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1 Introduction

Under the scope of the a4a Initiative, the JRC is promoting cooperative activities between
�sheries scientists with the aim to test, disseminate and promote a4a methods. These
Small Research Projects (SRP) are focus on comparing the results of assessments from
other models to assessments obtained from the a4a statistical catch-at-age model, and
explore research questions using case studies.

The Workshop dedicated to the Hellenic small pelagic stocks took place in Ispra, Italy,
the 4th to the 7th of May 2015. The main objectives were to investigate the performance
of a4a on poor data stocks, like the ones under study, and furthermore �ll data gaps in
the time series by incorporating information from other potentially in�uential external
indices.

1.1 ToRs and Agenda

The terms of reference of the workshop were:

1. Assess the stocks of sardine and anchovy in GSAs 20 & 22 with a4a and compare
results with other stock assessment models.

2. Develop forecast scenario considering requirements of multi-annual management
plans.

3. Report to STECF and other relevant management bodies.

The �rst day of the workshop was dedicated to identify which of the historical data series
were worth including in the analyses and examine the pros and cons of each one. In
the second day a thorough investigation of all available environmental indices allowed
for identifying the correlations amongst them and exclude redundant ones. The initial
inspection of the data series revealed that only sardine and anchovy in the Aegean sea
(GSA 22) were feasible to assess, while the Ionian sea stocks (GSA 20) were dropped due
to great de�ciencies in the data series. The �rst runs with the a4a statistical catch-at-
age method on the stocks of sardine and anchovy were made possible. The third and
fourth day were dedicated in tweaking the models assuming di�erent catchability and
�shing mortalities scenarios as well as using the most relevant environmental index. As
an outcome long and short-term model runs were compared for consistency in results.

1.2 The a4a Initiative

The volume and availability of data useful for �sheries stock assessment is continually
increasing. Time series of traditional sources of information, such as surveys and landings
data are not only getting longer, but also cover an increasing number of species.

For example, in Europe the 2009 revision of the Data Collection Regulation (EU, 2008a)
has changed the focus of �sheries sampling programmes away from providing data for
individual assessments of key stocks (i.e. those that are economically important) to doc-
umenting �shing trips, thereby shifting the perspective to a large marine monitoring
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programme. The result has been that data on growth and reproduction of �sh stocks are
being collected for more than 300 stocks in waters where the European �eets operate.

Recognizing that the context above required new methodological developments, the Eu-
ropean Commission Joint Research Centre (JRC) started its Assessment for All Initiative
(a4a), with the aim to develop, test, and distribute methods to assess large numbers of
stocks in an operational time frame, and to build the necessary capacity/expertise on
stock assessment and advice provision.

The long-term strategy of a4a is to increase the number of stock assessments while si-
multaneously promoting the inclusion of the major sources of uncertainty in scienti�c
advice. Our tactic is to reduce the required workload, by developing a software frame-
work with the methods required to run the analysis a stock assessment needs (Jardim,
et.al, 2014), including methods to deal with recognized bottlenecks, e.g. model averaging
to deal with model selection (Millar, et.al, 2014). Moreover, we aim to make the analysis
more intuitive, thereby attracting more experts to join stock assessment teams. Having
more scientists/analysts working in �sheries management advice will increase the human
resource basis, which is currently recognized to be limited. Regarding the former, a4a
promotes a risk analysis approach to scienti�c advice through a wider usage of Operating
Model/MSE approaches. We're focused on developing methods that can deal with the
most common settings these type of analysis require, and creating the conditions for scien-
tists to develop their own methods. Our expectation is that having a common framework,
with clear data structures and work�ows, will promote research in this area and make it
simpler to implement and share methods.

To achieve these objectives, the Initiative identi�ed a series of tasks, which were or are
being carried out, namely:

� de�ne a moderate data stock;

� develop a stock assessment framework;

� develop a forecasting algorithm based on MSE;

� organize training courses for marine scientists.

1.3 The a4a approach to stock assessment and management ad-
vice

As stated before, one of the main objectives of a4a is to promote a risk type of analysis, so
that scienti�c advice provides policy and decision makers a perspective of the uncertainty
existing on stock assessments and its propagation into the scenarios being analyzed.

The sources of uncertainty implemented so far are related to the processes of growth,
natural mortality and reproduction (stock-recruitment); and to the estimation of popu-
lation abundance and �shing mortality by the stock assessment model. In all cases the
framework can include sampling error.

The approach is split into 4 steps: (i) converting length data to age data using a growth
model, (ii) modeling natural mortality, (iii) assessing the stock, and (iv) MSE.

These steps may be followed in sequence or independently, depending on the user's pref-
erences. All that is needed is to use the objects provided by the previous step and provide
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the objects required by the next, so that data �ows between steps smoothly. One can
make the analogy with building with Lego, where for each layer the builder may use the
pieces provided by a particular boxset, or make use of pieces from other boxsets. Figure 1
shows the process, including the class of the objects that carry the data (in black).

Figure 1: In/out process of the a4a approach. The boxes in black represent the classes of
the objects that carry the information in and out of each step.

Analysis related to projections and biological reference points are dealt with by the FLR

packages FLash and FLBRP.

In Steps 1 and 2 there is no �tting of growth models or natural mortality models. The
rationale is to provide tools that allow the uncertainty associated with these processes
to be carried on into the stock assessment, e.g. through parameter uncertainty. This
approach allows the users to pick up the required information from other sources of
information such as papers, PhDs, Fishbase, other stocks, etc. If the stock under analysis
does not have speci�c information on the growth or natural mortality processes, generic
information about life history invariants may be used such as the generic priors suggested
by Bentley, (2014).

Note that an environment like the one distributed by a4a promotes the exploration of
di�erent models for each process, giving the analyst a lot of �exibility. It also opens
the possibility to e�ciently include distinct models in the analysis. For example, a stock
assessment using two growth, or several models for natural mortality could be performed.
Our suggestion to streamline the assessment process is to combine the �nal outcomes using
model averaging (Miller, et. al, 2014). Other solutions may be implemented, like scenario
analysis, etc. What is important is to keep the data �owing smoothly and the models
clear. R (R Core Team, 2014) and FLR (Kell, et.al, 200) provide powerful platforms for
this approach.
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1.4 How to read this document

The target audience for this document are stock assessment experts. It presents a mixture
of text and code that shows how the analysis can be run with R/FLR/FLa4a. The chapters
are as independent as possible, so they can be extracted and run individually.

1.5 Software packages - FLR & FLa4a

To run the FLa4a methods the reader will need to install the package and its dependencies
and load them, together with a couple of other packages. The data sets can be made
available upon request.

# from CRAN

install.packages(c("copula", "triangle"))

# from FLR

install.packages(c("FLCore", "FLa4a"), repos = "http://flr-project.org/R")

To replicate the analysis carried out in this document the user will need the following
additional packages:

# from CRAN

install.packages(c("plyr", "xtable", "plot3D", "gridExtra", "ggplot2"))

# from FLR

pkgs <- c("FLXSA", "FLAssess", "FLSAM", "FLash", "FLBRP")

install.packages(pkgs, repos = "http://flr-project.org/R")

After installing the reader will have to load the packages into one's R session.

library(FLa4a)

library(FLBRP)

library(FLXSA)

library(xtable)

library(plyr)

library(plot3D)

library(gridExtra)

library(corrplot)

library(energy)

library(ggplot2)

2 The context of small pelagics in Hellenic waters

Anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) are two of the most
important target species for the purse seine �shery in GSA 22. Pelagic trawls are banned
and benthic trawls are allowed to �sh small pelagics in percentages less than 5% of their
total catch. Commonly anchovy and sardine are caught from shallow waters about 30 m
to 100 m depth.
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Regarding the management regulations enforced they concern a closed period from the
mid December till the end of February and technical measures, such as minimum distance
from shore (300 m), minimum bottom depth (30 m), gear and mesh size, engine, GRT
restrictions etc.

