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Abstract. The value of 𝜋  is one of the famous mathematical constant, not only to 

mathematicians, but also to physicists and to engineers. Numerous algorithm is used to 

compute what is the value of 𝜋, but most of programmer do not use lambda function and 

neglect the aesthetic of their script. This study aims to compute the value 𝜋 by write it first 

as infinite series using Riemann sum, and then the computing of it is conducted in R 

programming language. We involved the role of anonymous function or known as lambda 

function to make the R code is more beautiful, artistic, and elegant. 
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1 Introduction 

Riemann sum is a method to find the area under a given curve 𝜙(𝑥). If we denote this Riemann 

sum by letter R. Then R is defined as [1].  

𝑅 = ∑ 𝜙

∞

𝑖=1

(𝜉𝑖)𝛥𝑥 

Where 𝜙(𝑥) is defined as the length of bar at the point 𝑥𝑖 = 𝜉𝑖 and 𝛥𝑥 is defined as the wide 

of bar. For example , suppose that we have a quadratic curve 𝜙(𝑥) = 𝑥2, then the area under the 

curve for 𝜉0 = 0 to 𝜉𝑛 = 4 if we choose there are 4 bar is 

𝑅 = ∑ 𝜙

4

𝑖=1

(𝜉𝑖)𝛥𝑥 
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Since the area of each bar is equals, then  

𝛥𝑥 =
𝜉𝑛 − 𝜉0

𝑛
=

4 − 0

4
=

4

4
= 1 

Thus, 𝛥𝑥 = 1area unit. Therefore, the area under the quadratic curve is 

 𝑅 = ∑ 𝜙

4

𝑖=1

(𝜉𝑖)𝛥𝑥 = ∑ 𝜉𝑖
2

4

𝑖=1

× 1

= (12 + 22 + 32 + 42) × 1

= 1 + 4 + 9 + 16
= 30

 

 

This value is just an approximation of the exact value the area under the curve for 𝜙(𝑥) = 𝑥2. 

This approximation is getting better by let 𝑛 → ∞. The graph of this cases [2] is given below. 

library(ggplot2) 

library(ggpubr) 

#define the domain for quadratic function 

first_quadratic_domain <- seq(0, 4, 1) 

second_quadratic_domain <- seq(0, 4, 0.5) 

third_quadratic_domain <- seq(0, 4, 0.1) 

fourth_quadratic_domain <- seq(0, 4, 0.01) 

 

#define a quadratic function 

quadratic <- function(X) return(X**2) 

 

#define the rieamann sum 

riemann_quadratic_sum <- function(X) { 

    return(sum(X[,2]) * 4 / (length(X[,2]) - 1)) 

} 

first_df_quadratic <- data.frame("x_val" = first_quadratic_domain, 

                          "f.x" = quadratic(first_quadratic_domain)) 

second_df_quadratic <- data.frame("x_val" = second_quadratic_domain, 

                          "f.x" = quadratic(second_quadratic_domain)) 

third_df_quadratic <- data.frame("x_val" = third_quadratic_domain, 

                          "f.x" = quadratic(third_quadratic_domain)) 

fourth_df_quadratic <- data.frame("x_val" = fourth_quadratic_domain, 

                          "f.x" = quadratic(fourth_quadratic_domain)) 

 

#plot the area 

first_plt_quadratic <- ggplot(data = first_df_quadratic, mapping = aes

(x_val, f.x)) + geom_bar(stat = "identity", color = "skyblue", aes(fil

l = f.x)) + geom_line(color = "blue") + ggtitle("n = 4") 

 

second_plt_quadratic <- ggplot(data = second_df_quadratic, mapping = a

es(x_val, f.x)) + geom_bar(stat = "identity", color = "skyblue", aes(f

ill = f.x)) + geom_line(color = "blue") + ggtitle("n = 9") 

 

third_plt_quadratic <- ggplot(data = third_df_quadratic, mapping = aes

(x_val, f.x)) + geom_bar(stat = "identity", color = "skyblue", aes(fil

l = f.x)) + geom_line(color = "blue") + ggtitle("n = 41") 
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fourth_plt_quadratic <- ggplot(data = fourth_df_quadratic, mapping = a

es(x_val, f.x)) + geom_bar(stat = "identity", color = "skyblue", aes(f

ill = f.x)) + geom_line(color = "blue") + ggtitle("n = 401") 

 

ggarrange(first_plt_quadratic, second_plt_quadratic, third_plt_quadrat

ic, 

          fourth_plt_quadratic, nrow = 2, ncol = 2) 

 

 

Figure 1 The area quadratic curve for each n = 4, 9, 41, 401. 

