of digestate (TS = 2.8%) by decanter centrifuge. (Adapted after Jørgensen, 2009)

Specification Digestate Solid fraction Liquid fraction

Quantity [kg] 1,000 80 920

TS [kg] 28 24 4

Water [kg] 972 56 916

Tn [kg] 5 1.25 3.75

nh4-n [kg] 4 0.3 3.7

TP [kg] 0.9 0.7 0.2

k [kg] 2.8 0.2 2.6

Figure 12: Scheme of a belt filter press (Source: Fuchs and Drosg, 2010)

Figure 13: Vacuum belt filter (Source: Fuchs and Drosg, 2010)
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For digestate processing on belt filters, the addition of 

precipitating and flocculating agents (see section 5.5.1) is 

indispensable in order to improve separation efficiency. 

Factors that influence separation efficiency are character-

istics of digestate, amount and type of precipitating and 

flocculating agents added and mesh size of the filter. The 

advantages of the belt filter are higher separation effi-

ciency compared to the screw press and lower energy 

demand (1.5 – 2 kWh/m³) compared to a decanter centri-

fuge. A drawback is, however, the high amount of pre-

cipitating/flocculating agents needed, which can be two 

to three times higher than what is needed for a decanter 

centrifuge. 

5.4 Discontinuous centrifuge
Apart from decanter centrifuges, also discontinuous 

centrifuges (see Figure 14) can be used for digestate pro-

cessing. These centrifuges are operated batch wise, which 

means that in consecutive cycles each time a certain 

amount of digestate is centrifuged. In these cycles whole 

digestate is fed to the centrifuge continuously. The super-

natant (liquid fraction) also leaves the centrifuge con-

tinuously whereas the separated solid fraction remains in 

the centrifuge and is removed at the end of each cycle. 

Subsequently a new cycle is started. 

Energy demand and efficiency are comparable with 

decanter centrifuges, however, a slightly higher total sol-

ids concentration of the solid fraction can be achieved. 

Although a discontinuous centrifuge can be operated 

fully automated, it can show higher risks of process fail-

ure due to batch wise operation. In practice, discontinu-

ous centrifugation of digestate is not widespread, so few 

practical experiences are available. Data for the centrifu-

gation of digestate from thin stillage (a by-product from 

bioethanol production) can be found in Meixner et al. 

(2015).

5.5 Enhanced solids removal 
The following solids removal processes differ from 

the main separation processes, as described above, where 

the majority of the solids are removed. They are applied 

to polish the liquid fraction by a subsequent solids 

removal step. The necessity for enhanced solids removal 

depends on the overall digestate processing concept. 

Enhanced solids removal is indispensable if the liquid 

fraction is, for example, treated in a membrane process. 

Another issue is if for example a high level of phosphorus 

removal is demanded. 

5.5.1 Precipitation/Flocculation 
Precipitating agents and flocculants are often added 

to digestate in order to increase separation efficiency of 

for instance suspended solids or phosphorus in practi-

cally any solid–liquid separation process. In addition, a 

separate precipitation/sedimentation step after the main 

solid–liquid separation can also be considered. In gener-

al, although phosphorus is concentrated in the solid frac-

tion in any solid–liquid separation process (see Figure 6), 

the separation efficiency can be increased drastically (> 

95 % total separation) by adding precipitating/flocculat-

ing agents (Meixner et al., 2015).

The principle of flocculation can be seen in Figure 15 

where small suspended particles in digestate are often 

negatively charged and therefore remain in solution. 

Here precipitating agents and flocculants come into play. 

Positively charged ions aggregate around particles and 

this process leads to the formation of larger particles 

(coagulation). As a consequence, larger particles formed 

by flocculation can be separated more easily. Organic Figure 14: Scheme of a discontinuous centrifuge (Source: Fuchs and Drosg, 2010)
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polymers (e.g. acrylamide) may be added to increase the 

linkage of the flocks and therefore flocculation perfor-

mance. 

Common precipitating agents are aluminium sul-

phate (Al2(SO4)3), ferric chloride (FeCl3), ferric sulphate 

(Fe2(SO4)3), and lime (Ca(OH)2). The dosage of the 

precipitating agents or flocculants can either be done 

separately in mixing tanks prior to solid–liquid separa-

tion or in-line, which means that they are injected 

directly into the transfer pipes, where mixing systems are 

integrated to provide sufficient turbulence.

Polymers are widely used in wastewater treatment 

plants during dewatering of sludge, which is then 

applied on farmland. Some agricultural co-digestion 

plants have also applied polymers, but the use appears to 

be limited to a few plants. However, there is still insuffi-

cient documentation with respect to the potential toxic-

ity and ultimate fate of 

certain polymers when 

applied to farmland. 

Extensive use of poly-

mers in the wastewater 

treatment sector has 

not led to reporting of 

negative impacts on the 

environment, however 

detailed controlled 

studies have not been 

undertaken. Hence, the 

precautionary principle 

prevails in many cases 

and can be a barrier towards acceptance 

of polymer–containing digestate prod-

ucts (Henriksson, 2010).

The uncertainty about polymer usage 

has led to regulatory restrictions. For 

instance in Sweden the quality standards 

applied to digestate used as fertiliser 

(SPCR120) do not allow for addition of 

polymers due to insufficient knowledge 

about their environmental impact when 

spread on soils. In Germany this aspect 

has been taken into consideration in the 

amendment to the Fertilizer Regulation 

(DüMV) from November 2012 (BGK 

e.V., 2012). For polymers that do not degrade in the soil, 

a transitional period until 31.12.2013 was set. Mean-

while, for a better transition to alternative products this 

period was extended to 31.12.2016. In addition, the 

required degradation rate for permitted polymers was 

more exactly specified: > 20 % degradation within 2 

years.

