

Environment. Technology. Resources, Rezekne, Latvia

Proceedings of the 11th International Scientific and Practical Conference. Volume II, 52-57

ISSN 1691-5402

© Rezekne Academy of Technologies, Rezekne 2017

http://dx.doi.org/10.17770/etr2017vol2.2591

Auto-scaling and Adjustment Platform for

Cloud-based Systems

Jānis Kampars, Krišjānis Pinka
Riga Technical University, Institute of Information Technology. Address: Sētas iela 1, Riga, LV-1048, Latvia

Abstract. For customers of cloud-computing platforms it is important to minimize the infrastructure footprint and

associated costs while providing required levels of Quality of Service (QoS) and Quality of Experience (QoE) dictated by

the Service Level Agreement (SLA). To assist with that cloud service providers are offering: (1) horizontal resource

scaling through provisioning and destruction of virtual machines and containers, (2) vertical scaling through changing

the capacity of individual cloud nodes. Existing scaling solutions mostly concentrate on low-level metrics like CPU load

and memory consumption which doesn’t always correlate with the level of SLA conformity. Such technical measures

should be preprocessed and viewed from a higher level of abstraction. Application level metrics should also be considered

when deciding upon scaling the cloud-based solution. Existing scaling platforms are mostly proprietary technologies

owned by cloud service providers themselves or by third parties and offered as Software as a Service. Enterprise

applications could span infrastructures of multiple public and private clouds, dictating that the auto-scaling solution

should not be isolated inside a single cloud infrastructure.

The goal of this paper is to address the challenges above by presenting the architecture of Auto-scaling and

Adjustment Platform for Cloud-based Systems (ASAPCS). It is based on open-source technologies and supports

integration of various low and high level performance metrics, providing higher levels of abstraction for design of scaling

algorithms. ASAPCS can be used with any cloud service provider and guarantees that move from one cloud platform to

another will not result in complete redesign of the scaling algorithm. ASAPCS itself is horizontally scalable and can

process large amounts of real-time data which is particularly important for applications developed following the

microservices architectural style. ASAPCS approaches the scaling problem in a nonstandard way by considering real-time

adjustments of the application logic to be part of the scalability strategy if it can result in performance improvements.

Keywords: cloud computing, auto-scaling, microservices, big data.

I. INTRODUCTION

Cloud computing platforms provide a virtually

unlimited pool of computing power and storage

resources for hosting various enterprise applications.

Customers of such platforms are charged by the

amount of resources they have used on a pay-per-use

basis. Therefore, it is important to minimize the

infrastructure footprint and balance it with the

required level of Quality of Service (QoS) and

Quality of Experience (QoE). Usually this is achieved

by scaling the application up during peak times and

removing the surplus of resources later. To assist with

that cloud service providers are offering Application

Programmable Interfaces (APIs) that support:

1. horizontal resource scaling by changing the

number of currently running virtual machines

or containers (e.g. add two more web-server

nodes),

2. vertical resource scaling by changing the

capacity of individual cloud hosted nodes (e.g.

increase the RAM by 2GB and add 2 CPU

cores).

Existing scaling solutions mostly concentrate on

low-level metrics like CPU load and memory

consumption which doesn’t always reflect the actual

QoE. Such metrics should be preprocessed and joined

with high level application metrics when deciding

whether the cloud based solution should be scaled up

or down. Most of currently available scaling

platforms are proprietary technologies owned by

cloud service providers or third parties. Even if the

enterprise application is designed in a platform-

independent way, changing the cloud service provider

might result in redesign of the applied scaling

algorithm. Complex enterprise systems could also be

hosted in multiple clouds, both private and public,

dictating that the auto-scaling solution should not be

isolated inside a single cloud platform. It could span

multiple public clouds and some parts of it could be

deployed on premises. The chosen deployment model

should not be dictated by the limitations of the auto-

scaling platform; it should be the choice of the

software architect. Although there are existing

specialized scaling platforms that are cloud-

independent, they are proprietary technologies that

come with the risk of vendor lock-in. Their

extendibility is limited due to the closed source.

