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Abstract 

Is web buzz able to lead stock behavior for a set of systemically important banks? Are stock movements sensitive to the geo-

tagging of the web buzz?  Between Dec. 2013 and April 2014, we scrape about 4000 world media websites retrieving all public 

information related to 10 systemically important banks. We process web news with a sentiment analysis algorithm in order to 

detect article mood. We show that web buzz does not seem to lead stock behavior as Granger test fails to support an average 

association that goes one-way from web to stocks. We nevertheless find a statistically sound anticipation capacity for single banks 

with gains ranging from 4 to 12%. Hierarchical clustering and Principal Component Analysis suggest that Euro area level 

decisions/facts do in fact drive stock behaviour, while web news about single banks only episodically make a difference in stock 

movements. Our analysis confirms that the location of the web source matters. The use of sources with international echo 

eliminates some of the noise introduced by irrelevant texts at the country level and improves the predictive power of the model up 

to 27.5%. 
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Abstract 

Is web buzz able to lead stock behavior for a set of systemically important banks? Are stock 

movements sensitive to the geo-tagging of the web buzz?  Between Dec. 2013 and April 2014, we 

scrape about 4000 world media websites retrieving all public information related to 10 systemically 

important banks. We process web news with a sentiment analysis algorithm in order to detect 

article mood. We show that web buzz does not seem to lead stock behavior as Granger test fails to 

support an average association that goes one-way from web to stocks. We nevertheless find a 

statistically sound anticipation capacity for single banks with gains ranging from 4 to 12%. 

Hierarchical clustering and Principal Component Analysis suggest that Euro area level decisions/facts 

do in fact drive stock behaviour, while web news about single banks only episodically make a 

difference in stock movements. Our analysis confirms that the location of the web source matters. 

The use of sources with international echo eliminates some of the noise introduced by irrelevant 

texts at the country level and improves the predictive power of the model up to 27.5%.  
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Executive summary 
 

The sequence economic event - investment decisions - stock price jumps is far from being a stylized 

fact. Anecdotic comparison of news and movements of the most important stock indices suggests 

that ‘… people sometimes trade on noise as if it were information’ (Black, 1986). Indeed, the majority 

of the largest stock fluctuations cannot be tied to ‘fundamental economic news sufficient to 

rationalize the size of the observed [price] move’ (Cornell, 2013). The crucial question is then how 

noise influences economic decisions and how noise can be measured.  

In the latest years the geometric increase of on line information enabled to address the log-lasting 

question of stock market predictability from a different perspective, that of Big Data. If the orthodox 

economic theory postulates that stock markets act erratically and are largely driven by new 

information unpredictable ex ante, Behavioral Finance suggests instead a certain degree of 

predictability. Lab experiments and actual observation show that investors are either systematically 

overconfident in the ability to forecast future stock prices or earnings or subject to waves of 

optimism and pessimism, causing prices to deviate systematically from their fundamental values. 

The Big Data perspective has widen the debate, by allowing a broad investigation of human 

behaviour. On line journals, dedicated blogs, social networks, etc. make possible the access to 

financial information, even for non-experts, with the advantage of increasing transactions and 

decreasing costs but with the risk of amplifying rumors, favoring herding behavior and boosting 

volatility in periods of turbulences. This effect is particularly important for financial systems as 

perceived weakness of the system could produce a domino effect with dreadful consequences. Yet, 

the relationship between web buzz and financial movements has to be empirically proven. Is web 

buzz indeed able to lead stock behavior?  

We explore this question by relating trading prices and volumes to web buzz for a set of systemically 

important banks (banks whose performance is crucial for the entire European banking system). 

Between Dec. 2013 and April 2014 we collected web news using the Europe Media Monitor (EMM), 

a JRC software that gathers reports from more than 4000 news portals world-wide in 60 languages, 

classifies the articles, and analyses the news texts (http://emm.newsbrief.eu/overview.html ). From 

text mining we calculate a number of daily web variables, including measures of web “mood”, and 

we associate them to daily stock volumes and trade in different stock markets (both in Europe and in 

US). The novelty of our analysis is triple. We are the first to analyse the relationship between web 

buzz and stock behaviour of banks. The possibility to find a statistically significant relationship would 

help to anticipate turbulences and act accordingly. Secondly, having the complete control of the web 

data retrieval we can analyse the influence of geo-tagging: does it make a difference where the news 

comes from? The third element of absolute novelty is the multilingual context of our search, as for 

the same bank tonality is checked in 14 languages. This consents capturing the interaction between 

the mother company and its branches located in different countries. To the best of our knowledge 

this has never been done as the large majority of the literature uses English.  

http://emm.newsbrief.eu/overview.html
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Findings 
Is web buzz able to lead stock behavior in our dataset? Not on average, according to our data. 

Granger causality test fails to support an average association that goes one-way from web to stocks. 

Nevertheless we find a statistically sound anticipation capacity for single banks, particularly 

Unicredit, Deutsche Bank and Crédit Agricole but also in some cases for BBVA, Royal Bank of 

Scotland, Société Générale with gains in prediction power ranging from 4 to 12%. The explanation 

offered by the literature for this poor average performance is that new information is rapidly 

incorporated into agents’ information set so excessive returns rapidly vanish: only very short (ideally 

intraday) stock price movements can be capitalized.  Our analysis confirms the association between 

web buzz and intraday price movements making this topic a potential candidate for additional 

research.  

Our data indicate that supra-national decisions/facts are driving stock behaviors of banks, while web 

news about single banks is only episodically making a difference in stock movements. Most likely in 

these times of financial turbulence announcements of the BCE or of other international authorities 

are likely to play a crucial role in explaining trade behaviors. In order to capture this effect the 

construction of a general “sentiment” index will drive our future research efforts.  

Are stock movements sensitive to the geo-tagging of the web buzz? We extensively explore different 

sources of web information distinguishing between local (country) sources and international/world 

sources. Our data suggest that European stock markets seem to respond to news reported at the 

international level, rather than locally (i.e., in the country where the bank is located). As EMM is 

unable to distinguish between “important” and “unimportant” news (nor we know of any text 

mining algorithm that is able to distinguish information according to the relevance), the use of 

sources with international echo eliminates some of the noise introduced by irrelevant texts at the 

country level. Web buzz has a poor association with New York stock data for all banks analysed as 

overseas stock exchange seems to be guided more by the pattern of the European markets than by 

that of the web information.  

Our analysis does not suggest a clear advantage of measures of web buzz based on tonality (web 

mood) with respect to other count variables (e.g. relative number of messages). This could be partly 

due to the algorithm calculating tonality. During the test phase we realized that the tonality failed to 

identify some important financial news (like for example the downgrade of Deutsche Bank on the 

19th of Dec.). Currently the tonality algorithm is being upgraded to provide entity based sentiment. 

Even so tonality and sentiment analysis on financial texts are the latest and most promising 

advances in this type of literature.  
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Introduction 
 

The geometric increase of on line information enabled to address the log-lasting question of stock 

market predictability (Barber and Odean, 2001[5]) from a different perspective, that of Big Data. If 

the Efficient Market Hypothesis (Fama, 1965[20]) postulates that stock markets are largely driven by 

new information hence their movement is unpredictable ex ante, Behavioral Finance suggests 

instead a certain degree of predictability (Della Vigna, 2009[17]): investors are found either 

systematically overconfident in the ability to forecast future stock prices or earnings (Kahneman and 

Tversky 1979[26]) or subject to waves of optimism and pessimism, causing prices to deviate 

systematically from their fundamental values (DeBond and Thaler, 1985[15]). On the other hand, 

sluggish markets, responding only gradually to new information, consent information rents (Chan et 

al., 1996[9]) and therefore systematic price deviations. The Big Data perspective has reanimated the 

debate, opening the door to a much broader investigation of human behaviour. According to the 

standard economic theory extensive web access is likely to favor information spreading and the 

quick erosion of information (Cornell, 2013[11]; Cutler and Poterba, 1989[12]; Malkiel, 2003[29]).  

According to the opposite view, web buzz favors herding behavior and boosts volatility in periods of 

turbulences. On line journals, dedicated blogs, social networks, etc. make possible the access to 

financial information even for non-experts, amplifying rumors (Shiller, 2000[42]) and facilitating 

market transactions (Gloor, et al., 2009[23]). This effect is particularly important for financial systems 

as perceived weakness of the system could produce a domino effect with dreadful consequences. 

Yet, the relationship between web buzz and financial movements has to be empirically proven.  

The literature relating web mining to financial prediction is relatively recent. To the best of our 

knowledge the first study is due to Wysocki (1998[48]). He proved that, between January and August 

1998, the Yahoo! posting volume associated to 50 companies was able to forecast next day trading 

volumes. About the opposite result, namely internet buzz cannot predict trading volume, is obtained 

by Tumarkin and Whitelaw (2001[46]) and by Das and Chen (2001[14]), among others. More recently 

Preis et al. (2012[37]) show that weekly transactions volumes of the companies included in S&P500 

are correlated with weekly search volume of the company names.  Preis et al. (2013[38]) find that 

decrease in Dow Jones Industrial Average is preceded by an increase in the search volumes for given 

financially related terms, and Moat et al. (2013[34]) obtain the same result with Wikipedia views (see 

Nardo et al., 2014[35], for a survey of stock market predictions using on-line financial news).    

Besides financial movements, web mining has been increasingly used as source of information for 

assessing a wide variety of economic or social phenomena. Web buzz has been proved useful in 

forecasting box-office revenues (Asur and Huberman, 2010[4]; Doshi et al., 2009[19]; Goel et al., 

2010[24]) , movie success (Mishne and Glance, 2006[32]), and videogame sales (Goel et al., 2010[24]). 