5.5.2 Flotation
Flotation is a process that is rarely applied in diges-

tate processing due to the additional costs. The principle 

of flotation is that the lifting force of suspended particles 

is increased by the attachment of small gas bubbles to 

them. Consequently, they are lifted to the surface where 

they produce a floating layer that can then be harvested. 

In general, flotation equipment occupies 30 – 50 % less 

Figure 15: Simplified illustration of the different phases in flocculation I: suspended colloids, 
II: destabilisation of colloids by flocculation agents, III: linkage and increase of flocks by floccu-
lation agents (Source: Fuchs and Drosg, 2010)

Figure 16: Scheme of flotation (Source: Fuchs and Drosg, 2010)
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space than standard sedimentation equipment as the lift-

ing force is generally much higher than the sedimenta-

tion force. Two different flotation processes exist: flota-

tion by decompression or by gassing. In the first process, 

pressurised water saturated with air is injected into the 

flotation chamber (see Figure 16). The sudden reduction 

in pressure leads to the formation of microbubbles. In the 

second process air is directly injected via special nozzles 

that produce small air bubbles. The first process pro-

duces smaller bubbles and is more commonly applied in 

wastewater treatment. For any efficient flotation process 

the addition of flotation agents 

is necessary, which are compa-

rable to precipitating/floccu-

lating agents (see section 

5.5.1). Apart from increasing 

flock size and volume, also the 

ability of the air bubbles to 

attach to the flocks is enhanced. 

5.5.3 Screens and filters
Vibrating screens (see Fig-

ure 17) and vibrating curved 

screens (see Figure 18) are 

commonly applied in digestate 

processing. The liquid fraction 

of the digestate is applied on 

the screen and any solid mate-

rial (screenings) remain on 

top of the screen (and are con-

stantly removed), whereas the liquid passes through. In 

order to prevent rapid clogging of the screens, they are 

operated under vibration. Typical mesh sizes are 150 – 250 

µm for vibrating screens and 100-300 µm for vibrating 

curved sieves. However, too small mesh sizes can lead to 

rapid clogging. Apart from screens, security filters are 

also used which have the function of retaining larger 

particles, e.g. prior to a membrane system, which have 

accidentally passed previous solid–liquid separation 

steps. As they have a different function than the screens, 

the retained material is not constantly removed.  

Figure 17: Vibrating screen (Source: Fuchs and Drosg, 2010) 

Figure 18: Vibrating curved screen (Source: Fuchs and Drosg, 2010)
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The solid fraction which accumulates in solid–liquid 

separation shows TS concentrations in the range of 

20 – 30 %. This fraction is partially stabilised so that 

appropriate storage and direct application as biofertiliser 

or soil improver on agricultural land is facilitated. Nev-

ertheless, this fraction still contains biodegradable mate-

rial, in other words microbial activity can still happen 

and odour emissions can occur. If it is desired to obtain 

a stable and marketable biofertiliser product, further 

processing is necessary, which can be composting, dry-

ing or another form of stabilisation.

6.1 Composting
In the composting process microbes degrade and 

transform the organic material under aerobic conditions 

to compost, which is stabilised organic matter, contain-

ing humic substances. Compost is an ideal biofertiliser 

as it slowly releases nutrients and shows good perfor-

mance as soil improver. However, as the solid fraction 

from digestate is wet and already partially degraded, the 

addition of bulking material (such as woodchips) is nec-

essary for a stable composting process to occur. The 

bulking material helps air to enter the compost heap and 

aerobic conditions are more easily maintained. Depend-

ing on the local availability of bulking material, it may be 

advantageous to do the composting at a centralised 

composting facility (examples shown in Figure 19). A 

special application of composting is vermiculture using 

earthworms. In general, composting of the solid fraction 

increases the concentration of nutrients in the solid frac-

tion, but also may result in nitrogen loss. 

6.2 Drying
Processes for drying of the solid fraction of digestate 

aim at stabilising the product as well as reducing its total 

mass and increasing the nutrient concentration. If elec-

trical power is produced at the biogas plant, for example 

in a CHP unit, the excess heat can be utilised for drying. 

Apart from drying the solid fraction it is also possible to 

dry the whole digestate (without prior solid–liquid sepa-

ration). However, as excess heat is not sufficient to dry all 

of the digestate, drying of the solid fraction is more fre-

quently applied.  

The principles of the drying process are illustrated in 

Figure 20. The following techniques can be applied in 

order to dry the whole digestate or the solid fraction: 

belt dryer, drum dryer, feed-and-turn dryer, and fluid-

ised bed dryer. For digestate applications, the belt dryer 

(see Figure 21) is more commonly applied. As an alter-

native, solar drying systems are applied for digestate (see 

Figure 22). These systems can be supported by excess heat 

from a CHP unit. As the exhaust of the digestate dryers 

contains dust, ammonia, and other volatile substances 

(e.g. volatile acids), exhaust gas cleaning systems have to 

be applied in order to reduce emissions. Such systems 

contain a dust filter as well as washer/scrubber units.

Figure 19: composting facilities in an open (left) or closed (right) environment (© Erwin Binner, Institute of Waste 
Management, University of Natural Resources and Life Sciences, Vienna) 

6 Processing of the solid fraction
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The dried digestate can be marketed as it is or can be 

pelletised for better marketability. Such products are 

already available as biofertilisers on horticulture or gar-

dening markets, for example in Germany. The material 

can also be used in nurseries or for special cultivation 

systems, such as mushroom production.