 

The area for each n is 

paste("n = 4, then R = ", riemann_quadratic_sum(first_df_quadratic)) 

## [1] "n = 4, then R =  30" 

paste("n = 9, then R = ", riemann_quadratic_sum(second_df_quadratic)) 

## [1] "n = 9, then R =  25.5" 

paste("n = 41, then R = ", riemann_quadratic_sum(third_df_quadratic)) 

## [1] "n = 41, then R =  22.14" 

paste("n = 401, then R = ", riemann_quadratic_sum(fourth_df_quadratic)

) 

## [1] "n = 401, then R =  21.4134" 
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The reader who have studied calculus might be notice that the area under the curve is given by a 

definite integral between interval [a, b] of the function 𝜙(𝑥) 𝑑𝑥. That is, 

∫ 𝜙
𝑏

𝑎

(𝑥)𝑑𝑥 = ∑ 𝜙

∞

𝑖=1

(𝜉𝑖)𝛥𝑥, 𝛥𝑥 =
𝑏 − 𝑎

𝑛
 

For 𝑛 → ∞. Thus, for 𝜙(𝑥) = 𝑥2 

 
∫ 𝑥2

4

0

𝑑𝑥 =
1

3
𝑥3|𝑥=0

𝑥=4

=
1

3
(43 − 03)

=
64

3

 

 

Therefore, the area under the curve is equals to 21.33 unit area. 

Numerous study has been done in order to compute the value 𝜋, numerous algorithm had been 

performed. The mathematical constant 𝜋 is so famous because 𝜋 is defined as transcendental 

number, 𝜋 is not the root of non zero polynomial with rational coefficients, and there are infinite 

number behind the decimal point of the value 𝜋. Monte carlo simulation for calculation 𝜋 is a 

method based on statistics and probability [3], and the number of 𝜋 from billiard point of view 

is calculate the digit of 𝜋 based on ideal world of classical physics [4][5]. Wheter Monte carlo 

simulation or 𝜋 billiard point of view, both of them is computable and the simulation were 

beautiful, and yet, not so efficient if we want 8 or more digit the value of 𝜋. However, none of 

them produce a beautiful script of code that return the value or the digit of 𝜋. The experiment of 

the computation the value of 𝜋 using Riemann sum is conducting in R programming language 

and using RStudio as an IDE. First, we write the script in the ideal form so it is easy to understand 

the algorithm, and then we reduce the number of line that’s being used by involving anonymous 

function, λ − function. 

2 Method 

The area of circle is defined as 𝐴 = 𝜋𝑟2 , r is the radius and 𝜋  is a constant, that is 𝜋  = 

3.141592… . Now, we try to approximate the value of 𝜋 by using this formula, but, it is not as 

simple as 𝐴 = 𝜋𝑟2. Firstly, we calculate the value of the area 𝐴 by using Riemann sum.  

Suppose that the circle is centered at point 𝑂(0,0) and has the radius 𝑟 = 1. Then, the equation 

for this circle is defined as  

𝑥2 + 𝑦2 = 1 

The graph of this equation is below  
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Figure 2 The graph of circle at center point 𝑂(0,0) 

 

The area of this circle is  

𝐴 = 𝜋𝑟2 

Divided both side by 4, we have 

𝐴

4
=

𝜋𝑟2

4
 

Let 𝑅 =
𝐴

4
, then  

𝑅 =
𝜋𝑟2

4
 

R is the area that we want to calculate by using Riemann sum. Then, the area that we want to 

calculate is a quarter of the actual area of the circle. Our continuous function is 𝜙(𝑥) = √1 − 𝑥2 

and the graph of this equation is below 
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Figure 3 The graph of function 𝜙(𝑥) = √1 − 𝑥2 