Tweets were considered a reliable alternative to election polls for forecasting the results of 2009 

German Federal Election (Tumasjan et al., 2010[47]). Google queries proved to be leading indicators 

of consumer purchases in selected sectors (automobiles sales, unemployment claims, travel 

destination planning, and consumer confidence, see McLaren and Shanbhogue, 2011[30];  Choi and 

Varian, 2012[10]) and blog posts and blog sentiment were related to product sales (Gruhl et al., 

2005[25]). More generally, Facebook (Mishne and Rijke, 2006[33]) or Google searches (Preis et al., 

2012[37]) have be used to construct macroeconomic indicators correlated with GDP movements.  
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Here we analyse whether information coming from the web has some predictive power on the stock 

market behavior for a set of 10 banks considered systemically important by the Financial Stability 

Board (involving higher loss absorbency requirements): Barclays, BBVA, BNP Paribas, Crédit Agricole, 

Deutsche Bank, HSBC, Royal Bank of Scotland, Santander, Société Générale and Unicredit.  Between 

Dec. 5th and April 30th 2014 and for each bank we collect daily news coming from more than 4000 

electronic media websites worldwide in 60 languages (using Europe Media Monitor, see  

http://emm.newsbrief.eu). For the same period daily data on stock prices (open, close, highest, 

lowest) and volumes exchanged are gathered from New York Stock exchange and from various 

European Stock exchanges (Frankfurt, London, Madrid, Milan, Paris).  Two questions guided our 

analysis: (i) is web buzz able to lead stock behavior? (ii) Are stock movements sensitive to the geo-

tagging of the web buzz?  The relationship between stock data and web news is analysed via cross-

correlation function, Granger causality, rank-sum test, Factor and Cluster analysis for each 

combination of 8 stock prices variables, 12 web buzz variables, 4 set of sources (with different geo-

tagging), various stock markets. The novelty of this analysis is triple. We are the first to analyse the 

relationship between web buzz and stock behaviour of banks. The possibility to find a statistical 

significant relationship would help to anticipate turbulences and act accordingly. Secondly, having 

the complete control of the web data retrieval we can analyse the influence of geo-tagging. Google 

trend does have geo-tagging labels on daily search data, but results are not displayed if the amount 

of queries is not large enough and even when displayed, the downloadable series are based on 

random samples of queries (Choi and Varian, 201210; Da et al., 201113). The third element of 

absolute novelty is the multilingual context of our search, as tonality is checked in 14 languages. This 

consents capturing the interaction between the mother company and its branches located in 

different countries. To the best of our knowledge this has never been done as the large majority of 

the literature uses English (exceptions to the English-oriented analysis are Agić et al. (2010[1]) for 

Croatian, Remus et al. (2009[39]) and Denecke (2008[18]) for German, and Ahmad et al. (2006[2]) for 

Chinese and Arabic). 

The paper is organized as follows. Section 1 contains a description of the Europe Media Monitor; 

Section 2 describes the variables used in the analysis. Section 3 presents the results and Section 4 

discusses the main research issues and concludes. An Appendix complements the paper describing 

the methods used and displaying a selection of tables and figures. 

1. The Europe Media Monitor 
 

The Europe Media Monitor (EMM) was started in 2002 as a project to support the Commission with 

its Media Monitoring activities. The main purpose of EMM is to provide monitoring of a large (but 

selected) set of electronic media, reduce the information flow to manageable proportions by 

applying categorisation and to provide extra information by analysis of the retrieved texts in the 

form of entity recognition, entity extraction, recognitions of quotes, sentiment/tonality analysis etc. 

EMM is designed as a near real-time monitoring system for new publications. The system generates 

the required information products continuously and does not rely on (and does not have) a big 

information archive. Although EMM does maintain an index of all retrieved material, allowing for 

http://emm.newsbrief.eu/
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limited historical research, the information products always refer to the original publication, mostly 

on the Internet. 

At the core of the EMM system is a processing chain of lightweight extensible processes each 

running independently and chained together using robust and reliable in-house developed web 

service architecture.  Articles begin their flow through the processing chain as thin RSS (Really Simple 

Syndication1) items that grow as meta-data gets added at each stage of the processing chain. 

The first element of this processing chain, the scraper, monitors a number pages/RSS feeds on 

selected websites for the publication of items and produces a snapshot of all items currently being 

published on these pages. The selection of websites depends on the information domain to be 

monitored. For those sites that require ‘near real time’ monitoring (update frequency measured in 

minutes), EMM uses a technique which does not rely on ‘crawling’ the website. Instead, EMM 

monitors (scrapes) a selected set of HTML pages or RSS feeds on the website. For websites that do 

not have a clear ‘publication’ structure the system will crawl the website, but this will reduce the 

monitoring frequency to a number of times per day. 

The second process in the chain receives the snapshot as produced by scraper, and determines the 

difference between the current snapshot and the previous snapshot (the delta). Based on this delta 

this process then ‘grabs’ the new items from the web and extracts the relevant text from the items. 

For a typical HTML page this is a non-trivial operation as the system tries to identify the ‘main article’ 

text from what can be a ‘noisy’ page.  The system then constructs a basic RSS feed, containing the 

new articles from the source currently being monitored, and adds the extracted text as item 

metadata.  This RSS feed, the basis of the information enhancement and filtering process, is then 

pushed to the next process in the chain.  

Subsequent processes in the chain use the extracted text, and/or metadata added by previous 

processes, to further enrich the information in the RSS. The Entity Recognition process detects 

people and organizations in the article from a home grown information base of entities and 

organizations, populated by an automated (offline) entity recognition system. The next module in 

the chain performs geo-tagging of the articles, using a multilingual, classified geospatial information 

base of place names, provinces, regions and countries. The previously recognized entities are used 

to disambiguate the geo-tags (Clinton is also a place name in Arizona; Paris Hilton is not the Hilton in 

Paris).  Another module extracts quotes from the text and assigns the quotes to the relevant entities 

in the article. The quote extraction module currently runs in 19 languages. 

The tonality/sentiment of an article is determined using 4 sets of ‘tonality’ words per language, 

denoting highly positive, positive, negative and highly negative words. These tonality dictionaries are 

currently available in 14 languages, including the main EU languages (excluding Greek, Hungarian, 

Bulgarian, Baltic and Scandinavian languages but including Spanish, English, French, German, Dutch, 

Italian, Check, Slovak and Polish). The total score for an article is calculated by aggregating the score 

for all tonality words in the article. The score is then transformed using a logarithmic transformation 

and corrected using a source specific ‘tonality bias’ which is calculated using a long term ‘rolling 

average’ for the source. This ensures that the tonality is as much as possible comparable between 

sources.  The score expresses a full article tonality and is not particularly meaningful as such. For 

                                                           
1
http://cyber.law.harvard.edu/rss/rss.html 
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further use, this tonality score is later transferred to any associated categories and aggregated per 

day. This aggregated value can be used to determine a tonality trend for a category.    

The main component that determines the information streams from EMM is a powerful keyword 

based categorization system. The category definitions allow for word/weight lists, Boolean 

combinations, proximity and character wildcards. The system deals efficiently with ‘overlapping’ 

categories; it is not based on any hierarchical category structure. The system also deals efficiently 

with languages like Arabic (first character after whitespace is not the first character of the noun) and 

‘ideograph’ languages like Chinese (no whitespace). 

The (near) duplicate detection system uses a character trigram signature of the title and description 

of the articles to calculate a cosine distance measure between an article and all articles in a 

preceding 24 hour period in the same language. In order to reduce the (potentially huge) number of 

calculations, the system uses the assigned categories as a way of reducing the set of article 

signatures used for comparison. The assumption is that (near) duplicate articles share a large set of 

assigned categories.  

Following the duplicate detection system the RSS flows through a second categorization system 

where new categories are constructed based on the now available article metadata. These new 

categories are typically defined as the co-occurrence of two or more ‘content based’ categories and 

restrictions based on source, language or source country. These new categories are assigned to the 

articles in an additive way, i.e. the original category information remains. For the purpose of further 

analysis these new categories are semantically equivalent to the keyword based categories.  

All items, now enriched with metadata, are sent on to a number of downstream systems. Some of 

these downstream systems deal with the individual items, producing RSS feeds per category, per 

country/category, or sending a mail notifying interested users about new items in a category. All 

items are indexed to produce a free text searchable index of all articles that entered the system.  An 

analyser module examines the article counts and produces alerts based on deviations from expected 

daily counts. 

The articles also flow into the Clustering and Story Tracking Cache. Every 10 minutes the last 4 hours 

of articles are hierarchically clustered in every language individually. The clustering process is 

agglomerative and employs average group linkage to build the clusters using a simple cosine 

measure to calculate distance. The clustering process continues until the cosine measure falls below 

a certain set threshold. The article feature vectors are simple word count vectors with some 

additional ad-hoc rules. Using a sliding window approach the system tracks the evolution of stories 

over time. This makes it possible to detect ‘breaking news’, and furthermore to dynamically build 

(track) very large stories, without having to cluster a huge number of items.   

The clustered articles, representing news stories, form the basis of another set of processing 

modules. These modules are no longer arranged in a pipeline but operate asynchronously and in 

parallel to each other in order to update the current news story metadata with extra information 

whenever it becomes available, without delaying the actual ‘story’. Examples of these modules are: 

event metadata extraction, summarization and cross lingual cluster detection.     
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The results of the information harvesting and processing can be accessed in a number of ways. A 

website (e.g. http://emm.newsbrief.eu) allows for classical data browsing, and there is a full editorial 

and publishing system NewsDesk (not publicly accessible) that allows for the creation and 

publication of high level information products. EMM delivers emails and RSS feeds and there are 

(free) mobile applications for iPhone, iPad and Android tablets. 

Examples of current applications of the EMM technology can be found in different application 

domains. EMM is used in a number of traditional media monitoring applications by various EU 

Institutions and Agencies. MedISys (http://medisys.newsbrief.eu) is an instance of EMM specifically 

developed for internet bio-surveillance and is used by a number of Health Agencies, including the 

WHO. Open source intelligence for humanitarian and conflict early warning is also covered by at 

least 3 instances of the EMM system. 

At the moment of writing, the publicly accessible instance of EMM, used for the data retrieval 

described in this paper, monitors around 10000 RSS feeds/HTML pages from 4000 media websites 

and retrieves and processes around 200.000 new news articles per day.  These articles are 

categorized in around 1500 categories. A selected subset of these categories and the results of the 

clustering process can be seen on the public EMM website http://emm.newsbrief.eu 

 

2. Variables used in the analysis  
 

From December 5th 2013 to April 30th 2014 we collected all web texts containing the names of the 10 

banks considered in the analysis2 (see Table 1 for an overview of the daily average of texts 

retrieved). Within the EMM architecture, for each web text we had the possibility to control for the 

geo-tagging of the source. We classified the web texts in four sets: the complete set of web texts 

corresponding to all available sources (label ALL), the web texts corresponding to European and USA 

sources (label EU+US), the web-texts corresponding to European sources only (EU) and the web 

texts produced by sources located in the country where the bank has its headquarters (labelled 

Country)3. We use geo-tagging to label web articles and analyse whether stock data are more 

responsive to international news or to local (country) news.   

For each bank and each set of sources we compute several summary measures: number of web 

texts, share of texts with respect to the previous day, share of texts with respect to the total number 

of articles found by EMM that day, share of texts having positive (negative) tonality, average daily 

tonality, its standard deviation, polarity, subjectivity and disagreement, where  

polarity=(number_pos_ton-number_neg_ton)/(number_pos_ton+number_neg_ton); 

                                                           
2
 Including nicknames, abbreviations and the most common spelling mistakes. We corrected for out of scope 

texts (e.g., Barclays is the name of a theater and Monte Paschi a basketball team). 
3
 The number of sources varies depending on the country: it goes from 134 for Germany, to 48 for Spain. 

