Determination of Chamber and Piston Geometry for a Rotary Type Expansion Machine

Andrey Perminov
Department of Electric Drive and Automation Systems
Pskov State University
Pskov, Russia
alp-mail@mail.ru
Sergey Tikhonov
Department of Mechanics and Motor
Trantsport Service
Pskov State University
Pskov, Russia
sit42@rambler.ru

Yury Zhuravlev
Department of Road Construction Pskov State University Pskov, Russia
drakon426@mail.ru

Yury Lukyanov
Department of Electric Drive and Automation Systems
Pskov State University
Pskov, Russia
luk-yra@mail.ru

Alexander Ilyin
Department of Electric Drive and Automation Systems
Pskov State University
Pskov, Russia
al.ilyin@yandex.ru

Abstract

The article deals with the determination of chamber and piston geometry for a rotary expansion machine. Analytical expressions for the working surface area of piston and for chamber volume are derived. Three defining parameters of the expansion machine were obtained: gas dynamic machine constant $\mathbf{C p}$; constant M0 connecting torque and Cp ; the main dimensionless parameter of the machine $\mathbf{Q 0}$, which relates the volume of the chamber and the torque.

Keywords-power generation system, rotary engine, lever-cam motion converter.

I. Introduction

The subject of this article is the rotary type expansion machine protected by patent RU2619391 [1].

Fig. 1 shows a piston $1(\mathrm{AB})$, which is in a fixed position given by the polar angle $\alpha=-45^{\circ}$ between the interpolar radius $O A=\rho_{A}=\rho(\alpha)$ and the axis $O x$. In this position, the volume of the chamber is maximum, while

$$
\begin{equation*}
\rho_{A}=\rho_{B}=L \cdot \sin (a+b \cdot \cos 2 \alpha)=\frac{\sqrt{2}}{2} L, \tag{1}
\end{equation*}
$$

where L is the distance between the axes of the piston hinges, $a=\pi / 4 ; b=\pi / 4-\psi_{\text {min }} 2$, and where $\psi_{\text {min }}$ is the minimum angle between the pistons.

Fig. 1. Piston in a fixed position given by the polar angle

The piston profile Ω_{P} relates to the equidistant surface of the cylinder Ω_{C} at two points K_{1} and K_{2}. A chamber is formed between these points and the surfaces, the volume of which V_{K} with $\alpha=-45^{\circ}$ should have the specified maximum value V_{0}, i.e.

$$
\begin{equation*}
V_{K}=V_{K}\left(L, R_{l}, t\right)=t \cdot S_{K}\left(L, R_{\nu}\right)=V_{o} \tag{2}
\end{equation*}
$$

where t is the piston thickness; R_{l} is the radius of the end curves of the piston; $S_{K}\left(L, R_{\nu}\right)$ is the chamber area.

The task is to obtain the specified value of the chamber volume with different variants of the values of three geometric parameters L, R_{l}, t.

To do this, we need to compile some functional and get values of parameters L, R_{p}, t, which deliver the extremum to the functional.

II. Analysis of geometric constraints

A. Preliminary notes

For the presence of extremum the influence of the three quantities L, R_{l}, t, must be multidirectional.

We will try to solve the problem of determining the geometric dimensions of L, R_{p}, t, based on the analysis of the restrictions imposed on the geometry of the machine for one reason or another. Consider three of them: 1) cross section size of cylinder; 2) volume of chamber; 3) torque.

B. Cross section size of cylinder

When making a cylinder from a single piece, the diameter must be available for processing equipment. From this point of view, and also proceeding from economy of metal and reduction in price, the size of the cylinder L_{C} (Fig. 2) should be as small as possible. Let the upper value of the size of the cylinder L_{C} be given, which we denote by L^{\wedge}.

Fig. 2. Piston in a fixed position given by the polar angle $\alpha=0^{\circ}$

From Fig. 2 follows

$$
\begin{gather*}
\frac{1}{2} L_{c}=\rho_{A}(0)+R_{1}= \\
L \sin (a+b)+R_{1}=0.819 L+R_{1} \tag{3}
\end{gather*}
$$

The constraint in question is described by the inequality

$$
\begin{equation*}
0.819 L+R_{1} \leq \hat{L}_{c} / 2 \tag{4}
\end{equation*}
$$

C. Volume of chamber

The chamber volume is a pi-periodic function of the angle of rotation of the shaft α, which varies in the range $V_{\min } \ldots V_{\max }$. The term "chamber volume" is understood as the value $V_{\text {max }}$, which is described by the approximate expression [2]

$$
\begin{equation*}
V_{K}\left(L, R_{l}, t\right)=\left(0.15 L^{2}+0.54 L R_{l}+0.49 R_{l}^{2}\right) \tag{5}
\end{equation*}
$$