 

If 𝑥𝑖 = 𝜉𝑖, then by definition, the area under the curve is  

∫ 𝜙
𝑏

𝑎

(𝑥)𝑑𝑥 = ∑ 𝜙

∞

𝑖=1

(𝜉𝑖)𝛥𝑥, 𝛥𝑥 =
𝑏 − 𝑎

𝑛
 

For 𝛥𝑥, if 𝑏 is the upper bound of the curve and 𝑎 is the lower bound of the curve, then 

𝛥𝑥 =
𝑏 − 𝑎

𝑛

=
𝑟 − 𝑎

𝑛

=
1 − 0

𝑛

𝛥𝑥 =
1

𝑛

 

Thus, 

𝑅 = ∑ 𝜙

∞

𝑖=1

(𝜉𝑖)𝛥𝑥

= ∑ √1 − 𝜉𝑖
2

∞

𝑖=1

×
1

𝑛

 

For each value of 𝜉𝑖, we have that [6] 
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𝜉𝑖 = 𝑖 × 𝛥𝑥

= 𝑖 ×
1

𝑛

 

Thus, the area of quarter of  circle is given by Riemann sum 𝑅  

∴ 𝑅 = ∑ √1 − (𝑖 ×
1

𝑛
)

2∞

𝑖=1

×
1

𝑛
, for n → ∞ 

Since 
𝐴

4
= 𝑅, thus 

𝐴

4
= 𝑅

𝜋𝑟2

4
= ∑ √1 − (𝑖 ×

1

𝑛
)

2∞

𝑖=1

×
1

𝑛

𝜋 × 12

4
= ∑ √1 − (𝑖 ×

1

𝑛
)

2∞

𝑖=1

×
1

𝑛

𝜋

4
= ∑ √1 − (𝑖 ×

1

𝑛
)

2∞

𝑖=1

×
1

𝑛

 

Multiply both side by 4 

∴ 𝜋 = 4 × ∑ √1 − (𝑖 ×
1

𝑛
)

2𝑛

𝑖=1

×
1

𝑛
, for n → ∞ 

3 Computation 

The Riemann sum method give us that the value of π is defined as the infinite series such that 

π = 4 × ∑ √1 − (i ×
1

n
)

2n

i=1

×
1

n
, for n→∞ 

In order to make the equation easy to compute, we rewrite the value of π in term of finite series 

n and n ∈ ℕ, that is 

R(n) = 4 × ∑ √1 − (i ×
1

n
)

2n

i=1

×
1

n
, for n∈ℕ 

Based on this equation, we are ready to compute the value of π as follows. We define piriesum 

as a function to compute riemann sum R(n) which take n ∈ ℕ as paramater and return a value 

pi_approx, that is the approximation of the value of π. 
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piriesum <- function(n) { 

    Dx <- 1 / n 

    ids <- 0 

    for (i in 1:n) 

        ids <- sqrt(1 - ((i * Dx) ** 2)) + ids 

    pi_approx <- 4 * ids * Dx 

    return(pi_approx) 

} 

piriesum(100000) 

## [1] 3.141573 

If we include the curly brace in the counting of the number of line that’s being used, then our first 

R codes take 8 line. 

In this section, we try to reduce the number of line that’s being used as minimum as possible. In 

R programming language, we can input a series or a sequence s = u1, u2, … , un  with the 

different ui − ui−1 = d. R programming language allow us to input a sequence as parameter of 

the function by using R built-in function seq(<init>, <end>, <iteration>) [7]. By default, if we 

only input <init = a> and <end = b> as parameter of the function seq, then if a > b then <iteration 

= -1>, if a < b then <iteration = 1>, and if a = b then function seq will return only one value. For 

example, seq(0, 6, 2) will return a value 0, 2, 4, and 6 as a vector. R also provide a built-in function 

sum which return the sum of all element vector. For example, sum(c(1, 2, 3)) will return a value 

