
JSS Journal of Statistical Software
October 2015, Volume 67, Code Snippet 1. doi: 10.18637/jss.v067.c01

The Forward Search for Very Large Datasets

Marco Riani
Università di Parma

Domenico Perrotta
European Commission
Joint Research Centre

Andrea Cerioli
Università di Parma

Abstract

The identification of atypical observations and the immunization of data analysis
against both outliers and failures of modeling are important aspects of modern statis-
tics. The forward search is a graphics rich approach that leads to the formal detection of
outliers and to the detection of model inadequacy combined with suggestions for model
enhancement. The key idea is to monitor quantities of interest, such as parameter esti-
mates and test statistics, as the model is fitted to data subsets of increasing size. In this
paper we propose some computational improvements of the forward search algorithm and
we provide a recursive implementation of the procedure which exploits the information of
the previous step. The output is a set of efficient routines for fast updating of the model
parameter estimates, which do not require any data sorting, and fast computation of like-
lihood contributions, which do not require matrix inversion or qr decomposition. It is
shown that the new algorithms enable a reduction of the computation time by more than
80%. Furthemore, the running time now increases almost linearly with the sample size.
All the routines described in this paper are included in the FSDA toolbox for MATLAB
which is freely downloadable from the internet.

Keywords: fast updating, FSDA, linear and logical indexing, order statistics, MATLAB.

1. Introduction
The forward search is a powerful general method for detecting anomalies in structured data
(Atkinson and Riani 2000; Atkinson, Riani, and Cerioli 2004; Riani, Atkinson, and Cerioli
2009; Atkinson, Riani, and Cerioli 2010), which relies on a simple and attractive idea. In a
nutshell, we are given a sample of n observations and we postulate a generating model for
them. The method starts from a subset of cardinality m0 � n, which is robustly chosen to
contain only observations coming from the assumed model. This subset is used for fitting
the model and the likelihood contribution (or alternatively a deviance measure) for each
observation is computed. The subsequent fitting subset is then obtained by taking the m0 +

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by JRC Publications Repository

https://core.ac.uk/display/38631082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.18637/jss.v067.c01

2 The Forward Search for Very Large Datasets

1 observations with the largest likelihood contribution (smallest deviance measures). The
algorithm iterates this fitting and updating scheme until all the observations are used in the
fitting subset, thus yielding the classical statistical summary of the data. A major advantage
of the forward search is its diagnostic power, because it shows the impact that each unit exerts
on the fitting process, with outliers and other peculiar observations entering in the last steps
of the algorithm. The definition of proper deviance residuals depends on the specific model
for the data: in regression they are squared residuals, while in multivariate analysis we take
Mahalanobis distances. Also the initialization step is model-dependent, and the most frequent
choices are least trimmed squares for regression (Hubert, Rousseeuw, and Aelst 2008) and
robust bivariate projections in multivariate analysis (Zani, Riani, and Corbellini 1998).
Recent applications of the forward search include systematic outlier detection in official Cen-
sus data (Torti, Perrotta, Francescangeli, and Bianchi 2015), and the analysis of international
trade markets (Cerioli and Perrotta 2014), where important issues such as incorrect decla-
rations, tax evasion and money laundering are at the forefront. In both these instances the
number of datasets to be analyzed is of the order of hundreds of thousands, while the sample
size of each dataset ranges from less than 10 observations to more than 100000. It is thus
crucial to improve the computational features of the methodology and to dramatically reduce
its computation time. Otherwise, online monitoring and outlier detection, which are essential
requirements for the successful implementation of statistical methods in these fields, would
be unfeasible.
The goal of this work is to provide the computational and algorithmic advances that are
necessary to apply the forward search to the massive datasets arising in applications like
those sketched above. We thus provide the user with:

1. An analysis of the computation time required to perform the forward search for a wide
set of sample sizes;

2. Efficient algorithms for both subset updating and computation of Mahalanobis dis-
tances or residuals; these algorithms do not need matrix inversion, but simple matrix
multiplications, and avoid the use of sorting procedures;

3. An evaluation of the computation savings that derive from the use of the new algorithms.

All the routines described in this paper are included in the FSDA toolbox for MATLAB
(Riani, Perrotta, and Torti 2012). This new software library, which extends MATLAB and
its Statistics Toolbox to support a robust and efficient analysis of complex datasets, affected
by different sources of heterogeneity, is freely downloadable from the websites http://www.
riani.it/MATLAB/ and http://fsda.jrc.ec.europa.eu/.
The structure of the paper is as follows. In Section 2 we give the details of our procedure
for efficient updating, avoiding the sorting of Mahalanobis distances, and compare the new
procedure to the current one in terms of computation time. In Section 3 we suggest an
iterative method to compute likelihood contributions (deviance measures) at each step without
resorting to the computation of inverse matrices. We show that the new approach leads to
dramatic time savings in large samples. Section 4 discusses our findings. We also provide
four appendices. The first three focus on the MATLAB implementation of the new software.
In Appendix A, given that we make substantial use of submatrices, we compare logical and
linear indexing. In Appendix B we analyze the difference in performance of the internal

http://www.riani.it/MATLAB/
http://www.riani.it/MATLAB/
http://fsda.jrc.ec.europa.eu/

Journal of Statistical Software – Code Snippets 3

MATLAB function @bsxfun with element by element multiplication ’.*’, for small and large
sample sizes. In Appendix C we give the details of the MATLAB implementation of a new
algorithm to find an order statistic tailored to the forward search context; this implementation
turns out to be faster than the use of the internal compiled MATLAB function based on sort.
The Appendix D deals with the HTML documentation of the new functions which have been
written.