If based on thermal calculations, this volume must be equal to the specified value V_{0}, we will have a limitation

$$
\begin{equation*}
V_{\max }\left(L, R_{p}, t\right)=V_{o} . \tag{6}
\end{equation*}
$$

D. Torque

The torque M_{T} is a $\pi 2$-periodic function of the angle of rotation of the shaft, which, being expanded in a Fourier series, has a constant component

$$
\begin{equation*}
a_{0}=\frac{1}{\pi / 2} \int_{0}^{\pi / 2} M_{T}(\alpha) d \alpha \tag{7}
\end{equation*}
$$

For a given nominal power N_{N} and nominal angular velocity ω_{N}, the value can be considered known and equal to [3]

$$
\begin{equation*}
a_{0}=\frac{N_{N}}{\omega_{N}} \tag{8}
\end{equation*}
$$

$$
\begin{align*}
& M_{T}(\alpha)=\frac{L}{2}\left[\left(F_{2}+F_{4}\right)(1-2 b \sin 2 \alpha)-\right. \\
& \left.\left(F_{1}+F_{3}\right)(1+2 b \sin 2 \alpha)\right] \sin (2 b \cos 2 \alpha) \tag{9}
\end{align*}
$$

where $2 b=2 \cdot 0.1749=0.35$. Considering that the gas forces acting on the pistons are $F_{3}=F_{1}=p_{1}(\alpha) S_{P} F_{4}=F_{2}=p_{2}$ $(\alpha) S_{P}$ where $p_{1}(\alpha)$ and $p_{2}(\alpha)$ are the gas pressure on the pistons 1 and 3 , and 2 and 4 , respectively, and where S_{P} is the working surface area of the piston $S_{P}=2 \mid y_{K 1}$ $\mid t=2\left(0.5 L+0.9 R_{l}\right) t$, or $S_{P}=\left(L+1.8 R_{l}\right) t$. Expression [9] takes the form
$M_{T}(\alpha)=\left(L^{2}+1,8 L R_{1}\right) t\left[p_{2}(\alpha)(1-0.35 \sin 2 \alpha)-\right.$
$\left.p_{1}(\alpha)(1+0.35 \sin 2 \alpha)\right] \quad \sin (0.35 \cos 2 \alpha)$.
Substituting (10) into (7) and introducing the designation of a parameter

$$
\begin{align*}
& C P=\frac{2}{\pi} \int_{0}^{\pi / 2} p 2(\alpha)(1-0.35 \sin 2 \alpha)-p 1(\alpha) \\
& (1+0.35 \sin 2 \alpha)] \sin (0.35 \cos 2 \alpha) d \alpha \tag{11}
\end{align*}
$$

We arrive at a torque-induced geometry limitation.

$$
\begin{equation*}
\left(L^{2}+1,8 L R_{1}\right) t=\frac{a_{0}}{C_{p}} \tag{12}
\end{equation*}
$$

Note that the constant C_{P} is an important gas-dynamic parameter of machine. It depend only on the gas pressure in the chambers and depend on the geometry of the chambers.

III. Determination of

 basic geometric dimensionsThe main dimensions of the machine are three parameters: the inter-joint distance on the piston $A B=L$, the radius of the end curves of piston R_{l} and the thickness of piston t.

A. Initial equations

Three equations (5), (12) and (6), respectively, describing the restrictions on the size of the cylinder L_{c}, on the torque M_{T} and on the volume of the chamber V_{0} :

$$
\begin{align*}
& 0.819 L+R_{1} \leq \hat{l}_{c}, \\
& \left(L^{2}+1,8 L R_{1}\right) t=m_{n} \\
& \left(0.15 L^{2}+0.54 L R_{1}+0.49 R_{1}^{2}\right) t=V_{0} . \tag{13}
\end{align*}
$$

Here, for the sake of brevity, new notation has been introduced $m_{0}=a_{0} / C_{P}, l_{C}^{\wedge}=L_{C}^{\wedge} / 2$, in which a_{0} and C_{p} are defined by (8) and (11), respectively.

If we specify the size of the cylinder $l_{C}=l$, the inequality in (13) becomes equal to $0.819 L+R_{l}=l$.

The formulation of the solution of the problem on the basis of three equations, two of which are non-linear, may be different. There is no guarantee that a solution exists.

It is quite obvious, for example, that with a very small cylinder size $l_{C}{ }_{C}$, it is not possible to create the required torque a_{0}, or the specified volume of the chamber V_{0}.

