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Abstract 
Stratospheric ozone absorbs most of the sun’s harmful UV radiation. The increased use of human-produced gases such as chlorofluorocarbons 
(CFCs) has led to a magnified springtime depletion of the protective ozone layer at both Earth’s poles, especially over Antarctica, a 
phenomenon well known as the ozone hole. The Montreal protocol [1] deals with substances that deplete the ozone layer (ODS) and how to 
reduce them (Montreal protocol, 1987 and amendments/adjustments). It covers substances with a high ozone depleting potential, CFCs and 
the 1st generation of CFC replacements (HCFCs). The success of the implementation of the Montreal protocol and amendments has to be 
demonstrated by the parties (including EU and its Member States [2]), and supported by high quality atmospheric measurements of relevant 
compounds. Several atmospheric data-sets are available from open-access international data bases, including 7 stations across Europe: (1) 
Zeppelin, Ny-Ålesund, Norway, (2) Summit, Greenland, Denmark, (3) Mace Head, Ireland, (4) Tacolneston, UK, (5) Jungfraujoch, Switzerland, (6) 
Monte Cimone, Italy, and (7) Lampedusa (LMP), Italy, but data quality may in some cases be unknown or questionable. High-quality long-term 
ambient air data are mainly coming from the AGAGE Network (http://agage.mit.edu/ [3]) and NOAA (National Oceanic and Atmospheric 
Administration). Ref. [3] comprising also European stations from e.g. (I) Ireland (first Agrigole (1978-1983), then Mace Head (from 1987 to 
present), (II) Switzerland (Jungfraujoch), from 2000 to present, (III) Norway (Ny Ålesund), from 2000 to present, and (IV) Italy (Monte Cimone) 
from 2002 to present. The trends in ODS concentrations measured in-situ at ground level in Europe are consistent and, similar to the trends 
observed in the rest of the world (see ref. [4] containing in-situ ground level measurements, flask sampling and satellite observations), 
especially the downwards trend of CFCs, indicating the success of the Montreal Protocol, in limiting the atmospheric abundances of ODSs [4]. 
The UNEP/WMO Scientific Assessment of Ozone Depletion from 2014 states [4]: “The success of the Montreal Protocol in limiting the 
atmospheric abundances of ODSs is now well documented”. This is confirmed by the AGAGE measurement network [3]: “International 
compliance with the Montreal Protocol is so far resulting in CFC and chlorocarbons abundances comparable to the target level so the Protocol 
is working”. In contrast, it is of concern that the concentrations of HCFCs and N2O, where the latter one being currently the single most 
important gas that depletes stratospheric ozone (see e.g. ref. Ravishankara et al., 2009 [15], and discussions in this report), are still increasing. 

 

http://ccaqu.jrc.ec.europa.eu/home.php
http://ec.europa.eu/dgs/jrc/index.cfm
http://ec.europa.eu/index_en.htm
http://gaw.empa.ch/gawsis/
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Executive summary 

Stratospheric ozone absorbs most of the sun’s harmful UV radiation. The increased use of 

human-produced gases such as chlorofluorocarbons (CFCs) has led to a magnified springtime 

depletion of the protective ozone layer at both Earth’s poles, especially over Antarctica, a 

phenomenon well known as the ozone hole. The Montreal protocol [1] deals with substances 

that deplete the ozone layer (ODS) and how to reduce them (Montreal protocol, 1987 and 

amendments/adjustments in 1990 (London), 1991 (Nairobi), 1992 (Copenhagen), 1993 

(Bangkok), 1995 (Vienna), 1997 (Montreal), 1999 (Beijing), 2007 (Montreal)). It covers 

substances with a high ozone depleting potential, CFCs and the 1
st
 generation of CFC 

replacements (HCFCs). The success of the implementation of the Montreal protocol and 

amendments has to be demonstrated by the parties (including EU and its Member States [2]), 

and supported by high quality atmospheric measurements of relevant compounds. 