7 Processing of the liquid 
fraction of digestate 

After solid–liquid separation the liquid fraction still 

contains considerable amounts of suspended solids and 

nutrients. The exact concentrations depend on the sub-

strate, as well as the separation technology, and any 

applied enhanced nutrient removal. The liquid fraction 

obtained by solid–liquid separation will not meet the 

environmental standards for direct discharge to receiv-

ing streams. Part of the liquid fraction can be used dur-

ing mashing of the substrate going into the AD process. 

This amount depends on one hand on the water content 

of the substrate, and on the other hand on the concen-

tration effect of ammonia nitrogen and salts in the pro-

cess, which could lead to inhibition in the digester. In any 

case, at least partial reutilisation as process water is rec-

ommended as this reduces the treatment effort for the 

liquid fraction. In countries where composting facilities 

are located next to biogas plants, the liquid fraction is 

Figure 20: Principles of drying processes, drying by convection (left) and drying by contact (right) (Source: Fuchs and Drosg, 2010)

Figure 21: Scheme of a belt dryer (Source: Fuchs and Drosg, 2010)

Figure 22: Solar drying of digestate (Source: Fuchs and Drosg, 2010)
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used to moisturise compost 

heaps. In such cases, the 

reduction of the ammonia 

concentration is recom-

mended in order to reduce 

ammonia emissions. 

7.1 Nitrogen recovery 
7.1.1 Ammonia stripping

Gas stripping is a pro-

cess whereby volatile sub-

stances are removed from a 

liquid by gas flow through 

the liquid. In digestate pro-

cessing the aim is to remove/

recover nitrogen, in the form of ammonia, from the liq-

uid. The volatility of ammonia in an aqueous solution 

can be enhanced by increasing the temperature and the 

pH (as shown in Figure 23). So in digestate processing, 

excess heat can be used for heating up the digestate and 

the pH can be increased by degassing to remove CO2 or 

by the addition of alkali. 

For ammonia stripping in digestate, mainly two pro-

cesses are applied: air stripping and vapour stripping. In 

air stripping (see Figure 24) heated digestate enters a 

stripping column. As a pre-treatment CO2 is removed, 

this lowers the buffer capacity. In a subsequent stripping 

column filled with packing material to increase surface 

area available for the ammonia mass transfer, ammonia 

is transferred from the liquid digestate to the stripping 

gas stream. After this, ammonia is recovered from the gas 

phase by a sulphuric acid scrubber, where a valuable 

commercial-grade ammonium sulphate fertiliser is pro-

duced. The cleaned gas can be reused in the stripping 

column. For vapour stripping, a much higher tempera-

ture is needed to produce the vapour. The setup can be 

comparable to Figure 24, only that there is no need for a 

final scrubber, as the ammonia can be directly con-

densed together with the vapour to produce ammonia-

water with a concentration of up 

to 25 – 35 % ammonia. 

A big problem for the strip-

ping of digestate is the usage of 

packed columns, because residu-

al solids can clog the column. As 

a consequence, efficient solid–

liquid separation is necessary 

beforehand. In addition, a high 

maintenance and cleaning effort 

may be necessary. As an alterna-

tive, promising results have been 

obtained with a stripping meth-

od performed in simple stirred 

tank reactors (see Figure 25). A 

first large-scale facility using 

such a type of process principle 
Figure 23: Dependence of the volatility of ammonia in water on temperature and ph  
(Source: Fuchs and Drosg, 2010) 

Figure 24: Ammonia air stripping including co2 removal and ammonia recovery by sulphuric acid scrubbers 
(Source: Fuchs and Drosg, 2010) 
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is already in operation (Bauermeister et al., 2009). To 

what extent the above-mentioned method can meet the 

targeted benefits will emerge from further practice. 

The big advantage of ammonia stripping is that a 

standardised, pure nitrogen fertiliser product can be 

recovered. In addition, such a fertiliser liquid can be used 

to enrich other digestate fractions in digestate processing 

to a standardised nitrogen concentration, and this can 

increase their marketability.  

7.1.2 Ion exchange
The principle of ion exchange processes can be seen 

in Figure 26. The material in ion exchangers are mainly 

resins which have charged side chains. The charged ions 

(e.g. Na+) which are bound to these side chains of the 

resin can be replaced by other equally charged ions (e.g. 

NH4
+ in the case of digestate). By doing so, their concen-

tration in the liquid is reduced. Such ion exchange resins 

contain high amount of cavities, so that a high contact 

and exchange area is available. As ions are replaced stoi-

chiometrically, after a certain time the ion exchange resin 

is fully loaded and has to be regenerated by for example 

sodium chloride, NaCl. Then a new cycle can be started. 

In practice, ion exchange is marginally applied in 

digestate processing. One of the reasons for this is that for 

usage of ion exchange the digestate has to be free of any 

particles, which is only the case after membrane pro-

cesses. So, for example, ion exchange is applied for final 

ammonium removal after two steps of reverse osmosis in 

a membrane purification concept (see section 7.2.1). 