B. Common Solution

Let cylinder size $l_{C}^{\wedge}=l$ be given. Then we have a system of three algebraic equations.

$$
\begin{align*}
& 0.819 L+R_{1}=l \\
& \left(\mathrm{~L}^{2}+1.8 \mathrm{LR}_{1}\right) \mathrm{t}=\mathrm{m}_{0} \\
& \left(0.15 \mathrm{~L}^{2}+0.54 \mathrm{~L} \mathrm{R}_{1}+0.49 \mathrm{R}_{1}{ }^{2}\right) \mathrm{t}=\mathrm{V}_{0} \tag{14}
\end{align*}
$$

From the first equation we express R_{l} through L : $R_{l}=l-0.819 L$. From the second equation we express t through L :
$t=\frac{m_{0}}{L^{3}+1.8 L(l-0.819 L)}$, or $t=\frac{m_{0}}{1.8 L l-0.474 L^{2}}$
, or Substituting into the third equation:
$\left[0.15 L^{2}+0.54 L(I-0.819 L)+0.49(I-0.819 L)^{2}\right] \frac{m_{0}}{1.8 L l-0.474 L^{2}}=V_{0}$
By opening the brackets and grouping the terms, we get the equality
$0.0367 L^{2}-0.263 L l+0.49 l^{2}=V_{d} m_{0}\left(1.8 L l-0.474 L^{2}\right), \quad$ from which the quadratic equation follows on the size of L :

$$
\begin{equation*}
a L^{2}+b L+c=0 \tag{15}
\end{equation*}
$$

where $=0.474 V_{d} / m_{0}+0.0367, \mathrm{~b}=-\left(1.8 \mathrm{~V}_{0} / \mathrm{m}_{0}+0.263\right) 1$, $\mathrm{c}=0.49 \mathrm{l}^{2}$, whose solution has a well-known appearance

$$
\begin{equation*}
L_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \tag{16}
\end{equation*}
$$

Considering that V_{0} is the volume of the camera and $\mathrm{m}_{0}=\mathrm{a}_{0} \mathrm{C}_{\mathrm{p}}$ is a parameter characterizing the torque according to (10) and having the dimension m^{3} we introduce the dimensionless machine parameter

$$
\begin{equation*}
q_{0}=\frac{V_{0}}{m_{0}} \tag{17}
\end{equation*}
$$

We write the coefficients of equation (15) in the form

$$
\begin{gathered}
a=0.474 q_{0}+0.0367, \\
b=-\left(1.8 q_{0}+0.263\right) l, \\
c=0.49 l^{2} .
\end{gathered}
$$

C. Common Solution Analysis

It is known that the number of real solutions of equation (15) depends on the discriminant sign $D=b^{2}$ $-4 a c$: if $D>0$, then there are 2 solutions (2 real roots); $D=0$, then there is 1 solution (2 matching roots); $D<0$, then there are 0 solutions (2 imaginary roots).

We make the discriminant the coefficients of which are determined by (17):

$$
\begin{equation*}
D=l^{2}\left(3.24 q_{0}{ }^{2}+0.016 q_{0}-0.0027\right) \tag{18}
\end{equation*}
$$

The value of the parameter $q_{0}=V / m_{0}$, for which $D=0$. Rejecting the negative root, we get

$$
\begin{equation*}
q_{0}=\frac{V_{0}}{m_{0}}=0.0265 \tag{19}
\end{equation*}
$$

When $\mathrm{q}_{0}=0.0265$ there is one solution, i.e. two coincident positive roots $L_{1}=L_{2}=-b / 2 a=3.151$ When $q_{0}<0.0265$ there are no solutions; at $q_{0}>0.0265$ there is one positive solution for L. At the same time, the presence of a solution for L does not guarantee the presence of positive solutions for R_{l} and t.

For convenience, let's move on to the dimensionless variables.

$$
\begin{equation*}
L^{\prime}=\frac{L}{l}, R_{1}^{\prime}=\frac{R_{1}}{l}, t^{\prime}=\frac{t}{l} \tag{20}
\end{equation*}
$$

values will be positive if the inequality
$l\left(1-0.819 L^{\prime}\right)>0$ is satisfied, or the condition

$$
L^{\prime}<1.22 .
$$

Find the value of q_{0}, for which,
$L^{\prime}<1.22, R^{\prime}=0$.
After the transformations we get the solution

$$
q_{0}=0.15
$$

Thus, for R_{1} to be greater than zero, the machine parameter connecting the chamber volume and torque $\mathrm{q}_{0}=\mathrm{V}_{0} / \mathrm{m}_{0}=\mathrm{V}_{0} /\left(\mathrm{a}_{0} / \mathrm{C}_{\mathrm{p}}\right)$ must be greater than 0.15 .