Several atmospheric data-sets are available from open-access international data bases, 

including 7 stations across Europe: (1) Zeppelin, Ny-Ålesund, Norway, (2) Summit, 

Greenland, Denmark, (3) Mace Head, Ireland, (4) Tacolneston, UK, (5) Jungfraujoch, 

Switzerland, (6) Monte Cimone, Italy, and (7) Lampedusa (LMP), Italy, but data quality may 

in some cases be unknown or questionable. High-quality long-term ambient air data are 

mainly coming from the AGAGE Network (http://agage.mit.edu/ [3]) and NOAA (National 

Oceanic and Atmospheric Administration). Ref. [3] comprising also European stations from 

e.g. (I) Ireland (first Agrigole (1978-1983), then Mace Head (from 1987 to present), (II) 

Switzerland (Jungfraujoch), from 2000 to present, (III) Norway (Ny Ålesund), from 2000 to 

present, and (IV) Italy (Monte Cimone) from 2002 to present. 

The trends in ODS concentrations measured in-situ at ground level in Europe are consistent 

and, similar to the trends observed in the rest of the world (see ref. [4] containing in-situ 

ground level measurements, flask sampling and satellite observations), especially the 

downwards trend of CFCs, indicating the success of the Montreal Protocol, in limiting the 

atmospheric abundances of ODSs [4]. The UNEP/WMO Scientific Assessment of Ozone 

Depletion from 2014 states [4]: “The success of the Montreal Protocol in limiting the 

atmospheric abundances of ODSs is now well documented”. This is confirmed by the 

AGAGE measurement network [3]: “International compliance with the Montreal Protocol is 

so far resulting in CFC and chlorocarbons abundances comparable to the target level so the 

Protocol is working”. In contrast, it is of concern that the concentrations of HCFCs and N2O, 

where the latter one being currently the single most important gas that depletes stratospheric 

ozone (see e.g. ref. Ravishankara et al., 2009 [15], and discussions in this report), are still 

increasing. 

http://en.wikipedia.org/wiki/London
http://en.wikipedia.org/wiki/Nairobi
http://en.wikipedia.org/wiki/Copenhagen
http://en.wikipedia.org/wiki/Bangkok
http://en.wikipedia.org/wiki/Vienna
http://en.wikipedia.org/wiki/Montreal
http://en.wikipedia.org/wiki/Beijing
http://en.wikipedia.org/wiki/Montreal
http://agage.mit.edu/
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Introduction I: Implementation of the Montreal Protocol  

The Montreal Protocol [1] on substances that deplete the ozone layer was designed to reduce 

the production and consumption of ozone depleting substances (ODS) in order to reduce their 

abundance in the atmosphere, and thereby protect the ozone layer (ODS substances: e.g. 

chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs) and chlorinated solvents). 

The original Montreal Protocol was agreed in 1987 and entered into force two years later. 

The Montreal Protocol includes a unique adjustment provision that enables the Parties to the 

Protocol to respond quickly to new scientific information and agree to accelerate the 

reductions in emission of chemicals already covered by the Protocol as appropriate. Since its 

initial adoption, the Montreal Protocol has been adjusted several times. Adjustments and 

reductions in production and consumption of the controlled substances listed in the Annexes 

of the Protocol have been carried out several times between 1990 and 2007. 

 

The European Community is a Party to the Montreal Protocol, since the Protocol addresses a 

transboundary environmental problem with global impact. Furthermore, regulating intra-

Community and external trade in ODS and products, cannot be sufficiently achieved by the 

Member States acting individually and can therefore be better achieved at Community level 

[2]. Already by 2010, the EU had significantly reduced its consumption of the main ozone-

depleting substances, 10 years ahead of its obligation under the Montreal Protocol (see e.g. 

http://ec.europa.eu/clima/policies/ozone/index_en.htm). 