Design of such platforms is challenging because

of the scalability requirements and the amount of

real-time data that needs to be integrated and

http://dx.doi.org/10.17770/etr2017vol2.2591

Jānis Kampars, et al./ Environment. Technology. Resources, (2017), Volume II, 52-57

53

processed for decision-making purposes. This can be

even more complex for applications designed in

microservices architectural style, since each service

acts as a data source with one or more measurable

properties.

The goal of this research is development of the

Auto-scaling and Adjustment Platform for Cloud-

based Systems (ASAPCS) that addresses the

challenges described above.

The structure of this work is as follows. Section II

gives a brief look at the related work in scalability,

microservices and concepts of Capability Driven

Development (CDD). Section III defines the

requirements for the auto-scaling platform. Section

IV describes the overall architecture of the platform

in a technology independent manner while Section V

looks at the technological stack that was used to build

the first prototype of the platform. Section VI

concludes with final remarks and future work

directions. Section VII contains acknowledgments.

II. RELATED WORK

Most of the academic work in the area of

scalability is concentrated on scaling algorithms and

strategies aiming at maximizing the performance

metrics and minimizing the related costs or on

architectures that should be applied to ensure that the

application would effectively scale. Auto-scaling

strategies are categorized as [1]:

 reactive – a scaling operation is performed

immediately as soon as performance values

have fallen out of a previously defined interval

during the last time window,

 conservative – a scaling operation is

performed if during the last few time windows

performance values have fallen out of a

previously defined interval,

 predictive – performance values for the next

time window are predicted and acted upon

similarly as with the reactive strategy.

The step of the scaling operation can be fixed (e.g.

one node at a time) or adaptive (based on the

difference between current demand and resource

capacity).

There has been little research done on executing

scaling algorithms in production environment for

large scale applications that require real-time analysis

of big amounts of data. When scaling cloud-based

systems, the auto-scaling platform must also be made

of components that can scale horizontally, ensuring

its resilience and scalability [2]. The auto-scaling

platform must scale together with the applications or

it will become the single point of failure and the

bottleneck of the whole solution.

There have been developments in the area of

platforms providing auto-scaling, however, most of

them lead to vendor lock-in. Notable examples are

platforms by the major cloud service providers -

AWS Auto-scaling, Microsoft Azure auto scale and

Rackspace Auto Scale. These auto-scaling solutions

are tied to the underlying cloud computing platforms

and services. Therefore, moving from one cloud

service provider to another might result in redesign of

the scaling solution. There are other options like

RightScale and New Relic which are not limited by

the use of a single cloud computing platform,

however both are proprietary technologies being

offered in Software as a Service (SaaS) model and

their users have to consider threats arising from the

vendor lock-in. Since these are closed-source

programs they can’t be easily extended. Kubernetes,

an open-source platform for orchestrating containers,

provides basic auto-scaling capabilities. Similarly,

simple auto-scaling scenarios can be implemented on

Mesos using Marathon, however this is not the main

concern of the platform. In both cases the auto-

scaling functionality can only be used for container-

based solutions hosted on the specific platforms,

which is not suitable for systems spanning multiple

environments.

Developments in the area of auto-scaling

platforms can be especially beneficial for applications

designed following the increasingly popular

microservices architectural style. Microservices have

become a dominant architectural style choice for

service oriented applications [3]. Traditionally cloud

based systems are divided into service groups like

database, web and application. Those groups consist

of homogenous servers that can be scaled

independently of other groups. This approach gives a

certain level of control and allows to scale up just the

web server if there is lack of capacity in this specific

tier. In reality this might lead to inefficient use of

resources and waste of money. For example - if extra

resources are needed just for the video transcoding

process, the only option to achieve this might be to

scale up the whole application server cluster. In

reality this might turn out to be a significant overhead

since application servers might be running many

other processes which were having no lack of

capacity. Microservices, being a cloud-native

architecture [4], address this challenge by dividing

the system into small and lightweight services that are

purposely built to perform a very cohesive business

function, and it is considered to be an evolution of the

traditional service oriented architecture (SOA) [5, 6,

7]. Scalability is often mentioned as one of the

advantages of the microservice architecture and it is

quite obvious since in terms of architecture it gives a

fine-grained control over how application scales

during varying load. Unfortunately, still very little

research is done in the area of microservices [3, 8]

and even less so on their scalability.