7.1.3 Struvite precipitation

Ammonium and phosphate can be removed from the 

digestate by struvite precipitation, also known as MAP 

(magnesium ammonia phosphate) precipitation. The 

Figure 25: Details of a simplified in-vessel stripping process without stripping columns (Bauermeister et al., 2009) 

Figure 26: Principle of ion exchange resins  
(Source: Fuchs and Drosg, 2010)
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reaction is described by the following equation:

In order to achieve best nutrient recovery perfor-

mance in practice, magnesium is added in excess so that 

nutrient concentrations are approximately 1.3:1:0.9 for 

Mg:N:P. As ammonia is almost always in excess in diges-

tate, magnesium oxide and phosphoric acid are added to 

the digestate. In addition, pH is slightly increased to 

8.5 – 9.0. The resulting struvite is a good fertiliser as N, P, 

and Mg are valuable plant nutri-

ents. As illustrated in Figure 27, 

the chemicals can be added either 

in a first step with subsequent 

separation by centrifugation, or 

chemical addition and sedimen-

tation of the struvite crystals 

occur in the same vessel. 

The main disadvantage of 

struvite precipitation is that a 

large amount of chemicals are 

needed, and this translates into high operational costs. 

An alternative process can be to recover the chemicals, as 

struvite releases ammonium and water after heating to 

well above 100°C. The resulting magnesium hydrogen 

phosphate can then be reused for precipitating ammo-

nium. 

7.2 Nutrient concentration and water purification
7.2.1 Membrane technologies 

The principle of membrane processes is shown in 

Figure 28. It is a physical separation process where the 

Figure 27: Possible process options for struvite precipitation (adapted after Lehmkuhl, 1990)

Mg2+ + NH4
+ + HPO4

2- + OH- + 5 H2O  Mg NH4 PO4 · 6 H2O

Figure 28: Principle of membrane separation (Source: Fuchs and Drosg, 2010) 
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liquid to be purified (feed) passes through a membrane. 

Depending on the pore size of the membrane and the 

trans-membrane pressure, some particles are retained by 

the membrane and remain in the concentrate. Other 

particles and the partially purified water, the permeate, 

pass through the membrane. 

Membrane processes are 

categorised depending on 

their pore sizes (see Figure 

29). For microfiltration, 

depending on the corre-

sponding membrane, parti-

cles down to diameters of 

0.1 µm can be separated, 

whereas ultrafiltration is 

able to separate colloids 

even down to diameters 

below 0.01 µm. With nano-

filtration and reverse osmo-

sis, even dissolved salts 

(ions) can be separated from 

pure water. 

In general, there exist 

two types of membrane 

(Figure 30). Porous mem-

branes are applied where the 

particles are retained by 

size-exclusion, because they 

are not able to enter the pores of the membrane. Alterna-

tively, solution-diffusion membranes can be used. Here 

the principle of separation is the ability of substances to 

dissolve in the membrane material and consequently be 

separated by differences in their diffusion velocity. Either 

polymer membranes or ceramic membranes are used. 

The latter are only applied in 

micro- and ultrafiltration and have 

the advantage that they are more 

robust and can withstand harsh 

chemical cleaning. 

Membrane purification is a 

complex process consisting of sev-

eral steps (see Figure 31). First, 

solid–liquid separation is applied. 

Subsequently the liquid fraction of 

digestate is subject to enhanced 

solids removal (see section 5.5). 

This is a crucial stage in membrane 

purification processes due to the 

possibility of membrane fouling. 

Figure 29: overview of membrane separation processes (Source: Fuchs and Drosg, 2010)

Figure 30: Different types of membranes: porous membranes (left) and solution–diffusion membranes. 
(cF stands for the feed concentration of the substance, which is separated in the process and cP for its 
concentration in the permeate) (Source: Fuchs and Drosg, 2010)
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Therefore, decanter centrifuges are usually used in the 

first solid–liquid separation step, and often precipitating 

agents are added enabling increased solids removal. The 

next step is ultrafiltration and finally reverse osmosis is 

used for removal of ammonia and COD 

(organic matter expressed as the equiv-

alent chemical oxygen demand). Nor-

mally, three steps of reverse osmosis are 

needed to reach discharge levels for 

ammonia. The permeate quality, 

depending on 2- or 3-step reverse 

osmosis, is shown in Table 8. As an 

alternative, the last reverse osmosis step 

can be replaced by ion exchange. 

A drawback of such membrane 

purification processes is that only a lim-

ited amount of the digestate will be 

purified water, about 50 % of the diges-

tate is accumulated as by-products. The 

following fractions accumulate in the 

process: solid fraction, ultrafiltration 

retentate, reverse osmosis concentrate. 

In order to reduce the amounts, the 

ultrafiltration retentate is often recycled 

into the biogas plant and/or the solid–

liquid separation step. Membrane puri-

fication is quite expensive and requires 

a considerable amount of energy.  

7.2.2 Evaporation 
The evaporation of digestate is only 

interesting for biogas plants where excess heat is availa-

ble in sufficient amounts, or where excess heat from 

other sources near the biogas plant can be used. As many 

biogas plants are located in rural areas remotely from 

Figure 31: Typical process steps for digestate processing by membrane purification 
(Source: Fuchs and Drosg, 2010) 

Table 8: Examples of permeate quality after a 2-step reverse osmosis (Schulze und 
Block, 2005) and a 3-step reverse osmosis (Brüß, 2009)

Parameter Unit Two-step 
reverse osmosis

Three-step 
reverse osmosis

TS [mg/L] 0 0

coD [mg/L] 50 – 60 < 5

nh4-n [mg/L] 300 – 320 –

Tn [mg/L] 320 – 340 3.5

TP [mg/L] 53 < 0.05

Figure 32: Forced circulation evaporator (left) and natural circulation evaporator (right) (Source: Fuchs and Drosg, 2010)
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other industries, heat utilisation can be problematic. In 

Germany biogas plants receive extra funding for heat 

utilisation, which is an incentive for thermal digestate 

processing, and consequently, a handful of evaporation 

plants have been constructed.  