 

EU regulation 1005/2009 ([2]) on substances that deplete the ozone layer implements the 

Montreal Protocol as adjusted in 2007, but is more ambitious and stricter than the Montreal 

Protocol itself, e.g. through addressing future challenges, such as e.g. biocidal products (e.g. 

methyl bromide). The regulation lays down rules on the production, import, export, placing 

on the market, use, recovery, recycling, reclamation and destruction of substances that 

deplete the ozone layer, on the reporting of information related to those substances and on the 

import, export, marketing and use of products and equipment containing or relying on those 

substances. Atmospheric monitoring of ODS is not considered in the regulation [2], but is 

seen as an important tool to monitor the implementation of the Montreal Protocol.

http://ec.europa.eu/clima/policies/ozone/index_en.htm
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Introduction II: Observations of ODS 

The most abundant long-lived, chlorine and bromine containing gases regulated by the 

Montreal Protocol [1] are monitored in the Earth's atmosphere by both in-situ measurements 

and remote sensing.  

 

It is important to monitor ODS for various reasons: To understand fundamental atmospheric 

processes and properties (abundance, lifetime and variability of ODS), to understand the 

human influence on ODSs abundances (quantification of human contributions and their 

changes, as well as natural influences), and to provide policy-relevant information (success of 

the implementation of the Montreal protocol and other protocols, and also to quantify the 

contributions of ODSs to radiative forcing). Continued measurements allow us to monitor 

progress of abatement strategies and identify any unexpected developments. 

 

ODS are usually monitored by a combination of gas chromatographs with electron capture 

(ECD) or mass spectroscopy (MS) detectors. Instrumentation can be employed in a 

monitoring station, or flask sampling with subsequent centralised analysis is also carried out 

(see e.g.  (http://agage.mit.edu/ [3]). Furthermore, measurements are performed from various 

“mobile sampling platforms”, such as aircrafts, balloons, towers or ships. Remote sensing of 

CFCs has been reported (see e.g. Coheur et al., 2003 [5]; Hoffmann et al., 2008 [6]; Brown et 

al., 2011 [7]; Kellmann et al., 2012 [8]; Minschwaner et al., 2013 [9]), for example with the 

MIPAS instrument on the ENVISAT satellite, which was measuring mid infrared limb 

radiance spectra and could be used to retrieve a.o. vertical profiles of CFC-11 and CFC-12. 

Satellite borne spectroscopic instruments give less accurate measurements than ground based 

instruments, but provide a “comprehensive” spatial coverage. 

 

More information on the three techniques and data achieved (monitoring stations, flask 

sampling and satellite) can also be found in ref. [4]. 

 

 
 
 
 
 

http://agage.mit.edu/
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Measurement methods for ODS 

Recommended methods for in situ measurements of ODS 

The ongoing, surface-based observations provide a direct measure of the total number of chlorine 

and bromine atoms in the lower atmosphere, or troposphere. Because the lower atmosphere is quite 

well-mixed for these long-lived compounds, ground-level observations also provide an accurate 

estimate of the composition of air entering the stratosphere. 

Most long-term accurate observations of ODS have been performed in the frame of the series of 

networks ALE, GAGE, and AGAGE, supported by multinational institutions and organisations. 

The instrumentation and calibration techniques evolved from ALE to GAGE to AGAGE 

(http://agage.mit.edu/ [3]): With the inauguration of each new phase, measurement frequency and 

the number of analyzed species increased. 

Using gas chromatography (GC) with an electron-capture detector (ECD), the Atmospheric 

Lifetime Experiment (ALE) began operation in July 1978 (until about 1986). It measured five 

species: CCl3F (CFC-11), CCl2F2 (CFC-12), CH3CCl3, CCl4, and N2O four times daily. 

This gas chromatographic experiment was succeeded in the 1981-1985 time frame by the Global 

Atmospheric Gases Experiment (GAGE), which measured 3 additional gases, namely CCl2FCClF2 

(CFC-113), methane (CH4), chloroform (CHCl3) by using a flame ionization detector (FID), as 

well as the ALE suite of gases. The frequency of measurement was also increased to 12 times per 

day during the GAGE period (1981-1996).  