The assessment of the anchovy and sardine stocks in GSA 22 has been based on infor-
mation derived from the Greek part of the Aegean Sea. The main distribution area of
the two stocks in Aegean Sea is located in the continental shelf of the northern Aegean
Sea. Their spatial distribution is strongly related to semi closed gulfs, shallow waters
(less than 100 m depth) with high productivity, often related to areas of rivers out�ows
(e.g.Tsagarakis et al., 2007; Tsagarakis et al., 2008; Giannoulaki et al., 2011; Giannoulaki
et al., 2013).

2.1 Historical catches

Historical catches going back to 1970 are available from FAO GFCM Fisheries Statistics
Dataset for Aegean and Ionian Seas. Historical catches however do not include any age
or length structure information.

Figure 2: Historical catches going back to 1970 are available from FAO GFCM Fisheries
Statistics Dataset for the Greek part of Aegean Sea.

The number of vessels o�cially reported by the Hellenic Statistical Service for the period
1970-2014 is shown below.
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Figure 3: The evolution of the purse seine �eet in Greek part of GSAs 20 and 22.

2.2 DCR/DCF catches

The Hellenic Centre for Marine Research is responsible for the collection of data for the
Greek part of GSA 22. Since the European data collection frameworks were implemented,
early 2000's, sampling was carried out in GSA 22 for the period 2003-2006, 2008 and 2013-
2014. The information available includes anchovy and sardine monthly landings, and
length frequency information based on sampling on-board commercial vessels. Discards
are estimated to be negligeble, <1% of the total catch of the purse seine �shery. The
trend in reported landings for both species as well as the landings per age group (number
of individuals in thousands) is shown below for GSA 22. Gaps in the �sheries information
result into a series of limiting data issues for stock assessment purposes.
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Figure 4: The trend in reported landings for sardine and anchovy, as well as the landings
per age group (number of individuals in thousands) for GSAs 20 and 22.

2.3 Surveys

Total biomass, abundance, length and age composition for anchovy and sardine stocks in
the Greek part of GSA 22 were estimated by acoustics from 2003 to 2008 and 2014. The
survey takes place usually in June-July (spawning period for anchovy and recruitment
period for sardine) and complies with the MEDIAS protocol. No acoustic survey took
place in 2007 and 2009-2012. An acoustic survey took place in September-October 2013
but it was not considered appropriate to use it for stock assessment purposes for neither
stock as it was referring to a di�erent sampling period.

2.4 Limiting data issues

Speci�c limiting data issues were revealed in the exploratory analysis.
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� Historical catches do not include any age or length structure information. The mean
weight in the catch and in the stock for the period 1970-2000 was considered equal
to the average values of the 2000-2008 and 2014 period.

� The lack of length frequencies and catch at age information for the period 2009-2012
impaired problems in the stock assessment. In addition the mean weight at age in
the catch and in the stock for 2013 is very low compared to 2014 and 2008. This
is explainable as the DCF/DCR was carried out in 2013 for covering only August
2013-December 2013 instead of all year. Thus the mean weight in the catch and in
the stock for the period 2009-2013 was considered equal to the average values of the
2008-2014.

� Deviations were observed between the historical landings and the ones reported
based on the DCF/DCR for the period 2000-2008 and 2014 with DCF/DCR be-
ing higher. Based on the observed di�erences the entire historical data series was
adjusted.

� Due to the gaps in the data series we considered appropriate to use environmental
indices i.e. mean satellite SST and Chla values from the main distribution area of
the stocks as well as oscillation indices like the NAO and MOI as additional indices
for stock assessment purposes (see next section).

3 Filling the gaps

There were two sets of gaps that required attention, (i) the historical lack of biological
information, and (ii) the recent (2009-2013) missing of the same data. As such two
datasets for each stock were built, including or not the historical information.

For both periods, the data missing were catch-at-age, mean weight-at-age in the catch
and in the stock, maturity ogive and natural mortality. To run stock assessment models
on these datasets some assumptions were made to rebuild the time series.

Furthermore, there was a mismatch between the landings reported by GFCM for the
Aegean Sea when compared with the DCF estimates. As such it was necessary to adjust
the historical time series to account for these di�erences.

3.1 Reconstructing the time series of age structured information

In order to reconstruct the time series of catch data for the application of the assessment
method, we assumed that for the period 1970-1999 mean weight-at-age in the catch and
in the stock, the maturity ogive and natural mortality follow the average values of the
period 2000-2008.

For the period 2009-2013 the following assumptions were made. Mean weight-at-age in
the catch and in the stock, the maturity ogive and natural mortality in 2009, was assumed
to be the same as in 2008. In 2013 equal to the one in 2014. For the years 2010-2012 the
average values of 2008 and 2014 were used.

Catch-at-age was derived by scaling the average age composition to the historical catches
in weight, after adjusting (see next section). For the recent missing years the same data
allocation as for mean weights were taken (described above).
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3.2 Adjusting catches by year by linking historical and contem-
porary

A relationship was modeled between historical and recent catch data for anchovy and
sardine in GSA 22 (Figure 5). Based on this relationship historical catch data were
adjusted to account for potential misreporting.

Figure 5: The relationship between historical and recent catch data for anchovy and
sardine in GSA 22.
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4 Investigating the use of environmental indices

A range of environmental indices were available that could be included as covariates in
the stock-recruiment relationship, or as indices of abundances (Table 1). Many of the
indices record similar information. For example, the NAO index contains information
that is included in the SST.

Table 1. List of the environmental and oscillation indices examined for inclusion in the
stock assessment models for the Greek small pelagic stocks.

Including multiple sources of similar information may not improve the assessment model
�t and may create a problem of multi-collinearity. It was therefore important to only
include indices that contained information not included by other sources.

The relationships between the indices were explored. Of particular interest is the associ-
ation between pairs of indices. Many methods are available to quantify the strength of
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association between a pair of variables. The most familiar method is correlation. How-
ever, correlation is only for quantifying the strength of a linear relationship. In the real
world, most relationships are non-linear and are only approximately linear over a small
range, meaning that correlation must be used with care.

It must be remembered that correlation does not imply causation.

Here, each pair of environmental indices is analysed using distance correlation. Of partic-
ular interest is pairs of indices that appear to be independent (have low values of distance
correlation) as these will each contain new information.

Previous analyses (Scott and Jardim, 2015) has suggested that the power of distance
correlation is enough to avoid Type II errors for many relationship types.

However, it is possible that the distance correlation score between two independent data
sets can be greater than 0, implying dependence i.e. the chance of a Type I error (a false
positive).

The dcov.test() function provides a test of multivariate independence using a permutation
bootstrap method. It returns a p-value that can be used for signi�cance testing. The null
hypothesis is that the data are independent. Performing this test will help avoid Type I
errors i.e. avoid mistakenly rejecting the null (independence) hypothesis.

4.1 Identify the e�ect of environment on species biology

All available environmental indices were investigated to identify the ones actually having
an e�ect on the species biology. The following �gures provide a synoptic overview of the
work exerted, linking environmental variables with speci�c biological processes (spawning,
recruitment) and time of the year (in quarters).
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Figure 6: Linkage of environmental parameters with biological processes for Sardine in
Greek waters.
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Figure 7: Linkage of environmental parameters with biological processes for Anchovy in
Greek waters.