2. Fast subset updating
Let Ln(θ) be the loglikelihood of all observations. The forward search fits subsets of observa-
tions of size m to the data, with m = m0,m0 + 1, . . . n. Let Sm be the subset of size m, for
which the maximum likelihood estimate (m.l.e.) of the p× 1 parameter θ is θ̂(m). Then

Lm{θ̂(m)} =
∑

i∈Sm

li{θ̂(m)}. (1)

Loglikelihood contributions li{θ̂(m)} can be calculated for all observations including those
not in Sm. The search moves forward with the augmented subset Sm+1 consisting of the
observations with the m+ 1 largest values of li{θ̂(m)}.
In regression y = Xβ + ε, where y is the n × 1 vector of responses, X is an n × p full-rank
matrix of known constants, with ith row x>i , and β is a vector of p unknown parameters.
The normal theory assumptions state that the errors εi are i.i.d. N(0, σ2). For regression the
loglikelihood increment (1), omitting constants not depending on i, becomes

li{θ̂(m)} = −{yi − x>i β̂(m)}2/2s2(m) = −e2
i (m)/2s2(m). (2)

In (2) β̂(m) and s2(m) are the parameter estimates from subset Sm. The search thus moves
forward with the augmented subset Sm+1 consisting of the observations with them+1 smallest
absolute values of ei(m). An inferentially important consequence is that the estimates of the
parameters are based only on those observations giving the m central residuals.
In the case of a sample y = (y1, . . . , yn)> of v-variate observations from the multinormal
distribution N(µ,Σ), the likelihood contribution (1), again omitting constants not depending
on i, becomes

li{µ̂(m), Σ̂(m)} = −{yi − µ̂(m)}>Σ̂(m)−1{yi − µ̂(m)}/2, (3)

where µ̂(m) and Σ̂(m) are the estimates of µ and Σ computed from the fitting subset Sm.
Comparison with (2) shows that squared scaled residuals are now replaced by the squared
Mahalanobis distances

d2
i (m) = {yi − µ̂(m)}>Σ̂(m)−1{yi − µ̂(m)} i = 1, . . . , n, (4)

which are used for progressing in the search and for detecting multivariate outliers.
In the current version of the algorithm, all the n squared residuals (Mahalanobis distances)
are sorted and the units corresponding to the smallestm+1 deviance measures are considered,
in order to select the new subset of size m+ 1. This procedure requires O(n logn) operations
and becomes largely inefficient when n is very large, because the main quantity of interest is
the (m + 1)th order statistic of the deviance measures. In the theorem below we show that
we do not require any sorting operations to update the subset in each step, but we simply
need some logical operations and the possible calculation of minima.

4 The Forward Search for Very Large Datasets

Theorem 1. Assume that just one unit joins the subset from step m to step m + 1. Then,
Sm+1 can be found with 2n+ 1 logical operations and the computation of a sum.
On the other hand, if k > 1 new units join the subset, it is necessary to compute k additional
minima and k additional logical operations to find Sm+1.

Proof. Let us consider a logical vector bsbT of length n containing a true in correspondence
of the units forming the fitting subset at a certain step. Once the minimum deviance outside
the subset has been calculated, the idea is to count how many units of the current subset
have a deviance measure smaller than or equal to the minimum. Let this number be m′.
Computation of m′ can be done using 2 × n logical operations. Let us call rankgap the
difference between m + 1 and m′. If just one new unit joins the subset, rankgap is equal to
1. The logical vector containing the units forming the new subset, therefore, can be obtained
by adding a true in correspondence of the unit associated to the minimum deviance outside
the subset.
The corresponding operations can be easily understood in the code snippet below, where
MD is the vector of Mahalanobis distances for all the observations computed using centroid
and covariance matrix based on Sm. We assume that the minimum Mahalanobis distance
(minMD), and the index associated to the minimum, minMDindex, have already been computed
as follows:

MDmod = MD; MDmod(bsbT) = Inf; [minMD, minMDindex(:)] = min(MDmod);

The logical vector containing the subset of units which have a Mahalanobis distance smaller
than the minimum, and then rankgap, can be found as follows:

bsbriniT = (MD <= minMD) & oldbsbT; rankgap = m + 1 - sum(bsbriniT)

So, if rankgap = 1 the new subset can be found from the simple logical instruction

bsbT(minMDindex) = true;

When rankgap is equal to k > 1, this means that k additional units must be added to form
the new subset; that is, k additional true must be set in the logical vector bsbriniT. In order
to find the next unit which will join the subset it is necessary to compute the minimum of
the vector of modified Mahalanobis distances which has an Inf in correspondence of the m′
units (MDmod in the code snippet below), and add a true and an Inf in vectors bsbriniT and
MDmod, respectively.

MDmod = MD;
MDmod(bsbriniT) = Inf;
[~, minMDindex(:)] = min(MDmod);
bsbriniT(minMDindex) = true;
MDmod(minMDindex) = Inf;

The code above is inserted in a loop and repeated k times in order to find the new subset of
size m+ 1.

