
Journal of Computing and Applied Informatics (JoCAI) Vol. 5, No. 1, 2021| 39 –48

DATA SCIENCE
Journal of Computing and Applied Informatics

*Corresponding author at: 1,2Departemen Ilmu Komputer, Fakultas Ilmu Komputer dan Teknologi Informasi,

Universitas Sumatera Utara, Jl. Universitas No. 9-A, Kampus USU, Medan 20155, Indonesia

E-mail address: muhammadrezafahlevi666@gmail.com (Muhammad Reza Fahlevi), mandrib@usu.ac.id

(Mohammad Andri Budiman)

Copyright © 2021 Published by Talenta Publisher
ISSN: 2580-6769 | e-ISSN: 2580-829X | DOI: https://doi.org/10.32734/jocai.v5.i1-5556
Journal Homepage: https://jocai.usu.ac.id

Computing the Value of Pi in the Manner of Lambda

Function with R Statistical Programming Language

Muhammad Reza Fahlevi1 and Mohammad Andri Budiman2

1,2Departemen Ilmu Komputer, Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Sumatera

Utara, Jl. Universitas No. 9-A, Kampus USU, Medan 20155, Indonesia

Abstract. The value of 𝜋 is one of the famous mathematical constant, not only to

mathematicians, but also to physicists and to engineers. Numerous algorithm is used to

compute what is the value of 𝜋, but most of programmer do not use lambda function and

neglect the aesthetic of their script. This study aims to compute the value 𝜋 by write it first

as infinite series using Riemann sum, and then the computing of it is conducted in R

programming language. We involved the role of anonymous function or known as lambda

function to make the R code is more beautiful, artistic, and elegant.

Keyword: Anonymous, Area under the curve, Circle, Function, Integral, R, Riemann sum.

Received [date month year] | Revised [date month year] | Accepted [xx Month xxxx]

1 Introduction

Riemann sum is a method to find the area under a given curve 𝜙(𝑥). If we denote this Riemann

sum by letter R. Then R is defined as [1].

𝑅 = ∑ 𝜙

∞

𝑖=1

(𝜉𝑖)𝛥𝑥

Where 𝜙(𝑥) is defined as the length of bar at the point 𝑥𝑖 = 𝜉𝑖 and 𝛥𝑥 is defined as the wide

of bar. For example , suppose that we have a quadratic curve 𝜙(𝑥) = 𝑥2, then the area under the

curve for 𝜉0 = 0 to 𝜉𝑛 = 4 if we choose there are 4 bar is

𝑅 = ∑ 𝜙

4

𝑖=1

(𝜉𝑖)𝛥𝑥

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Talenta Publisher (E-Journals, Universitas Sumatera Utara)

https://core.ac.uk/display/386300169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:muhammadrezafahlevi666@gmail.com
mailto:mandrib@usu.ac.id
https://doi.org/10.32734/jocai.v5.i1-5556

Journal of Computing and Applied Informatics (JoCAI) Vol. Vol. 5, No. 1, 2021 40

Since the area of each bar is equals, then

𝛥𝑥 =
𝜉𝑛 − 𝜉0

𝑛
=

4 − 0

4
=

4

4
= 1

Thus, 𝛥𝑥 = 1area unit. Therefore, the area under the quadratic curve is

 𝑅 = ∑ 𝜙

4

𝑖=1

(𝜉𝑖)𝛥𝑥 = ∑ 𝜉𝑖
2

4

𝑖=1

× 1

= (12 + 22 + 32 + 42) × 1

= 1 + 4 + 9 + 16
= 30

This value is just an approximation of the exact value the area under the curve for 𝜙(𝑥) = 𝑥2.

This approximation is getting better by let 𝑛 → ∞. The graph of this cases [2] is given below.

library(ggplot2)

library(ggpubr)

#define the domain for quadratic function

first_quadratic_domain <- seq(0, 4, 1)

second_quadratic_domain <- seq(0, 4, 0.5)

third_quadratic_domain <- seq(0, 4, 0.1)

fourth_quadratic_domain <- seq(0, 4, 0.01)

#define a quadratic function

quadratic <- function(X) return(X**2)

#define the rieamann sum

riemann_quadratic_sum <- function(X) {

 return(sum(X[,2]) * 4 / (length(X[,2]) - 1))

}

first_df_quadratic <- data.frame("x_val" = first_quadratic_domain,

 "f.x" = quadratic(first_quadratic_domain))

second_df_quadratic <- data.frame("x_val" = second_quadratic_domain,

 "f.x" = quadratic(second_quadratic_domain))

third_df_quadratic <- data.frame("x_val" = third_quadratic_domain,

 "f.x" = quadratic(third_quadratic_domain))

fourth_df_quadratic <- data.frame("x_val" = fourth_quadratic_domain,

 "f.x" = quadratic(fourth_quadratic_domain))