4.2 Reading in the data

First we read in all of the indices and put them in one big data.frame.

indices <- data.frame()

# Load in indices Oscillation indices

osc_files <- list.files("../../data/oscilation_indices", pattern = "Rdata")

for (i in osc_files) {

load(paste("../../data/oscilation_indices/", i, sep = ""))

object <- unlist(strsplit(i, ".Rdata"))

# get index

indices <- rbind(indices, cbind(index = object, melt(index(get(object)))[,

c("year", "value")]))

}

# Ionian

ion_files <- list.files("../../data/ionian", pattern = "Rdata")

# Remove stock object from list

ion_files <- ion_files[!(ion_files %in% c("Ane14iostk.Rdata",

"Saio14stk.Rdata"))]

for (i in ion_files) {

load(paste("../../data/ionian/", i, sep = ""))
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object <- unlist(strsplit(i, ".Rdata"))

# get index

indices <- rbind(indices, cbind(index = object, melt(index(get(object)))[,

c("year", "value")]))

}

aeg_files <- list.files("../../data/aegean", pattern = "Rdata")

# Remove stock object from list

aeg_files <- aeg_files[!(aeg_files %in% c("AneG14index.Rdata",

"AneG14stk.Rdata", "SaeG14index.Rdata", "SaeG14stk.Rdata"))]

for (i in aeg_files) {

load(paste("../../data/aegean/", i, sep = ""))

object <- unlist(strsplit(i, ".Rdata"))

# get index

indices <- rbind(indices, cbind(index = object, melt(index(get(object)))[,

c("year", "value")]))

}

4.3 Analysis

The values are then transformed by scaling by the maximum of each time series (Figure 8).

indices <- ddply(indices, .(index), transform, scvalue = value/max(value,

na.rm = TRUE))

ggplot(indices) + geom_line(aes(x = year, y = scvalue, colour = index)) +

theme(legend.position = "none")
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Figure 8: Scaled indices values (legend not shown due to number of indices).

We perform distance correlation on each pair of indices and also the p-value for signi�cance
testing.

# Rename the indices for plotting

indices$index <- as.character(indices$index)

indices$index <- unlist(strsplit(indices$index, "_index"))

ind_names <- as.character(unique(indices$index))

# Matrices for storing the results

co <- matrix(NA, nrow = length(ind_names), ncol = length(ind_names),

dimnames = list(x = ind_names, y = ind_names))

dc <- matrix(NA, nrow = length(ind_names), ncol = length(ind_names),

dimnames = list(x = ind_names, y = ind_names))

dcp <- matrix(NA, nrow = length(ind_names), ncol = length(ind_names),

dimnames = list(x = ind_names, y = ind_names))

for (ind1 in ind_names) {

18



for (ind2 in ind_names) {

# NAs not allowed so trim indices to common length

x <- indices[indices$index == ind1, "scvalue"]

y <- indices[indices$index == ind2, "scvalue"]

non_na <- !is.na(x) & !is.na(y)

x <- x[non_na]

y <- y[non_na]

# Calculate

dc[ind1, ind2] <- dcor(x, y)

dcp[ind1, ind2] <- dcov.test(x, y)$p.value

co[ind1, ind2] <- cor(x, y)

}

}

4.4 Results

We can plot the distance correlation matrix of results (Figure 9).

# Set colours

colv <- colorRampPalette(c("white", "white", "white", "white",

"yellow", "green", "blue", "red"))

colp <- colorRampPalette(c("white", "white", "white", "red"))

corrplot(dc, cl.lim = c(0, 1), col = colv(8))
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Figure 9: Distance correlation of the environmental indices. Data are independent only
if the distance correlation is 0. However, signi�cance testing should also be performed.

We can also look at the results of the signi�cance test. The null hypothesis is that the
data are independent. Here we set a signi�cance level and plot whether or not the data
are independent (Figure 10).

# Can we reject the null hypothesis of independence?

sig_level <- 0.05

corrplot(dcp <= sig_level, cl.lim = c(0, 1), col = colp(4))
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Figure 10: Results of the signi�cance test. The signi�cance level is set at 0.05. Red
points are signi�cant at this level, i.e. we can reject the null hypothesis of independence,
implying a level of dependence between the indices. The plot is not perfectly symmetric
as the signi�cance test is nonparametric and the result is obtained through 199 replicates.

As mentioned above, we are interested in combinations of indices that bring new infor-
mation, i.e. indices that are independent of each other. For this reason we are interested
in index combinations that have 'white squares' in Figure 10. The level of dependence
(from Figure 9) is of less interest than whether there is independence or not.

Finally, the indices to assist model �t were chosen based on a)their independence and b)
the season corresponding to the period prior/beginning spawning for each species (See
Table 2).
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Table 2. Environmental indices used in the a4a stock assessment model applied for an-
chovy and sardine stock in GSA 22.

Concerning the long time series MOI was chosen as a covariate for the SR relationship as
this index was the only one available for the entire time series. This index is known to be
associated with SST and precipitation.

5 Running assessments with the statistical catch-at-age

method

5.1 Anchovy in GSA 22 (Aegean Sea)

5.1.1 Data and input

# stock and acoustic survey objects

load("../../data/aegean/AneG14stk.Rdata")

load("../../data/aegean/AneG14index.Rdata")

# stock and acoustic survey objects historical data

yh <- ac(1970:1999)

yNA <- ac(2009:2012)

yd <- ac(2004:2008, 2013, 2014)

lndHist.orig <- read.csv("../../data/historical/Historical_landings.csv")

load("../../data/historical/PScapacity.RData")

# build objects

ane22.stk <- window(AneG14.stk, start = 1970)

ane22.stk <- setPlusGroup(ane22.stk, 4)

## [1] "maxfbar has been changed to accomodate new plusgroup"
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catch(ane22.stk) <- landings(ane22.stk) <- lndHist.orig$anchovy22

catch.wt(ane22.stk)[] <- yearMeans(catch.wt(ane22.stk)[, yd])

stock.wt(ane22.stk)[, yh] <- yearMeans(stock.wt(ane22.stk))

m(ane22.stk)[, yh] <- yearMeans(m(ane22.stk))

mat(ane22.stk)[, yh] <- yearMeans(mat(ane22.stk))

harvest.spwn(ane22.stk)[, yh] <- yearMeans(harvest.spwn(ane22.stk))

m.spwn(ane22.stk)[, yh] <- yearMeans(m.spwn(ane22.stk))

ane22.ind <- AneG14.ind

ane22a.ind <- AneG14.ind

ane22b.ind <- AneG14.ind

ane22c.ind <- AneG14.ind

ane22d.ind <- AneG14.ind

ane22e.ind <- AneG14.ind

ane22f.ind <- AneG14.ind

index.var(ane22.ind[[1]])[] <- 0.3

# rebuild catch at age

flq <- catch.wt(ane22.stk)

flq[] <- apply(catch.wt(ane22.stk) * catch.n(ane22.stk), 2, function(x) x/sum(x))

flq[, "2009"] <- flq[, "2008"]

flq[, "2012"] <- yearMeans(flq[, c("2014", "2013")])

flq[, "2010"] <- yearMeans(flq[, c("2008", "2014")])

flq[, "2011"] <- yearMeans(flq[, c("2008", "2014")])

flq[, ac(1970:1999)] <- yearMeans(flq[, ac(2000:2008)])

flq <- flq * catch(ane22.stk)[rep(1, 5)]/catch.wt(ane22.stk)

ane22rbld.stk <- ane22.stk

flq <- FLQuantDistr(flq, flq)

flq@var[] <- 0.3

flq@var[, ac(1970:1999, 2009:2012)] <- 0.5

catch.n(ane22rbld.stk) <- flq

load("../../data/aegean/chltr2a_index.Rdata")

load("../../data/aegean/chltr3a_index.Rdata")

load("../../data/aegean/SSTtr2a_index.Rdata")

load("../../data/oscilation_indices/naotr4_index.Rdata")

load("../../data/oscilation_indices/moitr2_Isr_index.Rdata")

flq <- index(chltr2a_index)

dimnames(flq)[1] <- 0

quant(flq) <- "age"

ane22.ind$chlQ2 <- FLIndex(index = flq)

range(ane22.ind$chlQ2)[c("startf", "endf")] <- c(0.25, 0.5)

index.var(ane22.ind$chlQ2)[] <- 0.4

flq <- index(chltr3a_index)

dimnames(flq)[1] <- 0

quant(flq) <- "age"

ane22.ind$chlQ3 <- FLIndex(index = flq)