Kukade et al. [9] and Toffetti [2] are among few

investigations done in the area of microservice auto-

scaling. The work by Kukade et al. [9] is the only

literature source covering auto-scaling aspects from

ones reviewed in the systematic mapping study done

Environment. Technology. Resources, Rezekne, Latvia

Proceedings of the 11th International Scientific and Practical Conference. Volume II, 52-57

54

by Pahl [8]. Yet Kukade [9] only briefly covers the

auto-scaling aspects and puts more emphasis on

containerization as a suitable technology for

implementing microservice architecture. The main

parts of their solution are:

 Service Container Monitor – providing

container health checks and detecting faulty

containers,

 Request Monitor – counting the number of

requests each container receives,

 Memory Load Monitor – measuring

container’s memory consumption,

 Scale – adding extra containers when existing

ones have reached the top threshold of used

memory and received requests, removing

containers when the bottom margin is reached.

Little information is provided about the

implementation of auto-scaling solution. Also the

number of requests and memory consumption will

not always provide a good correlation with SLA and

might result in inefficient use of resources, therefore

it can be concluded that proposed solution will be

useful only in very specific scenarios.

Toffetti et. al [2] propose an architecture for auto-

scaling microservices. To specify the relation

between various service groups and instances a

service type graph and instance graph is used (see

Fig. 1).

Fig. 1. Type and instance graphs [6]

The type graph defines service groups and their

corresponding scaling limits (e.g. each database

server, DB, is linked to exactly two caching

instances, CA, there are 1 to 5 database server

instances, DB) while instance graph keeps track of

active instances (e.g. currently 4 database server

instances are online). The graph data is stored in etcd,

a distributed, consistent key value store. All cloud

based components are aware of their type and can

discover other nodes by using the etcd directory

where they are registered upon deployment. The

architecture makes sure that the required number of

cloud nodes are online through provisioning of new

ones and monitoring their health. Although the

proposed solution might work well in some scenarios,

it would be hard to implement complicated scaling

algorithms and debug them.

The goal of the majority of auto-scaling solutions

is achieving the desired QoS levels. Hoßfeld et. al

[10] have concluded that QoE as perceived by users

has the potential to become the guiding paradigm for

managing quality in the cloud. We strongly support

this opinion and propose to use some of the concepts

of CDD (Capability Driven Development) [11] in

scaling microservices, since they are organized

around capabilities [5]. CDD aims at capturing the

relation between context and capabilities enabled by

information systems (IS) and adjusting the IS

according to the contextual situation. Capability can

be defined as the ability and capacity that enable an

enterprise to achieve a business goal in a certain

context. The fluctuations in application load could be

considered as examples of varying context of the

application while scaling of an application is an

example of real-time adjustment. CDD provides ways

for altering the business logic of the IS based on the

contextual situation during run-time. This approach

could also be applied in the auto-scaling problem

area. Since QoE could be even more important than

QoS, run-time adjustments in the business logic of

application itself could become part of the auto-

scaling strategy allowing to achieve results that

wouldn’t be possible by using infrastructure level

adjustments all alone. Changing internal logic of the

application in response to increased load (e.g. data

consistency level in the database tier or limiting the

free service when requests from paid customers are

not served properly) could result in higher number of

served requests while ensuring smaller infrastructure

footprint.

III. REQUIREMENTS FOR THE AUTO-

SCALING PLATFORM

This section lists the requirements for the auto-

scaling platform that are largely derived from the

previous section and review of related work in the

area of scalability, microservices and CDD:

 QoE above QoS – the platform should

facilitate constant monitoring of the QoE and

QoS,

 Real-time data integration and processing –

the platform should be capable of processing

and analyzing large amounts of real-time data

originating from application and infrastructure

nodes,

 Windowing support – the platform should be

able to provide basic windowing functionality

(e.g. sliding window),

 Scalability and resilience – the platform

should be resilient and scale together with the

system that is scaled by it,

 Machine learning capabilities – in order to

allow predictive scaling of applications

platform should provide machine learning

functionality,

 Graph processing capabilities – since

distributed application is often described by

type and instance graphs the platform should

be capable of processing them,

Jānis Kampars, et al./ Environment. Technology. Resources, (2017), Volume II, 52-57

55

 Abstraction – in order to develop the

algorithms independently of cloud computing

platforms and data sources a level of

abstraction should be established,

 Run-time improvements of algorithms – users

should be able to alter the behavior of scaling

algorithms during run-time,

IV. ARCHITECTURE

Open-source – platform should be based on open

source technologies thus avoiding risks of vendor

lock-in and facilitating extendibility of the platform.