6. Based on this 2 prebuilt-in function, we can minimize the number of line of the previous code 

as follows. 

piriesums <- function(s) { 

    Dx <- 1 / length(s) 

    riesum <- sum(sqrt(1 - (s * Dx) ** 2)) 

    pi_approx <- 4 * riesum * Dx 

    return(pi_approx) 

} 

 

S <- seq(1, 100000) # will generate a sequence 1, 2, … , 100000 

piriesums(S) 

## [1] 3.141573 

The number of line that being used for our R code is equals to 6. We have reduced to 8 - 6 = 2 

lines. 

We still being able to reduce the number of line by directly write Dx to 1 / length(s). And the code 

will looks like as follows. 

piriesumss <- function(s) { 

    riesum <- 4 * sum(sqrt(1 - (s * 1 / length(s)) ** 2)) * 1 /length(s) 

    return(riesum) 

} 

piriesumss(S) 

## [1] 3.141573 

As we can see that the number of line that’s have been reduced is equals to 4. But, it’s not a good 

practice since the term 1 / length(s) repeated twice. 
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Here is the lambda function take a role. R is a high level programming language. R provide a 

lambda like syntax, lambda function is an anonymous function and it’s useful to make our code 

simple and elegant. Here is a few example of lambda function in R. 

(function(x) x + 1)(3) # R directly execute it 

## [1] 4 

increment <- function(x) x + 1 # assign it to a variable 

increment(16) # Now, increment is a function which x as paramaters 

## [1] 17 

Suppose that alriesum is a lambda function which take 2 parameter s and the length of vector 

s, s is a sequence and it’s a vector. Then, alriesum is a lambda function which return the value 

π and the code of alriesum is below 

# R directly execute the following code 

(function(s, Dx = 1 / length(s)) 4 * sum(sqrt(1 - (s * Dx) ** 2)) * Dx)

(S) 

## [1] 3.141573 

# Assign it to a variable alriesum 

alriesum <- function(s, Dx = 1 / length(s)) 4 * sum(sqrt(1 - (s * Dx) *

* 2)) * Dx 

alriesum(S) # Now, alriesum is a lambda function which only take 1 par

ameter 

## [1] 3.141573 

 

4 Results and Discussion 

We have reduce the number of line of our R code from 8 to 1, and if we want to compute directly 

without assign it to an object or a variable, then our R code become 

S <- seq(1, 100000000) 

(function(s, Dx = 1 / length(s)) 4 * sum(sqrt(1 - (s * Dx) ** 2)) * Dx)

(S) 

## [1] 3.141593 

If we want to assign it to a variable, for example alriesum, then our R code become 

alriesum <- function(s, Dx = 1 / length(s)) 4 * sum(sqrt(1 - (s * Dx) *

* 2)) 

and we have a lambda function alriesum, which it take sequence as its parameter, that is 

1,2, … , n. We need to take a note that just because the number of line of code is a few / little, it 

doesn’t mean that the program will run faster. We compute the value of π in the manner of λ −

function as the pursue of the simplicity, beauty, and elegance. In fact, our λ − function to 

calculate the value of π will start to calculate slowly if we input a sequence 1,2, … , n for n ≥

100000000. Since our λ − function to calculate the value of π is based on Riemann sum, then 

our λ − function is still more efficient than calculate the digit of π using pool simulation, that 
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is, in order to produce the digit 314, then the mass of M (kg) we need is 1003 = 1000000. 

Meanwhile, calculation the value of π  using Riemann sum R(n)  give us that R(n =

1000000) = 3.141591. 

5 Conclusion 

In the term of the number of line that’s being used, we consider that this paper have produced a 

shortest code that calculate the value of π. We have computed the value of π based on Riemann 

sum, and write it in the manner of λ − function with statistical programming language R. We 

write it in the pursue of simplicity, beauty, and elegance. However, we found that our code tend 

to run slowly if we input a sequence 1,2, . . . , n for n ≥ 100000000. 
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