Journal of Statistical Software – Code Snippets 5

2 4 6
0

20

40

60

80 79.8

89.6
93.7 95.9 97.1 97.9 98.3

n=1000
P

er
ce

nt
ag

es

2 4 6
0

20

40

60

80 80.3

89.8
93.6 95.4 96.4 97.2 97.7

n=10000

2 4 6
0

20

40

60

80 80

89.6
93.4 95.3 96.4 97.1 97.6

n=30000

P
er

ce
nt

ag
es

m+1−rank(min. MD)
2 4 6

0

20

40

60

80 80.3

89.8
93.6 95.3 96.4 97.1 97.6

n=50000

m+1−rank(min. MD)

Figure 1: Analysis of the frequency distribution of rankgap for 4 samples sizes n = 1000,
10000, 30000 and 50000. The numbers on top of the bars are the cumulative percentages.

The new updating strategy poses the question of the distribution of rankgap along the search.
Figure 1 addresses this problem. The plot considers the frequency distribution of rankgap
when n = 1000, 10000, 30000 and 50000, v = 2, and the data are normally distributed.
Without loss of generality, the data are standardized because of the invariance properties of
the deviance measures (4). Similar results have been obtained also with v = 10, but are not
reported here. This figure clearly shows that in about 80% of the steps the value of rankgap is
1, and that the cases in which rankgap ≤ 2 involve about 90% of all the steps of the forward
search. This implies that nine times out of ten on average we simply need to compute 1
minimum and 2n + 2 logical operations in order to find the new subset. The situations in
which rankgap is greater than 6 are just roughly 2%.
The second question that the new procedure naturally raises is up to which value of rankgap
it is convenient to compute the new subset using repeated minima, and when it is better to
find the (m+1)th order statistic directly. In Appendix C we give a MATLAB implementation
of a new algorithm to find an order statistic, specifically tailored to the forward search. Our
analyses, not given here, show that it is better to resort to repeated minima when rankgap
is smaller than or equal to 10. Otherwise, we resort to our new algorithm for the (m + 1)th
order statistic.
The third question that the new procedure implies is up to which point of the search it is

6 The Forward Search for Very Large Datasets

convenient to rely on linear indexing instead of logical indexing. In linear indexing the ele-
ments to be extracted from a vector are indicated through a set of integers, which correspond
to the element position in the vector. Logical indexing extracts the elements using a Boolean
vector of the same length as the original one. The results in Appendix A show that the
computing time of linear indexing increases linearly with the number of elements to extract,
as expected, and that linear indexing is quicker than logical indexing if the percentage of
elements to extract is not greater than 50%. This implies that in the forward search we must
find the step up to which linear indexing is more convenient. Figure 2 gives computing time
as a function of the proportion of subsequent steps for which linear indexing is adopted. It
shows that the optimal proportion is about 0.85. Clearly, the difference in computing time
is negligible when n ≤ 10000, but it becomes important when n is very large. Therefore, we
suggest to use linear indexing until m/n = 0.85 and then to revert to logical indexing. This
adjustment implies that to extract the units of Sm, for m = m0,m0 + 1 . . . , n, we need to add
the conditional statement:

if m <= percn;
Yb = Y(bsb, :);

else
Yb = Y(bsbT, :);

end

where percn = 0.85× n and bsb is an int16 or int32 vector of size m.
We now compare the computing time of our new procedure to update the subset against the
currently available one, which is based on the use of MATLAB function sort. More precisely,
in the traditional implementation the new subset of size m + 1, given Sm, was found by the
following code1:

[~, malasorind(:)] = sort(MD);
bsb = malasorind(1:m + 1);

Figure 3 shows that the reduction of computation time ensured by the use of the new procedure
is huge. The left panel refers to sample sizes n in the range 100–100000. The right panel is
a zoom referred to the interval 100–10000. The new updating procedure is almost 10 times
faster than the current one. An additional important property of the new procedure is the
time is now a roughly linear function of n.

3. Fast deviance measures updating
The purpose of this section is to show, given the subset Sm+1, how it is possible to efficiently
compute the n corresponding deviance measures using the quantities available from the pre-
vious step m. As we have seen, in most moves from Sm to Sm+1 just one new unit joins the
subset. In this case simple deletion formulae can be used (Atkinson and Riani 2000; Atkinson
et al. 2004). However, in presence of a complicated structure based on more than one group,
there be can steps in which k units leave the subset and k + 1 join it, when passing from Sm

1In order to save space malasorind is predefined as int16 or int32 signed integer arrays. The instruction
malasorind(:) ensures that the output of sort is not implicitly converted to a double precision array.

Journal of Statistical Software – Code Snippets 7

0.4 0.6 0.8 1
1.48

1.5

1.52

1.54

1.56

1.58

1.6

S
ec

on
ds

n=5000

0.4 0.6 0.8 1

4.6

4.7

4.8

4.9

5

n=10000

0.4 0.6 0.8 1
190

192

194

196

198

200

202

204
n=50000

S
ec

on
ds

Proportion of linear indexing
0.4 0.6 0.8 1

840

850

860

870

880

Proportion of linear indexing

n=100000

Figure 2: Computing time to perform the forward search as a function of the proportion of
linear indexing.

0 2 4 6 8 10

x 10
4

0

500

1000

1500

2000

2500

S
ec

on
ds

Sample size
0 2000 4000 6000 8000 10000

0

5

10

15

20

25

30

35

A
m

ou
nt

 o
f s

ec
on

ds

Sample size

Figure 3: Comparison of computing time between traditional (solid line) and new (dash-
dotted line) subset updating.

to Sm+1. This event is often called an “interchange”. It is thus necessary to generalize the
traditional deletion formulae to deal with interchanges. In what follows we concentrate on
multivariate analysis, but our approach can be easily extended to regression.