Overall EU + US sources are 1400. We consider both EU and EU+US sources to account for news that could 
influence the US stock exchange but only indirectly European markets (e.g. in the case of EU banks with 
branches in the US or in Latin America).  

http://emm.newsbrief.eu/
http://medisys.newsbrief.eu/
http://emm.newsbrief.eu/
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subjectivity=(number_pos_ton+number_neg_ton)/number_articles; 

disagreement=(number_pos_ton-number_neg_ton)/number_articles; 

 

Table 1. Daily average of web texts according to the source considered 

 

Polarity expresses whether the daily sentiment is positive or negative while disagreement is a 

measure of the overall polarity of visions on the daily occurrences. Both should be more related to 

the positive/negative behavior of stock prices, to price volatility and to the difference between the 

highest and lowest contracting price. Subjectivity indicates whether a sentiment (no matter its 

direction) has been expressed and should be more related to the volume exchanged. For missing 

languages (e.g. Greek, Bulgarian, Swedish, etc.) we set neutral tonality by default. Weekends (and 

non-contracting days) are excluded to match with stock exchange series. 

Daily data on stock prices (open, close, highest, lowest) and volumes exchanged are downloaded 

from Yahoo! finance for the main contracting markets: New York Stock Exchange (NYSE) for all banks 

but French and Italian ones (not quoted there) and several European Stock exchanges (Frankfurt for 

Deutsche Bank, London for HSBC, Royal Bank of Scotland, and Barclays; Madrid for BBVA and 

Santander; Paris for BNP Paribas, Société Générale, Crédit Agricole and Milan for Unicredit).  When 

web buzz is compared to stock movements in NYSE, the set of web texts is adjusted for the 

difference in time. Seven summary variables have been constructed from stock data:  

(1) close(t)- opening(t);  (2) close(t)-close(t-1);  (3) w(t)*(close(t)-opening(t)) where w is the volume 

exchanged in time t divided by the average volume exchanged the previous 5 days;  (4) w(t)*close(t)-

w(t-1)*close(t-1) ; (5) adjclose(t)-adjclose(t-1) , where adjclose is the close price adjusted for 

dividends and splits; (6) High(t)-low(t) where High (Low) is the highest (lowest) price reached during 

the contracting day, this variable is a proxy of the daily price volatility; (6) relative volume exchanged 

(daily volume divided by the average volume exchanged in the previous 5 days); (7) volume 

exchanged. 

 

Daily average number of texts

ALL EU+US EU Country

Deutsche Bank 90 72 61 30

Barclays 71 54 41 11

HSBC 73 46 37 4

Royal B. Scotland 22 18 11 2

BNP Paribas 55 44 38 12

Crédit Agricole 23 19 17 13

Société Générale 42 33 30 16

BBVA 47 28 25 21

Santander 17 11 10 9

Unicredito 41 32 29 14

Sources
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3. Results 
 

3.1 Cross-correlation between web buzz and stock movements 
 

Cross correlation offers a first snapshot of the statistical association between pairs of variables at 

different points in time (the section on Methods in the Appendix contains the formal definition). In 

our dataset the largest average cross-correlation between stock variables and web buzz lies between 

0.33 and 0.37 at lag 𝛿=0 (contemporaneous correlation), significant at 1% (Table A1 in the 

Appendix). Checking for individual banks we find correlations up to 0.73 for Barclays and between 

0.6 and 0.68 for Unicredit and the Royal Bank of Scotland. Our results are in line with the literature: 

Gloor et al. (2009[23]) find a positive correlation at 𝛿=0 (highest equals 0.45 significant at 5%) 

between a set of web variables constructed via semantic social network analysis and the prices of 21 

stocks. Significant cross correlation (around 0.3) is found between search data and volume traded 

for some specific terms and only for instantaneous correlation by Preis et al. (2010[36]), while Bordino 

et al. (2012[8]) find on average 0.31 at 𝛿=0 with peaks of 0.83 when calculating cross-correlation 

between trading volumes and Yahoo! queries for a sample of 87 companies in NASDAQ100.    

Figure 1. Cross correlation function between Number of web texts and price volatility (highest 
minus lowest daily price). European stock exchange data. 

Average across banks Movement for each bank, EU+US sources 

  
 

In our dataset the highest cross-correlation is at 𝛿=0 and usually corresponds to trading volumes 

rather than trading prices (Table A1 in the Appendix), again in line with the literature (Bordino et al., 

2012[8]; Preis et al., 2010[36]; Ruiz et al., 2012[40]). Among the web variables considered, the (relative) 

number of articles and the number of articles with a given tonality are found as those displaying the 

highest correlation with stock prices and volumes. Other measures based on tonality (polarity or 

disagreement) display much lower correlation. This result holds for all subset of sources considered.  

Beyond trading volumes, the difference between the highest and the lowest trading price (a proxy of 

daily trading volatility) seems to be related to web buzz, with an average correlation across banks of 

0.26 and peaks of 0.63 (Figure 1). This observation is, again, in line with the literature suggesting a 

positive relationship between web news and volatility. Gidófalvi (2001[21]) finds significant 
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correlation between stock prices (for a set of 12 companies) and news articles 20 minutes 

before/after the news is made public. Increased trade (and increased returns) as the synchronous 

trading increases is found by Saavedra et al. (2011[41]). 

 

3.2 Are stock movements sensitive to the geo-tagging of the web buzz? 
 

Table 2. Granger causality test between opening prices in NY stock exchange (nyse) and national 
stock exchanges (London ,Madrid, Frankfurt). Various banks. 

 

Note: For each bank in the sample and each web-variables we estimate two equations. (1) web anticipates stocks: 

𝑆𝑡 = 𝛼 + 𝛽𝑖𝑆𝑡−𝑖 + 𝛽2𝑊𝑡 + 𝛽2+𝑖𝑊𝑡−𝑖 + 휀𝑡  and (2) Stocks anticipate web: 𝑊𝑡 = 𝛼 + 𝛽𝑖𝑊𝑡−𝑖 + 𝛽2𝑆𝑡 + 𝛽2+𝑖𝑆𝑡−𝑖 + 휀𝑡 for 

i=1,…,6. We use as stock variables trade prices, volumes and volatility. Non-significant variables are discarded using  

Bayesian information criterion. Unit root is tested beforehand with the Augmented Dickey-Fuller test and first-order series 

are calculated when unit root is not rejected. Residuals have been checked for normality with Jarque-Brera test and for 

serial correlation and more general ARCH effects with the Breusch-Godfrey test and with the ARCH LM test respectively. In 

all reported cases, unit root, heteroschedasticity, non-normality and ARCH effects are discarded. 

Web buzz seems to have a poor association with New York stock data for all banks analysed: no 

matter which set of web sources is considered, cross correlation is systematically lower when New 

York stock data are used (Appendix, Table A1, left hand side). We further explore the issue 

regressing NYSE returns (and volumes) onto its past values and on present and past values of web 

buzz. The web variables almost always result to be non-significant. A further look to the data 

Pairwise Granger Causality Tests

Lags: 3

F-Statistic Probability

0.821 0.486

38.702 0.000

0.365 0.778

25.472 0.000

1.791 0.157

26.431 0.000

2.207 0.094

22.459 0.000

0.905 0.443

34.964 0.000

0.667 0.575

22.631 0.000

SANTANDER_NYSE does not Granger Cause SANTANDER_MAD

SANTANDER_MAD does not Granger Cause SANTANDER_NYSE

HSBC_NYSE does not Granger Cause HSBC_LSE

HSBC_LSE does not Granger Cause HSBC_NYSE

RBS_NYSE does not Granger Cause RBS_LSE

RBS_LSE does not Granger Cause RBS_NYSE

BBVA_MAD does not Granger Cause BBVA_NYSE

DEUTSCHE_BANK_NYSE does not Granger Cause 

DEUTSCHE_BANK_FRAN

DEUTSCHE_BANK_FRAN does not Granger Cause 

DEUTSCHE_BANK_NYSE

Null Hypothesis

BARCLAYS_NYSE does not Granger Cause BARCLAYS_LSE

BARCLAYS_LSE does not Granger Cause BARCLAYS_NYSE

BBVA_NYSE does not Granger Cause BBVA_MAD
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confirms that New York stock values reacts much more to the corresponding movements in 

European stocks (NYSE opens 5/6 hours later) than to web buzz, no matter where this buzz comes 

from. The correlation between opening prices ranges from 0.91 to 0.98 for all banks considered. A 

Granger causality test on opening prices clearly confirms that association goes one-way from 

European to NY stock exchanges (Table 2).  

Our analysis shows that the location of the source matters (Table 3). Web buzz derived from EU+US 

sources or from world sources improves the predictive power of a regression of stocks onto web 

buzz up to 27.5%, if compared to the same regression but with web buzz obtained from Country 

sources. Modest gains from considering a wide range of international sources are obtained for 

Crédit Agricole and Santander. The only outlier is HSCB where the web buzz calculated from EU+US 

sources seems to have (26.5%) less predictive power than that obtained from UK sources. However, 

the low number of daily UK texts extracted (Table 1) limits the relevance of this result. For this bank, 

the use of all web sources, while doubling the number of daily texts processed, improves the R2 only 

by 1.56% as compared to the use of EU sources only. The explanation of this poor performance 

comes from the amount of irrelevant information (false positive) still present in HSBC data and 

influencing the quality of results.   

 

Google trend has geo-tagging labels on daily search data, but results are not displayed if the amount 

of queries is not large enough and even when displayed, the downloadable series are based on 

random samples of queries. 

Table 3. Percentage difference in R-square according to the source of the web buzz.  

 

Note: We estimate the equation: 𝑆𝑡 = 𝛼 + 𝛽1𝑆𝑡−1 + 𝛽2𝑊𝑡 + 𝛽3𝑊𝑡−1 + 휀𝑡  for each bank in the sample and each of the four 

different information sets for the web buzz (W denotes web variables and S stock variables). Web variables are calculated 

from web texts coming from: 1) a source located in the USA and in the European Union (EU+US);  2) a source located in the 

European Union (EU);  3) sources all over the world (ALL);  4) sources located in the country where the bank has its 

headquarters (Country). For each estimated model we calculate the percentage change in the model fit (R
2
) using option 4 

as baseline. 

Overall European stock markets seem to respond to news reported at the international level, rather 

than locally. The importance of the news is probably the explanation. Main news, those more likely 

to drive stock prices, is also those actually reported by the international (financial) journals. As EMM 

EU-US vs Country All vs Country EU vs Country

Barclays 24.1% 23.0% 21.8%

BBVA 21.2% 5.2% 17.1%

BNP Paribas 24.6% 29.8% 23.9%

Crédit Agricole 3.3% 1.3% 2.5%

Deutsche Bank 22.4% 24.7% 22.0%

HSBC -26.5% -26.9% -28.9%

Royal B. Scotland 27.5% 29.7% 29.5%

Santander 4.8% -0.2% 3.5%

Société Générale 11.1% 2.4% 6.1%

Unicredito 14.1% 14.9% 11.6%

sources
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is unable to distinguish between “important” and “unimportant” news (as soon as the required 

keywords are in it) the information reported at the international level is a synonymous of financial 

relevance hence more likely to be related to stock prices. Indeed, repeating the analysis only on the 

set of articles with international echo (i.e. on the difference between the set of articles labeled 

EU+US or ALL and those labeled Country) we obtain similar results for the cross correlation (Table A5 

in the Appendix): the average cross correlation looks pretty much the same with or without Country 

sources. The Granger test (Table B5 in the Appendix) confirms the similarities. Overall the use of web 

texts with international echo seems to eliminate some of the noise introduced by irrelevant texts at 

the country level.   

