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Abstract 

There are certain difficulties in differentiating between children's facial expression related to 

pain and other stimuli. In addition, the limited communication ability of children in the preverbal 

stage leads to misdiagnosis when the child feels pain, for example, post-surgical conditions. In 

this article, a classification approach of facial expression of child pain is presented based on 

models of pre-trained convolutional neuronal networks from the study carried out in a 

Colombian hospital of level 4 (Hospital Universitario San Vicente Fundación), in the recovery 

areas of child surgery services. AlexNet and VGG (16, 19 and Face) networks are evaluated in 

the own dataset using the FLACC scale and their performances are compared in three 

experiments. The results show that the VGG-19 model achieves the best performance (92.9%) 
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compared to the other networks. The effectiveness of the model and transfer learning for the 

classification of facial expression of child pain shows a promising solution for the assessment 

of post-surgical pain.  

Keywords: Artificial intelligence, assessment tools, facial expression, pain, pediatrics. 

 
Resumen 

Existen ciertas dificultades para diferenciar entre la expresión facial infantil relacionada al dolor 

con la de otros estímulos. Además, la limitada capacidad de comunicación de los niños en la 

etapa preverbal conlleva a un error de diagnóstico cuando el niño siente dolor, por ejemplo, 

afecciones posteriores a las cirugías. En este artículo, se presenta un enfoque de clasificación 

de la expresión facial de dolor infantil basado en modelos de redes neuronales convolucionales 

pre-entrenadas a partir del estudio realizado en un hospital colombiano de nivel 4 (Hospital 

Universitario San Vicente Fundación), en las áreas de recuperación de los servicios de cirugía 

infantil. Se evalúan las redes AlexNet y VGG (16, 19 y Face) en el conjunto de datos propio 

utilizando la escala FLACC y se comparan sus rendimientos en tres experimentos. Los 

resultados muestran que el modelo VGG-19 logra el mejor rendimiento (92.9%) en 

comparación con las demás redes. La eficacia del modelo y el aprendizaje por transferencia 

para la clasificación de la expresión facial de dolor infantil muestran una solución prometedora 

para la evaluación del dolor postquirúrgico.  

Palabras clave: Dolor, expresión facial, herramientas de evaluación, inteligencia artificial, 

pediatría. 

1. Introduction 

The manifestation of pain has a great impact on the patient's environment and on him or herself, 

even more so when the pain is not well controlled. For this reason, optimum communication is 

needed between the treating personnel and the patient to make the correct interpretation of the 
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pain at the time of the medical intervention, thus evaluating the intensity of the pain to provide 

analgesics and formulate the respective diagnosis. This is a starting point that cannot be 

replaced by advances in pharmacology and technology [1], [2]. 

The painful experience of each person depends on their personal and subjective value based 

on age, culture, previous experience, context-derived senses, among other factors. For this 

reason, no two people experience pain under the same physiological conditions and 

mechanisms. This is a problem for the health personnel involved in pain management, since 

the evaluation of pain intensity depends on their criteria as well as on the patient's verbal report, 

and there are not strictly objective and precise measures to establish the degree of pain 

suffered by the patient. Such an assessment is complicated when dealing with children or 

people with limited ability to communicate. 

The main problem that arises in the management of pediatric pain is the assessment and self-

perception of it [3], [4]. Pain in children has been associated with physiological changes and 

behavioral patterns, which are indicators of pain that can be recorded and therefore quantified 

[5]–[7]. In that sense, it is evidenced in the literature, the development of several traditional 

scales of pain assessment to estimate the intensity of this. 

Patient self-assessment is the most reliable and valid measure for assessing pain. The patient 

can express the intensity of his or her pain and the location of the pain. However, it is not 

possible to use it in people with communication or neurological impairments or in infants [8], 

[9], since they cannot quantify its severity and inform medical personnel about the effectiveness 

of the analgesia [4], [5]. To evaluate pain in children, the indicators summarized in Table I, 

which are related to pain, were defined. It is necessary to emphasize that changes in the child's 

facial expression in response to pain are considered the most reliable and consistent indicator 

[10]. 
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Table 1. Indicators that determine the presence of pain in children [4], [10]–[12]. 