8 The Forward Search for Very Large Datasets

Let Σ̂(m)x∈Sm be the covariance matrix based on the units which are inside subset Sm. We
can see by algebraic manipulations that this matrix can be decomposed as follows:

(m− 1)Σ̂(m)x∈Sm = (m− k − 1)Σ̂(m− k)x∈Sm∩x∈Sm+1 + (k − 1)Σ̂(k)x∈Sm∩x 6∈Sm+1+

+ k(m− k)
m

(µ̂(m− k)x∈Sm∩x∈Sm+1 − µ̂(k)x∈Sm∩x 6∈Sm+1)×

(µ̂(m− k)x∈Sm∩x∈Sm+1 − µ̂(k)x∈Sm∩x 6∈Sm+1)>, (5)

where µ̂(m − k)x∈Sm∩x∈Sm+1 and Σ̂x∈Sm∩x∈Sm+1 are, respectively, the centroid and the co-
variance matrix of the (m − k) units which remain in the subset at step m + 1, while
µ̂(k)x∈Sm∩x 6∈Sm+1 and Σ̂x∈Sm∩x 6∈Sm+1 are the centroid and the covariance matrix of the k
units which leave the subset when passing from Sm to Sm+1. Similarly, there is the follow-
ing relationship between the covariance matrix based on Sm+1, i.e., Σ̂(m + 1)x∈Sm+1 , and
Σ̂(m− k)x∈Sm∩x∈Sm+1 :

mΣ̂(m+ 1)x∈Sm+1 = (m− k − 1)Σ̂(m− k)x∈Sm∩x∈Sm+1 + kΣ̂(k + 1)x 6∈Sm∩x∈Sm+1

+ (k + 1)(m− k)
m+ 1 (µ̂(m− k)x∈Sm∩x∈Sm+1 − µ̂(k + 1)x 6∈Sm∩x∈Sm+1)×

(µ̂(m− k)x∈Sm∩x∈Sm+1 − µ̂(k + 1)x 6∈Sm∩x∈Sm+1)> (6)

where µ̂(k+ 1)x 6∈Sm∩x∈Sm+1 and Σ̂x 6∈Sm∩x∈Sm+1 are, respectively, the centroid and the covari-
ance matrix of the k + 1 new units which join the subset when passing from step m to step
m+ 1.
It is well known that the inverse of a v × v matrix D = (C + αxx>) can be expressed as
follows:

(C + αxx>)−1 = C−1 − αC−1xx>C−1

1 + αx>C−1x
,

where the v × v matrix C is of full rank, α ∈ < and x is a v × 1 vector. This expression is
particularly useful if C−1 is already available. In general, if we need to compute the inverse
of D = (C + ∑r

i=1 αiziz
>
i) we can exploit the following identities

(D −
r∑

i=2
αiziz

>
i)−1 = (C + α1z1z

>
1)−1 = C−1

1

(D −
r∑

i=3
αiziz

>
i)−1 = (C1 + α2z2z

>
2)−1 = C−1

2

...

(D −
r∑

i=r−1
αiziz

>
i)−1 = (Cr−3 + αr−2zr−2z

>
r−2)−1 = C−1

r−2

(D − αrzrz
>
r)−1 = (Cr−2 + αr−1zr−1z

>
r−1)−1 = C−1

r−1

D−1 = (Cr−1 + αrzrz
>
r)−1 = C−1

r .

As a consequence, if the inverse of C is already available, matrix D−1 can be efficiently
obtained through the following recursion:

C−1
j = (Cj−1 + αjzjz

>
j)−1 =

C−1
j−1 − αjC

−1
j−1zjz

>
j C
−1
j−1

1 + αz>j C
−1
j−1zj

j = 1, . . . , r, (7)

Journal of Statistical Software – Code Snippets 9

with C−1
r = D−1 and C−1

0 = C−1.
We can apply these results to the updating process implied by the forward search. If k
units leave the fitting subset when passing from Sm to Sm+1, we can easily obtain matrix
{(m − k − 1)Σ̂(m − k)x∈Sm∩x∈Sm+1}−1 from {(m − 1)Σ̂(m)x∈Sm}−1 using Equation 5 and
recursion (7) with

r = k + 1, α1 = −k(m− k)
m

, z1 = (µ̂(m− k)x∈Sm∩x∈Sm+1 − µ̂(k)x∈Sm∩x6∈Sm+1),

and, for j = 2, . . . , k + 1,

αj = −1, zj = xj − µ̂(k)x∈Sm∩x 6∈Sm+1 , with {xj : xj ∈ Sm ∩ xj 6∈ Sm+1}.

Similarly, using Equation 6, if we start from {(m − k − 1)Σ̂(m − k)x∈Sm∩x∈Sm+1}−1 we can
easily compute {mΣ̂(m+ 1)x∈Sm+1}−1 by putting

r = k + 2, α1 = (k + 1)(m− k)
m+ 1 , z1 = (µ̂(m− k)x 6∈Sm∩x∈Sm+1 − µ̂(k)x∈Sm∩x 6∈Sm+1),

and, for j = 2, . . . , k + 2,

αj = 1, zj = xj − µ̂(k)x 6∈Sm∩x∈Sm+1 , with {xj : xj 6∈ Sm ∩ xj ∈ Sm+1}.

