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Abstract. For customers of cloud-computing platforms it is important to minimize the infrastructure footprint and 

associated costs while providing required levels of Quality of Service (QoS) and Quality of Experience (QoE) dictated by 

the Service Level Agreement (SLA). To assist with that cloud service providers are offering: (1) horizontal resource 

scaling through provisioning and destruction of virtual machines and containers, (2) vertical scaling through changing 

the capacity of individual cloud nodes. Existing scaling solutions mostly concentrate on low-level metrics like CPU load 

and memory consumption which doesn’t always correlate with the level of SLA conformity. Such technical measures 

should be preprocessed and viewed from a higher level of abstraction. Application level metrics should also be considered 

when deciding upon scaling the cloud-based solution. Existing scaling platforms are mostly proprietary technologies 

owned by cloud service providers themselves or by third parties and offered as Software as a Service. Enterprise 

applications could span infrastructures of multiple public and private clouds, dictating that the auto-scaling solution 

should not be isolated inside a single cloud infrastructure. 

The goal of this paper is to address the challenges above by presenting the architecture of Auto-scaling and 

Adjustment Platform for Cloud-based Systems (ASAPCS). It is based on open-source technologies and supports 

integration of various low and high level performance metrics, providing higher levels of abstraction for design of scaling 

algorithms. ASAPCS can be used with any cloud service provider and guarantees that move from one cloud platform to 

another will not result in complete redesign of the scaling algorithm. ASAPCS itself is horizontally scalable and can 

process large amounts of real-time data which is particularly important for applications developed following the 

microservices architectural style. ASAPCS approaches the scaling problem in a nonstandard way by considering real-time 

adjustments of the application logic to be part of the scalability strategy if it can result in performance improvements.  
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I. INTRODUCTION 

Cloud computing platforms provide a virtually 

unlimited pool of computing power and storage 

resources for hosting various enterprise applications. 

Customers of such platforms are charged by the 

amount of resources they have used on a pay-per-use 

basis. Therefore, it is important to minimize the 

infrastructure footprint and balance it with the 

required level of Quality of Service (QoS) and 

Quality of Experience (QoE). Usually this is achieved 

by scaling the application up during peak times and 

removing the surplus of resources later. To assist with 

that cloud service providers are offering Application 

Programmable Interfaces (APIs) that support: 

1. horizontal resource scaling by changing the 

number of currently running virtual machines 

or containers (e.g. add two more web-server 

nodes), 

2. vertical resource scaling by changing the 

capacity of individual cloud hosted nodes (e.g. 

increase the RAM by 2GB and add 2 CPU 

cores). 

Existing scaling solutions mostly concentrate on 

low-level metrics like CPU load and memory 

consumption which doesn’t always reflect the actual 

QoE. Such metrics should be preprocessed and joined 

with high level application metrics when deciding 

whether the cloud based solution should be scaled up 

or down. Most of currently available scaling 

platforms are proprietary technologies owned by 

cloud service providers or third parties. Even if the 

enterprise application is designed in a platform-

independent way, changing the cloud service provider 

might result in redesign of the applied scaling 

algorithm. Complex enterprise systems could also be 

hosted in multiple clouds, both private and public, 

dictating that the auto-scaling solution should not be 

isolated inside a single cloud platform. It could span 

multiple public clouds and some parts of it could be 

deployed on premises. The chosen deployment model 

should not be dictated by the limitations of the auto-

scaling platform; it should be the choice of the 

software architect. Although there are existing 

specialized scaling platforms that are cloud-

independent, they are proprietary technologies that 

come with the risk of vendor lock-in. Their 

extendibility is limited due to the closed source. 

Design of such platforms is challenging because 

of the scalability requirements and the amount of 

real-time data that needs to be integrated and 
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processed for decision-making purposes. This can be 

even more complex for applications designed in 

microservices architectural style, since each service 

acts as a data source with one or more measurable 

properties. 

The goal of this research is development of the 

Auto-scaling and Adjustment Platform for Cloud-

based Systems (ASAPCS) that addresses the 

challenges described above. 