range(ane22.ind$chlQ3)[c("startf", "endf")] <- c(0.5, 0.75)
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index.var(ane22.ind$chlQ3)[] <- 0.4

flq <- index(naotr4_index) + 3

dimnames(flq)[1] <- 0

quant(flq) <- "age"

ane22.ind$naoQ4 <- FLIndex(index = flq)

range(ane22.ind$naoQ4)[c("startf", "endf")] <- c(0.75, 1)

index.var(ane22.ind$naoQ4)[] <- 0.4

flq <- index(SSTtr2a_index)

dimnames(flq)[1] <- 0

quant(flq) <- "age"

ane22.ind$sstQ2 <- FLIndex(index = flq)

range(ane22.ind$sstQ2)[c("startf", "endf")] <- c(0.25, 0.5)

index.var(ane22.ind$sstQ2)[] <- 0.4

flq <- index(moitr2_Isr_index) + 3

dimnames(flq)[1] <- 0

quant(flq) <- "age"

ane22.ind$moiQ2 <- FLIndex(index = flq)

range(ane22.ind$moiQ2)[c("startf", "endf")] <- c(0.25, 0.5)

index.var(ane22.ind$moiQ2)[] <- 0.4

# cha2 only

flq <- index(chltr2a_index)

dimnames(flq)[1] <- 0

quant(flq) <- "age"

ane22a.ind$chlQ2 <- FLIndex(index = flq)

range(ane22a.ind$chlQ2)[c("startf", "endf")] <- c(0.25, 0.5)

index.var(ane22a.ind$chlQ2)[] <- 0.4

index.var(ane22a.ind[[1]])[] <- 0.3

# cha3 only

flq <- index(chltr3a_index)

dimnames(flq)[1] <- 0

quant(flq) <- "age"

ane22b.ind$chlQ3 <- FLIndex(index = flq)

range(ane22b.ind$chlQ3)[c("startf", "endf")] <- c(0.25, 0.5)

index.var(ane22b.ind$chlQ3)[] <- 0.4

index.var(ane22b.ind[[1]])[] <- 0.3

# nao4 only

flq <- index(naotr4_index) + 3

dimnames(flq)[1] <- 0

quant(flq) <- "age"

ane22c.ind$naoQ4 <- FLIndex(index = flq)

range(ane22c.ind$naoQ4)[c("startf", "endf")] <- c(0.25, 0.5)

index.var(ane22c.ind$naoQ4)[] <- 0.4

index.var(ane22c.ind[[1]])[] <- 0.3

# sst only
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flq <- index(SSTtr2a_index)

dimnames(flq)[1] <- 0

quant(flq) <- "age"

ane22d.ind$sstQ2 <- FLIndex(index = flq)

range(ane22d.ind$sstQ2)[c("startf", "endf")] <- c(0.25, 0.5)

index.var(ane22d.ind$sstQ2)[] <- 0.4

index.var(ane22d.ind[[1]])[] <- 0.3

# moi2 only

flq <- index(moitr2_Isr_index) + 3

dimnames(flq)[1] <- 0

quant(flq) <- "age"

ane22e.ind$moiQ2 <- FLIndex(index = flq)

range(ane22e.ind$moiQ2)[c("startf", "endf")] <- c(0.25, 0.5)

index.var(ane22e.ind$moiQ2)[] <- 0.4

index.var(ane22e.ind[[1]])[] <- 0.3

##### chla and sst

flq <- index(chltr2a_index)

dimnames(flq)[1] <- 0

quant(flq) <- "age"

ane22f.ind$chlQ2 <- FLIndex(index = flq)

range(ane22f.ind$chlQ2)[c("startf", "endf")] <- c(0.25, 0.5)

index.var(ane22f.ind$chlQ2)[] <- 0.4

index.var(ane22f.ind[[1]])[] <- 0.3

flq <- index(SSTtr2a_index)

dimnames(flq)[1] <- 0

quant(flq) <- "age"

ane22f.ind$sstQ2 <- FLIndex(index = flq)

range(ane22f.ind$sstQ2)[c("startf", "endf")] <- c(0.25, 0.5)

index.var(ane22f.ind$sstQ2)[] <- 0.4

5.1.2 Initial model runs

## ===============================================================

## assessments - Short time series

## ===============================================================

## sst as a covariate in the ricker and chla used as index F

## in the years after 2008 are replaced by the F of 2014

fmod <- ~te(age, replace(year, year > 2008, 2014), k = c(4, 7))

qmod <- list(~s(age, k = 3), ~s(year, k = 5))

#### sst as covariate for ricker

cov <- c(index(window(ane22d.ind[[2]], start = 2000)))

cov <- c(cov, mean(cov))

srmod <- ~ricker(CV = 0.3, a = ~s(cov, k = 4))
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### using

fit41 <- sca(trim(ane22rbld.stk, year = 2000:2014), window(ane22a.ind,

start = 2000), qmodel = qmod, fmodel = fmod, srmodel = srmod,

fit = "assessment")

ane22.stk.a4a.41 <- trim(ane22rbld.stk, year = 2000:2014) + fit41

plot(ane22.stk.a4a.41) ####much worse catch and landinds fit

Short time series

res <- residuals(fit41, trim(ane22rbld.stk, year = 2000:2014),

window(ane22a.ind, start = 2000))

plot(res) ###ok
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bubbles(res) # check the residuals plot
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qqmath(res) # quantile plots rather ok output
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# Plot fitted against observed for survey

plot(fit41, AneG14.ind) ### good

# Plot fitted agains observed for catch at age

plot(fit41, ane22rbld.stk) ###good
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AIC(fit41)

## [1] -1441.566

BIC(fit41)

## [1] -1264.286

# ===============================================================

# assessments

# ===============================================================

# MOI as a covar for recruitment and Chla along with surveys
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# for an index

fmod <- ~te(age, replace(year, year > 2008, 2014), k = c(4, 7))

qmod <- list(~s(age, k = 3), ~s(year, k = 4))

#### sst as covariate for ricker

cov <- c(index(ane22e.ind[[2]]))

cov <- c(cov, mean(cov))

srmod <- ~ricker(CV = 0.3, a = ~s(cov, k = 4))

### using

fit42 <- sca(ane22rbld.stk, ane22a.ind, qmodel = qmod, fmodel = fmod,

srmodel = srmod, fit = "assessment") ###it converges

ane22.stk.a4a.42 <- ane22rbld.stk + fit42

plot(ane22.stk.a4a.42) #### very good

Long time series
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res <- residuals(fit42, ane22rbld.stk, ane22a.ind)

plot(res) ###ok!!!

bubbles(res) # they look ok
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qqmath(res) # quantile plots rather ok, age 2 seems to have an outlier
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# Plot fitted against observed for survey

plot(fit42, AneG14.ind) ###can be improved, issue for the 2014 survey

# Plot fitted agains observed for catch at age

plot(fit42, ane22rbld.stk) ### ok
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AIC(fit42)

## [1] -1007.706

BIC(fit42)

## [1] -671.2114

5.1.3 Final model runs

######## Final models after numerous trials... ###### MOI instead of

######## Chla as an index
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fmod <- ~te(age, replace(year, year > 2008, 2014), k = c(4, 7))

qmod <- list(~s(age, k = 3), ~s(year))

#### sst as covariate for ricker

cov <- c(index(window(ane22d.ind[[2]], start = 2000)))

cov <- c(cov, mean(cov))

srmod <- ~ricker(CV = 0.3, a = ~s(cov, k = 4))

### fit

fit40 <- sca(trim(ane22rbld.stk, year = 2000:2014), window(ane22e.ind,

start = 2000), qmodel = qmod, fmodel = fmod, srmodel = srmod,

fit = "assessment")

ane22.stk.a4a.40 <- trim(ane22rbld.stk, year = 2000:2014) + fit40

plot(ane22.stk.a4a.40) #### very good

Short time series
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res <- residuals(fit40, trim(ane22rbld.stk, year = 2000:2014),

window(ane22e.ind, start = 2000))

plot(res) ###ok!!!