If k units (with k = 2, 3, . . .) leave the fitting subset we need to run recursion (7) 2k + 3
times. It is also worthwhile to notice that, if in passing from Sm to Sm+1 just one unit leaves
the subset, then Equation 5 reduces to

(m− 1)Σ̂(m)x∈Sm = (m− 2)Σ̂(m− 1)x∈Sm∩x∈Sm+1+

+ (m− 1)
m

(µ̂(m− 1)x∈Sm∩x∈Sm+1 − xx∈Sm∩x 6∈Sm+1)×

(µ̂(m− 1)x∈Sm∩x∈Sm+1 − xx∈Sm∩x 6∈Sm+1)>, (8)

so just four iterations of Equation 7 are needed. Finally, in normal progression (no inter-
change), Equation 6 reduces to

mΣ̂(m+ 1)x∈Sm+1 = (m− 1)Σ̂(m)x∈Sm∩x∈Sm+1

+ 2(m− 1)
m+ 1 (µ̂(m)x∈Sm∩x∈Sm+1 − xx 6∈Sm∩x∈Sm+1)×

(µ̂(m)x∈Sm∩x∈Sm+1 − xx 6∈Sm∩x∈Sm+1)> (9)

and just one iteration of (7) is needed.
Remark: The well known formula of Sherman-Morrison-Woodbury (see for example Equa-
tion 2.31 in Atkinson and Riani 2000) states that:

(A− UV >)−1 = A−1 +A−1U(Ir − V >A−1U)−1V >A−1, (10)

where A is p× p and it is assumed that all necessary inverses exist. The advantage of using
the matrix form is thought to be that if r is smaller than p the required inverse is r × r.
Translated to our notation, A is a v × v function of the covariance matrix at step m, while

10 The Forward Search for Very Large Datasets

UV > is a function of the covariance matrix of the units which leave or enter the subset from
step m to step m + 1. Therefore, Equation 10 does not bring any computational advantage
because, even if A−1 is precomputed, this formula requires the inverse of Ir−V >A−1U , which
can be of size greater than v in presence of considerable interchange. The iterative method
suggested above avoids the computation of such an inverse. The numerical properties of the
Sherman-Morrison-Woodbury formula are nicely discussed by Yip (1986) and Hager (1989),
in terms of the well known condition estimator or condition number (Hager 1984, function
cond in MATLAB).
Figure 4 compares the new way of computing Mahalanobis distances with the traditional one
which is based on the qr decomposition. More precisely, if bsbT is defined as in the previous
section, Y is the n × v data matrix, ym is the mean of the units forming Sm, and Ym is the
matrix which contains the deviations from the means computed using the units in Sm, the
snippet of the currently available code to compute the distances is given below

Yb = Y(bsbT, :);
ym = sum(Yb, 1)/m;
Ym = bsxfun(@minus,Y, ym);
[~, R] = qr(Ym(bsbT, :), 0);
u = (Ym/R)'
% Compute squared Mahalanobis distances
MD = (m - 1) * sum(u.^2, 1);

(11)
In the new way, once the inverse of the new covariance matrix has been computed recur-
sively (which we denote with S), the Mahalanobis distances are computed using the following
instruction:

MD = (m - 1) * sum((Ym * S) .* Ym, 2);
(12)

Figure 4 compares the amount of seconds required by the two procedures. The left panel of
this figure considers a sample size in the range 100–100000, while the right panel is the zoom
of the previous plot in the interval 100 ≤ n ≤ 10000. These two figures show that if we use
the new updating formulae the time is reduced by almost two third.
Snippet 11 of the traditional Mahalanobis distances code shows that we avoided the direct
computation of the covariance matrix inverse by using the qr decomposition. The choice is
motivated by the good numerical stability of the decomposition, providing minimal amplifi-
cation of the error inherent in the original subset matrix Ybsbm (that is Ym(bsbT, :)). In
fact, cond(Ybsbm) = cond(QR) = cond(R) with Q being an orthogonal basis for the space
of Ybsbm (so cond(Q) = 1) and R an upper triangular matrix. Then, the covariance matrix
inverse is implicit in the backsolve line u = (Ym/R). Clearly, multicollinearity or other data
pathologies leading to very ill-conditioned covariance matrices may still determine very high
condition estimates and, so, very poor Mahalanobis distance values (with almost random
digits for condition numbers approaching the reciprocal of the machine epsilon).
With the new approach the Mahalanobis distances are computed, after the first step, with
the updating formulae and the numerical stability is dominated by the matrix multiplications
Ym * S. The QR decomposition is essentially reducible to matrix multiplications of the same
complexity (Miller 1975). In addition, it can be shown (see e.g. Demmel, Dumitriu, and
Holtz 2007) that if the matrix multiplication is numerically stable, then essentially all related

Journal of Statistical Software – Code Snippets 11

0 2 4 6 8 10

x 10
4

0

200

400

600

800

1000
S

ec
on

ds

Sample size
0 2000 4000 6000 8000 10000

0

1

2

3

4

5

Sample size

Figure 4: Comparison of computing time between the traditional (solid line) approach
based on the qr decomposition and the new approach (dash-dotted line) based on recursive
updating. The left panel considers a sample size which ranges from 100 to 100000, while the
right panel is a zoom referred to sample sizes in the interval 100–10000.

linear algebra operations, including the qr decomposition, can also be done stably. In other
words, although we have not assessed in detail the numerical stability of the two approaches
(theoretically and empirically, by monitoring the condition estimates), it is reasonable to think
that they are comparable, with a slight improvement provided by our updating formulae.