A third phase, the Advanced Global Gases Experiment (AGAGE) began over the 1993-1996 

period. AGAGE, which continues to the present, has two instrumental components: 

a) First a highly improved gas chromatograph multidetector (GC-MD) system (with ECD, 

FID, and mercuric oxide reduction detector (MRD). It can measure 10 compounds, 36 

times per day. 

b) Second, an automated gas chromatograph-mass spectrometer with an adsorption-desorption 

system (ADS GC-MS) at two of AGAGE stations: Mace Head, Ireland (started in October 

1994), and Cape Grim, Tasmania (started in January 1998). This system can measure a 

wide range of hydrochlorofluorocarbons, hydrofluorocarbons (HCFC-141b, HCFC-142b, 

HFC-134a etc.), methyl halides (CH3Cl, CH3Br, CH3I) and the halons (e.g. H-1211, H-

1301). 

http://agage.mit.edu/
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A newly developed “state of the art”, the so-called “Medusa GC-MS instrument [3]” has been 

deployed (from November 2003 to June 2006) at all “five” AGAGE stations [3] and at the Scripps 

Institution of Oceanography (SIO) calibration laboratory. These new Medusa instruments extend 

the number of species measured by original ADS instruments up to 40 species (see Table 1). As a 

result of these improvements, the original ADS GC-MS instruments at Mace Head and Cape Grim 

were retired in December 2004.  

Today (year 2015), it is recommended by ref. [3] to use the “Medusa GC-MS instrument” for 

measurements of ODS. 

 

Methods for satellite-borne measurements of ODS 

The composition of the Earth’s atmosphere has been measured from space for several decades. 

Two kinds of spectroscopic techniques have generally been implemented to measure ODS from 

satellites: one is based on the observation of the Sun’s spectrum attenuated by the atmosphere at 

sunrise and sunset (solar occultation measurements, see e.g. Bramstedt et al., 2012 [10]), the other 

on the observation of the sun light scattered by the Earth’s atmosphere (limb emission 

measurements, see e.g. Bauer et al., 2012 [11]). Space-borne measurements provide a wide 

coverage of the atmosphere (latitude, longitude, altitude) as a function of time. In particular, 

measurements are routinely made in the stratosphere, where ozone depletion takes place. However, 

uncertainties are larger compared to in situ measurements although spatial and temporal averaging 

of satellite data improves the measurement precision (Brown et al., 2011 [7]). Yet, significant 

biases can remain, e.g. due to spectroscopic errors in the retrievals (Brown et al., 2011 [7]). 
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Measurement stations and networks for ODS in Europe 

 
In Europe, within the AGAGE network (http://agage.mit.edu/ [3]) ODS data are provided from 

Mace Head (IRL), Jungfraujoch (CH), Ny-Ålesund (N), and the collaboration station at Monte 

Cimone (I), which all are global stations within the frame of the global atmospheric watch program 

(GAW) of the World Meteorological organization (Fig. 1). 

 

The AGAGE network, and its predecessors (ALE, and GAGE) have been measuring the 

composition of the global atmosphere continuously since 1978. The AGAGE network is 

distinguished by its capability to measure over the globe at high frequency almost all of the 

important gases species in the Montreal Protocol (e.g. CFCs and HCFCs).AGAGE is part of the 

powerful global observing system that is measuring halocarbons, including bromocarbons, in the 

Earth's atmosphere. The original ALE/GAGE/AGAGE stations (Mace Head, Trinidad Head, 

Ragged Point, Cape Matalula, and Cape Grim) are located at coastal sites around the world chosen 

to provide representative measurements of trace gases whose lifetimes are long compared to global 

atmospheric circulation times. Four “new” stations, two in Europe (Ny-Ålesund, Jungfraujoch) and 

two in East Asia (Shangdianzi and Gosan) have joined the AGAGE network in recent years using 

the same instrument and calibration scales. 

 

AGAGE also collaborates with stations at Hateruma Island operated by the Japanese National 

Institute for Environmental Studies, and Monte Cimone managed by University of Urbino, Italy. 