The structure of this work is as follows. Section II 

gives a brief look at the related work in scalability, 

microservices and concepts of Capability Driven 

Development (CDD). Section III defines the 

requirements for the auto-scaling platform. Section 

IV describes the overall architecture of the platform 

in a technology independent manner while Section V 

looks at the technological stack that was used to build 

the first prototype of the platform. Section VI 

concludes with final remarks and future work 

directions. Section VII contains acknowledgments. 

 

II. RELATED WORK 

Most of the academic work in the area of 

scalability is concentrated on scaling algorithms and 

strategies aiming at maximizing the performance 

metrics and minimizing the related costs or on 

architectures that should be applied to ensure that the 

application would effectively scale. Auto-scaling 

strategies are categorized as [1]: 

 reactive – a scaling operation is performed 

immediately as soon as performance values 

have fallen out of a previously defined interval 

during the last time window, 

 conservative – a scaling operation is 

performed if during the last few time windows 

performance values have fallen out of a 

previously defined interval, 

 predictive – performance values for the next 

time window are predicted and acted upon 

similarly as with the reactive strategy. 

The step of the scaling operation can be fixed (e.g. 

one node at a time) or adaptive (based on the 

difference between current demand and resource 

capacity). 

There has been little research done on executing 

scaling algorithms in production environment for 

large scale applications that require real-time analysis 

of big amounts of data. When scaling cloud-based 

systems, the auto-scaling platform must also be made 

of components that can scale horizontally, ensuring 

its resilience and scalability [2]. The auto-scaling 

platform must scale together with the applications or 

it will become the single point of failure and the 

bottleneck of the whole solution. 

There have been developments in the area of 

platforms providing auto-scaling, however, most of 

them lead to vendor lock-in. Notable examples are 

platforms by the major cloud service providers - 

AWS Auto-scaling, Microsoft Azure auto scale and 

Rackspace Auto Scale. These auto-scaling solutions 

are tied to the underlying cloud computing platforms 

and services. Therefore, moving from one cloud 

service provider to another might result in redesign of 

the scaling solution. There are other options like 

RightScale and New Relic which are not limited by 

the use of a single cloud computing platform, 

however both are proprietary technologies being 

offered in Software as a Service (SaaS) model and 

their users have to consider threats arising from the 

vendor lock-in. Since these are closed-source 

programs they can’t be easily extended. Kubernetes, 

an open-source platform for orchestrating containers, 

provides basic auto-scaling capabilities. Similarly, 

simple auto-scaling scenarios can be implemented on 

Mesos using Marathon, however this is not the main 

concern of the platform. In both cases the auto-

scaling functionality can only be used for container-

based solutions hosted on the specific platforms, 

which is not suitable for systems spanning multiple 

environments. 

Developments in the area of auto-scaling 

platforms can be especially beneficial for applications 

designed following the increasingly popular 

microservices architectural style. Microservices have 

become a dominant architectural style choice for 

service oriented applications [3]. Traditionally cloud 

based systems are divided into service groups like 

database, web and application. Those groups consist 

of homogenous servers that can be scaled 

independently of other groups. This approach gives a 

certain level of control and allows to scale up just the 

web server if there is lack of capacity in this specific 

tier. In reality this might lead to inefficient use of 

resources and waste of money. For example - if extra 

resources are needed just for the video transcoding 

process, the only option to achieve this might be to 

scale up the whole application server cluster. In 

reality this might turn out to be a significant overhead 

since application servers might be running many 

other processes which were having no lack of 

capacity. Microservices, being a cloud-native 

architecture [4], address this challenge by dividing 

the system into small and lightweight services that are 

purposely built to perform a very cohesive business 

function, and it is considered to be an evolution of the 

traditional service oriented architecture (SOA) [5, 6, 

7]. Scalability is often mentioned as one of the 

advantages of the microservice architecture and it is 

quite obvious since in terms of architecture it gives a 

fine-grained control over how application scales 

during varying load. Unfortunately, still very little 

research is done in the area of microservices [3, 8] 

and even less so on their scalability. 