The results of calculations of dependences $L^{\prime}=\mathrm{L} / \mathrm{l}$, $R_{-} l^{\prime}=R _1 / 1$ and $t^{\prime}=t / 1$ multiplied by $1^{3} / \mathrm{m}^{0}$, from q_{0} are shown in Table 1

Table 1

q_{0}	$\mathrm{~L}^{\prime}=\mathrm{L} / \mathrm{l}$	$\mathrm{R}_{1}{ }^{\prime}=\mathrm{R}_{1} / \mathrm{l}$	$\mathrm{R}_{1} / \mathrm{L}$	$\left(\mathrm{t}^{\prime} \mathrm{l}^{3}\right) / \mathrm{m}_{0}$
0.15	1.22	0	0	0.45
0.175	1.00	0.181	0.181	0.754
0.20	0.996	0.184	0.185	0.756
0.25	0.841	0.311	0.370	0.850
0.30	0.730	0.402	0.550	0.940
0.50	0.475	0.610	1.280	1.340
1.00	0.254	0.792	3.120	2.340

The table has a range of $0.175 \leq q_{0} \leq 0.3$. This range has practical interest due to the fact that the ratio R_{l} / L from design considerations should not be greater than 0.5 . Graphically, this range is shown in Fig. 3. The dotted line shows the relation R_{l} / L.

Fig. 3.
IV. Conclusions

The main result is the identification of several important parameters of rotary expansion machine.

First of all, this is the gas-dynamic constant $C_{P}\left(H / M^{2}\right)$ defined by (11). It depends only on the initial and final pressure of the gas and does not depend on the geometrical dimensions of chamber and piston.

The second parameter is $m_{0}=a_{0} / C_{P}\left(m^{3}\right)$, which relates the torque and the gas dynamic constant.

The third, which can be called the main dimensionless rotary expansion machine parameter, is $q_{0}=V_{0} / m_{0}$, which relates the chamber volume and torque, and, as was established above, its value should be in the range of $0.15<\mathrm{q}_{0}<0.3$.

References

[1] RF Patent 2619391 for an invention. Int. Cl. F01C1/44. Rotary Expantion Machine / Y.N. Lukyanov, Y.N. Zhuravlev et al. Publ. 15.05.2017.
[2] Y.Zhuravlev, A.Perminov, Y.Lukyanov, S.Tikhonov, A.Ilyin, S.Semyonov, Optimization of Mechanical Strength of Rotary-Vane Engine. "Environment. Technology. Resources - Proceedings of the 11th International Scientific and Practical Conference", 2017. DOI: 10.17770 .
[3] S.Semyonov, S.Tikhonov, Y.Lukyanov, A.Perminov, Analysis Method of Calculation Parameters of Heat and Mass Transfer Processes in the Stirling Engine. "Environment. Technology. Resources - Proceedings of the 11th International Scientific and Practical Conference", 2017.
[4] Y. N. Zhuravlev, I. V. Plokhov, Y. N. Lukyanov, and others, Calculation and Design of Rotaty-blade Machine with External Heat Supply. Monogrphy. Pskov, 2012.
[5] Y. N. Zhuravlev, I. V. Plokhov, Y. N. Lukyanov, and others, Mathematical Models of Physical Processes in Rotary-blade Engine with External Heat Supply. Monogrphy. Pskov, 2012.
[6] Y. N. Zhuravlev, A. L. Perminov, Y. N. Lukyanov, S. I. Tikhonov, S. N. Semenov, Minimization of Mechanical Strength of Rota-ry-blade Heat Engine with Cam-and-lever Motion Transformer. Bulletin of Pskov State University. Series: Engineering scinces, 2016. \# 4.
[7] RF Patent 2374526 for an invention. Int. Cl. F16H25/04. Mechanism for converting motion / Y.N. Lukyanov, Y.N. Zhuravlev et al. Publ. 27.11.2009. Bull. Number 33.
[8] RF Patent 2387844 for an invention. Int. Cl. F01G1/077, F02G1/044. Rotary-vane engine with an external supply of heat / .N. Lukyanov, Y.N. Zhuravlev et al. Publ. 27.04.2010. Bull. Number 12.
[9] Perminov A., Lukyanov Y., Tikhonov S., Ilyin A. Thermodynamic cycle with two-component working fluid. "Environment. Technology. Resources - Proceedings of the 11th International Scientific and Practical Conference", 2015. DOI: 10.17770/etr2015vol2.261.
[10] A. L. Perminov, A. A. Khitrov, A. I. Khitrov, Mechatronic System "Magneto-electric Synchro Motor - Active Rectifier" for Autonomous Energy Station Using Rotary-blade Machine with External Heat Supply. "Proceedings of VII International (VIII Russian) Conference on Automotization Electrical Drives AEP-2012", Ivanovo State Energy University, Ivanovo, 2012. P. 330-335
[11] A. L. Perminov, Y. N. Lukyanov, S. I. Tikhonov, Electrogenerators fot Energy Sets. "Electrical Engineering. Electrical Energy. Information Techlogies. Proceedins of I International Research and Prctice Seminar", Pskov. 2018. P. 52-55.