As prevailing technologies in digestate evaporation, 

forced circulation evaporators (see Figure 32) are used, 

alternatively also natural recirculation evaporators (see 

Figure 32) are applied. In these evaporation processes, 

digestate is heated above evaporation temperature in a 

heat exchanger and then held in the evaporation vessel. 

In forced circulation evaporators a pump is applied to 

achieve circulation of the digestate, whereas in natural 

circulation evaporators, circulation takes place automati-

cally as the vapour 

digestate mixture rises 

into the evaporation 

vessel. The reason why 

these two type of evap-

orators are applied is 

that they are relatively 

robust with regard to 

the solids content in 

the digestate.  

In a typical diges-

tate evaporation pro-

cess (see Figure 33) the 

solid fraction is first 

removed. This can be 

done for example by 

combining a screw 

press and a vibrating 

screen. In such a pro-

cess especially the fibres 

are removed in order to 

reduce possible clog-

ging of the evaporators. 

As a next step sulphuric 

acid is added and CO2 

is stripped. By addition 

of acid, pH is reduced 

to typically 4.5 and 

nitrogen is entirely in 

the form of NH4
+. By 

these means practically 

all nitrogen remains in the concentrate during the evapo-

ration process.  

After the acidification step, digestate is concentrated 

via a 3-step low-pressure evaporation system, as illus-

trated in Figure 34. As low pressure is applied, excess 

low-grade heat at 90°C can be used for evaporation. The 

vapour is condensed in the process, and as it contains low 

amounts of ammonia and volatile acids (see Table 9) it 

cannot be directly discharged. Therefore, it is normally 

used as process water in the biogas plant. Alternatively it 

can be discharged to a wastewater treatment plant. If 

direct discharge limits have to be met, post treatment like 

reverse osmosis or ion exchange is necessary. If the excess 

heat from a CHP unit is used, typically a volume reduc-

Figure 33: Different process steps in digestate evaporation (Source: Fuchs and Drosg, 2010)

Figure 34: Multistage evaporation system (Source: Fuchs and Drosg, 2010)
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tion of 50 % of the digestate can be obtained. Based on 

general experience, a thermal energy demand of about 

300 – 350 kWhth is needed per ton of water evaporated. 

Typical performance data for an evaporation process are 

provided in Table 9. 

7.2.3 Residue management in nutrient  
recovery processes

Another very important issue, especially in complex 

and large-scale nutrient recovery applications, is the 

accumulation of by-products through digestate process-

ing. With the example of a membrane treatment process 

(see Figure 35), it is shown that only approximately 50 % 

of the treated digestate will become purified water. The 

rest will accumulate as by-products/residues in the pro-

cess. For these fractions, economically viable utilisation 

concepts have to be established. If additional treatment 

costs occur, this will decisively affect economics of diges-

tate processing. However, these fractions normally con-

tain higher nutrient concentrations (e.g. concentrate 

from reverse osmosis), so their market value should be 

high. Nevertheless, further treatment can be necessary 

for commercialisation. 

Table 9: Examples of evaporation performance data (Heidler, 2005 – modified according to personal communication)

TS VS TN PO4-P COD

Digestate [%] [%] [mg/kg] [mg/kg] [mg/kg]

Inflow 3.1 1.7 3,100 300 45,000

concentrate* 10 – 12  
(max. 15)

7.5 – 9 8,000 – 10,000 800 – 1200 95,000 – 
120,000

condensate 0.05 0.05 30 – 50 0 < 1000

* depending on the concentration factor

Figure 35: Side streams and residues in membrane purification of digestate (Fuchs and Drosg, 2010)

Digestate: 100%

Permeate: 50%

Solids: 15%

concentrate in microfiltration: 20%
(recirculation to the biogas plant)

concentrate in reverse osmosis: 15%
(utilisation)
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One very important criterion when deciding which 

digestate processing technology to use is cost. This is a 

quite complex issue because both the quality of the diges-

tate product and local conditions have a strong influence 

on the actual economic performance. There are several 

studies available in literature that discuss costs of diges-

tate processing (Pietsch and Köttner, 2007; Schulze and 

Block, 2005; Bauermeister et al., 2009), although only a 

few mainstream technologies are compared.

In the following, the primary driver for investing in 

digestate processing technology is discussed; this is the 

increasing digestate land application costs with distance 

from the biogas plant. After that, digestate processing 

costs are given for a model biogas plant.

8.1 Digestate land application costs
From an economic point of view investment into 

digestate processing technologies is mainly driven by 

increasing digestate land application costs. The costs for 

different digestate transportation and application 

approaches are given in Figure 36. It is clear that specific 

digestate transportation and land application costs 

increase considerably with transportation distance. It can 

also be seen that classical digestate spreading with manure 

spreading vehicles is cheapest at shorter distances. When 

distances become larger, a combination of digestate 

transport with trucks and local spreading with spreading 

vehicles is cheapest. So although digestate application 

costs will also vary depending on the local conditions, 

Figure 36 can give a first rough estimation which trans-

portation distance can justify which digestate processing 

(and application) costs.  

8.2. Detailed cost analysis of 6 digestate processing 
scenarios for a model biogas plant 

In a study conducted by KTBL (KTBL, 2008), a 

model biogas plant (50 % manure, 50 % corn silage) with 

an electric capacity of 500 kWel and an annual digestate 

production of 30,000 m³ is considered. For the reference 

scenario (no digestate processing), it is assumed that 

about half of the digestate can be applied on agricultural 

land around the biogas plant (costs: 3.34 €/t) and the 

other half has to be transported to remoter areas (approx. 