Children’s response to pain 

Physiological Changes Behavioral Patterns 

V
it

a
l 

S
ig

n
s
 

Blood pressure 

B
e
h

a
v

io
r 

Changes in facial expression 

Heart rate Movement of the legs 

Breathing rate Crying 

Oxygen saturation Frequent body movements 

 

In young children, verbal skills remain limited and quite inconsistent. Pain-related behaviors are 

the main indicator for assessments in this age group. Nonverbal behaviors, such as facial 

expression, limb movement, grasping, and crying, are considered more reliable and objective 

measures of pain than self-evaluation. The most used pain assessment scales for this age 

group are [12]: The Children’s Hospital of Eastern Ontario Pain Scale (CHEOPS), Face Legs 

Arms Cry Consolability (FLACC), COMFORT Scale, The Observational Scale of Behavioral 

Distress (OSBD), Observational Pain Scale (OPS), y The Toddler-Preschooler Postoperative 

Pain Scale (TPPPS). 

One possible way to provide an objective and continuous assessment of pain is to develop an 

automated system that observes and analyzes different behavioral/physiological indicators 

related to pain [13], [14]. 

It is for these reasons that there is interest in having new techniques and strategies that allow 

doctors and nurses to better diagnose postoperative pain and identify its levels. 

Recent innovations in the field of computer vision have facilitated the development of 

automated approaches to evaluating facial expressions. In order to minimize errors in the 
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recognition of facial expressions given by complex image backgrounds, techniques such as the 

background subtraction technique are used in [15], where authors explore the potential of this 

technique, which allowed them to design and implement a motion detection algorithm. Some 

other works have considered the use of the image segmentation technique [16]. 

The increase of computing power in GPUs and the creation of large image data sets have 

allowed convolutional neural networks (CNN) to show an outstanding performance in the 

challenges of computer vision, as evidenced in [17].  

Thus, the present study was based on the premise that the incidence of severe pain in post-

surgical patients of moderate to severe intensity is high, and that facial expressions are 

considered the fundamental pillar in the evaluation of pain since they constitute one of the most 

significant pain indicators [18]. Therefore, it is proposed to evaluate different architectures of 

convolutional neural networks (CNNs), widely used in the recognition of emotions, for 

the classification of facial expression of child pain. 

The paper is organized as follows. In the second chapter, the methods used for the construction 

of the data set are described. The implementation is described in detail in the third chapter. The 

experimental results are discussed in the fourth chapter. Finally, the conclusions are presented 

in the fifth chapter. 

2. Methodology 

2.1. Definition of the population 

A proprietary data set was built with images of pediatric patients from the Hospital Universitario 

San Vicente Fundación (HUSVF) in Medellín, Colombia. This study was approved by the Ethics 

and Research Committee of the HUSVF and by the Biomedical Committee of the University of 

Antioquia (UdeA), Medellín, Colombia. 
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The sample size was defined for 50 pediatric patients (39 boys and 11 girls), who were 

registered after undergoing surgical procedures such as general pediatric surgery, orthopedic 

surgery, or plastic surgery. The average age of the children is 16.84 months, which varies from 

1 to 36 months (standard deviation = 10.58). Any child who received surgery and whose age 

was within the range was eligible for data recording, after obtaining the respective informed 

consent of the child's parents and/or guardians. Children with neurological diseases and facial 

dimorphism or with a facial handicap were excluded. 

2.2. Image acquisition 

The integrated camera of an iPad Mini 4 was used to record videos of the children's facial 

expression and the FLACC (Face, Leg, Activity, Cry, Consolability) pain assessment scale was 

used to record changes in body movement. All recordings were made in the HUSVF 

postoperative clinical setting. 