ODS data are also provided from Summit, Greenland (DK), a regional station within GAW (Fig. 

1). 

 

 

 

 

 

http://agage.mit.edu/


10 
 

 

 

 

 
 
 
 
 (a) 
 (b)  
 
 (c) (d) 
 (e) (f) 
 (g) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: The map including also the main European ODS measuring stations: 

a) Zeppelin (ZEP), Ny-Ålesund, Svalbard, Norway. 

b) Summit (SUM), Greenland, Denmark. 

c)   Mace Head (MHD), Ireland. 

d) Tacolneston (TAC), UK. 

e) Jungfraujoch (JFJ), Switzerland. 

f) Monte Cimone (CMN), Italy. 

g) Lampedusa (LMP), Italy. 

Source: GAWSIS, http://gaw.empa.ch/gawsis/ 

 

http://gaw.empa.ch/gawsis/
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Ground-level in situ measurements of ODS in Europe 

The most important gaseous species currently leading to stratospheric ozone depletion are 

nitrous oxide, CFC-12, CFC-11, methyl bromide, methyl chloride, carbon tetrachloride, 

methyl chloroform, CFC-113, Halon-1211, Halon-1301, and HCFC-22, which all have an 

Equivalent Effective Stratospheric Chlorine (EESC) concentration larger than 10 ppt 

(Newman et al., 2007 [12]; Daniel et al., 2010 [13]): EESC provides an estimate of the total 

effective amount of halogens (chlorine and bromine) in the stratosphere. It is calculated from 

emission of CFCs/HCFCs and related halogenated compounds into the troposphere (lower 

atmosphere) and their efficiency in contributing to stratospheric ozone depletion (ozone 

depletion potential, ODP), and by making assumptions on transport times into the upper 

atmosphere (stratosphere). This parameter is used to quantify man-made ozone depletion and 

its changes with time. As a consequence of the Montreal Protocol and its amendments 

phasing out ozone-depleting substances (ODS), the EESC reached maximum in the late 

1990s and is now slowly decreasing.  

Some of these species have been monitored in Europe since 1987, when the Montreal 

protocol was agreed by the Parties. Current data series (obtained with more reliable advanced 

techniques) started from around 1994, which are available from open sources (AGAGE and 

WMO World data Centre for Greenhouse Gases, WDCGG), and flask samples from NOAA 

(http://www.esrl.noaa.gov/gmd/).  See Table 1 for information about what compounds were 

measured. The location of the European stations are shown on a world map in Figure 1. 

Table 1: Ozone depleting substance ground-level data available from stations located in Europe. Red crosses 
indicate that only “old data” are available (no “new data” e.g. 2013/2014/etc. are available). Blue crosses 
indicate that measurements are performed with the AGAGE-recommended method “MEDUSA” [3]. Black 
crosses indicate data available with other methods than “MEDUSA”, e.g. the flask samples from stations 
SUM/MHD which was obtained by NOAA: http://www.esrl.noaa.gov/gmd/ [18]. 

 

Zeppelin Summit Mace Head Tacolneston Jungfraujoch Monte Cimone Lampedusa

ZEP SUM MHD TAC JFJ CMN LMP

Nitrous Oxide N2O X X X X X X X

CFC-11 CCl3F X X X X X

CFC-12 CCl2F2 X X X X X

CFC-113 C2F3Cl3 X X X X X X

CFC-114 C2F4Cl2 X X X X

CFC-115 C2F5Cl X X X X X

Methyl Bromide CH3Br X X X X X X X

Methyl Chloride CH3Cl X X X X X X X

Carbon Tetrachloride CCl4  X X X X X

Methyl Chloroform CH3CCl3 X X X X X X X

Halon-1211 CF2ClBr X X X X X X X

Halon-1301 CF3Br X X X X X X

HCFC-22 CHF2Cl X X X X X X

HCFC-141b C2H3FCl2 X X X X X X X

HCFC-142b C2H3F2Cl X X X X X X X

Species Formula

http://agage.mit.edu/
http://ds.data.jma.go.jp/gmd/wdcgg/cgi-bin/wdcgg/catalogue.cgi#S
http://www.esrl.noaa.gov/gmd/
http://www.esrl.noaa.gov/gmd/
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Nitrous oxide (N2O) 