20 km away, costs: 5.47 €/t). For the cost analysis both 

machinery and storage facilities are included. A price of 

0.03 €/kWh is assumed for the heat demand, and a bonus 

for waste heat utilisation (KWK Bonus) of 0.02 €/kWh is 

calculated according to the German subsidy system. For 

the digestate products, a theoretical economic value is 

assumed according to their nutrient content (0.60 € per 

kg N, 0.51 € per kg P2O5 and 0.26 € per kg K2O). 

The following scenarios are investigated:

I. Reference – direct land application

II. Separation (screw press) and separate land applica-

tion of solid fraction and liquid phase

III. Separation (screw press) and drying of the solids 

with a belt dryer

IV. Separation (decanter centrifuge) and purification of 

the liquid phase by ultrafiltration and reverse osmo-

sis

V. Separation (decanter centrifuge) and concentration 

of the liquid phase by evaporation 

VI. Separation (decanter centrifuge) and further treat-

ment of the liquid phase by nitrogen removal (NH3-

stripping and precipitation)

8. Economics of digestate processing for nutrient recovery 

Figure 36: costs of digestate land application depending on 
distance of transport (Bärenthaler et al., 2008). The stippled 
curves show only transportation costs, without costs for appli-
cation. 
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The results of the study can be seen in Figure 37. It 

should be noted that for most of the presented processes 

there are still greater uncertainties and limited experi-

ences with regard to accurate investment and running 

costs. Also the theoretical revenues (e.g. for nutrient 

fertiliser values) are currently difficult to achieve on the 

market.  

In Figure 38a the data from KTBL (2008) are shown 

with dependency on the distance of transportation. In 

the biogas plant, a slight cost reduction occurs for mem-

brane purification and evaporation only if transport 

distances exceed 80 km, whereas for stripping a cost 

reduction occurs with transport distances more than 

50 km. The reason why stripping shows the best perfor-

mance is that nitrogen can be directly removed and 

brought into a marketable form. As nitrogen loads are 

the legal limiting factor for land application, this leads to 

a direct reduction of transportation costs. 

Economic viability of digestate processing depends 

very much upon whether additional benefits and/or 

synergies can be achieved. This is illustrated in Figure 

38b. Here the effect of synergies (replacing fresh water, 

excess heat utilisation) on the economics of the model 

biogas plant was considered. Consequently, stripping 

and evaporation becomes economically viable already at 

distances of 30 km, and membrane purification at 60 km. 

This example shows again that whether digestate pro-

cessing can become economically viable and which tech-

nology is to be preferred is very site specific. It has to be 

stated though that in this calculation no additional 

benefits/synergies for the separator were assumed which 

is slightly misleading, as solid–liquid separation is the 

process which is most often applied. A typical benefit of 

solid–liquid separation can be the partial reutilization of 

the liquid fraction as process water which reduces the 

volume of the digestate and thereby will decrease costs. 

Moreover, all digestate processing concepts which 

involve thermal treatment steps (drying, evaporation) 

are considered to utilize excess heat free of charge in 

order to be economically more attractive. 

The presented example shows that for most biogas 

plants, standard land application of digestate will be 

more economically attractive than digestate processing. 

However, if transport distances are very large and syner-

Figure 37: comparison of specific costs for digestate processing at a model biogas plant (kTBL, 2008)
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gies of digestate processing at the site of the biogas plant 

can be found, the overall cost of digestate processing can 

be reduced. In addition, the establishment of a market for 

biofertilisers from digestate can prompt digestate pro-

cessing to be deployed. 

8.3 General remarks on costs
The data presented reveal that the successful and eco-

nomically justified implementation of digestate process-

ing is highly site specific. Depending 

on local conditions, significant dif-

ferences in the individual expenses 

as well as in savings, for example for 

reduced storage facilities or revenues 

from the marketing of the resulting 

products are achieved. Even for the 

similar treatment concept large vari-

ations of the total costs may occur. 

Nevertheless, typical cost ranges for 

different treatment schemes can be 

provided and compared with the 

respective costs for digestate dispos-

al. An overview of the breakeven 

point for certain treatment schemes 

is provided in Figure 39. Costs for 

digestate transportation and disposal are taken from a 

study investigating the economics of large scale indus-

trial biogas plants (Baernthaler et al., 2008). Specific 

treatment costs include investments and operational 

costs as well as a small but realistic market value for prod-

ucts. It must also be kept in mind that several technolo-

gies only partially reduce the amount of digestate for 

disposal. Therefore the specific costs refer to the actual 

amount of digestate saved by a certain processing scheme.

Figure 38: comparison of specific costs of digestate processing including land application costs (a) no beneficial side effects were assumed 
(b) beneficial side effects such as replacing fresh water and utilisation of excess heat without costs were considered (kTBL, 2008)

Figure 39: comparison of cost ranges for specific treatment options versus costs for digestate 
disposal (Fuchs and Drosg, 2013).     

a) b)
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 As defined in this report, digestate is the liquid efflu-

ent from anaerobic digestion (AD) of animal manures 

(slurries, solid manure, deep litter), organic residues and 

wastes, and energy crops. If treated appropriately diges-

tate possesses excellent agricultural fertiliser qualities. 

The AD process is primarily applied with the aim of 

generating renewable energy in the form of biogas, and 

with respect to the substrates handled, to improve nutri-

ent management, strengthen veterinary safety and to 

facilitate air quality/odour control when applying 

manure to farmland. 