 

3.3 Does web buzz lead stock behavior?  
 

While cross-correlation only supplies a fist idea of the relationship between two variables, Granger 

causality test helps verifying the bivariate dependency structure of the data (see the section on 

methods for a discussion).  We run the Granger test for each pair of web buzz and stock variable and 

each set of geo-tagged sources. The hypothesis that web buzz on average anticipates stock 

movements, receives little support from our data on continental stock exchanges. Table B1 in the 

Appendix shows that no matter the geo-tagging of the sources, the direction (Web vs. Stock) never 

obtains much stronger support as compared to the opposite direction (Stock vs. Web) for returns, 

volatility and volumes, at least on average across all 10 banks considered. The literature is 

supporting our findings. Gilbert and Karahalios (2010[22]) and Bollen et al. (2011[7]) find that web 

information is most likely causing price movements than the reverse. No prediction power for stock 

prices or volatility is found by Antweiler and Frank (2004[3]) with Naïve Bayesian machine learning. 

De Choudhury et al. (2008[16]) with Support Vector Machine, find out that only after the occurrence 

of “big” events web mining shows explanatory power (up to 87%).  

When looking at individual banks (Appendix, Table B2) web buzz does not anticipate stock 

movements for Barclays, HSCB, Santander and BNP Paribas. For BBVA, Société Générale, and Royal 

Bank of Scotland results are more positives while a certain degree of anticipation is found for web 

news related to Crédit Agricole, Unicredit, and Deutsche Bank. For those banks the direction (W vs. 

S) obtains more support (significant at 1%) than the opposite direction (S vs. W). A closer look to 

each bank shows that there is no general pattern in the predicted stock variable: while for Deutsche 

Bank and Unicredit web buzz anticipates both stock returns and volumes (significant at 1% level), for 

Crédit Agricole web buzz mainly anticipates volatility (significant at 1%) while for BBVA, Société 

Générale, and Royal Bank of Scotland the only anticipatory power (significant only at 5% level) is on 

stock returns (Table 4).   

When web buzz clearly leads stock movements the gain in model fit (average reduction of the 

Residual Sum of the Squares) is between 6% and 7.8% for Deutsche Bank, up to 9% - 12% for Crédit 

Agricole and Unicredit respectively. These figures are higher than the 5% of Bordino at al. (2012[8]), 

Lavrenko et al.(2000[27], [28]) and Mittermayer (2004[31]) who finds that an intraday trading strategy 

that uses web buzz can produce an average gain ranging between 0.1% to 0.5% with respect to a 

random strategy with zero expected gain. 
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Table 4. Granger Causality test.  

Result (p-values) for a subsample of banks. W vs. S corresponds to the null hypothesis H0: web does not Granger cause 

stocks, while S vs. W corresponds to the H0: stock does not Granger cause web. 

 

Note: For each bank in the sample and each web-variables we estimate two equations. (1) web anticipates stocks: 

𝑆𝑡 = 𝛼 + 𝛽𝑖𝑆𝑡−𝑖 + 𝛽2𝑊𝑡 + 𝛽2+𝑖𝑊𝑡−𝑖 + 휀𝑡  and (2) Stocks anticipate web: 𝑊𝑡 = 𝛼 + 𝛽𝑖𝑊𝑡−𝑖 + 𝛽2𝑆𝑡 + 𝛽2+𝑖𝑆𝑡−𝑖 + 휀𝑡 for 

i=1,…,6. We use as stock variables trade prices, volumes and volatility. Non-significant variables are discarded using  

Bayesian information criterion. Unit root is tested beforehand with the Augmented Dickey-Fuller test and first-order series 

are calculated when unit root is not rejected. Residuals have been checked for normality with Jarque-Brera test and for 

serial correlation and more general ARCH effects with the Breusch-Godfrey test and with the ARCH LM test respectively. In 

all reported cases unit root, heteroschedasticity, non-normality and ARCh effects are discarded. 

The average results of Granger causality test are weaker when NYSE data are considered (Appendix, 

Tables B3 and B4). The relationship between web buzz and stock movements is virtually non-

existing, reinforcing the idea that news about European banks, if at all, they shake European stock 

exchanges. When some anticipatory effect is present in NYSE it is essentially for Santander, Barclays, 

and Royal Bank of Scotland, and mostly on stock prices (significant at 1% for the first two banks) and 

on volatility (at 5% for the RBS). The gains in terms of model fit are lower, ranging between 4 and 

5%.  

bank web variable stock variable
p-value of 

W vs. S

p-value of 

S vs. W

close(t)-close(t) 0.0403 0.2760

close(t)-close(t-1) 0.0231 0.0699

number of web texts high(t)-low(t) 0.0032 0.1890

w(close(t)-close(t-1)) 0.0095 0.3174

volume exchanged 0.0114 0.2267

w(close(t)-close(t-1)) 0.0103 0.3178

volume exchanged 0.0159 0.2252

w(close(t)-close(t-1)) 0.0059 0.4399

volume exchanged 0.0062 0.3540

w(close(t)-close(t-1))* 0.0000 0.3478

volume exchanged 0.0000 0.2588

w(close(t)-close(t-1))* 0.0001 0.3737

volume exchanged 0.0009 0.2223

w(close(t)-close(t-1))* 0.0020 0.4485

volume exchanged 0.0044 0.4362

number_neg_ton w(close(t)-close(t-1)) 0.0094 0.0791

close(t)-open(t) 0.0288 0.1443

close(t)-close(t-1) 0.0369 0.2965

Royal Bank of 

Scotland 
number of web texts w(close(t)-close(t-1)) 0.0000 0.4561

number_pos_ton w(close(t)-close(t-1)) 0.0223 0.5670

web(t)/web(t-1) close(t)-close(t-1) 0.0093 0.1155

(*) Unicredit: for all web variables corresponding to this stock variable the Granger test points to 

      " web anticipates stock". Here only the results with the highest F are reported.

number_pos_ton 
BBVA

Société Générale 

number of web texts

average_tonality

number_neg_ton 

number_pos_ton 

number of web texts

Crédit Agricole

Deutsche Bank 

Unicredit number_neg_ton 

number_pos_ton 
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We are fully aware that the Granger causality test is valid under the assumption of normality of error 

terms and the linearity of the model. Normality, tested with the Jarque-Brera test, is rejected only in 

few cases, usually for the stock variable high(t)-low(t). To account for non-normality and for non-

linearities we perform the U-Rank test.  Table B6 in the Appendix reports the results of the U-test for 

10, 50, 100 and 1000 bootstraps on the estimated residuals. We notice the general tendency of this 

test to refuse the rejection of the null as the number of bootstraps increases. Overall, U-rank test 

confirms the finding obtained with Granger:  the failure of web buzz to lead, on average, stock 

movements. Nevertheless we find cases in which a clear leading role of web information is positively 

assessed (for those cases web anticipate mostly trade prices). In particular for BBVA and Deutsche 

Bank and for the cases in which Granger residuals did not fulfill the normality assumptions, U-test do 

not reject the leading role of web information on volatility.  

In our dataset we observe high correlations between stock volumes and prices of some banks, e.g. 

BBVA has a contemporaneous correlation of 0.74 (for volumes) and 0.9 (for prices) with Santander, 

and Société Générale has a price correlation of 0.84 and 0.8 with BNP and Crédit Agricole 

respectively. This induced us to explore the hypothesis of a geographical political/economic 

clustering not captured by the web buzz variables used here. A simple hierarchical clustering on the 

price variables Close(t)-Open(t) (Figure 2.1) shows, in fact, that euro-area banks tend to cluster 

together very fast while English banks are far apart and move differently (the same happens for the 

variable hight-lowt, our proxy of volatility). However, this is not the case for web buzz variables 

(Figure 2.2), where the differentiation between continental and UK banks is not clearly defined 

(Royal Bank of Scotland clusters quickly with Santander and Crédit Agricole while Deutsche bank 

behaves differently and is clustered at the very end).  

 

Figure 2. Hierarchical Cluster analysis, all banks*  

2.1 Stock price variable s1: (Close(t)-Open (t)) 
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bbva_s1

bar_s1



20 
 

2.2 web buzz variable w1: Number of articles (EU+US sources) 

 
(*) Banks: Barclays (bar), BBVA (bbva), Santander (san), Unicredit (un), Crédit Agricole (ca), Deutsche Bank (db). BNP 

Paribas (bnp), Société Générale (sg), Royal Bank of Scotland (rbs), HSBC (hsbc). 

 

To explore further the issue we use Principal Component Analysis (PCA) on stock prices and 

volatility. We find that while euro area banks are all robustly loaded (with the same sign) by the 

same single factor (with the caveat of Unicredit on the variable high(t) –low(t)), UK banks tend to be 

loaded by multiple factors (especially HSCB which stands out as the most diverse bank, Table C1 in 

the Appendix). Euro area banks show a unique common driver explaining 74.06% of the total euro 

area variance, all the remaining variance practically represents idiosyncratic bank-related noise 

(Appendix, Table C2). If web buzz were to reflect/anticipate stock movements we should expect a 

grouping in the PCA similar to than found for the stock variables. This is not the case: the PCA on the 

web variable Number of articles reveals at least 5 different (orthogonal) relevant factors, the first of 

which explaining only 15.55% of the total variance (the first PCA factor on the stock variable 

represents about 60% of the total variance). A possible explanation is that news for one bank pushes 

bear/bull reactions on related banks (we notice co-movements at the country level). In order to 

verify this hypothesis intra-daily stock data would be needed. Another possible explanation is that 

Euro area decisions/facts are in fact driving stock behaviors, while web news about single banks is 

only episodically making the difference in stock movements. 

We further investigated if different drivers of web information could explain the common driver of 

stocks by regressing the first factor of the PCA done on stocks onto the first 3 factors obtained from 

the PCA on the web-variable (three is the number of eigenvalues higher than 1). Results are 

disappointing (Table 5) as all estimated parameters for web variables are not significantly different 

from zero. Results therefore seem to confirm that web information is not, on average, able to 

capture the main trend associated to stocks. Results do not say that web buzz could not be relevant 

in explaining stock behavior but rather than web buzz about individual banks cannot. Yet, we believe 

that the web hosts valuable information thus in future works we will investigate general 

economic/financial trends based on web information.  
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Table 5. Is web buzz able to explain common drivers in stocks? Regression Results of PCA factors. 