4. Conclusions
We have proposed some computational improvements to the forward search methodology, that
are essential for practical use with the large datasets arising in modern application fields. The
suggested improvements cover different features of the forward search code and include:

• fast subset updating;

• fast computation of deviance measures, such as Mahalanobis distances, using simple
updating formulae;

• selection of the best mixture of linear indexing and logical indexing along the search;

• choice of the best alternative between the matrix multiplication operator *. and the
MATLAB function @bsxfun;

• a new procedure for finding the kth order statistics, to be used when computation of
repeated minima becomes too expensive.

In the previous sections we have shown the contribution of each of these modifications indi-
vidually. It is also instructive to see the overall improvement provided by the new algorithms.
Figure 5 contrasts the computation time of the currently available version of the software,
the FSDA toolbox for MATLAB, with that obtained after implementation of all our new al-
gorithms, for different sample sizes and v = 2. As expected, the gain is huge and, even more
importantly, it increases with n. In fact, the overall time required by our algorithms is roughly
a linear function of n, a remarkable improvement over the traditional ones.

12 The Forward Search for Very Large Datasets

0 1 2 3 4 5

x 10
4

0

500

1000

1500

S
ec

on
ds

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

Figure 5: Comparison of computation time between the currently available version of the
FSDA software (solid line) and the new routines proposed in this paper (dash-dotted line),
when they are all implemented. The left panel considers a sample size which ranges from 1000
to 50000, while the right panel is a zoom referred to sample sizes in the interval 1000–10000.

Acknowledgments
This work was jointly supported by the project MIUR PRIN MISURA – Multivariate models
for risk assessment, by the 2014-2020 JRC Multiannual Work Programme and by the OLAF-
JRC project Automated Monitoring Tool on External Trade. The authors thank Dr. Ivano
Azzini for his contribution to the development of Appendix C.

References

Atkinson AC, Riani M (2000). Robust Diagnostic Regression Analysis. Springer-Verlag, New
York.

Atkinson AC, Riani M, Cerioli A (2004). Exploring Multivariate Data with the Forward
Search. Springer-Verlag, New York.

Atkinson AC, Riani M, Cerioli A (2010). “The Forward Search: Theory and Data Analysis.”
Journal of the Korean Statistical Society, 39(2), 117–134.

Blum M, Floyd RW, Pratt VR, Rivest RL, Tarjan RE (1973). “Time Bounds for Selection.”
Journal of Computer and System Sciences, 7(4), 448–461.

Cerioli A, Perrotta D (2014). “Robust Clustering Around Regression Lines with High Density
Regions.” Advances in Data Analysis and Classification, 8(1), 5–26.

Demmel J, Dumitriu I, Holtz O (2007). “Fast Linear Algebra is Stable.” Numerische Mathe-
matik, 108(1), 59–91.

Dromey RG (1986). “An Algorithm for the Selection Problem.” Software-Practice & Experi-
ence, 16(11), 981–986.

Journal of Statistical Software – Code Snippets 13

Floyd RW, Rivest RL (1975). “Expected Time Bounds for Selection.” Communications of
the ACM, 18(3), 165–172.

Hager W (1984). “Condition Estimates.” SIAM Journal on Scientific and Statistical Com-
puting, 5(2), 311–316.

Hager W (1989). “Updating the Inverse of a Matrix.” SIAM Review, 31(2), 221–239.

Hoare CAR (1961). “Algorithm 64: Quicksort.” Communications of the ACM, 4(7), 321–322.

Hoare CAR (1971). “Proof of a Program: FIND.” Communications of the ACM, 14(1), 39–45.

Hubert M, Rousseeuw PJ, Aelst SV (2008). “High-Breakdown Robust Multivariate Methods.”
Statistical Science, 23(1), 92–119.

Knuth DE (1981). The Art of Computer Programming, Volume II: Seminumerical Algorithms.
2nd edition. Addison-Wesley.

Miller W (1975). “Computational Complexity and Numerical Stability.” SIAM Journal on
Computing, 4(2), 97–107.

Press WH, Teukolski SA, Vetterling WT, Flannery BP (1992). Numerical Recipes in C. 2nd
edition. Cambridge University Press.

Riani M, Atkinson AC, Cerioli A (2009). “Finding an Unknown Number of Multivariate
Outliers.” Journal of the Royal Statistical Society B, 71(2), 447–466.

Riani M, Perrotta D, Torti F (2012). “FSDA: A MATLAB Toolbox for Robust Analysis and
Interactive Data Exploration.” Chemometrics and Intelligent Laboratory Systems, 116,
17–32.

Torti F, Perrotta D, Francescangeli P, Bianchi G (2015). “A Robust Procedure Based on the
Forward Search to Detect Outliers in Census Data.” Submitted.

Yip E (1986). “A Note on the Stability of Solving a Rank-p Modification of a Linear System
by the Sherman-Morrison-Woodbury Formula.” SIAM Journal on Scientific and Statistical
Computing, 7(2), 507–513.

Zani S, Riani M, Corbellini A (1998). “Robust Bivariate Boxplots and Multiple Outlier
Detection.” Computational Statistics & Data Analysis, 28(3), 257–270.