#plot the area

first_plt_quadratic <- ggplot(data = first_df_quadratic, mapping = aes

(x_val, f.x)) + geom_bar(stat = "identity", color = "skyblue", aes(fil

l = f.x)) + geom_line(color = "blue") + ggtitle("n = 4")

second_plt_quadratic <- ggplot(data = second_df_quadratic, mapping = a

es(x_val, f.x)) + geom_bar(stat = "identity", color = "skyblue", aes(f

ill = f.x)) + geom_line(color = "blue") + ggtitle("n = 9")

third_plt_quadratic <- ggplot(data = third_df_quadratic, mapping = aes

(x_val, f.x)) + geom_bar(stat = "identity", color = "skyblue", aes(fil

l = f.x)) + geom_line(color = "blue") + ggtitle("n = 41")

Journal of Computing and Applied Informatics (JoCAI) Vol. Vol. 5, No. 1, 2021 41

fourth_plt_quadratic <- ggplot(data = fourth_df_quadratic, mapping = a

es(x_val, f.x)) + geom_bar(stat = "identity", color = "skyblue", aes(f

ill = f.x)) + geom_line(color = "blue") + ggtitle("n = 401")

ggarrange(first_plt_quadratic, second_plt_quadratic, third_plt_quadrat

ic,

 fourth_plt_quadratic, nrow = 2, ncol = 2)

Figure 1 The area quadratic curve for each n = 4, 9, 41, 401.

The area for each n is

paste("n = 4, then R = ", riemann_quadratic_sum(first_df_quadratic))

[1] "n = 4, then R = 30"

paste("n = 9, then R = ", riemann_quadratic_sum(second_df_quadratic))

[1] "n = 9, then R = 25.5"

paste("n = 41, then R = ", riemann_quadratic_sum(third_df_quadratic))

[1] "n = 41, then R = 22.14"

paste("n = 401, then R = ", riemann_quadratic_sum(fourth_df_quadratic)

)

[1] "n = 401, then R = 21.4134"

Journal of Computing and Applied Informatics (JoCAI) Vol. Vol. 5, No. 1, 2021 42

The reader who have studied calculus might be notice that the area under the curve is given by a

definite integral between interval [a, b] of the function 𝜙(𝑥) 𝑑𝑥. That is,

∫ 𝜙
𝑏

𝑎

(𝑥)𝑑𝑥 = ∑ 𝜙

∞

𝑖=1

(𝜉𝑖)𝛥𝑥, 𝛥𝑥 =
𝑏 − 𝑎

𝑛

For 𝑛 → ∞. Thus, for 𝜙(𝑥) = 𝑥2

∫ 𝑥2

4

0

𝑑𝑥 =
1

3
𝑥3|𝑥=0

𝑥=4

=
1

3
(43 − 03)

=
64

3

Therefore, the area under the curve is equals to 21.33 unit area.

Numerous study has been done in order to compute the value 𝜋, numerous algorithm had been

performed. The mathematical constant 𝜋 is so famous because 𝜋 is defined as transcendental

number, 𝜋 is not the root of non zero polynomial with rational coefficients, and there are infinite

number behind the decimal point of the value 𝜋. Monte carlo simulation for calculation 𝜋 is a

method based on statistics and probability [3], and the number of 𝜋 from billiard point of view

is calculate the digit of 𝜋 based on ideal world of classical physics [4][5]. Wheter Monte carlo

simulation or 𝜋 billiard point of view, both of them is computable and the simulation were

beautiful, and yet, not so efficient if we want 8 or more digit the value of 𝜋. However, none of

them produce a beautiful script of code that return the value or the digit of 𝜋. The experiment of

the computation the value of 𝜋 using Riemann sum is conducting in R programming language

and using RStudio as an IDE. First, we write the script in the ideal form so it is easy to understand

the algorithm, and then we reduce the number of line that’s being used by involving anonymous

function, λ − function.

2 Method

The area of circle is defined as 𝐴 = 𝜋𝑟2 , r is the radius and 𝜋 is a constant, that is 𝜋 =

3.141592… . Now, we try to approximate the value of 𝜋 by using this formula, but, it is not as

simple as 𝐴 = 𝜋𝑟2. Firstly, we calculate the value of the area 𝐴 by using Riemann sum.