PCA_s_f1 is the first factor of the PCA on the variable close(t)-open(t), euro-area banks, country stock exchange data. 

Variables PCA_w_F1 to 3 are the first 3 factors of the PCA on the web variable number of web texts (EU+US sources), euro 

area banks. 

 

 

 

4. Discussion and conclusions 
 

The sequence economic event - investment decisions - stock price jumps is far from being a stylized 

fact. Anecdotic comparison between economic news and ex-post movement in aggregated stock 

prices claims that the majority of the largest movements in S&P500 (Cutler et al., 1989[12]) and CRSP 

Total Market Index cannot be tied to fundamental economic news sufficient to rationalize the size of 

the observed [price] move (Cornell, 2013[11]). As stated by Black (1986[6]): “… people sometimes trade 

on noise as if it were information”. Is web buzz an ingredient of the missing link of this sequence?  

We explore this hypothesis by relating trading prices and volumes to web buzz for a set of 

systemically important banks, namely Barclays, BBVA, BNP Paribas, Crédit Agricole, Deutsche Bank, 

HSBC, Royal Bank of Scotland, Santander, Société Générale and Unicredit. Web buzz is obtained by 

monitoring more than 4000 media websites from all over the world and extracting the texts 

containing an exogenously supplied set of bank related keywords. From text mining we calculate a 

number of web variables and we associate them to stock volumes and trade in different stock 

markets. We compute cross-correlation, Granger causality and U-rank tests. We use Cluster and 

Principal Component Analysis to investigate the structure of the data set. 

Is web buzz able to lead stock behavior in our dataset? Not on average, according to our data. 

Granger test fails to support an average association that goes one-way from web to stocks. 

Nevertheless we find a statistically sound anticipation capacity for single banks, particularly 

Variable Coefficient Std. Error t-Statistic Prob.  

C -3.95E-17 0.234 -2E-16 1

PCA_W_F1 0.0173 0.193 0.090 0.929

PCA_W_F2 -0.1264 0.208 -0.607 0.546

PCA_W_F3 0.0323 0.221 0.147 0.884

R-squared 0.004256     Mean dependent var -8.24E-17

Adjusted R-squared -0.027864     S.D. dependent var 2.276854

S.E. of regression 2.308357     Akaike info criterion 4.551312

Sum squared resid 495.5517     Schwarz criterion 4.657486

Log likelihood -216.7386     F-statistic 0.132511

Durbin-Watson stat 1.943029     Prob(F-statistic) 0.940488

Dependent Variable: PCA_S_F1

Sample: 1 97



22 
 

Unicredit, Deutsche Bank and Crédit Agricole but also in some cases for BBVA, Royal Bank of 

Scotland, Société Générale with gains in RSS ranging from 4 to 12%. The explanation offered by the 

literature for this poor average performance is that new information is rapidly incorporated into 

agents’ information set so excessive returns rapidly vanish: only very short (ideally intraday) stock 

price movements can be capitalized (Schumaker and Chen, 2006[43], 2009[44]),.  In our analysis, cross 

correlation and in some cases U-rank test confirm the association between web buzz and intraday 

price movements making this topic a potential candidate for future research.  

Our data indicate that supra-national decisions/facts could drive stock behaviors, while web news 

about single banks is only episodically making a difference in stock movements. Most likely in these 

times of financial turbulence announcements of the BCE or of other international authorities are 

likely to play a crucial role in explaining trade behaviors. In order to capture this effect the 

construction of a general “sentiment” index will drive our future research efforts.  

Are stock movements sensitive to the geo-tagging of the web buzz? We extensively explore different 

sources of web information distinguishing between local (country) sources and international/world 

sources. Our data suggest that European stock markets seem to respond to news reported at the 

international level, rather than locally (in the country where the bank is located). As EMM is unable 

to distinguish between “important” and “unimportant” news (nor we know of any text mining 

algorithm that is able to distinguish information according to the relevance), the use of sources with 

international echo eliminates some of the noise introduced by irrelevant texts at the country level. 

Web buzz has a poor association with New York stock data for all banks analysed as overseas stock 

exchange seems to be guided more by the pattern of the European markets than by that of the web 

information.  

Our analysis does not suggest a clear advantage of measures of web buzz based on tonality with 

respect to other count variables (e.g. relative number of messages). This could be partly due to the 

algorithm calculating tonality. During the test phase we realized that the tonality failed to identify 

some important financial news (like for example the downgrade of Deutsche Bank on the 19th of 

Dec.). Currently the tonality algorithm is being upgraded. Even so tonality and sentiment analysis on 

financial texts are the latest and most promising advances in this type of literature (see Das and 

Chen, 2001[14]; Tulankar et al., 2013[45]; Zhang et al., 2010[49]; Zhai  et al., 2011[50]). Finally another 

limitation of our analysis is surely the restricted set of bank analysed. Enlarging the group of banks 

would lead us to face the tradeoff between wide coverage but lower number of daily web texts 

extraction (e.g. we obtain very few texts and not every day for e.g. the Finnish Pohjola and the 

Belgian KBC). Aggregation at the weekly level could be a solution worth exploring.  
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APPENDIX 

A1. Methods  
 

Cross-Correlation. Let 𝑆𝑡 and 𝑊𝑡 be the time series of stock prices or volumes and of web buzz 

respectively, the cross-correlation between 𝑆𝑡 and 𝑊𝑡 at the time lag δ is defined as the time lagged 

Pearson cross correlation coefficient  𝑟(𝛿): 

𝑟(𝛿) =
∑ (𝑆𝑡−�̅�)(𝑊𝑡−𝛿−�̅�)𝑛

𝑡=1

√∑ (𝑆𝑡−�̅�)2𝑛
𝑡=1 √∑ (𝑊𝑡−𝛿−�̅�)2𝑛

𝑡=1

                                                                                  (1) 

Where 𝛿 goes from -3 to +3, and 𝑆̅, �̅� are the sample averages of the two series4. A value δ=0 

corresponds to contemporaneous correlation, positive δs correspond to the case in which web buzz 

tends to anticipate trading variables while the reverse occurs for negative δs.  We analyse the cross-

correlation for each couple of trading and web variables (overall 96 combinations) and for each type 

of source and trading market.  Tables A.1-A.5 summarize the results.  

The Granger causality test5 is used in the literature to assess if a time series X is useful in forecasting 

another time series Y. If Y is better predicted by the histories of Y and X than with the history of Y 

only, then X will be said to Granger cause Y. We apply the Granger causality test on each pair of 

trade and web variables and for each set of sources and stock exchange data available. We test both 

the null H0: web does not Granger causes stock and the opposite null H0: stock does not Granger 

causes web and compare the results. Up to three lags for the dependent and the explanatory 

variables are taken into consideration. As stock returns series could exhibit autoregressive and 

heteroschedastic error terms, we check the presence of serial correlation and more general ARCH 

effects on the residuals with the Breusch-Godfrey test and with the ARCH LM test respectively. In all 

cases considered both tests do not rejects the null (absence of serial correlation and absence of 

ARCH structure respectively). Tables B1-B5 present the results.  

Given that Granger test presupposes stationary series, beforehand we check for unit root with the 

Augmented Dickey-Fuller test and differentiate series when unit root is not rejected. An additional 

assumption of Granger causality test is the normality of the error terms. This has been checked with 

the Jarque-Brera test. Normality of error terms has been found for most of the variables, with 

occasional exceptions usually related to the stock variable high(t)-low(t).  

In order to take into account non linarites and non-Gaussian error terms in the Granger regression, 

whenever they occur, we perform the Mann-Whitney U test (also known as Wilcoxon rank-sum 

test)6. Given two samples of independent observations, this test checks whether the two samples 

have equal medians. If the null is rejected, one sample will tend to have larger values than the other. 

                                                           
4
 Campbell,  Lo,  MacKinlay, (1996), The Econometrics of Financial Markets. NJ: Princeton University Press. 

5
 Granger, C. W. J. (1969), Investigating Causal Relations by Econometric Models and Cross-spectral Methods, 

Econometrica 37 (3): 424–438. 
6
 Mann, H. B. and D., R., Whitney, (1947), On a Test of Whether one of Two Random Variables is Stochastically 

Larger than the Other, Annals of Mathematical Statistics 18 (1): 50–60. 
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We calculate the U-test for each pair of stock and web variables by bootstrapping the estimated 

residuals of the two test regressions (trying different bootstrap samples from 10 to 1000 runs each): 

𝑀1: 𝑠𝑡𝑜𝑐𝑘𝑡 =  𝛼 +  𝛽𝑠𝑡𝑜𝑐𝑘𝑡−1 + 휀𝑡                                                                                  (2) 

𝑀2: 𝑠𝑡𝑜𝑐𝑘𝑡 =  𝛼 +  𝛽𝑠𝑡𝑜𝑐𝑘𝑡−1 + 𝛾𝑤𝑒𝑏𝑡−1 + 휀𝑡                                                             (3) 

𝐻0: �̅�2(𝑀2) − �̅�2(𝑀1) = 0                                                                                                  (4) 

We also test the opposite direction (i.e. we regress web variables onto their lagged values and on 

lagged values of stocks and calculate �̅�2) and compare the results. Detailed results are available in 

Table B.6.  

Principal Component Analysis (PCA)7 is a non-parametric technique able to regroup variables into 

factors according to the similarities in their behavior. PCA is usually the first step in the attempt to 

identify latent (often multidimensional and not directly measurable) constructs in the data. Ideally if 

all variables behave similarly, PCA would identify a unique single factor capturing a high percentage 

of the total variance with all variables displaying high loadings (with the same sign). Multiple 

relevant factors (i.e. with eigenvalue higher that one) are symptom of dissimilar behaviors and 

would call for further analysis on the drivers of such diversity.  Results summarized in Tables C1 and 

C2. 

 

 

 

  

                                                           
7
 Jolliffe, I. T. (2002). Principal Component Analysis, second edition Springer-Verlag. 
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A.2 Selected tables and figures 

Cross-Correlation: selected tables 
 

Table A. 1. Contemporaneous correlation, average across banks  

 

NY stock exchange Country stock exchange 
  

Number of web articles 

  
Average tonality 

  
Standard deviation of tonality 
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Number of web articles with negative tonality 

  
Share of web articles with negative tonality 

  
Number of web articles with positive tonality 
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Share of web articles with positive tonality 

  
Polarity 

  
Subjectivity 
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Disagreement 

  
Share of web articles (wrt total number) 

  
Share of web articles (wrt previous day) 
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Table A. 2. Cross correlation function between various web variables and measures of stock 
volume exchanged (data by bank, sources EU+US). 

In abscissa the number of lags (0 indicates instantaneous correlation, values with positive sign indicate the cross 
correlation of stock variables at time t and web variables at time t+lag, negative values indicate the cross correlation of 
stock  variables at time t and web variables at time t-lag). 