The architecture of the ASAPCS is largely inspired

by the CDD approach [11] therefore it uses term

“context” to address all information that can be used

for scaling the application while actual scaling

operations are referred to as run-time adjustments.

Main components of the ASAPCS are illustrated in

Fig. 2 and related concepts are discussed below.

Context data providers (CDP) are entities

providing availability of the context data. Examples of

CDP are monitoring tools like Zabbix and customized

agents providing information about various aspects of

the application performance and infrastructure. CDP is

responsible for providing information about the

current contextual situation. There is no need for the

CDP to store historical data since ASAPCS takes care

of that, which means that a relatively small effort is

needed to create a CDP.

The contextual data provided by CDP is further

divided into measurable properties (MP). An example

of MP is the current queue length or memory

consumption. Generally, MPs are data of low

granularity that needs to be preprocessed and

aggregated to be used in scaling algorithms.

While changing the granularity of MP it is

transformed into a Context element (CE) – entities

positioned at higher levels of abstraction that are not

directly linked to a single CDP anymore. A typical

example of CE could be an average number of visits

during last minute with a sliding interval of 5 seconds

(CE value is recalculated once in every 5 seconds).

CEs could also be created as compound structures

consisting of multiple MPs – for example a server

load CE measured as high, medium and low could be

expressed as a function from memory consumption

and CPU usage. In a similar way as MPs, historical

values of a CEs are stored in a temporal database of

ASAPCS. New CEs can be defined even after the data

collection has started. Values of the newly created

CEs can be recalculated from the historical values of

MPs available in the temporal database.

Another concept that has been derived from the

CDD is Adjustment Constant (AC). The value of the

AC can be changed during run-time by the user and it

can be used to alter the scaling algorithm (for example

change the interpretation of what is considered high,

medium and low server load).

Run-time adjustments (RTA) are used for

ASAPCS initiated scaling operations. Technically it is

an in-code defined scaling algorithm that uses values

of the AC and CE as input parameters. RTAs are used

for transforming manually scalable solutions into ones

that scale automatically based on the contextual

situation. Thanks to the CE abstraction RTAs are not

coupled to the CDPs therefore moving the system

from one cloud to another would not result in the

complete rewrite of the scaling algorithm. Only actual

calls to the cloud platform scaling API might need to

be rewritten. In theory these can also be abstracted

using interfaces and their platform-specific

realizations. Each scaling operation performed by the

Fig. 2. Overview of the ASAPCS components

Environment. Technology. Resources, Rezekne, Latvia

Proceedings of the 11th International Scientific and Practical Conference. Volume II, 52-57

56

run-time adjustment algorithm is logged to the

adjustment journal for later reviewing. RTA are

triggered by a combination of CE values falling below

or exceeding a previously defined threshold. These

margins can also be defined using AC allowing to

easily change them during run-time.

If a certain contextual situation can’t be handled

with RTA, a notification can be shown in the user

interface of the ASAPCS providing recommendations

for further actions. These notifications are also

triggered by certain values of CEs.

Key Performance Indicators (KPI) are indicators

that have direct effect on the cloud-based system. KPI

show how the strategic goals are met and in case of

scaling applications it could be linked to the SLA,

QoS and QoE. The current value of a KPI is

calculated by using one or multiple CE values. The

target value is specified using historical CE values or

manually entered number. KPIs are visualized as

dashboards thus giving an instant view at the value

interpretation. Generally, KPIs show how well the

scaling algorithms allow to provide the needed level

of service and based on them the user can decide

whether the values of AC should be altered or another

implementation of the RTA should be deployed to

ASAPCS.

If the real-time value of the CE is important for the

user of the ASAPCS it can be transformed into a

Context Indicator (CI). For example, although the

current number of web-serer nodes is not a KPI it can

still be valuable information for the ASAPCS user.

The main difference between CI and KPIs are that the

platform is not concerned with interpreting the value

of CI and this is left to the end-user. If there would be

a target value of the web-server nodes it would be a

KPI rather than a CI.