Kukade et al. [9] and Toffetti [2] are among few 

investigations done in the area of microservice auto-

scaling. The work by Kukade et al. [9] is the only 

literature source covering auto-scaling aspects from 

ones reviewed in the systematic mapping study done 
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by Pahl [8]. Yet Kukade [9] only briefly covers the 

auto-scaling aspects and puts more emphasis on 

containerization as a suitable technology for 

implementing microservice architecture. The main 

parts of their solution are: 

 Service Container Monitor – providing 

container health checks and detecting faulty 

containers, 

 Request Monitor – counting the number of 

requests each container receives, 

 Memory Load Monitor – measuring 

container’s memory consumption, 

 Scale – adding extra containers when existing 

ones have reached the top threshold of used 

memory and received requests, removing 

containers when the bottom margin is reached. 

Little information is provided about the 

implementation of auto-scaling solution. Also the 

number of requests and memory consumption will 

not always provide a good correlation with SLA and 

might result in inefficient use of resources, therefore 

it can be concluded that proposed solution will be 

useful only in very specific scenarios. 

Toffetti et. al [2] propose an architecture for auto-

scaling microservices. To specify the relation 

between various service groups and instances a 

service type graph and instance graph is used (see 

Fig. 1). 

 

 
Fig. 1. Type and instance graphs [6] 

 

The type graph defines service groups and their 

corresponding scaling limits (e.g. each database 

server, DB, is linked to exactly two caching 

instances, CA, there are 1 to 5 database server 

instances, DB) while instance graph keeps track of 

active instances (e.g. currently 4 database server 

instances are online). The graph data is stored in etcd, 

a distributed, consistent key value store. All cloud 

based components are aware of their type and can 

discover other nodes by using the etcd directory 

where they are registered upon deployment. The 

architecture makes sure that the required number of 

cloud nodes are online through provisioning of new 

ones and monitoring their health. Although the 

proposed solution might work well in some scenarios, 

it would be hard to implement complicated scaling 

algorithms and debug them. 

The goal of the majority of auto-scaling solutions 

is achieving the desired QoS levels. Hoßfeld et. al 

[10] have concluded that QoE as perceived by users 

has the potential to become the guiding paradigm for 

managing quality in the cloud. We strongly support 

this opinion and propose to use some of the concepts 

of CDD (Capability Driven Development) [11] in 

scaling microservices, since they are organized 

around capabilities [5]. CDD aims at capturing the 

relation between context and capabilities enabled by 

information systems (IS) and adjusting the IS 

according to the contextual situation. Capability can 

be defined as the ability and capacity that enable an 

enterprise to achieve a business goal in a certain 

context. The fluctuations in application load could be 

considered as examples of varying context of the 

application while scaling of an application is an 

example of real-time adjustment. CDD provides ways 

for altering the business logic of the IS based on the 

contextual situation during run-time. This approach 

could also be applied in the auto-scaling problem 

area. Since QoE could be even more important than 

QoS, run-time adjustments in the business logic of 

application itself could become part of the auto-

scaling strategy allowing to achieve results that 

wouldn’t be possible by using infrastructure level 

adjustments all alone. Changing internal logic of the 

application in response to increased load (e.g. data 

consistency level in the database tier or limiting the 

free service when requests from paid customers are 

not served properly) could result in higher number of 

served requests while ensuring smaller infrastructure 

footprint. 

 

III. REQUIREMENTS FOR THE AUTO-

SCALING PLATFORM 

This section lists the requirements for the auto-

scaling platform that are largely derived from the 

previous section and review of related work in the 

area of scalability, microservices and CDD: 

 QoE above QoS – the platform should 

facilitate constant monitoring of the QoE and 

QoS, 

 Real-time data integration and processing – 

the platform should be capable of processing 

and analyzing large amounts of real-time data 

originating from application and infrastructure 

nodes, 

 Windowing support – the platform should be 

able to provide basic windowing functionality 

(e.g. sliding window), 

 Scalability and resilience – the platform 

should be resilient and scale together with the 

system that is scaled by it, 

 Machine learning capabilities – in order to 

allow predictive scaling of applications 

platform should provide machine learning 

functionality, 

 Graph processing capabilities – since 

distributed application is often described by 

type and instance graphs the platform should 

be capable of processing them, 
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 Abstraction – in order to develop the 

algorithms independently of cloud computing 

platforms and data sources a level of 

abstraction should be established, 

 Run-time improvements of algorithms – users 

should be able to alter the behavior of scaling 

algorithms during run-time, 

 

IV. ARCHITECTURE 

Open-source – platform should be based on open 

source technologies thus avoiding risks of vendor 

lock-in and facilitating extendibility of the platform. 