In many countries, environmental regulations con-

cerning manure/digestate management restrict the 

nutrient input per hectare as well as the period for nutri-

ent application. This imposes considerable costs for 

farmers for seasonal storage, transport from stables to 

storage tanks, handling, and application of digestate as 

biofertiliser. The costs are significant due to the large 

volume and low nutrient concentration in digestate. 

Further costs are related to investments in digestate stor-

age capacities required by environmental regulations in 

many countries. Volume reduction both reduces trans-

port and application costs and facilitates export of excess 

nutrients to nutrient deficient areas. This requires diges-

tate to be further processed after being removed from 

the digester. 

Digestate processing involves the application of a 

range of possible technologies to digestate, comparable 

to the existing technologies for manure processing, sew-

age sludge treatment, and, in some cases, for wastewater 

treatment. The last decades have seen a trend of increased 

emphasis on improved sustainability in agriculture and 

preservation of natural resources like minerals phospho-

rus and potassium, consequently changing the focus of 

digestate processing from nutrient removal and disposal 

towards integrated nutrient recovery and recycling. This 

trend needs to be continued.

Digestate processing, as described by this report, can 

be partial, usually targeting volume reduction and sepa-

ration of digestate into a liquid and a solid fraction, or it 

can be complete, refining digestate to for example pure 

water, a solid biofertiliser fraction and fertiliser concen-

trates. The first step in digestate processing is to separate 

the solid from the liquid. The solid fraction, often rich in 

phosphorus, can subsequently be directly applied as 

biofertiliser in agriculture or it can be composted or 

dried for intermediate storage and feasible long-range 

transport. For nutrient recovery, various methods and 

technologies are currently available, with various degrees 

of technical maturity. Of these, membrane technologies, 

such as nanofiltration and ultrafiltration, followed by 

reverse osmosis are increasingly applied. The end-prod-

ucts of membrane filtration consist of a nutrient con-

centrate and purified process water. 

While partial processing using relatively simple sol-

id–liquid separation technologies (decanter centrifuge, 

screw press etc.) are considered comparatively inexpen-

sive, complete processing requires far more sophisticated 

process equipment and often has a high specific energy 

consumption, which implies high additional costs. 

The techniques for nutrient recovery from digestate 

are developing rapidly, aiming to improve nutrient man-

agement in agriculture and in waste treatment systems. 

In parallel, there is a general need to increase the degree 

of commercialisation of organic fertilisers from digestate 

processing through product standardisation. 

 

9. Concluding remarks and recommendations
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AD: Anaerobic Digestion (Syn. Digestion, Anaerobic Fermentation, 
Biogas Process) A complex microbiologically mediated process, 
where decomposition of organic matter, in the absence of oxygen, 
is carried out by the concerted action of a wide range of microor-
ganisms. Resulting intermediate organic products are ultimately 
converted into the end-product biogas with the main constituents 
methane (the energy carrier) and carbon dioxide. The other main 
product of AD is digestate. Anaerobic digestion takes place natu-
rally in lake sediments and in the digestive tract of ruminants.

Biofertiliser: (Used in the case of digestate) defines a material of biological 
origin, utilised as fertiliser to facilitate growth of plants. Bioferti-
liser contains important plant macro- and micronutrients. Further, 
the presence of living microorganisms promotes plant biomass 
growth by increasing the availability of nutrients.

BOD: Biochemical Oxygen Demand is the amount of dissolved oxygen needed by 
aerobic biological organisms in a body of water to break down 
organic material present in a given water sample at certain tem-
perature over a specific time period. BOD is thus a measure of the 
quantity of oxygen used by microorganisms (e.g., aerobic bacteria) 
in the oxidation of organic matter.

Chemical Precipitation: A chemical reaction, in which two compounds react 
to form a precipitate and another product is present inside the 
aqueous medium. Chemical precipitation results in the formation 
of a separable solid substance from a solution, either by converting 
the substance into an insoluble form or by changing the composi-
tion of the solvent to lower the solubility of the substance in it.

CHP: (Syn. Co-generation) Abbreviation for combined heat and power 
generation. Commonly applied onsite or in an adjacent CHP plant. 

COD: Chemical Oxygen Demand is a measure of the capacity of water to con-
sume oxygen during the decomposition of organic matter and the 
oxidation of inorganic chemicals such as ammonia and nitrite. 
COD measurements are commonly made on samples of wastewa-
ters or of natural waters contaminated by domestic or industrial 
wastes. Proper COD analysis provides swift estimates of the 
strength (energy content) of a substrate, although it does not allow 
for differentiation between biologically degradable and biologically 
undegradable chemical energy. 

Condensate: A product of condensation, as a liquid reduced from a gas or 
vapour.

Decanter Centrifuge: A mechanical installation using high rotational speed 
to separate components of different densities. Decanter centrifuge 
is frequently used for separation of solid fractions of materials 
from liquids in e.g. wastewater slurry, animal slurry, and digestate. 

Digestate: (Syn. AD Residues, Digested Biomass, Digested Slurry): The 
digested effluent from the AD process. Digestate is the semi-solid 
or liquid product of anaerobic digestion of biodegradable sub-
strate.

Digestate Processing: Digestate processing involves the application of differ-
ent technologies to digestate arising from anaerobic digestion. The 
technologies applied in digestate processing are comparable to the 
known technologies from manure processing, sewage sludge treat-
ment, and wastewater treatment. Digestate processing can be 

approached in two ways: as digestate conditioning (or enhance-
ment) aiming at production of standardised biofertilisers, and as 
digestate treatment, similar to wastewater treatment, applied in 
order to remove nutrients and organic matter from the effluent and 
to allow discharge to the sewage system, to the wastewater treat-
ment plant on site or to a receiving water body.