 

NY stock exchange Country stock exchange 
Number of web articles 

  
Number of web articles with positive tonality 

  
Number of web articles with negative tonality 
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Table A. 3. Cross correlation function between the web variable number of articles and various 
measures of stock prices and volumes (data by bank, European stock exchanges data, sources 
EU+US). 

In abscissa the number of lags (0 indicates instantaneous correlation, values with positive sign indicate the cross correlation of stock 
variables at time t and web variables at time t+lag, negative values indicate the cross correlation of stock  variables at time t and web 
variables at time t-lag). 

  
  

  
  

  
  

 

 

 

 

 



34 
 

Table A. 4. Cross correlation function between the web variable number of articles and various 
measures of stock prices and volumes (average across banks, European stock exchanges data, 
sources EU+US).  

Cross correlation function between the web variable number of articles and various measures of stock prices and 
volumes (average across banks, European stock exchanges data, sources EU+US). In abscissa the number of lags (0 indicates 
instantaneous correlation, values with positive sign indicate the cross correlation of stock variables at time t and web variables at time 
t+lag, negative values indicate the cross correlation of stock  variables at time t and web variables at time t-lag). 
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Table A. 5. Cross correlation function between various web variables and measures of stock prices 
and volume exchanged (average across banks).  In abscissa the number of lags (0 indicates instantaneous correlation, 

values with positive sign indicate the cross correlation of stock variables at time t and web variables at time t+lag, negative values 
indicate the cross correlation of stock  variables at time t and web variables at time t-lag). 

 

Web sources: EU+US-Country Web sources: EU+US 
Number of web articles 

  
Number of web articles with positive tonality 

  
Number of web articles with negative tonality 

  
 

 



36 
 

Granger causality and U-Rank sum test: selected tables 
 

Table B. 1. Granger test (EU stock exchanges): average results for a selected set of pairs (stock, 
web). Percentage of banks for which the null hypothesis is rejected at 5% level and percentage reduction in the residual sum of the 

squares (RSS). Country stock data and various sources; H0: Web does not Granger cause Stocks (W vs S) or H0: Stocks does not Granger 
cause Web (S vs W). Lag of the Granger test = 1 (results with 2 and 3 lags are on average worst so they are not reported). We display in 
the table only those web variables with the highest average correlation with stock prices and volumes. Granger Causality has been 
computed for all web variables, all sources and all sock variables and for three lags.  The full set of results is available on request. 

 

 

 

 

 

 

Country stock exchange data

close(t)-opening(t) W vs.S % p<5% 0 0 10 0 0 10 0 0 20 10 10 10

Avg reduction in 

RSS
NaN NaN 5% NaN NaN 5% NaN NaN 5% 5% 6% 5%

S vs. W % p<5% 0 20 0 0 10 0 0 20 30 10 0 10

Avg reduction in 

RSS
NaN 5% NaN NaN 5% NaN NaN 5% 5% 5% NaN 16%

w(close(t)-opening(t)) W vs.S % p<5% 10 10 0 10 10 0 10 10 10 10 20 0

Avg reduction in 

RSS
6% 7% NaN 5% 6% NaN 5% 5% 5% 7% 7% NaN

S vs. W % p<5% 10 20 10 10 20 10 10 20 20 10 10 10

Avg reduction in 

RSS
9% 4% 6% 8% 5% 4% 8% 5% 6% 5% 9% 16%

close(t)-close(t-1) W vs.S % p<5% 0 0 10 10 0 10 0 0 10 0 20 20

Avg reduction in 

RSS
NaN NaN 4% 4% NaN 4% NaN NaN 6% NaN 4% 6%

S vs. W % p<5% 10 10 0 0 10 0 10 20 20 10 10 10

Avg reduction in 

RSS
4% 6% NaN NaN 5% NaN 4% 6% 6% 4% 4% 16%

w(close(t)-close(t-1)) W vs.S % p<5% 30 40 50 30 40 40 30 40 20 30 40 30

Avg reduction in 

RSS
11% 10% 6% 12% 10% 8% 12% 11% 6% 7% 6% 7%

S vs. W % p<5% 10 10 10 10 10 10 10 0 20 10 10 10

Avg reduction in 

RSS
6% 5% 4% 6% 5% 5% 6% NaN 4% 5% 5% 16%

high(t)-low(t) W vs.S % p<5% 10 20 20 10 10 20 10 10 20 10 10 20

Avg reduction in 

RSS
9% 5% 6% 7% 7% 5% 9% 6% 5% 9% 7% 5%

S vs. W % p<5% 20 40 10 20 40 10 20 30 10 40 20 20

Avg reduction in 

RSS
8% 5% 8% 8% 5% 7% 9% 6% 6% 6% 6% 12%

relative vol. exchanged W vs.S % p<5% 20 20 30 20 20 20 20 20 20 20 10 20

Avg reduction in 

RSS
7% 6% 6% 7% 7% 7% 7% 6% 5% 5% 5% 6%

S vs. W % p<5% 10 10 0 10 10 0 0 0 10 30 10 10

Avg reduction in 

RSS
4% 4% NaN 4% 5% NaN NaN NaN 5% 4% 4% 16%

volume exchanged W vs.S % p<5% 20 20 20 20 20 20 20 20 10 20 10 20

Avg reduction in 

RSS
10% 9% 8% 11% 10% 9% 10% 9% 5% 6% 5% 7%

S vs. W % p<5% 10 10 10 10 10 10 10 10 10 20 10 10

Avg reduction in 

RSS
7% 6% 4% 8% 6% 6% 7% 5% 5% 5% 4% 16%
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Table B. 2. Granger test (EU stock exchanges): results by bank. 

Percentage of cases (over all 8 stock variables) in which the null hypothesis is rejected at 5% level and percentage reduction in the 
residual sum of the squares (RSS). Country stock data, three web variables and various sources; H0: Web does not Granger cause Stocks 
(W vs S) or H0: Stocks does not Granger cause Web (S vs W). Lag of the Granger test = 1. 

 

 

 

 

 

 

 

Barclays

W vs.S % p<1% 0 12.5 0 0 0 0 0 0 0 12.5 12.5 0

% p<5% 12.5 25 12.5 12.5 12.5 12.5 12.5 12.5 12.5 25 50 0

Avg reduction in RSS 6.3% 5.7% 4.4% 5.5% 5.1% 4.1% 5.5% 5.6% 5.0% 6.1% 5.8% NaN

S vs. W % p<1% 12.5 0 0 12.5 0 0 12.5 0 0 0 0 0

% p<5% 37.5 25 12.5 12.5 0 12.5 12.5 12.5 12.5 25 0 0

Avg reduction in RSS 6.0% 4.1% 5.7% 8.0% NaN 5.1% 8.0% 4.3% 4.4% 4.2% NaN NaN

BBVA

W vs.S % p<1% 0 12.5 0 0 0 0 0 0 0 0 0 0

% p<5% 0 12.5 37.5 0 12.5 37.5 0 12.5 37.5 0 12.5 37.5

Avg reduction in RSS NaN 6.8% 4.6% NaN 6.2% 4.4% NaN 4.2% 4.5% NaN 5.1% 4.6%

S vs. W % p<1% 0 0 0 0 0 0 0 0 0 0 12.5 0

% p<5% 12.5 25 0 12.5 25 0 12.5 25 0 12.5 50 0

Avg reduction in RSS 5.1% 4.7% NaN 5.5% 5.7% NaN 5.5% 5.0% NaN 5.4% 5.9% NaN

BNP Paribas

W vs.S % p<1% 0 0 0 0 0 0 0 0 0 0 0 0

% p<5% 0 0 37.5 0 0 37.5 0 0 12.5 0 0 12.5

Avg reduction in RSS NaN NaN 4.9% NaN NaN 5.3% NaN NaN 5.3% NaN NaN 5.2%

S vs. W % p<1% 0 0 0 0 0 0 0 0 0 0 0 0

% p<5% 0 0 0 0 0 0 0 0 0 0 0 0

Avg reduction in RSS NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

Crédit Agricole

W vs.S % p<1% 12.5 0 0 12.5 0 12.5 12.5 12.5 0 12.5 12.5 0

% p<5% 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5

Avg reduction in RSS 8.7% 6.4% 6.7% 9.0% 6.4% 7.5% 9.0% 7.1% 5.6% 9.0% 7.5% 4.3%

S vs. W % p<1% 0 0 0 0 0 0 0 0 0 0 0 0

% p<5% 0 12.5 0 0 25 0 0 0 0 0 0 0

Avg reduction in RSS NaN 4.5% NaN NaN 4.0% NaN NaN NaN NaN NaN NaN NaN

Deutsche Bank

W vs.S % p<1% 12.5 0 25 25 25 37.5 25 25 25 0 0 25

% p<5% 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5

Avg reduction in RSS 6.4% 6.0% 7.5% 6.9% 7.2% 7.8% 6.9% 6.8% 7.4% 6.3% 5.3% 7.0%

S vs. W % p<1% 0 0 0 0 0 0 0 0 0 0 0 0

% p<5% 0 0 0 0 0 0 0 0 0 0 0 0

Avg reduction in RSS NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

RSS=Residual Sum of the Squares
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Table B.2 follows from previous page 

 

 

 

 

 

 

 

 

 

HSCB

W vs.S % p<1% 0 0 0 0 0 0 0 0 0 0 0 12.5

% p<5% 0 0 0 0 0 0 0 0 0 12.5 0 25

Avg reduction in RSS NaN NaN NaN NaN NaN NaN NaN NaN NaN 4.7% NaN 7.1%

S vs. W % p<1% 12.5 0 0 0 0 0 0 0 0 0 0 100

% p<5% 37.5 37.5 25 25 12.5 25 25 37.5 25 100 0 100

Avg reduction in RSS 5.7% 4.9% 4.0% 6.2% 5.0% 4.1% 6.2% 5.1% 5.2% 4.7% NaN 16.0%

Royal Bank of Scotland

W vs.S % p<1% 12.5 12.5 0 12.5 12.5 0 12.5 12.5 0 0 12.5 0

% p<5% 12.5 12.5 0 12.5 12.5 12.5 12.5 12.5 0 12.5 12.5 0

Avg reduction in RSS 11.6% 10.4% NaN 13.1% 15.1% 4.2% 13.1% 11.4% NaN 5.4% 8.8% NaN

S vs. W % p<1% 0 0 0 0 25 0 0 0 0 0 0 0

% p<5% 0 50 0 25 62.5 0 25 50 0 12.5 25 0

Avg reduction in RSS NaN 5.3% NaN 4.3% 6.2% NaN 4.3% 4.5% NaN 4.0% 4.3% NaN

Santander

W vs.S % p<1% 0 0 0 0 0 0 0 0 0 0 0 0

% p<5% 0 0 0 0 0 0 0 0 0 0 0 0

Avg reduction in RSS NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

S vs. W % p<1% 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 0 12.5

% p<5% 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5

Avg reduction in RSS 11.5% 7.1% 8.1% 11.6% 6.8% 8.2% 11.6% 6.9% 7.2% 10.0% 6.6% 7.1%