Suppose that the circle is centered at point 𝑂(0,0) and has the radius 𝑟 = 1. Then, the equation

for this circle is defined as

𝑥2 + 𝑦2 = 1

The graph of this equation is below

Journal of Computing and Applied Informatics (JoCAI) Vol. Vol. 5, No. 1, 2021 43

Figure 2 The graph of circle at center point 𝑂(0,0)

The area of this circle is

𝐴 = 𝜋𝑟2

Divided both side by 4, we have

𝐴

4
=

𝜋𝑟2

4

Let 𝑅 =
𝐴

4
, then

𝑅 =
𝜋𝑟2

4

R is the area that we want to calculate by using Riemann sum. Then, the area that we want to

calculate is a quarter of the actual area of the circle. Our continuous function is 𝜙(𝑥) = √1 − 𝑥2

and the graph of this equation is below

Journal of Computing and Applied Informatics (JoCAI) Vol. Vol. 5, No. 1, 2021 44

Figure 3 The graph of function 𝜙(𝑥) = √1 − 𝑥2

If 𝑥𝑖 = 𝜉𝑖, then by definition, the area under the curve is

∫ 𝜙
𝑏

𝑎

(𝑥)𝑑𝑥 = ∑ 𝜙

∞

𝑖=1

(𝜉𝑖)𝛥𝑥, 𝛥𝑥 =
𝑏 − 𝑎

𝑛

For 𝛥𝑥, if 𝑏 is the upper bound of the curve and 𝑎 is the lower bound of the curve, then

𝛥𝑥 =
𝑏 − 𝑎

𝑛

=
𝑟 − 𝑎

𝑛

=
1 − 0

𝑛

𝛥𝑥 =
1

𝑛

Thus,

𝑅 = ∑ 𝜙

∞

𝑖=1

(𝜉𝑖)𝛥𝑥

= ∑ √1 − 𝜉𝑖
2

∞

𝑖=1

×
1

𝑛

For each value of 𝜉𝑖, we have that [6]

Journal of Computing and Applied Informatics (JoCAI) Vol. Vol. 5, No. 1, 2021 45

𝜉𝑖 = 𝑖 × 𝛥𝑥

= 𝑖 ×
1

𝑛

Thus, the area of quarter of circle is given by Riemann sum 𝑅

∴ 𝑅 = ∑ √1 − (𝑖 ×
1

𝑛
)

2∞

𝑖=1

×
1

𝑛
, for n → ∞

Since
𝐴

4
= 𝑅, thus

𝐴

4
= 𝑅

𝜋𝑟2

4
= ∑ √1 − (𝑖 ×

1

𝑛
)

2∞

𝑖=1

×
1

𝑛

𝜋 × 12

4
= ∑ √1 − (𝑖 ×

1

𝑛
)

2∞

𝑖=1

×
1

𝑛

𝜋

4
= ∑ √1 − (𝑖 ×

1

𝑛
)

2∞

𝑖=1

×
1

𝑛

Multiply both side by 4

∴ 𝜋 = 4 × ∑ √1 − (𝑖 ×
1

𝑛
)

2𝑛

𝑖=1

×
1

𝑛
, for n → ∞

3 Computation

The Riemann sum method give us that the value of π is defined as the infinite series such that

π = 4 × ∑ √1 − (i ×
1

n
)

2n

i=1

×
1

n
, for n→∞

In order to make the equation easy to compute, we rewrite the value of π in term of finite series

n and n ∈ ℕ, that is

R(n) = 4 × ∑ √1 − (i ×
1

n
)

2n

i=1

×
1

n
, for n∈ℕ

Based on this equation, we are ready to compute the value of π as follows. We define piriesum

as a function to compute riemann sum R(n) which take n ∈ ℕ as paramater and return a value

pi_approx, that is the approximation of the value of π.

Journal of Computing and Applied Informatics (JoCAI) Vol. Vol. 5, No. 1, 2021 46

piriesum <- function(n) {

 Dx <- 1 / n

 ids <- 0

 for (i in 1:n)

 ids <- sqrt(1 - ((i * Dx) ** 2)) + ids

 pi_approx <- 4 * ids * Dx

 return(pi_approx)

}

piriesum(100000)

[1] 3.141573

If we include the curly brace in the counting of the number of line that’s being used, then our first

R codes take 8 line.

In this section, we try to reduce the number of line that’s being used as minimum as possible. In

R programming language, we can input a series or a sequence s = u1, u2, … , un with the

different ui − ui−1 = d. R programming language allow us to input a sequence as parameter of

the function by using R built-in function seq(<init>, <end>, <iteration>) [7]. By default, if we

only input <init = a> and <end = b> as parameter of the function seq, then if a > b then <iteration

= -1>, if a < b then <iteration = 1>, and if a = b then function seq will return only one value. For

example, seq(0, 6, 2) will return a value 0, 2, 4, and 6 as a vector. R also provide a built-in function

sum which return the sum of all element vector. For example, sum(c(1, 2, 3)) will return a value

6. Based on this 2 prebuilt-in function, we can minimize the number of line of the previous code

as follows.

piriesums <- function(s) {

 Dx <- 1 / length(s)

 riesum <- sum(sqrt(1 - (s * Dx) ** 2))

 pi_approx <- 4 * riesum * Dx

 return(pi_approx)

}

S <- seq(1, 100000) # will generate a sequence 1, 2, … , 100000

piriesums(S)

[1] 3.141573

The number of line that being used for our R code is equals to 6. We have reduced to 8 - 6 = 2

lines.