Although N2O is not covered by the Montreal Protocol, it leads to stratospheric ozone 

depleting nitrogen oxides (NOx) and free radical reservoirs (e.g. HNO3) in the stratosphere 

(Crutzen, 1970 [14]). Recent works (e.g. Ravishankara et al., 2009 [15]) indicate that for the 

current ozone depletion potential-weighted emissions, N2O is actually the largest of all ozone 

depleting substances, and that “a complete phase-out of anthropogenic N2O emissions would 

have a larger impact on stratospheric ozone recovery than a combined phase-out of all 

anthropogenic chlorine- and bromine-containing ODSs” (Daniel et al., 2010 [13]). 

However, although not all stations use the AGAGE scales for calibration, all measurements 

clearly show a steady increase of N2O concentrations in Europe (Fig. 2) and worldwide. 

 

 

Fig. 2: Nitrous oxide concentrations (monthly averages) measured in-situ at ground level at 
various stations across Europe. Crosses indicate non-continuous measurements (flask 
sampling). 
 

 

Chlorofluorocarbons 

CFC-11 (CCl3F) and CFC-12 (CCl2F2) are currently monitored at 4 sites in Europe. The 

consistency among the data obtained at these sites is sufficient to detect a constant decreasing 

trend over the past few years of about –0.9 and –0.5 % yr
-1

 for CFC-11 and CFC-12, 

respectively (see Fig. 3). 

CFC-113 (C2F3Cl3) data from 3 additional European sites are available. Despite the 2 ppt 

offset between SUM and the other stations (mainly AGAGE partners and associates), a 

constant decreasing trend close to -1 % yr
-1

 can be observed.  

310

315

320

325

330

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

N
2

O
 (

p
p
b

v
)

SUM

MHD

MHD

TAC

JFJ

CMN

LMP



13 
 

 
Fig. 3: In situ ground-level measurements of CFCs at various stations across Europe. Crosses 
indicate non-continuous measurements (flask sampling). 
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Methyl bromide and methyl chloride 

Methyl bromide (CH3Br) has both natural and anthropogenic sources. In 2012, anthropogenic 

sources accounted for about 20 % of the CH3Br emissions (WMO-UNEP report, 2014 [4]). 

Although the measurements performed at MHD and CMN lead to somewhat different data 

compared to ZEP, SUM, TAC and JFJ, a clear decreasing trend of about -2 % yr
-1

 over the 

last decade can be observed (see Fig. 4). 

Methyl chloride is mostly natural with a minor (about 1 %) anthropogenic emission source. 

Data from the various stations are consistent and do not indicate any trend in methyl chloride 

concentrations over the last decade. 

 

 
Fig. 4: In situ ground-level measurements of methyl bromide (top) and methyl chloride 
(bottom) at various stations across Europe. Crosses indicate non-continuous measurements 
(flask sampling). 
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Carbon tetrachloride (CCl4) 

Despite the 2 ppt offset between the data obtained at SUM compared to the AGAGE and 

collaborative measurement stations, all data sets show a constant decreasing trend of about –

1 % yr
-1 

over the observation period (see Fig. 5). However, CCl4 is not decreasing as fast as 

expected, perhaps due to unknown or unreported anthropogenic sources (WMO-UNEP report, 

2014 [4]). 

 
Fig. 5: In situ ground-level measurements of CCl4 at various stations across Europe. 
 
Methyl chloroform (CH3CCl3) 

Twenty years ago, CH3CCl3 was one of the major stratospheric ozone depleting substances 

ozone killers. Measurements performed at MHD (not shown) indicate that CH3CCl3 

concentrations peaked in the early 1990’s, and started to decrease from mid-1992 onward. All 

measurements performed in Europe confirm a still on-going exponential decrease of about -

16 % yr
-1

 (Fig. 6). 