bubbles(res) # check the residuals plot
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qqmath(res) # quantile plots rather ok output besides age 2
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# Plot fitted against observed for survey

plot(fit40, AneG14.ind) ###can be improved for 2014 survey

# Plot fitted agains observed for catch at age

plot(fit40, ane22rbld.stk) ###good
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AIC(fit40) ##-1495.196

## [1] -1495.196

BIC(fit40) ###-1304.279

## [1] -1304.279

########### MOI as a covar for recruitment and sst along with surveys

########### for an index

fmod <- ~te(age, replace(year, year > 2008, 2014), k = c(4, 7))

qmod <- list(~s(age, k = 3), ~s(year, k = 4))
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#### moi as covariate for ricker

cov <- c(index(ane22e.ind[[2]]))

cov <- c(cov, mean(cov))

srmod <- ~ricker(CV = 0.3, a = ~s(cov, k = 4))

### fit

fit51 <- sca(ane22rbld.stk, ane22d.ind, qmodel = qmod, fmodel = fmod,

srmodel = srmod, fit = "assessment") ###it converges

ane22.stk.a4a.51 <- ane22rbld.stk + fit51

plot(ane22.stk.a4a.51) #### very good

Long time series

res <- residuals(fit51, ane22rbld.stk, ane22d.ind)

plot(res) ###ok!!!
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bubbles(res) # check the residuals, res have increased
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qqmath(res) # quantile plots rather ok, age 2 seems to have an outlier
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# Plot fitted against observed for survey

plot(fit51, AneG14.ind) ###can be improved, issue for the 2014 survey

# Plot fitted agains observed for catch at age

plot(fit51, ane22rbld.stk) ### better fit compared to chla

47



48



AIC(fit51) ##-1738.902

## [1] -1738.902

BIC(fit51) ###-1400.999

## [1] -1400.999

5.2 Sardine in GSA 22 (Aegean Sea)

5.2.1 Data and input
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# stock and acustic survey objects

load("../../data/aegean/SaeG14stk.Rdata")

load("../../data/aegean/SaeG14index.Rdata")

load("../../data/aegean/AneG14stk.Rdata")

load("../../data/aegean/AneG14index.Rdata")

# historical data

yh <- ac(1970:1999)

yNA <- ac(2009:2012)

yd <- ac(2004:2008, 2013, 2014)

lndHist.orig <- read.csv("../../data/historical/Historical_landings.csv")

load("../../data/historical/PScapacity.RData")

# build objects

pil22.stk <- window(Saeg14.stk, start = 2000)

pil22.stk <- window(Saeg14.stk, start = 1970)

catch(pil22.stk) <- landings(pil22.stk) <- lndHist.orig$sardine22

catch.wt(pil22.stk)[] <- yearMeans(catch.wt(pil22.stk)[, yd])

stock.wt(pil22.stk)[] <- yearMeans(stock.wt(pil22.stk)[, yd])

stock.wt(pil22.stk)[, yd] <- stock.wt(pil22.stk)[, yd]

m(pil22.stk)[, yh] <- yearMeans(m(pil22.stk))

mat(pil22.stk)[, yh] <- yearMeans(mat(pil22.stk))

harvest.spwn(pil22.stk)[, yh] <- yearMeans(harvest.spwn(pil22.stk))

m.spwn(pil22.stk)[, yh] <- yearMeans(m.spwn(pil22.stk))

pil22.ind <- Saeg14.ind

index.var(pil22.ind[[1]])[] <- 0.3

pil22.ind@.Data[[1]]@index[4, 12] <- 1

# rebuild catch at age

flq <- catch.wt(pil22.stk)

flq[] <- apply(catch.wt(pil22.stk) * catch.n(pil22.stk), 2, function(x) x/sum(x))

flq[, "2009"] <- flq[, "2008"]

flq[, "2012"] <- flq[, "2013"]

flq[, "2010"] <- yearMeans(flq[, c("2008", "2013")])

flq[, "2011"] <- yearMeans(flq[, c("2008", "2013")])

flq[, ac(1970:1999)] <- yearMeans(flq[, ac(2000:2008)])

flq <- flq * catch(pil22.stk)[rep(1, 5)]/catch.wt(pil22.stk)

pil22rbld.stk <- pil22.stk

flq <- FLQuantDistr(flq, flq)

flq@var[] <- 0.3

flq@var[, ac(1970:1999, 2009:2012)] <- 0.5

catch.n(pil22rbld.stk) <- flq

# environmental indices

load("../../data/aegean/chltr4a_index.Rdata")

load("../../data/aegean/SSTtr4a_index.Rdata")

load("../../data/oscilation_indices/naotr3_index.Rdata")

load("../../data/oscilation_indices/moitr2_Isr_index.Rdata")
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flq <- index(chltr4a_index)

dimnames(flq)[1] <- 0

quant(flq) <- "age"

pil22.ind$chlQ4 <- FLIndex(index = flq)

range(pil22.ind$chlQ4)[c("startf", "endf")] <- c(0.75, 1)

index.var(pil22.ind$chlQ4)[] <- 0.4

flq <- index(naotr3_index) + 3

dimnames(flq)[1] <- 0

quant(flq) <- "age"

pil22.ind$naoQ3 <- FLIndex(index = flq)

range(pil22.ind$naoQ3)[c("startf", "endf")] <- c(0.5, 0.75)

index.var(pil22.ind$naoQ3)[] <- 0.4

flq <- index(SSTtr4a_index)

dimnames(flq)[1] <- 0

quant(flq) <- "age"

pil22.ind$sstQ4 <- FLIndex(index = flq)

range(pil22.ind$sstQ4)[c("startf", "endf")] <- c(0.75, 1)

index.var(pil22.ind$sstQ4)[] <- 0.4

flq <- index(moitr2_Isr_index) + 3

dimnames(flq)[1] <- 0

quant(flq) <- "age"

pil22.ind$moiQ2 <- FLIndex(index = flq)

range(pil22.ind$moiQ2)[c("startf", "endf")] <- c(0.25, 0.5)

index.var(pil22.ind$moiQ2)[] <- 0.4

## build separate FLIndices with fewer indices

flq1 <- index(chltr4a_index)

dimnames(flq1)[1] <- 0

quant(flq1) <- "age"

flq2 <- index(naotr3_index) + 3

dimnames(flq2)[1] <- 0

quant(flq2) <- "age"

flq3 <- index(SSTtr4a_index)

dimnames(flq3)[1] <- 0

quant(flq3) <- "age"

flq4 <- index(moitr2_Isr_index) + 3

dimnames(flq4)[1] <- 0

quant(flq4) <- "age"

# -chla4 only

pil22a.ind <- Saeg14.ind

pil22a.ind$chlQ4 <- FLIndex(index = flq1)

range(pil22a.ind$chlQ4)[c("startf", "endf")] <- c(0.75, 1)

index.var(pil22a.ind$chlQ4)[] <- 0.4

index.var(pil22a.ind[[1]])[] <- 0.3
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pil22a.ind@.Data[[1]]@index[4, 12] <- 1