 

The architecture of the ASAPCS is largely inspired 

by the CDD approach [11] therefore it uses term 

“context” to address all information that can be used 

for scaling the application while actual scaling 

operations are referred to as run-time adjustments. 

Main components of the ASAPCS are illustrated in 

Fig. 2 and related concepts are discussed below. 

Context data providers (CDP) are entities 

providing availability of the context data. Examples of 

CDP are monitoring tools like Zabbix and customized 

agents providing information about various aspects of 

the application performance and infrastructure. CDP is 

responsible for providing information about the 

current contextual situation. There is no need for the 

CDP to store historical data since ASAPCS takes care 

of that, which means that a relatively small effort is 

needed to create a CDP.  

The contextual data provided by CDP is further 

divided into measurable properties (MP). An example 

of MP is the current queue length or memory 

consumption. Generally, MPs are data of low 

granularity that needs to be preprocessed and 

aggregated to be used in scaling algorithms.  

While changing the granularity of MP it is 

transformed into a Context element (CE) – entities 

positioned at higher levels of abstraction that are not 

directly linked to a single CDP anymore. A typical 

example of CE could be an average number of visits 

during last minute with a sliding interval of 5 seconds 

(CE value is recalculated once in every 5 seconds). 

CEs could also be created as compound structures 

consisting of multiple MPs – for example a server 

load CE measured as high, medium and low could be 

expressed as a function from memory consumption 

and CPU usage. In a similar way as MPs, historical 

values of a CEs are stored in a temporal database of 

ASAPCS. New CEs can be defined even after the data 

collection has started. Values of the newly created 

CEs can be recalculated from the historical values of 

MPs available in the temporal database. 

Another concept that has been derived from the 

CDD is Adjustment Constant (AC). The value of the 

AC can be changed during run-time by the user and it 

can be used to alter the scaling algorithm (for example 

change the interpretation of what is considered high, 

medium and low server load). 

Run-time adjustments (RTA) are used for 

ASAPCS initiated scaling operations. Technically it is 

an in-code defined scaling algorithm that uses values 

of the AC and CE as input parameters. RTAs are used 

for transforming manually scalable solutions into ones 

that scale automatically based on the contextual 

situation. Thanks to the CE abstraction RTAs are not 

coupled to the CDPs therefore moving the system 

from one cloud to another would not result in the 

complete rewrite of the scaling algorithm. Only actual 

calls to the cloud platform scaling API might need to 

be rewritten. In theory these can also be abstracted 

using interfaces and their platform-specific 

realizations. Each scaling operation performed by the 

Fig. 2. Overview of the ASAPCS components 
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run-time adjustment algorithm is logged to the 

adjustment journal for later reviewing. RTA are 

triggered by a combination of CE values falling below 

or exceeding a previously defined threshold. These 

margins can also be defined using AC allowing to 

easily change them during run-time. 

If a certain contextual situation can’t be handled 

with RTA, a notification can be shown in the user 

interface of the ASAPCS providing recommendations 

for further actions. These notifications are also 

triggered by certain values of CEs. 

Key Performance Indicators (KPI) are indicators 

that have direct effect on the cloud-based system. KPI 

show how the strategic goals are met and in case of 

scaling applications it could be linked to the SLA, 

QoS and QoE. The current value of a KPI is 

calculated by using one or multiple CE values. The 

target value is specified using historical CE values or 

manually entered number. KPIs are visualized as 

dashboards thus giving an instant view at the value 

interpretation. Generally, KPIs show how well the 

scaling algorithms allow to provide the needed level 

of service and based on them the user can decide 

whether the values of AC should be altered or another 

implementation of the RTA should be deployed to 

ASAPCS. 