 

Fig. 6: In situ ground-level measurements of methyl chloroform at various stations across 
Europe. Crosses indicate non-continuous measurements (flask sampling). 
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Halons 

Halon-1211 (CBrClF2) maximum concentrations were observed in 2004 – 2006. Over the 

last few years, a steady decreasing trend of about -1 % yr
-1

 is observed at all stations. 

Halon-1301 (CBrF3) concentrations have not decreased since the late 1990’s. Over the past 

few years, a slight increasing trend of + 0.7 % yr
-1

 can be observed at all stations (see Fig. 7). 

 

 

Fig. 7: In situ ground-level measurements of halon-1211 and halon-1301 at various stations 
across Europe. Crosses indicate non-continuous measurements (flask sampling). 
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HCFCs 

HCFC-22 (CHClF2) is the only HCFC with an EESC > 10 ppt. This is also the only 

chlorinated species with high ozone depletion potential which shows a steep increasing trend 

of about +3.5 % yr
-1

 (Fig .8). 

 

 
Fig. 8: In situ ground-level measurements of HCFC-22 at various stations across Europe. 
Crosses indicate non-continuous measurements (flask sampling). 
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Satellite measurements of ODSs 

Long-term trends derived from satellite-borne measurements have recently been obtained for 

various ozone depleting substances, among which nitrous oxide, CFC-11, CFC-12, CFC-113, 

methyl chloride, carbon tetrachloride, and HCFC-22. They can well differ from the trends 

measured at ground-level, depending on the altitude and latitude considered. The reasons for 

this include atmospheric chemistry and physics (Kellmann et al., 2012 [8]). The uncertainty 

of the data retrieved from satellite measurements is also much larger compared to in situ 

ground level measurements. However, the examples presented below show that satellite-

borne instruments offer great possibilities for monitoring ozone depleting substances. 

 

Nitrous oxide (N2O) 

Space-borne measurements of N2O started in the late 1970s. Solid square symbols in Fig. 9 

represent annual averages from Xiong et al. (2014) [16], obtained with AIRS (the 

Atmospheric Infrared Sounder), a thermal infrared sounder which was launched on the 

EOS/Aqua satellite in May 2002. It is sensitive to N2O in the middle to upper troposphere. 

The root mean square error of AIRS measurements is 8 ppb (to be compared with the WMO-

GAW relative accuracy target of 0.1 ppb for in situ measurements). Annual average 

concentrations retrieved from AIRS measurements are compared with in situ ground level 

measurements performed at European stations (Fig. 9). AIRS-N2O concentrations at 469 hPa 

(about 6 km above sea level) are in better agreement with in situ ground level data than 

AIRS-N2O concentrations at 706 hPa (about 3 km asl). However, satellite-borne and ground 

level measurements lead to comparable long-term trends in N2O concentrations (Table 2). 

 

 
Fig. 9: Nitrous oxide concentrations (monthly averages) measured in situ at ground-level at 
various stations across Europe. Crosses indicate non-continuous measurements (flask 
sampling). Purple and lavender symbols show data obtained from satellites. 
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Chlorofluorocarbons 

CFCs have been remotely monitored from space, using instruments based on both limb 

sounding (e.g. the Michelson Interferometer for Passive Atmospheric Sounding, MIPAS, 

Kellmann et al., 2012 [8]) and solar occultation (e.g. Atmospheric Chemistry Experiment 

Fourier transform spectrometer ACE-FTS, Brown et al, 2011 [7]). Satellite and ground-level 

CFC-11 (CCl3F), CFC-12 (CCl2F2), and CFC-113 (C2F3Cl3) data are shown on Fig. 10. 

Despite increased seasonal variations, significant negative offsets compared to ground-level 

measurements and larger combined uncertainties, satellite data lead to annual trends which 

are consistent with those observed at European stations (Table 2).  