# -SST4 only

pil22b.ind <- Saeg14.ind

pil22b.ind$sstQ4 <- FLIndex(index = flq3)

range(pil22b.ind$sstQ4)[c("startf", "endf")] <- c(0.75, 1)

index.var(pil22b.ind$sstQ4)[] <- 0.4

index.var(pil22b.ind[[1]])[] <- 0.3

pil22b.ind@.Data[[1]]@index[4, 12] <- 1

# -nao3 only

pil22c.ind <- Saeg14.ind

pil22c.ind$naoQ3 <- FLIndex(index = flq2)

range(pil22c.ind$naoQ3)[c("startf", "endf")] <- c(0.5, 0.75)

index.var(pil22c.ind$naoQ3)[] <- 0.4

index.var(pil22c.ind[[1]])[] <- 0.3

pil22c.ind@.Data[[1]]@index[4, 12] <- 1

# -moi2 only

pil22d.ind <- Saeg14.ind

pil22d.ind$moiQ2 <- FLIndex(index = flq4)

range(pil22d.ind$moiQ2)[c("startf", "endf")] <- c(0.25, 0.5)

index.var(pil22d.ind$moiQ2)[] <- 0.4

index.var(pil22d.ind[[1]])[] <- 0.3

pil22d.ind@.Data[[1]]@index[4, 12] <- 1

# -chl4 & SST4

pil22e.ind <- Saeg14.ind

pil22e.ind$chlQ4 <- FLIndex(index = flq1)

range(pil22e.ind$chlQ4)[c("startf", "endf")] <- c(0.75, 1)

index.var(pil22e.ind$chlQ4)[] <- 0.4

pil22e.ind$sstQ4 <- FLIndex(index = flq3)

range(pil22e.ind$sstQ4)[c("startf", "endf")] <- c(0.75, 1)

index.var(pil22e.ind$sstQ4)[] <- 0.4

index.var(pil22e.ind[[1]])[] <- 0.3

pil22e.ind@.Data[[1]]@index[4, 12] <- 1

# -chl4 & nao3

pil22f.ind <- Saeg14.ind

pil22f.ind$chlQ4 <- FLIndex(index = flq1)

range(pil22f.ind$chlQ4)[c("startf", "endf")] <- c(0.75, 1)

index.var(pil22f.ind$chlQ4)[] <- 0.4

pil22f.ind$naoQ3 <- FLIndex(index = flq2)

range(pil22f.ind$naoQ3)[c("startf", "endf")] <- c(0.5, 0.75)

index.var(pil22f.ind$naoQ3)[] <- 0.4

index.var(pil22f.ind[[1]])[] <- 0.3

pil22f.ind@.Data[[1]]@index[4, 12] <- 1

# -sst 4& nao3
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pil22g.ind <- Saeg14.ind

pil22g.ind$sstQ4 <- FLIndex(index = flq3)

range(pil22g.ind$sstQ4)[c("startf", "endf")] <- c(0.75, 1)

index.var(pil22g.ind$sstQ4)[] <- 0.4

pil22g.ind$naoQ3 <- FLIndex(index = flq2)

range(pil22g.ind$naoQ3)[c("startf", "endf")] <- c(0.5, 0.75)

index.var(pil22g.ind$naoQ3)[] <- 0.4

# -index.var(pil22g.ind[[1]])[] <- 0.3

index.var(pil22g.ind[[1]])[] <- 0.3

pil22g.ind@.Data[[1]]@index[4, 12] <- 1

# -chl4 & sst4 & nao3

pil22h.ind <- Saeg14.ind

pil22h.ind$chlQ4 <- FLIndex(index = flq1)

range(pil22h.ind$chlQ4)[c("startf", "endf")] <- c(0.75, 1)

index.var(pil22h.ind$chlQ4)[] <- 0.4

pil22h.ind$sstQ4 <- FLIndex(index = flq3)

range(pil22h.ind$sstQ4)[c("startf", "endf")] <- c(0.75, 1)

index.var(pil22h.ind$sstQ4)[] <- 0.4

pil22h.ind$naoQ3 <- FLIndex(index = flq2)

range(pil22h.ind$naoQ3)[c("startf", "endf")] <- c(0.5, 0.75)

index.var(pil22h.ind$naoQ3)[] <- 0.4

index.var(pil22h.ind[[1]])[] <- 0.3

pil22h.ind@.Data[[1]]@index[4, 12] <- 1

5.2.2 Initial model runs

#### sst as covariate for ricker+Chla as an index along with

#### surveys

fmod <- ~te(age, replace(year, year > 2008, 2014), k = c(4, 9))

qmod <- list(~s(age, k = 3), ~s(year))

### set the SST as a covariate

cov <- c(index(window(pil22b.ind[[2]], start = 2000)))

cov <- c(cov, mean(cov))

srmod <- ~ricker(CV = 0.3, a = ~s(cov, k = 4))

fit42 <- sca(trim(pil22rbld.stk, year = 2000:2014), window(pil22a.ind,

start = 2000), qmodel = qmod, fmodel = fmod, srmodel = srmod,

fit = "assessment") ###it converges

pil22.stk.a4a.42 <- trim(pil22rbld.stk, year = 2000:2014) + fit42

plot(pil22.stk.a4a.42) # harvest up to 2.4, catches good

Short time series
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plot(fit42, Saeg14.ind)

plot(fit42, trim(pil22rbld.stk, year = 2000:2014)) ###very good fit!!!!!
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bubbles(age ~ year, data = catch.n(pil22.stk.a4a.42), bub.scale = 10)
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res <- residuals(fit42, trim(pil22rbld.stk, year = 2000:2014),

window(pil22a.ind, start = 2000))

plot(res)
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bubbles(res) # check the residuals plot, chla has greatly improved
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qqmath(res) # quantile plots, fit is generally ok, age 3 in the surveys, ages 2 and 3 in the catch need improvement
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AIC(fit42) ## -1604.01

## [1] -1604.01

BIC(fit42) ###-1391.274

## [1] -1391.274

### MOI as a covar for recruitment and ChlaTr4 along with

### surveys for an index ### Trials fmod5 <- ~ te(age, year,

### k=c(4,5), by=breakpts(year, seq(1969, 2020, 10))) qmod5 <-

### list(~s(age, k=3), ~1) moi<- c(index(pil22.ind[[5]])) moi
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### <- c(moi, mean(moi)) srmod5 <- ~ricker(a=~moi,CV=0.3)

fmod5 <- ~te(age, replace(year, year > 2008, 2014), k = c(4,

8))

qmod5 <- list(~s(age, k = 3), ~s(year, k = 10))

moi <- c(index(pil22.ind[[5]]))

moi <- c(moi, mean(moi))

srmod5 <- ~ricker(a = ~moi, CV = 0.3)

fit5 <- sca(pil22rbld.stk, pil22a.ind, fmodel = fmod5, qmodel = qmod5,

srmodel = srmod5, fit = "assessment")

pil22.stk.a4a.5 <- pil22rbld.stk + fit5

plot(pil22.stk.a4a.5)

Long time series
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plot(fit5, Saeg14.ind)

plot(fit5, pil22rbld.stk)
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res5 <- residuals(fit5, pil22rbld.stk, pil22a.ind)

plot(res5)
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bubbles(res5)
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qqmath(res5)
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5.2.3 Final model runs

####### SST as a covariate for Ricker and Moitr2 instead of Chlatr4

####### as an index

fmod <- ~te(age, replace(year, year > 2008, 2014), k = c(4, 7))

qmod <- list(~s(age, k = 3), ~s(year))

#### sst as covariate for ricker

cov <- c(index(window(pil22b.ind[[2]], start = 2000)))

cov <- c(cov, mean(cov))

srmod <- ~ricker(CV = 0.3, a = ~s(cov, k = 4))

### moi instead of chla

fit43 <- sca(trim(pil22rbld.stk, year = 2000:2014), window(pil22d.ind,
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start = 2000), qmodel = qmod, fmodel = fmod, srmodel = srmod,

fit = "assessment") ###it converges

pil22.stk.a4a.43 <- trim(pil22rbld.stk, year = 2000:2014) + fit43

plot(pil22.stk.a4a.43) # harvest up to 2.4, catches good

Short time series

plot(fit43, Saeg14.ind)

plot(fit43, trim(pil22rbld.stk, year = 2000:2014)) ###very good fit!!!!!
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bubbles(age ~ year, data = catch.n(pil22.stk.a4a.43), bub.scale = 10)
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res <- residuals(fit43, trim(pil22rbld.stk, year = 2000:2014),

window(pil22d.ind, start = 2000))

plot(res)
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bubbles(res) # check the residuals plot, chla has greatly improved

71



qqmath(res) # quantile plots, fit is generally ok, age 3 in the surveys, ages 2 and 3 in the catch need improvement
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AIC(fit43) ## -1651.432