Société Générale

W vs.S % p<1% 0 0 0 0 0 0 0 0 0 0 0 0

% p<5% 0 0 12.5 0 0 12.5 0 0 12.5 0 0 12.5

Avg reduction in RSS NaN NaN 5.3% NaN NaN 4.8% NaN NaN 6.0% NaN NaN 5.0%

S vs. W % p<1% 0 0 0 0 0 0 0 0 0 0 0 0

% p<5% 0 0 0 0 0 0 0 0 0 12.5 12.5 0

Avg reduction in RSS NaN NaN NaN NaN NaN NaN NaN NaN NaN 4.4% 4.5% NaN

Unicredito

W vs.S % p<1% 37.5 25 25 37.5 25 25 37.5 37.5 37.5 12.5 0 12.5

% p<5% 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 50 37.5

Avg reduction in RSS 11.8% 11.0% 8.2% 11.9% 10.4% 8.1% 11.9% 12.0% 9.5% 6.9% 4.6% 6.1%

S vs. W % p<1% 0 0 0 0 0 0 0 0 0 0 0 0

% p<5% 0 0 0 0 0 0 0 12.5 0 0 0 0

Avg reduction in RSS NaN NaN NaN NaN NaN NaN NaN 4.0% NaN NaN NaN NaN

RSS=Residual Sum of the Squares

ALL sources  Country sourcesEU+US sources EU sources
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Table B. 3. Granger test (NYSE): average results for a selected set of pairs (stock, web).  

Percentage of banks for which the null hypothesis is rejected at 5% level and percentage reduction in the residual sum of the squares 
(RSS). New York stock data and various sources; H0: Web does not Granger cause Stocks (W vs S) or H0: Stocks does not Granger cause 
Web (S vs W). Lag of the Granger test = 1. 

 

 

 

 

 

NY stock exchange data

close(t)-

opening(t)
W vs.S % p<5% 16.7 0.0 16.7 16.7 0.0 16.7 16.7 0.0 16.7

Avg reduction in 

RSS
5% NaN 5% 5% NaN 6% 6% NaN 4%

S vs. W % p<5% 16.7 16.7 16.7 0.0 0.0 16.7 16.7 33.3 33.3

Avg reduction in 

RSS
5% 4% 4% NaN NaN 4% 7% 6% 5%

w(close(t)-

opening(t))
W vs.S % p<5% 16.7 0.0 16.7 16.7 0.0 16.7 16.7 0.0 16.7

Avg reduction in 

RSS
5% NaN 5% 5% NaN 5% 5% NaN 12%

S vs. W % p<5% 0.0 0.0 0.0 0.0 0.0 0.0 16.7 0.0 33.3

Avg reduction in 

RSS
NaN NaN NaN NaN NaN NaN 4% NaN 4%

close(t)-

close(t-1)
W vs.S % p<5% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Avg reduction in 

RSS
NaN NaN NaN NaN NaN NaN NaN NaN NaN

S vs. W % p<5% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7

Avg reduction in 

RSS
NaN NaN NaN NaN NaN NaN NaN NaN 6%

w(close(t)-

close(t-1))
W vs.S % p<5% 16.7 0.0 16.7 16.7 0.0 16.7 16.7 0.0 16.7

Avg reduction in 

RSS
4% NaN 5% 5% NaN 6% 4% NaN 5%

S vs. W % p<5% 16.7 16.7 16.7 16.7 16.7 0.0 33.3 16.7 16.7

Avg reduction in 

RSS
6% 12% 4% 6% 13% NaN 6% 15% 6%

high(t)-

low(t)
W vs.S % p<5% 16.7 16.7 16.7 0.0 16.7 33.3 0.0 0.0 16.7

Avg reduction in 

RSS
4% 5% 5% NaN 4% 5% NaN NaN 7%

S vs. W % p<5% 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 33.3

Avg reduction in 

RSS
6% 4% 7% 6% 4% 6% 7% 5% 8%

relative vol. 

exchanged
W vs.S % p<5% 0.0 0.0 16.7 0.0 0.0 16.7 0.0 0.0 33.3

Avg reduction in 

RSS
NaN NaN 6% NaN NaN 5% NaN NaN 4%

S vs. W % p<5% 16.7 16.7 16.7 16.7 16.7 0.0 16.7 16.7 33.3

Avg reduction in 

RSS
10% 15% 5% 10% 17% NaN 10% 17% 6%

volume 

exchanged
W vs.S % p<5% 0.0 16.7 0.0 16.7 16.7 16.7 0.0 16.7 0.0

Avg reduction in 

RSS
NaN 4% NaN 4% 4% 4% NaN 5% NaN

S vs. W % p<5% 16.7 16.7 0.0 16.7 16.7 0.0 16.7 16.7 33.3

Avg reduction in 

RSS
5% 5% NaN 5% 6% NaN 5% 6% 10%
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Table B. 4. Granger test (NYSE): results by bank. 

Percentage of cases (over all 8 stock variables) in which the null hypothesis is rejected at 5% level and percentage reduction in the 
residual sum of the squares (RSS). New York stock data, three web variables and various sources; H0: Web does not Granger cause 

Stocks (W vs S) or H0: Stocks does not Granger cause Web (S vs W). Lag of the Granger test = 1. 

 

Barclays

W vs.S % p<1% 0 0 0 0 0 0 0 0 0

% p<5% 0 0 12.5 0 0 12.5 0 0 12.5

Avg reduction in 

RSS
NaN NaN 5.5% NaN NaN 5.5% NaN NaN 5.1%

S vs. W % p<1% 0 0 0 0 0 0 0 0 0

% p<5% 0 0 0 0 0 0 0 0 0

Avg reduction in 

RSS NaN NaN NaN NaN NaN NaN NaN NaN NaN

BBVA

W vs.S % p<1% 0 0 0 0 0 0 0 0 0

% p<5% 0 0 0 0 0 0 0 0 0

Avg reduction in 

RSS
NaN NaN NaN NaN NaN NaN NaN NaN NaN

S vs. W % p<1% 0 0 0 0 0 0 0 0 0

% p<5% 0 0 0 0 0 0 0 0 0

Avg reduction in 

RSS NaN NaN NaN NaN NaN NaN NaN NaN NaN

Deutsche Bank

W vs.S % p<1% 0 0 0 0 0 0 0 0 0

% p<5% 25 0 37.5 25 0 37.5 25 0 37.5

Avg reduction in 

RSS
5.0% NaN 5.4% 5.3% NaN 5.9% 5.0% NaN 5.4%

S vs. W % p<1% 12.5 25 12.5 37.5 25 12.5 12.5 25 0

% p<5% 50 50 25 50 62.5 25 50 50 12.5

Avg reduction in 

RSS 6.8% 9.1% 5.9% 7.2% 9.6% 5.9% 6.7% 10.2% 5.7%

HSBC

W vs.S % p<1% 0 0 0 0 0 0 0 0 0

% p<5% 0 12.5 0 0 12.5 0 0 12.5 12.5

Avg reduction in 

RSS
NaN 4.4% NaN NaN 5.4% NaN NaN 4.0% 4.0%

S vs. W % p<1% 0 0 0 12.5 12.5 0 0 0 0

% p<5% 12.5 12.5 12.5 25 12.5 25 0 0 12.5

Avg reduction in 

RSS 4.8% 4.0% 4.3% 5.4% 7.4% 4.6% NaN NaN 4.2%

Royal Bank of Scotland

W vs.S % p<1% 0 0 0 0 0 0 0 0 0

% p<5% 12.5 12.5 0 0 0 0 0 12.5 0

Avg reduction in 

RSS
4.3% 4.8% NaN NaN NaN NaN NaN 4.3% NaN

S vs. W % p<1% 0 0 0 0 0 0 0 0 0

% p<5% 0 0 12.5 12.5 0 0 0 0 0

Avg reduction in 

RSS NaN NaN 4.4% 5.4% NaN NaN NaN NaN NaN

Santander

W vs.S % p<1% 0 0 0 0 0 0 0 0 0

% p<5% 12.5 0 12.5 12.5 0 12.5 25 0 25

Avg reduction in 

RSS
4.2% NaN 5.4% 4.3% NaN 5.5% 4.7% NaN 5.1%

S vs. W % p<1% 0 0 0 0 0 0 0 0 0

% p<5% 0 0 0 0 0 0 0 0 0

Avg reduction in 

RSS NaN NaN NaN NaN NaN NaN NaN NaN NaN

RSS=Residual Sum of the Squares

EU+US sources EU sources ALL sources
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Table B. 5, Granger test: results by bank, sources for web buzz: EU+US-Country. 

Percentage of cases (over all 8 stock variables) in which the null hypothesis is rejected at 5% level and percentage reduction in the 
residual sum of the squares (RSS). Three web variables. H0: Web does not Granger cause Stocks (W vs S) or H0: Stocks does not Granger 
cause Web (S vs W). Lag of the Granger test = 1. 

 

 

Barclays HSCB

W vs.S % p<1%
0 0 0

W vs.S % p<1%
0 0 0

% p<5% 12.5 12.5 12.5 % p<5% 0 0 0

Avg reduction in 

RSS
5.4% 5.4% 4.5%

Avg reduction in 

RSS
NaN NaN NaN

S vs. W % p<1% 12.5 0 0 S vs. W % p<1% 12.5 0 0

% p<5% 37.5 0 12.5 % p<5% 37.5 37.5 0

Avg reduction in 

RSS
5.8% NaN 5.8%

Avg reduction in 

RSS
5.8% 4.7% NaN

BBVA Royal Bank of Scotland

W vs.S % p<1% 0 0 0 W vs.S % p<1% 12.5 12.5 0

% p<5% 12.5 12.5 0 % p<5% 12.5 12.5 0

Avg reduction in 

RSS
4.1% 6.2% NaN

Avg reduction in 

RSS
11.5% 9.3% NaN

S vs. W % p<1% 0 0 12.5 S vs. W % p<1% 0 0 0

% p<5% 0 12.5 100 % p<5% 25 50 0

Avg reduction in 

RSS
NaN 4.4% 6.2%

Avg reduction in 

RSS
4.1% 4.8% NaN

BNP Paribas Santander

W vs.S % p<1% 0 0 0 W vs.S % p<1% 0 0 0

% p<5% 0 25 25 % p<5% 0 0 0

Avg reduction in 

RSS
NaN 4.2% 4.7%

Avg reduction in 

RSS
NaN NaN NaN

S vs. W % p<1% 0 0 0 S vs. W % p<1% 37.5 0 12.5

% p<5% 0 0 0 % p<5% 50 12.5 12.5

Avg reduction in 

RSS
NaN NaN NaN

Avg reduction in 

RSS
7.4% 4.8% 6.8%

Crédit Agricole Société Générale

W vs.S % p<1% 0 0 12.5 W vs.S % p<1% 0 0 0

% p<5% 12.5 0 12.5 % p<5% 0 0 0

Avg reduction in 

RSS
6.2% NaN 8.2%

Avg reduction in 

RSS
NaN NaN NaN

S vs. W % p<1% 0 12.5 0 S vs. W % p<1% 0 0 0

% p<5% 0 100 0 % p<5% 0 0 0

Avg reduction in 

RSS
NaN 5.3% NaN

Avg reduction in 

RSS
NaN NaN NaN

Deutsche Bank Unicredit

W vs.S % p<1% 0 0 0 W vs.S % p<1% 37.5 37.5 37.5

% p<5% 37.5 25 37.5 % p<5% 37.5 37.5 37.5

Avg reduction in 

RSS
5.4% 5.5% 6.1%

Avg reduction in 

RSS
13.5% 16.3% 9.2%

S vs. W % p<1% 0 0 0 S vs. W % p<1% 0 0 0

% p<5% 0 0 0 % p<5% 0 0 0

Avg reduction in 

RSS
NaN NaN NaN

Avg reduction in 

RSS
NaN NaN NaN

RSS=Residual Sum of the Squares
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Table B. 6. Wilcoxon-Mann-Whitney U test: selected results by bank according to the number of 
bootstraps. Web variables have been extracted from EU+US sources.  