14 The Forward Search for Very Large Datasets

A. Linear indexing vs. logical indexing
During the forward search we extensively use the extraction of subsets. The purpose of this
appendix is to compare linear extraction with logical extraction. In more detail, we investigate
how the amount of time in logical extraction depends on the number of true or false, and
how it relates to linear extraction. The execution of the code below

nsimul = 10000; % Number of simulations to avoid random oscillations
n = 20000; % n = number of units
v = 2; % v = number of variables
nn = 1000:1000:n; % Range of subsample sizes
Y = randn(n, v); % Y = dataset
Time = zeros(length(nn), 3);

for i = 1:length(nn) % i is linked to the number of observations
seq = randsample(n, nn(i)); % extract nn(i) values out of nn
aa = 0; bb = 0; cc = 0; % Reset timers at each fraction
bsba = false(n, 1); % Initialize arrays
bsba(seq) = true;
bsbb = true(n, 1);
bsbb(seq) = false;
for k = 1:nsimul

% Logical extraction function of the number of true
a = tic;
Y1 = Y(bsba, :);
aa = aa + toc(a);
% Logical extraction function of the number of false
b = tic;
Y2 = Y(bsbb, :);
bb = bb + toc(b);
% Linear extraction
c = tic;
Y3 = Y(seq, :);
cc = cc + toc(c);

end
Time(i, :) = [aa bb cc];

end

produces the output given in Figure 6. The solid line is associated with cc in the code snippet
above (amount of time necessary to compute index extraction), while the two other lines with
square and diamonds markers refer to logic extraction as function of the number of true and
false, respectively (aa and bb in the code snippet above).
The figure shows very clearly that if the number of elements to extract is smaller than 50% of
the length of the matrix (in this case less than 10000) it is better to use linear indexing. On
the other hand, when the percentage of elements to extract is greater than 50% it is better
to use logical indexing. Finally, when the percentage of elements to extract is high, logical
indexing based on the fraction of false is slightly quicker than logical indexing based on
fraction of true and vice versa.

Journal of Statistical Software – Code Snippets 15

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4
S

ec
on

ds

Fraction
0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

25

Fraction

S
ec

on
ds

Logical indexing: function of fraction of true
Logical indexing: function of fraction of false
Linear indexing: function of fraction of elements

Figure 6: Analysis of the optimal proportion of using linear indexing vs. logical indexing as
a function of proportion of true or false. The left panel is for v = 2, while the right panel
is for v = 10.

The figure also shows a, perhaps surprising, change of behavior when moving from v = 2 to
v = 10. Our explanation is that the internal memory representation of arrays (MxArray) can
be organized in a single block only when the number of elements is small. In our application
this happens when v = 2, where the symmetric shape of elapsed time is due to the fact
that logical indexing processes only the elements (either true or false) which appear in the
minority of the array cells. Otherwise, the internal memory representation requires several
non-contiguous blocks and only the elements for which there is true are processed. The same
feature also explains the discontinuity observed in the case v = 10. Indeed, the discontinuity
point approaches the limit 0.5 when the analysis is performed on a 64-bit machine (not shown
here), which can address larger blocks of memory.

B. Element multiplication based on ∗. or @bsxfun

In the forward search procedure, almost 20% of the overall computation time comes from
the computation of the Mahalanobis distances of all the observations in each step. In MAT-
LAB, the instructions given in block (12) for computing the Malahanobis distances can be

16 The Forward Search for Very Large Datasets

0 1 2 3

x 10
4

0

1

2

3

4

5

6

7

Sample size

T
im

e

4 6 8 10

x 10
4

10

20

30

40

50

60

70

80

90

100

110

Sample size

Figure 7: Analysis of computation time of three ways of multiplying matrices. The line with
marker ∗ is associated with implementation based on Equation 13, while lines with square
and diamond markers use, respectively, Equations 14 and 12.

implemented either as

MD = (m - 1) * sum(bsxfun(@times,mtimes(Ym, S), Ym), 2);
(13)

or, keeping into account that *. is equivalent to use instruction times, as

MD = (m - 1) * sum(times(mtimes(Ym, S), Ym), 2);
(14)

In this Appendix we compare the computation time of operation *. to that of (13) and (14).
Figure 7 shows that up to a sample size of n = 30000 it is faster to use *., while from
n = 30000 onward it is much faster to use bsxfun.
Remark: According to the Mathworks technical support, the two procedures take a differ-
ent computing time due to the so-called MATLAB accelerator, introduced from R2011b on-
wards2. Just if the accelerator is turned off using the undocumented instruction: feature
accelerator off the computing time of the ways of multiplying matrices becomes compa-
rable.

2For further details see http://blogs.mathworks.com/community/2011/12/19/
matlab-startup-accelerator/.

http://blogs.mathworks.com/community/2011/12/19/matlab-startup-accelerator/
http://blogs.mathworks.com/community/2011/12/19/matlab-startup-accelerator/

Journal of Statistical Software – Code Snippets 17

n NRC FSDA
100 0.1043 0.0554
1000 0.3190 0.1896
5000 1.2391 0.9326
10000 2.3450 1.7673

Table 1: Average elapsed time in seconds of 10000 runs of the MATLAB porting of the
Numerical Recipes in C algorithm select (NRC) and of our algorithm (FSDA). The data are
generated to be normally distributed and ordered up to n/2, to mimic the framework of the
forward search.

C. Procedure to find the kth order statistic
In computer science the problem of determining the kth smallest (or largest) element in a
totally ordered set of n values is called selection. The literature on this fundamental problem is
wide, with interesting historical roots (Knuth 1981, pp. 207–219), and covers algorithms aimed
at finding the solution in O(n) time, without sorting the entire set of values. A consolidated
approach to the problem is an adaptation of quicksort (Hoare 1961, 1971; Dromey 1986) based
on a partitioning, divide and conquer, process. In quicksort the idea is to move an element
to its final position, say s, and at the same time rearrange the other elements so that those
in positions 1 to s− 1 will be smaller than those in positions s+ 1 to n. In this way, the same
technique can be re-applied (recursively or iteratively) to the partitioned subsets. If we are
only interested in the kth smallest element, then:

• if s < k we look for the (k − s)th element of the “right side” subset,

• if s > k we look for the kth element of the “left side” subset,

• if s = k we stop partitioning and return the element in that position as result.