## [1] -1651.432

BIC(fit43) ## -1460.515

## [1] -1460.515

############### MOITr2 as a covar for recruitment and sstTr4 along with

############### surveys for an index

fmod6 <- ~te(age, replace(year, year > 2008, 2014), k = c(4,

8))
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qmod6 <- list(~s(age, k = 3), ~s(year, k = 15))

moi <- c(index(pil22.ind[[5]]))

moi <- c(moi, mean(moi))

srmod6 <- ~ricker(a = ~moi, CV = 0.3)

fit6 <- sca(pil22rbld.stk, pil22b.ind, fmodel = fmod6, qmodel = qmod6,

srmodel = srmod6, fit = "assessment")

pil22.stk.a4a.6 <- pil22rbld.stk + fit6

plot(pil22.stk.a4a.6)

Long time series

plot(fit6, Saeg14.ind)

plot(fit6, pil22rbld.stk)
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res6 <- residuals(fit6, pil22rbld.stk, pil22b.ind)

plot(res6)
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bubbles(res6)
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qqmath(res6) ####age 3 presents an outlier
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AIC(fit6) ## -2113.38

## [1] -2113.38

BIC(fit6) ###-1728.746

## [1] -1728.746

5.3 Exploring the assessment results

5.3.1 Anchovy
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########################################################################### COMPARE a4a fits

# HARVEST RATES F COMPARISON

par(mfrow = c(1, 2)) # create a 1 x 2 window

persp3D(z = harvest(ane22.stk.a4a.40)[drop = TRUE], x = as.numeric(dimnames(harvest(ane22.stk.a4a.40))[[1]]),

y = as.numeric(dimnames(harvest(ane22.stk.a4a.40))[[2]]),

expand = 0.9, space = 0.3, along = "xy", colkey = list(side = 4,

width = 0.9, length = 0.4, cex.axis = 0.8), box = TRUE,

col.var = harvest(ane22.stk.a4a.40)[drop = TRUE], zlab = "Fishing mortality",

ylab = "Year", xlab = "Age", theta = 45, phi = 45, xlim = c(0,

5), main = "F-Final model fit40")

persp3D(z = harvest(ane22.stk.a4a.41)[drop = TRUE], x = as.numeric(dimnames(harvest(ane22.stk.a4a.41))[[1]]),

y = as.numeric(dimnames(harvest(ane22.stk.a4a.41))[[2]]),

expand = 0.9, space = 0.3, along = "xy", colkey = list(side = 4,

width = 0.9, length = 0.4, cex.axis = 0.8), box = TRUE,

col.var = harvest(ane22.stk.a4a.41)[drop = TRUE], zlab = "Fishing mortality",

ylab = "Year", xlab = "Age", theta = 45, phi = 45, xlim = c(0,

5), main = "F-Initial model fit41")

Short time series
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# Compare F's by Year Pass all harvest slots in an FLQuant

comp.mods.Fbar <- FLQuants(Final.fit40 = fbar(ane22.stk.a4a.40),

Initial.fit41 = fbar(ane22.stk.a4a.41))

# comparison plot

xyplot(data ~ year | age, groups = qname, data = comp.mods.Fbar,

type = "b", auto.key = T, main = "Fbar", scale = "free")
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# Compare harvest by Year Pass all harvest slots in an

# FLQuant

comp.mods.harvest <- FLQuants(Final.fit40 = harvest(ane22.stk.a4a.40),

Initial.fit41 = harvest(ane22.stk.a4a.41))

# comparison plot

xyplot(data ~ year | age, groups = qname, data = comp.mods.harvest,

type = "l", auto.key = T, main = "Harvest@age", scale = "free",

lwd = 2)
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# Compare Stock abundances Pass all stock.n slots in an

# FLQuant

comp.mods.stock.n <- FLQuants(Final.fit40 = ane22.stk.a4a.40@stock.n/1000,

Initial.fit41 = ane22.stk.a4a.41@stock.n/1000)

# comparison plot

xyplot(data ~ year | age, groups = qname, data = comp.mods.stock.n,

type = "l", auto.key = T, main = "Stock Nb@age", scale = "free")
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# Compare Stock Biomass Pass all stock slots in an FLQuant

comp.mods.stock <- FLQuants(Final.fit40 = ane22.stk.a4a.40@stock/1000,

Initial.fit41 = ane22.stk.a4a.41@stock/1000)

# comparison plot

xyplot(data ~ year | age, groups = qname, data = comp.mods.stock,

type = "b", auto.key = T, main = "Stock Biomass (tons)",

lwd = 2)
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########################################################################### COMPARE a4a fits

# HARVEST RATES F COMPARISON

par(mfrow = c(1, 2)) # create a 1 x 2 window

persp3D(z = harvest(ane22.stk.a4a.51)[drop = TRUE], x = as.numeric(dimnames(harvest(ane22.stk.a4a.51))[[1]]),

y = as.numeric(dimnames(harvest(ane22.stk.a4a.51))[[2]]),

expand = 0.9, space = 0.3, along = "xy", colkey = list(side = 4,

width = 0.9, length = 0.4, cex.axis = 0.8), box = TRUE,

col.var = harvest(ane22.stk.a4a.51)[drop = TRUE], zlab = "Fishing mortality",

ylab = "Year", xlab = "Age", theta = 45, phi = 45, xlim = c(0,

5), main = "F-Final model fit51")

persp3D(z = harvest(ane22.stk.a4a.42)[drop = TRUE], x = as.numeric(dimnames(harvest(ane22.stk.a4a.42))[[1]]),
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y = as.numeric(dimnames(harvest(ane22.stk.a4a.42))[[2]]),

expand = 0.9, space = 0.3, along = "xy", colkey = list(side = 4,

width = 0.9, length = 0.4, cex.axis = 0.8), box = TRUE,

col.var = harvest(ane22.stk.a4a.42)[drop = TRUE], zlab = "Fishing mortality",

ylab = "Year", xlab = "Age", theta = 45, phi = 45, xlim = c(0,

5), main = "F-Initial model fit42")

Long time series

# Compare F's by Year Pass all harvest slots in an FLQuant

comp.mods.Fbar <- FLQuants(Final.fit51 = fbar(ane22.stk.a4a.51),

Initial.fit42 = fbar(ane22.stk.a4a.42))

# comparison plot

xyplot(data ~ year | age, groups = qname, data = comp.mods.Fbar,

type = "b", auto.key = T, main = "Fbar", scale = "free")
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# Compare harvest by Year Pass all harvest slots in an

# FLQuant

comp.mods.harvest <- FLQuants(Final.fit51 = harvest(ane22.stk.a4a.51),

Initial.fit42 = harvest(ane22.stk.a4a.42))

# comparison plot

xyplot(data ~ year | age, groups = qname, data = comp.mods.harvest,

type = "l", auto.key = T, main = "Harvest@age", scale = "free",

lwd = 2)

87



# Compare Stock abundances Pass all stock.n slots in an

# FLQuant

comp.mods.stock.n <- FLQuants(Final.fit51 = ane22.stk.a4a.51@stock.n/1000,

Initial.fit42 = ane22.stk.a4a.42@stock.n/1000)

# comparison plot

xyplot(data ~ year | age, groups = qname, data = comp.mods.stock.n,

type = "l", auto.key = T, main = "Stock Nb@age", scale = "free")
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# Compare Stock Biomass Pass all stock slots in an FLQuant

comp.mods.stock <- FLQuants(Final.fit51 = ane22.stk.a4a.51@stock/1000,

Initial.fit42 = ane22.stk.a4a.42@stock/1000)