V. ASAPCS TECHNICAL SOLUTION

The technical stack that was chosen for

implementing the ASAPCS is shown in Fig. 3.

MP data originating from the CDP is sent to a

DNS balanced Haproxy (a reliable, high performance

TCP/HTTP load balancer) cluster. The Haproxy node

receiving the data forwards it to one of the Kafka

proxy nodes residing at the Kafka proxy cluster.

A proxy cluster is used for ensuring extra level of

security and flexibility in defining ASAPCS MP API.

Kafka proxies are implemented using Node.js and

they forward the MP data further to one of the Kafka

cluster nodes.

Kafka is chosen since it is horizontally scalable,

fault-tolerant, ensures the right order of the messages

and exactly-once processing. It is also known to

perform well with streaming apps and other real-time

data.

MP values from Kafka are processed by Spark

Streaming consumer and transformed into CE. Data is

persisted into Cassandra database which is known to

perform well with temporal data and has good

integration with Apache Spark platform.

Fig. 3. ASAPCS prototype

Apache Spark was chosen because besides

streaming component it also provides machine

learning (MLlib) and graph processing (GraphX)

libraries, which are important for meeting the

previously defined requirements.

If it is determined that the current contextual

situation identified by values of one or more CE

requires execution of a RTA, Spark Streaming

application makes a request to the DNS balanced

Haproxy cluster which in turn calls the RTA. RTA is

made available as a REST web service and is

implemented together with the ASAPCS user interface

as a NodeJS application. While calling the RTA Spark

Streaming also passes the input parameters such as

AC and CE values.

Based on the input data RTA scales the

corresponding cloud application. ASAPCS ships

together with a set of RTAs that are used for ensuring

availability of ASAPCS itself. Currently we are

investigating whether Docker containers would be a

good fit for containerizing adjustments to provide

wide support of programming languages and various

libraries that could be used for RTA implementation.

Users of the ASAPCS platform access it through

the DNS load balanced Haproxy cluster that forwards

the requests to web-based ASAPCS UI, which is also

implemented as a cluster of Node.js servers.

The prototype of the ASAPCS is in its early stages

and is hosted on the CloudStack based RTU’s open-

source cloud computing platform. Currently ASAPCS

is being validated with a use-case of video transcoding

application requiring auto-scaling and altering data

replication logic during run-time. This is done in

collaboration with Komerccentrs DATI Grupa, a

Latvia based IT company.

Jānis Kampars, et al./ Environment. Technology. Resources, (2017), Volume II, 52-57

57

VI. CONCLUSION

Developments in the area of auto-scaling platforms

are specifically important for microservice

applications however traditional cloud-based systems

would also benefit from existence of open-source

auto-scaling platforms.

This paper presents architecture of ASAPCS and

gives a brief overview of the current technological

stack. Main advantages of ASAPCS are:

 ability to scale horizontally together with cloud

applications,

 capability to process vast amounts of real-time

data,

 definition of auto-scaling algorithms in a

platform independent way thanks to extra level

of abstraction,

 unlimited extendibility that comes from

ASAPCS being truly open-source based,

 real-time monitoring of CIs and KPIs,

 run-time alteration of auto-scaling algorithms

via graphical interface by changing values of

ACs,

 machine learning and graph processing

capabilities inherited from the Apache Spark

platform,

 journaling of performed auto-scaling actions.

ASAPCS is still in active development and it must

be extensively tested before the technological stack

can be finalized. We are also looking into making

ASAPCS more platform independent through

providing support for other stream and batch

processing platforms like Apache Flink. Upon

reaching a sufficient level of maturity the source code

of ASAPCS will be publicly released.

VII. ACKNOWLEDGEMENTS

The research leading to these results has received

funding from the research project "Competence

Centre of Information and Communication

Technologies" of EU Structural funds, contract No.

1.2.1.1/16/A/007 signed between IT Competence

Centre and Central Finance and Contracting Agency,

Research No. 1.12 “Configurable parameter set based

adaptive cloud computing platform scaling method".

REFERENCES
[1] M.A.S. Netto, C. Cardonha, R.L.F. Cunha and M.D.