We still being able to reduce the number of line by directly write Dx to 1 / length(s). And the code

will looks like as follows.

piriesumss <- function(s) {

 riesum <- 4 * sum(sqrt(1 - (s * 1 / length(s)) ** 2)) * 1 /length(s)

 return(riesum)

}

piriesumss(S)

[1] 3.141573

As we can see that the number of line that’s have been reduced is equals to 4. But, it’s not a good

practice since the term 1 / length(s) repeated twice.

Journal of Computing and Applied Informatics (JoCAI) Vol. Vol. 5, No. 1, 2021 47

Here is the lambda function take a role. R is a high level programming language. R provide a

lambda like syntax, lambda function is an anonymous function and it’s useful to make our code

simple and elegant. Here is a few example of lambda function in R.

(function(x) x + 1)(3) # R directly execute it

[1] 4

increment <- function(x) x + 1 # assign it to a variable

increment(16) # Now, increment is a function which x as paramaters

[1] 17

Suppose that alriesum is a lambda function which take 2 parameter s and the length of vector

s, s is a sequence and it’s a vector. Then, alriesum is a lambda function which return the value

π and the code of alriesum is below

R directly execute the following code

(function(s, Dx = 1 / length(s)) 4 * sum(sqrt(1 - (s * Dx) ** 2)) * Dx)

(S)

[1] 3.141573

Assign it to a variable alriesum

alriesum <- function(s, Dx = 1 / length(s)) 4 * sum(sqrt(1 - (s * Dx) *

* 2)) * Dx

alriesum(S) # Now, alriesum is a lambda function which only take 1 par

ameter

[1] 3.141573

4 Results and Discussion

We have reduce the number of line of our R code from 8 to 1, and if we want to compute directly

without assign it to an object or a variable, then our R code become

S <- seq(1, 100000000)

(function(s, Dx = 1 / length(s)) 4 * sum(sqrt(1 - (s * Dx) ** 2)) * Dx)

(S)

[1] 3.141593

If we want to assign it to a variable, for example alriesum, then our R code become

alriesum <- function(s, Dx = 1 / length(s)) 4 * sum(sqrt(1 - (s * Dx) *

* 2))

and we have a lambda function alriesum, which it take sequence as its parameter, that is

1,2, … , n. We need to take a note that just because the number of line of code is a few / little, it

doesn’t mean that the program will run faster. We compute the value of π in the manner of λ −

function as the pursue of the simplicity, beauty, and elegance. In fact, our λ − function to

calculate the value of π will start to calculate slowly if we input a sequence 1,2, … , n for n ≥

100000000. Since our λ − function to calculate the value of π is based on Riemann sum, then

our λ − function is still more efficient than calculate the digit of π using pool simulation, that

Journal of Computing and Applied Informatics (JoCAI) Vol. Vol. 5, No. 1, 2021 48

is, in order to produce the digit 314, then the mass of M (kg) we need is 1003 = 1000000.

Meanwhile, calculation the value of π using Riemann sum R(n) give us that R(n =

1000000) = 3.141591.

5 Conclusion

In the term of the number of line that’s being used, we consider that this paper have produced a

shortest code that calculate the value of π. We have computed the value of π based on Riemann

sum, and write it in the manner of λ − function with statistical programming language R. We

write it in the pursue of simplicity, beauty, and elegance. However, we found that our code tend

to run slowly if we input a sequence 1,2, . . . , n for n ≥ 100000000.

REFERENCES

[1] J. Stewart, D. K. Clegg, and S. Watson, Calculus: early transcendentals. Cengage

Learning, 2020.

[2] H. Wickham, “The tidyverse,” R Packag. ver, vol. 1, no. 1, p. 1, 2017.

[3] O. Yavoruk, “How does the Monte Carlo method work?,” arXiv Prepr. arXiv1909.13212,

2019.

[4] H. Bae and J. Chang, “An investigation into computing the digits of pi.”

[5] G. Galperin, “Playing pool with $π$ (the number $π$ from a billiard point of view),”

Regul. chaotic Dyn., vol. 8, no. 4, pp. 375–394, 2003.

[6] T. W. Körner, Vectors, pure and applied: a general introduction to linear algebra.

Cambridge University Press, 2012.

[7] W. N. Venables and D. M. Smith, “The R Core Team. An Introduction to R, Notes on R:

A Programming Environment for Data Analysis and Graphics, Version 3.6. 3. 2020.”

2020.