# comparison plot

xyplot(data ~ year | age, groups = qname, data = comp.mods.stock,

type = "b", auto.key = T, main = "Stock Biomass (tons)",

lwd = 2)
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5.3.2 Sardine

########################################################################### COMPARE a4a fits HARVEST RATES F COMPARISON

par(mfrow = c(1, 2)) # create a 1 x 2 window

persp3D(z = harvest(pil22.stk.a4a.42)[drop = TRUE], x = as.numeric(dimnames(harvest(pil22.stk.a4a.42))[[1]]),

y = as.numeric(dimnames(harvest(pil22.stk.a4a.42))[[2]]),

expand = 0.9, space = 0.3, along = "xy", colkey = list(side = 4,

width = 0.9, length = 0.4, cex.axis = 0.8), box = TRUE,

col.var = harvest(pil22.stk.a4a.42)[drop = TRUE], zlab = "Fishing mortality",

ylab = "Year", xlab = "Age", theta = 45, phi = 45, xlim = c(0,

5), main = "F-Initial model fit42")

persp3D(z = harvest(pil22.stk.a4a.43)[drop = TRUE], x = as.numeric(dimnames(harvest(pil22.stk.a4a.43))[[1]]),
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y = as.numeric(dimnames(harvest(pil22.stk.a4a.43))[[2]]),

expand = 0.9, space = 0.3, along = "xy", colkey = list(side = 4,

width = 0.9, length = 0.4, cex.axis = 0.8), box = TRUE,

col.var = harvest(pil22.stk.a4a.43)[drop = TRUE], zlab = "Fishing mortality",

ylab = "Year", xlab = "Age", theta = 45, phi = 45, xlim = c(0,

5), main = "F-Final model fit43")

Short time series

# Compare F's by Year Pass all harvest slots in an FLQuant

comp.mods.Fbar <- FLQuants(Initial.fit42 = fbar(pil22.stk.a4a.42),

Final.fit43 = fbar(pil22.stk.a4a.43))

# comparison plot

xyplot(data ~ year | age, groups = qname, data = comp.mods.Fbar,

type = "b", auto.key = T, main = "Fbar", scale = "free")
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# Compare harvest by Year Pass all harvest slots in an

# FLQuant

comp.mods.harvest <- FLQuants(Initial.fit42 = harvest(pil22.stk.a4a.42),

Final.fit43 = harvest(pil22.stk.a4a.43))

# comparison plot

xyplot(data ~ year | age, groups = qname, data = comp.mods.harvest,

type = "l", auto.key = T, main = "Harvest@age", scale = "free",

lwd = 2)
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# Compare Stock abundances Pass all stock.n slots in an

# FLQuant

comp.mods.stock.n <- FLQuants(Initial.fit42 = pil22.stk.a4a.42@stock.n/1000,

Final.fit43 = pil22.stk.a4a.43@stock.n/1000)

# comparison plot

xyplot(data ~ year | age, groups = qname, data = comp.mods.stock.n,

type = "l", auto.key = T, main = "Stock Nb@age", scale = "free")

93



# Compare Stock Biomass Pass all stock slots in an FLQuant

comp.mods.stock <- FLQuants(Initial.fit42 = pil22.stk.a4a.42@stock/1000,

Final.fit43 = pil22.stk.a4a.43@stock/1000)

# comparison plot

xyplot(data ~ year | age, groups = qname, data = comp.mods.stock,

type = "b", auto.key = T, main = "Stock Biomass (tons)",

lwd = 2)
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########################################################################### COMPARE a4a fits HARVEST RATES F COMPARISON

par(mfrow = c(1, 2)) # create a 1 x 2 window

persp3D(z = harvest(pil22.stk.a4a.5)[drop = TRUE], x = as.numeric(dimnames(harvest(pil22.stk.a4a.5))[[1]]),

y = as.numeric(dimnames(harvest(pil22.stk.a4a.5))[[2]]),

expand = 0.9, space = 0.3, along = "xy", colkey = list(side = 4,

width = 0.9, length = 0.4, cex.axis = 0.8), box = TRUE,

col.var = harvest(pil22.stk.a4a.5)[drop = TRUE], zlab = "Fishing mortality",

ylab = "Year", xlab = "Age", theta = 45, phi = 45, xlim = c(0,

5), main = "F-Initial model fit5")

persp3D(z = harvest(pil22.stk.a4a.6)[drop = TRUE], x = as.numeric(dimnames(harvest(pil22.stk.a4a.6))[[1]]),

y = as.numeric(dimnames(harvest(pil22.stk.a4a.6))[[2]]),

expand = 0.9, space = 0.3, along = "xy", colkey = list(side = 4,
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width = 0.9, length = 0.4, cex.axis = 0.8), box = TRUE,

col.var = harvest(pil22.stk.a4a.6)[drop = TRUE], zlab = "Fishing mortality",

ylab = "Year", xlab = "Age", theta = 45, phi = 45, xlim = c(0,

5), main = "F-Final model fit6")

Long time series

# Compare F's by Year Pass all harvest slots in an FLQuant

comp.mods.Fbar <- FLQuants(Initial.fit5 = fbar(pil22.stk.a4a.5),

Final.fit6 = fbar(pil22.stk.a4a.6))

# comparison plot

xyplot(data ~ year | age, groups = qname, data = comp.mods.Fbar,

type = "b", auto.key = T, main = "Fbar", scale = "free")
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# Compare harvest by Year Pass all harvest slots in an

# FLQuant

comp.mods.harvest <- FLQuants(Initial.fit5 = harvest(pil22.stk.a4a.5),

Final.fit6 = harvest(pil22.stk.a4a.6))

# comparison plot

xyplot(data ~ year | age, groups = qname, data = comp.mods.harvest,

type = "l", auto.key = T, main = "Harvest@age", scale = "free",

lwd = 2)
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# Compare Stock abundances Pass all stock.n slots in an

# FLQuant

comp.mods.stock.n <- FLQuants(Initial.fit5 = pil22.stk.a4a.5@stock.n/1000,

Final.fit6 = pil22.stk.a4a.6@stock.n/1000)

# comparison plot

xyplot(data ~ year | age, groups = qname, data = comp.mods.stock.n,

type = "l", auto.key = T, main = "Stock Nb@age", scale = "free")
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# Compare Stock Biomass Pass all stock slots in an FLQuant

comp.mods.stock <- FLQuants(Initial.fit5 = pil22.stk.a4a.5@stock/1000,

Final.fit6 = pil22.stk.a4a.6@stock/1000)

# comparison plot

xyplot(data ~ year | age, groups = qname, data = comp.mods.stock,

type = "b", auto.key = T, main = "Stock Biomass (tons)",

lwd = 2)

99



6 Discussion and conclusions

Enlarging the knowledge base of a �shery is always a good idea and e�ort worth pursuing.
Even when the success is not immediate, the compilation of historical information and
the exploratory process of understanding the stock and �shery dynamics with relation to
the ecosystem, will provide insights that may help making use of limited/sparse datasets
for �sh stocks management.

Using environmental indicators to anchor estimates for missing years seems to be promis-
ing. In the case studies presented here the success of this approach was not brilliant,
in part due to the very short time series, which required large parts of the information
base to be rebuilt. Environmental indicators have long time series which allow the ana-
lyst to de�ned/model the temporal behavior of the process, largely contributing for the
estimation of stock status and identifying how dependent the stock is of externalities.
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6.1 Comments on rebuilding historical information

� Rebuilding age structure based on recent catch structure smooths the dynamics and
doesn't seem to help much the model �t.

� Not having information for tuning the age structure results in the model confounding
high/low F with low/high SSB.

� Environmental indices helped model mainly in terms of recruitment. Other indices
might be suitable to help with other ages.

� Catches in weight are important to get an idea of the level of exploitation. A model
that �ts the total catches may make use of it.

� E�ort/capacity should also be further explored.

6.2 Comments on �tting short time series with gaps

� Stock assessment models �ts depend on the number of full cohorts in the data. In
the case of anchovy and sardine in GSA 22 �tting can be problematic due to the
short time series and the existing gaps.

� Fits tend to get very unstable.

� Linking F in the missing years to observations gives "good" results and allows the
estimation of F and population numbers.

� Most likely constraining more parameters can stabilize the �t and give better results.
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