If the real-time value of the CE is important for the 

user of the ASAPCS it can be transformed into a 

Context Indicator (CI). For example, although the 

current number of web-serer nodes is not a KPI it can 

still be valuable information for the ASAPCS user. 

The main difference between CI and KPIs are that the 

platform is not concerned with interpreting the value 

of CI and this is left to the end-user. If there would be 

a target value of the web-server nodes it would be a 

KPI rather than a CI. 

 

V. ASAPCS TECHNICAL SOLUTION 

The technical stack that was chosen for 

implementing the ASAPCS is shown in Fig. 3. 

MP data originating from the CDP is sent to a 

DNS balanced Haproxy (a reliable, high performance 

TCP/HTTP load balancer) cluster. The Haproxy node 

receiving the data forwards it to one of the Kafka 

proxy nodes residing at the Kafka proxy cluster.  

A proxy cluster is used for ensuring extra level of 

security and flexibility in defining ASAPCS MP API. 

Kafka proxies are implemented using Node.js and 

they forward the MP data further to one of the Kafka 

cluster nodes.  

Kafka is chosen since it is horizontally scalable, 

fault-tolerant, ensures the right order of the messages 

and exactly-once processing. It is also known to 

perform well with streaming apps and other real-time 

data. 

MP values from Kafka are processed by Spark 

Streaming consumer and transformed into CE. Data is 

persisted into Cassandra database which is known to 

perform well with temporal data and has good 

integration with Apache Spark platform.  

 

 
Fig. 3. ASAPCS prototype 

 

Apache Spark was chosen because besides 

streaming component it also provides machine 

learning (MLlib) and graph processing (GraphX) 

libraries, which are important for meeting the 

previously defined requirements. 

If it is determined that the current contextual 

situation identified by values of one or more CE 

requires execution of a RTA, Spark Streaming 

application makes a request to the DNS balanced 

Haproxy cluster which in turn calls the RTA. RTA is 

made available as a REST web service and is 

implemented together with the ASAPCS user interface 

as a NodeJS application. While calling the RTA Spark 

Streaming also passes the input parameters such as 

AC and CE values.  

Based on the input data RTA scales the 

corresponding cloud application. ASAPCS ships 

together with a set of RTAs that are used for ensuring 

availability of ASAPCS itself. Currently we are 

investigating whether Docker containers would be a 

good fit for containerizing adjustments to provide 

wide support of programming languages and various 

libraries that could be used for RTA implementation. 

Users of the ASAPCS platform access it through 

the DNS load balanced Haproxy cluster that forwards 

the requests to web-based ASAPCS UI, which is also 

implemented as a cluster of Node.js servers. 

The prototype of the ASAPCS is in its early stages 

and is hosted on the CloudStack based RTU’s open-

source cloud computing platform. Currently ASAPCS 

is being validated with a use-case of video transcoding 

application requiring auto-scaling and altering data 

replication logic during run-time. This is done in 

collaboration with Komerccentrs DATI Grupa, a 

Latvia based IT company. 
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VI. CONCLUSION 

Developments in the area of auto-scaling platforms 

are specifically important for microservice 

applications however traditional cloud-based systems 

would also benefit from existence of open-source 

auto-scaling platforms.  

This paper presents architecture of ASAPCS and 

gives a brief overview of the current technological 

stack. Main advantages of ASAPCS are:  

 ability to scale horizontally together with cloud 

applications, 

 capability to process vast amounts of real-time 

data, 

 definition of auto-scaling algorithms in a 

platform independent way thanks to extra level 

of abstraction, 

 unlimited extendibility that comes from 

ASAPCS being truly open-source based, 

 real-time monitoring of CIs and KPIs, 

 run-time alteration of auto-scaling algorithms 

via graphical interface by changing values of 

ACs, 

 machine learning and graph processing 

capabilities inherited from the Apache Spark 

platform, 

 journaling of performed auto-scaling actions. 

ASAPCS is still in active development and it must 

be extensively tested before the technological stack 

can be finalized. We are also looking into making 

ASAPCS more platform independent through 

providing support for other stream and batch 

processing platforms like Apache Flink. Upon 

reaching a sufficient level of maturity the source code 

of ASAPCS will be publicly released. 
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