The complexity of the algorithms is usually measured in terms of the (maximum or average)
number of comparisons or in-place exchanges between elements, or in terms of number of
partition passes. Blum, Floyd, Pratt, Rivest, and Tarjan (1973) and Floyd and Rivest (1975)
have shown that superior performances are obtained with strategies that can somehow choose
the element around which partitioning is made (the so called pivot) close to the kth position.
Typical strategies and complexity results for the selection problem assume random order of
the elements in the set. However, in the forward search we have to deal with sets in which
a progressively increasing subset is already sorted, at least to a considerable extent, and we
look for the next smallest element to add to such a subset. Therefore, if we are at the forward
search step m and we look for the (m+ 1)th order statistic, it is natural to use as pivot the
index of the unit which has the minimum Mahalanobis distance outside the subset. With this
idea in mind, we have implemented an iterative selection algorithm that has no freedom in
the choice of the pivot.
To quantify the advantage of our fixed-pivot algorithm in the forward search context, we
report in Table 1 the average elapsed time from 10000 applications on datasets of different
sizes. The data are generated from a normal distribution. NRC stands for the implementation
of algorithm select from Numerical Recipes in C (Press, Teukolski, Vetterling, and Flannery
1992, pp. 341–345), ported into MATLAB and run with random choice of the pivot. FSDA is

18 The Forward Search for Very Large Datasets

Figure 8: HTML documentation of function FSMmmd. For those who use MATLAB R2012b+
the HTML help files can be found in the Supplemental Software tab which appears at the
bottom of the Doc Center home page. Those who use releases of MATLAB earlier than 2012b
can find the documentation in the same place as all the other official Mathworks toolboxes.

the new selection algorithm, where the pivot is fixed using the index of the unit associated
with the minimum Mahalanobis distance outside the subset.
The code snippet of our fixed-pivot algorithm is reported below.

function kE = quickselectFS(A, k, kiniindex)
% Initialise the two sentinels
left = 1;
right = numel(A);

% if we know that element in position kiniindex is "close" to the desired
% order statistic k, than swap A(k) and A(kiniindex).
if nargin > 2

Ak = A(k);
A(k) = A(kiniindex);
A(kiniindex) = Ak;

end

% pivot is chosen at fixed position k.
pivotIndex = k;

position = -999;
while ((left < right) && (position ~= k))

Journal of Statistical Software – Code Snippets 19

pivot = A(pivotIndex);

% Swap right sentinel and pivot element
A(k) = A(right);
A(right) = pivot;

position = left;
for i = left:right

if (A(i) < pivot)
% Swap A(i) with A(position)!
% A([i, position]) = A([position, i]) would be more elegant
% but slower
Ai = A(i);
A(i) = A(position);
A(position) = Ai;

position = position + 1;
end

end

% Swap A(right) with A(position)
A(right) = A(position);
A(position) = pivot;

if position < k
left = position + 1;

else % this is 'elseif pos > k' as pos == k cannot hold (see 'while')
right = position - 1;

end

end

kE = A(k);

end

When rankgap > 10 the routine at step m is called using the instruction

kE = quickselectFS(MD, m + 1, minMDindex)

D. HTML help files
We have added appropriate documentation to all routines which have been written. For
example, all routines described in this paper have been included in function FSMmmd which
can be found in the section “Robust multivariate analysis and transformations” of the FSDA

20 The Forward Search for Very Large Datasets

toolbox (see Figure 8). The standard routine, which does not use the recursive implemen-
tation has been renamed FSMmmdeasy because it is much easier to follow and can help the
novice to better understand how the procedure works. Finally, a file named “Installation-
Notes.pdf”, which describes what you should get when FSDA is installed manually by un-
packing the compressed tar file FSDA.tar.gz, or automatically with our setup program for
Windows platforms, can be downloaded from the web sites http://www.riani.it/MATLAB/
and http://fsda.jrc.ec.europa.eu/.

Affiliation:
Marco Riani, Andrea Cerioli
Dipartimento di Economia
Area di Statistica e Informatica
Università di Parma
Via Kennedy 6
43125 Parma, Italy
E-mail: mriani@unipr.it, andrea.cerioli@unipr.it

Domenico Perrotta
European Commission, Joint Research Centre
Institute for the Protection and Security of the Citizen
Global Security and Crisis Management Unit
Via E. Fermi 2749
21027 Ispra, Italy
E-mail: domenico.perrotta@ec.europa.eu

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

October 2015, Volume 67, Code Snippet 1 Submitted: 2013-04-01
doi:10.18637/jss.v067.c01 Accepted: 2014-10-31

http://www.riani.it/MATLAB/
http://fsda.jrc.ec.europa.eu/
mailto:mriani@unipr.it
mailto:andrea.cerioli@unipr.it
mailto:domenico.perrotta@ec.europa.eu
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v067.c01

	Introduction
	Fast subset updating
	Fast deviance measures updating
	Conclusions
	Linear indexing vs. logical indexing
	Element multiplication based on *. or @bsxfun
	Procedure to find the kth order statistic
	HTML help files