Assuncao, “Evaluating auto-scaling strategies for cloud
computing environments”, in Proceedings - IEEE Computer

Society's Annual International Symposium on Modeling,

Analysis, and Simulation of Computer and
Telecommunications Systems, MASCOTS, Sept. 2014, pp.

187 – 196. https://doi.org/10.1109/MASCOTS.2014.32

[2] G. Toffetti, S. Brunner, M. Blöchlinger, F. Dudouet and A.
Edmonds, “An architecture for self-managing microservices”,

in Proceedings: Automated Incident Management in Cloud

(AIMC), 1st International Workshop, in conjunction with
EuroSYS 2015, pp. 19-24. https://doi.org/10.1145/2747470.

2747474

[3] N. Alshuqayran, N. Ali and R. Evans, "A Systematic Mapping
Study in Microservice Architecture," in 2016 IEEE 9th

International Conference on Service-Oriented Computing and

Applications (SOCA), Macau, 2016, pp. 44-51.

https://doi.org/10.1109/SOCA.2016.15

[4] A. Balalaie, A. Heydarnooria and P. Jamshidi, “Microservices

Architecture Enables DevOps: Migration to a Cloud-Native
Architecture”, in IEEE Software, Vol., 33, Issue 3, art. no.

7436659, May - June 2016, pp. 42-52. https://doi.org/

10.1109/MS.2016.64
[5] J. Lewis and M. Fowler. Microservices, March 2014 [Online].

Available: http://martinfowler.com/articles/

microservices.html, [Accessed: Feb. 10,2017]
[6] T. Erl, Service-Oriented Architecture: Concepts, Technology,

and Design. Upper Saddle River, NJ, USA: Prentice Hall PTR,

2005. https://doi.org/10.1109/SAINTW.2003.1210138
[7] A. Sill,”The Design and Architecture of Microservices” in

IEEE Cloud Computing, Vol. 3, Issue 5, Sept. – Oct. 2016, pp.

76-80. https://doi.org/10.1109/MCC.2016.111
[8] C. Pahl and P. Jamshidi, “Microservices: A systematic

mapping study”, in Proceedings of the 6th International

Conference on Cloud Computing and Services Science Vol. 1,

2016 , pp. 137-146. https://doi.org/10.5220/0005785

501370146

[9] P.P. Kukade and G Kale, “Auto-Scaling of Micro-Services
Using Containerization” International Journal of Science and

Research (IJSR), Vol. 4, Issue 9, Sept. 2015, pp. 1960-1963

[10] T. Hoßfeld, R. Schatz, M. Varela and C. Timmerer,
“Challenges of QoE management for cloud applications” in

IEEE Communications Magazine, Vol. 50, Issue 4, April

2012, pp. 28-36. https://doi.org/10.1109/MCOM.2012.617
8831

[11] S. Berziša, G. Bravos, T.C. Gonzalez, U. Czubayko, S.
España, J. Grabis, M. Henkel, L. Jokste, J. Kampars, H. Koç,

J. –C. Kuhr, C. Llorca, P. Loucopoulos, R.J. Pascual, O.

Pastor, K. Sandkuhl, H. Simic, J. Stirna, F.G. Valverde and J.
Zdravkovic, “Capability Driven Development: An Approach

to Designing Digital Enterprises”, in Business and Information

Systems Engineering, Vol. 57, Issue 1, March 2015, pp. 15-
25. https://doi.org/10.1007/s12599-014-0362-0

https://doi.org/10.1109/MASCOTS.2014.32
https://doi.org/10.1145/2747470.%202747474
https://doi.org/10.1145/2747470.%202747474
https://doi.org/10.1109/SOCA.2016.15
https://doi.org/%2010.1109/MS.2016.64
https://doi.org/%2010.1109/MS.2016.64
http://martinfowler.com/articles/%20microservices.html
http://martinfowler.com/articles/%20microservices.html
https://doi.org/10.1109/SAINTW.2003.1210138
https://doi.org/10.1109/MCC.2016.111
https://doi.org/10.5220/0005785%20501370146
https://doi.org/10.5220/0005785%20501370146
https://doi.org/10.1109/MCOM.2012.617%208831
https://doi.org/10.1109/MCOM.2012.617%208831
https://doi.org/10.1007/s12599-014-0362-0