 
Fig. 10: Satellite-borne and in situ ground-level measurements of CFCs at various stations across 
Europe. Crosses indicate non-continuous measurements (flask sampling). Purple and lavender 
symbols show data obtained from satellites. Squares represent annual averages between 30 °N and 
30°S. Error bars indicate the median absolute deviation of annual averages.  
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Table 2: Trends in ozone depleting substances derived from ground-level in situ measurements and 
satellite-borne instruments. 

 
Ground level trends taken from Brown et al., 2011 [7], except N2O trend which is from IPCC AR5 (2013) [17]. 
(1): Atmospheric Chemistry Experiment Fourier transform spectrometer on SCISAT-1 (Brown et al., 2011) [7]. 
(2): Michelson Interferometer for Passive Atmospheric Sounding on Envisat (Kellmann et al., 2012) [8]. 
(3): Atmospheric Infrared Sounder (AIRS) on EOS/Aqua (Xiong et al., 2014) [16]. 
 

Methyl chloride and carbon tetrachloride 

Recent methyl chloride and carbon tetrachloride satellite data have been obtained from the 

ACE-FTS (Brown et al., 2011) [7]. Systematic offsets of about 15 % and 20 % compared to 

ground level measurements performed in Europe can be observed for CH3Cl and CCl4, 

respectively (Fig. 11). However, global trends obtained from ground-level and satellite 

measurements are very consistent (Table 2). 

 

 

Fig. 11: Satellite-borne and in situ ground-level measurements of methyl chloride (top) and carbon 
tetrachloride (bottom) at various stations across Europe. Crosses indicate non-continuous 
measurements (flask sampling). Purple squares represent annual averages obtained from satellites 
between 30 °N and 30 °S. Error bars indicate the median absolute deviation of annual averages. 
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HCFCs 

HCFC-22, HCFC-141b, and HCFC-142b data have also recently been obtained from the 

ACE-FTS (Brown et al., 2011) [7]. The variability in HCFC-22 satellite data is particularly 

small, but a systematic offsets of about -10 % compared to ground level measurements 

performed in Europe can be observed (Fig. 12). However, the positive trends obtained from 

ground-level and satellite measurements are still comparable (Table 2). 

 

 

Fig. 12: Satellite-borne and in situ ground-level measurements of HCFC-22 at various 
stations across Europe. Crosses indicate non-continuous measurements (flask sampling). 
Purple squares represent annual averages obtained from satellites between 30 °N and 30 °S. 
Error bars indicate the median absolute deviation of annual averages. 
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Conclusions 

Current in situ atmospheric measurements of ODS in Europe show consistent results and are 

sufficient to detect trends in ODS concentrations in Europe. Despite their much lower 

accuracy, measurements carried out by space-borne instrumentation (e.g. from satellites) 

show similar trends. The data interpretation and assimilation of space-borne measurements is 

much more complex and associated with higher uncertainties, but satellite data provide a 

global coverage, and interesting information of vertical profiles as well. 

In general the trends of ODSs in Europe (in-situ ground level measurements), are similar to 

the trends in the rest of the world (see ref. [4] containing in situ ground level measurements, 

flask sampling and satellite observations), indicating the success of the Montreal Protocol.  

However, the importance of N2O as ozone depleting substance has not been fully considered 

yet. N2O is indeed covered by the Kyoto protocol on greenhouse gases, but not by the 

Montreal Protocol on ODSs. 

Another important issue needs further critical evaluation. ODS substitutes (e.g. fluorinated 

gases, HFC’s) are also extremely powerful greenhouse gases like the CFC’s/HCFC’s. The 

replacement of ODS by these substitutes will therefore lead to a further increase of the 

greenhouse effect, if they are emitted in large amounts. The greenhouse effect warms up the 

troposphere, and cool down the stratosphere, while stratospheric ozone depletion is 

exacerbated by cold stratospheric temperature (see e.g. Daniel et al., 2010 [13]). The 

substitution of ODS by e.g. fluorinated gases could therefore slow down the recovery of the 

ozone layer through the climatic effect of these substitutes. 
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