 

Wilcoxon-Mann-Whitney U test

1000 bootstraps p-value p-value

Unicredit (close(t)-open(t) ) BBVA (high(t)-low(t) )

H0= web does not Granger Cause stock H0= web does not Granger Cause stock

number_articles 0.0000 number_articles 0.0000

number_neg_ton 0.0000 H0= stock does not Granger Cause web

number_pos_ton 0.0000 number_articles 0.1740

H0= stock does not Granger Cause web

number_articles 0.1093 Société Générale (w(close(t)-opening(t)) )

number_neg_ton 0.7472 H0= web does not Granger Cause stock

number_pos_ton 0.7105 number_neg_ton 0.0000

H0= stock does not Granger Cause web

Crédit Agricole (close(t)-open(t) ) number_neg_ton 0.8657

H0= web does not Granger Cause stock

share_neg_ton 0.0000 Deutsche Bank (high(t)-low(t) )

H0= stock does not Granger Cause web H0= web does not Granger Cause stock

share_neg_ton 0.6979 number_pos_ton 0.000

H0= stock does not Granger Cause web

number_pos_ton 0.3997
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Wilcoxon-Mann-Whitney U test

100 bootstraps p-value p-value

Unicredit (close(t)-open(t) ) BBVA (volume exchanged )

H0= web does not Granger Cause stock H0= web does not Granger Cause stock

number_articles 0.0000 number_pos_ton 0.0000

number_neg_ton 0.0000 share_pos_ton 0.0000

number_pos_ton 0.0000 H0= stock does not Granger Cause web

H0= stock does not Granger Cause web number_pos_ton 0.0870

number_articles 0.5867 share_pos_ton 0.9367

number_neg_ton 0.0000

number_pos_ton 0.0000

Royal Bank of Scotland (close(t)-open(t) )

Crédit Agricole (close(t)-open(t) ) H0= web does not Granger Cause stock

H0= web does not Granger Cause stock number_articles 0.0053

share_neg_ton 0.0000 number_neg_ton 0.0000

H0= stock does not Granger Cause web H0= stock does not Granger Cause web

share_neg_ton 0.1430 number_articles 0.1199

number_neg_ton 0.4763

Deutsche Bank (high(t)-low(t) )

H0= web does not Granger Cause stock Société Générale (w(close(t)-opening(t)) )

number_pos_ton 0.000 H0= web does not Granger Cause stock

H0= stock does not Granger Cause web number_neg_ton 0.0006

number_pos_ton 0.5405 H0= stock does not Granger Cause web

number_neg_ton 0.5357

BBVA (high(t)-low(t) ) Société Générale (close(t)-close(t-1) )
H0= web does not Granger Cause stock H0= web does not Granger Cause stock

number_articles 0.0000 number_articles 0.0000

H0= stock does not Granger Cause web H0= stock does not Granger Cause web

number_articles 0.8345 number_articles 0.1597
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Wilcoxon-Mann-Whitney U test

50 bootstraps p-value p-value

Unicredit (close(t)-open(t) ) BBVA (volume exchanged )

H0= web does not Granger Cause stock H0= web does not Granger Cause stock

number_articles 0.0000 number_pos_ton 0.0000

number_neg_ton 0.0024 share_pos_ton 0.0000

number_pos_ton 0.4503 H0= stock does not Granger Cause web

H0= stock does not Granger Cause web number_pos_ton 0.2211

number_articles 0.4340 share_pos_ton 0.0106

number_neg_ton 0.0000

number_pos_ton 0.0004

Royal Bank of Scotland (close(t)-open(t) )

Crédit Agricole (close(t)-open(t) ) H0= web does not Granger Cause stock

H0= web does not Granger Cause stock number_articles 0.6124

share_neg_ton 0.0312 number_neg_ton 0.0000

share_pos_ton 0.0002 H0= stock does not Granger Cause web

H0= stock does not Granger Cause web number_articles 0.9533

share_neg_ton 0.3328 number_neg_ton 0.2806

share_pos_ton 0.7433

Société Générale (w(close(t)-open(t)) )

Deutsche Bank (high(t)-low(t) ) H0= web does not Granger Cause stock

H0= web does not Granger Cause stock number_neg_ton 0.0096

number_pos_ton 0.0059 H0= stock does not Granger Cause web

H0= stock does not Granger Cause web number_neg_ton 0.4140

number_pos_ton 0.9368 Société Générale (close(t)-open(t) )
H0= web does not Granger Cause stock

BBVA (high(t)-low(t) ) share_neg_ton 0.0000

H0= web does not Granger Cause stock H0= stock does not Granger Cause web

number_articles 0.0001 share_neg_ton 0.1168

H0= stock does not Granger Cause web

number_articles 0.6716
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Wilcoxon-Mann-Whitney U test

10 bootstraps p-value p-value

Unicredit (w(close(t)-open(t)) ) BBVA (volume exchanged )

H0= web does not Granger Cause stock H0= web does not Granger Cause stock

number_articles 0.0890 number_pos_ton 0.0257

number_neg_ton 0.0376 share_pos_ton 0.0452

number_pos_ton 0.3447 H0= stock does not Granger Cause web

H0= stock does not Granger Cause web number_pos_ton 0.6776

number_articles 0.7337 share_pos_ton 0.9097

number_neg_ton 0.0140

number_pos_ton 0.0113

Royal Bank of Scotland (close(t)-open(t) )

Crédit Agricole (close(t)-open(t) ) H0= web does not Granger Cause stock

H0= web does not Granger Cause stock number_articles 0.0376

share_neg_ton 0.0113 number_neg_ton 0.0002

share_pos_ton 0.4274 H0= stock does not Granger Cause web

H0= stock does not Granger Cause web number_articles 0.9097

share_neg_ton 0.5205 number_neg_ton 0.7913

share_pos_ton 0.6776

Société Générale (w(close(t)-open(t)) )

Deutsche Bank (high(t)-low(t) ) H0= web does not Granger Cause stock

H0= web does not Granger Cause stock number_neg_ton 0.0376

number_pos_ton 0.3447 H0= stock does not Granger Cause web

H0= stock does not Granger Cause web number_neg_ton 0.5708

number_pos_ton 0.8501 Société Générale (close(t)-open(t) )
H0= web does not Granger Cause stock

BBVA (high(t)-low(t) ) share_neg_ton 0.2123

H0= web does not Granger Cause stock H0= stock does not Granger Cause web

number_articles 0.9698 share_neg_ton 0.3075

H0= stock does not Granger Cause web

number_articles 0.9698
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Principal Component: selected tables  
 

Table C. 1. Principal Component Analysis on the entire set of banks: Barclays, BBVA, BNP-Paribas, 
Crédit Agricole, Deutsche Bank, HSBC, Royal Bank of Scotland, Santander, Société Générale, 
Unicredit. 

PCA on the web variable: number of texts 

 
PCA on the stock variable: close(t)-open(t) 

 
PCA on the stock variable: high(t)-low(t) 

 
 

Factor coordinates of the variables, based on correlations 

Factors

Ei
ge

n
va

lu
e

%
 T

o
ta

l 

(v
ar
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n

ce
)

C
u

m
u
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ti

v

e 
(%

) Variables

Fa
ct

o
r 

1

Fa
ct

o
r 

2

Fa
ct

o
r 

3

Fa
ct

o
r 

4

Fa
ct

o
r 

5

Fa
ct

o
r 

6

Fa
ct

o
r 

7

1 1.56 15.55 15.55 bar_w -0.432 0.309 -0.442 0.342 0.297 -0.268 -0.132

2 1.33 13.29 28.84 bbva_w -0.802 -0.025 -0.033 0.100 0.148 0.019 0.098

3 1.28 12.76 41.61 bnp_w -0.353 -0.367 0.408 -0.387 0.191 0.382 0.173

4 1.07 10.68 52.29 ca_w 0.246 -0.483 -0.533 -0.031 -0.057 0.090 0.061

5 1.00 10.00 62.28 db_w -0.002 -0.500 0.187 0.102 -0.411 -0.642 0.159

6 0.95 9.46 71.74 hsbc_w 0.084 0.051 0.176 0.701 -0.416 0.490 -0.048

7 0.84 8.36 80.11 rbs_w -0.677 -0.285 -0.142 0.095 -0.344 0.075 0.105

8 0.78 7.79 87.90 san_w 0.034 -0.347 -0.647 -0.187 -0.094 0.236 -0.253

9 0.66 6.57 94.47 sg_w 0.267 -0.379 -0.071 0.441 0.534 0.038 0.482

10 0.55 5.53 100.00 un_w 0.034 0.516 -0.346 -0.223 -0.307 0.075 0.664
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Factor coordinates of the variables, based on correlations 
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Eigenvalues of correlation matrix
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PCA on the stock variable: volume traded(t) 

 
 

 

Table C. 2. Principal Component Analysis on the Euro-area banks : BBVA, Santander, BNP-Paribas, 
Crédit Agricole, Société Générale, Deutsche Bank, Unicredit. 

PCA on the web variable: number of texts 

 
PCA on the stock variable: close(t)-open(t) 

 
 
 
 

Factor coordinates of the variables, based on correlations 
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Factor coordinates of the variables, based on correlations 
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Factor coordinates of the variables, based on correlations 
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PCA on the stock variable: high(t)-low(t) 

 
PCA on the stock variable: volume traded(t) 

 
 

  
 

 

 

 

 

 

 

  

Factor coordinates of the variables, based on correlations 
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Factor coordinates of the variables, based on correlations 
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