DM: see TS

Evaporation Process: Conversion of a liquid into a gas. Frequently used in 
wastewater treatment, evaporation converts the water component 
in the wastewater slurry to vapor that condenses into clean water, 
with a significant reduction of the volume of the slurry that needs 
to be disposed of. It is also occasionally applied in processing of 
animal slurry and digestate. 

Flocculation (in polymer science): Reversible formation of aggregates in which 
the particles are not in physical contact.

Flocculation Agents (Syn. Flocculants, Flocking agents), are chemicals that 
promote flocculation by causing colloids and other suspended 
particles in liquids to aggregate, forming a floc. Flocculants are 
used in wastewater treatment processes to improve the sedimenta-
tion or filterability of small particles, aiding removal of micro-
scopic particles, difficult or impossible to remove by filtration 
alone.

Flotation Agent: A chemical, which alters the surface tension of water or 
makes it froth easily.

Macronutrients: Vital plant nutrients such as nitrogen (N), phosphorus (P) 
and potassium (K), along with calcium (Ca), sulphur (S) and mag-
nesium (Mg) are called macronutrients, as they are required in 
large amounts, as opposed to micronutrients, which are required 
by the plants in very small amounts.

MAP – Precipitation: (Syn. Struvite precipitation) Magnesium ammonium 
phosphate (MAP) precipitation is a process of precipitation, crys-
tallisation, and separation of MAP (also known as struvite) in 
process waters. Commonly used for phosphorus removal/recovery 
from e.g. digestate or wastewater sludge. It is noted that struvite 
generally is not pure MAP, as other substances co-precipitate with 
struvite. 

Membrane Fouling: A process, whereby solutions or particles are deposited 
onto a membrane surface or in the membrane pores, decreasing the 
performance of the membrane (e.g. flux decline). Membrane foul-
ing includes inorganic fouling/scaling, organic fouling, articulate/
colloidal fouling, and biofouling (or microbial/biological fouling). 
Fouling due to organic and inorganic components and microor-
ganisms can occur simultaneously and interactively.

Micronutrients: (Syn. Microelements, Trace elements) Vital elements, nec-
essary in very small amounts for plants. Seven nutrients are essen-
tial to plant growth and health: boron (B), chlorine (Cl), copper 
(Cu), iron (Fe), manganese (Mn), molybdenum (Mo), and zinc 
(Zn).

Nanofiltration: Nanofiltration is a membrane filtration based method that 
uses nanometer sized cylindrical through-pores that traverse the 
membrane at a 90° angle. Nanofiltration membranes have pore 
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sizes ranging from 1-10 nanometers (nm), smaller than that used 
in microfiltration and ultrafiltration, but just larger than that in 
reverse osmosis. Membranes used are predominantly created from 
polymer thin films.

NH4-N: Total ammonium nitrogen which is either present as NH3(aq) or 
NH4

+ in an aqueous solution.

pH: pH is a measure of the acidity or alkalinity of a solution and relates 
to the concentration of oxonium ions (H3O+). A solution with pH 
= 7 is neutral, pH below 7 is acidic, and pH above 7 is alkaline. pH 
is a vital process parameter in anaerobic digestion and is influ-
enced by many factors including the production/consumption of 
VFA. However, due to the complexity of the chemistry in an AD 
process, a pH measurement can never stand alone and must be 
augmented by for instance assessment of the buffer capacity, VFA 
concentration etc.

Retentate: In a filtration process, the part of a solution that does not pass 
through the membrane is called retentate, as opposed to the dif-
fusate.

Reverse Osmosis: Reverse osmosis is a separation process that uses pres-
sure to force a solvent through a membrane, which retains the 
solute on one side and allows the pure solvent to pass through to 
the other side.

Stoichiometry: The calculation of relative quantities of reactants and 
products in chemical reactions.

Struvite: (Syn. Magnesium Ammonium Phosphate -MAP) A mineral 
phosphate with the formula: NH4MgPO4·6H2O. Struvite is present 
in AD plants, and can form a scale on lines and belts, in centri-
fuges and pumps, clog system pipes and other equipment includ-
ing the anaerobic digester itself, causing operational problems for 
plants operation. See also MAP-Precipitation.

TS: (Syn. DM – dry matter, DS- dry solids) Abbreviation for dry matter 
content. TS represents the dry residue resulting after drying 
according to the specified drying process. It is expressed as a per-
centage or in grams per kilogram. TS analysis does not take into 
account chemical substances with a boiling point lower than the 
temperature at which the analysis is performed. Hence, readily 
biodegradable substances such as ethanol and acetated acid, can 
erroneously be characterised as water.

VFA: Volatile fatty acids Organic acids produced by certain microorgan-
isms during acidogenesis and consumed by other microorganisms 
during methanogenesis. VFA is an important process monitoring 
parameter and can be used to assess, whether an AD process is 
stable or not. Simple as well as advanced analytical procedures 
have been developed and are applied on a routine basis. VFA can 
be classified according to the length of the carbon skeleton, and so 
C1–C6 are commonly referred to as short-chained VFA (SCVFA) 
and routinely measured, while higher order VFAs with more than 
six carbon atoms are also present, but not routinely quantified. 

VS: Volatile solids (Syn. ODM–Organic Dry Matter) Abbreviation for 
volatile solids content. VS represents the dry residue resulting after 
glowing (incineration) according to the specified glowing (incin-
eration) process. It is expressed as a percentage or in grams per 
kilogram. 
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