Each child was recorded for four time periods: 1) Right after the surgical procedure for the first 

observation (take ZERO); 2) Ten minutes after the surgical procedure (take ONE); 3) Twenty 

minutes after the surgical procedure (take TWO); and 4) Thirty minutes after the completion of 

the painful procedure (take THREE). Each period was observed by trained Nurse Practitioners 

and Anesthesiology Residents to provide pain assessment using the FLACC scale and to 

perform vital sign measurements (variation in blood pressure, heart rate and oxygen 

saturation), which helped to supplement the assessment. 

2.3. FLACC Pain Assessment Scale 

There is no universally accepted standard measurement instrument for assessing and 

measuring childhood pain. The basic principle of pain measurement is to choose the right 

instrument for the right patient, which means that it should be based on developmental age and 
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the type of pain or medical condition (i.e., procedural pain versus postoperative pain) [12]-[14], 

[19]-[21]. 

For these reasons, the FLACC pain assessment scale was used since according to the 

literature [14], [19], [20], [22]-[23] it is the recommended and best validated scale for assessing 

postoperative pain in infants because it is reproducible and simple to use in a clinical setting 

and it assesses the child's face, leg movement, body activity, crying, and whether he is easy to 

comfort, which are all observable variables associated with pain. 

Each component of the FLACC scale is scored between 0 and 2 points, with 0 being an overall 

indicator that the child is calm, 1 being very restless, and 2 being desperate. A total of 1 to 3 

points represents mild pain, 4 to 6 points represents moderate pain, and 7 or more points 

represents severe pain. 

The scores obtained (0, 1, 2, 3, 4 and 5) for each of the recorded shots in this study were used 

as the label for the evaluation of the models. It should be noted, the exclusion of the records 

labeled with the scores from 6 to 10, since the number of valid records and images was too 

small. 

3. Implementation  

The proposed process for the classification of pain expression consists of two main stages: 1) 

pre-processing of the images and 2) adjustment and training of pre-trained CNN architectures. 

Each stage is described in detail below. 

3.1. Image pre-processing 

Before starting to pre-process the images, the OpenCV Library [26] was first used to extract the 

frames from each of the 200 videos purchased with the iPad Mini 4's built-in camera. The next 

step was to implement the Oriented Gradient Histogram (HOG) descriptor offered by the DLIB 

library [27], [28], in each of the extracted images to detect the face. Images where faces are 
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not detected by the algorithm were excluded from further analysis. In addition, a correlation 

analysis was performed to verify the matching of the images and to process only the relatively 

different images, thus selecting only the key frames of each video. Using again the DLIB library 

[29], 68 facial reference points were obtained which allow to identify the sketch of the face, 

eyebrows, eyes, nose, and mouth. From the information of the coordinates of the sketch of the 

face and the eyebrows, a mask was created to segment the face from the background of the 

image. 

Since the total number of frames is too small (i.e., 2730 frames) to retrain a CNN and to make 

the model robust to the characteristics that the set of images might have, such as the angles of 

the shots, the illumination, the similarity of the images, among others, a series of 

transformations to the set of training and validation images were performed as follows. 

First, the images were flipped horizontally at random with a 50% probability. These types of 

transformations are optimal for the data set since the facial expressions, in these cases, of the 

babies and children, are quite symmetrical. Following this, the images were resized to a size of 

256xN, with N being the ratio of dimensions of the images. And finally, each image was cropped 

to the size 224x224 and normalized ([0.0996611, 0.0800176, 0.06390216], [0.16571397, 

0.14057845, 0.12316495]) to scale the image values in the range of [0.1]. 

3.2. Adjustment and training of pre-trained CNN architectures 

Four CNNs architectures were used for pain classification in the relatively small data set (50 

subjects, 2730 images). The first three architectures, as seen in Figure 1, AlexNet, VGG16, 

and VGG19, were previously trained on the ImageNet dataset [30] which contains more than 

1.2 million images for the 1000 class classification. 

The AlexNet architecture, which has five convolutional layers and three fully connected layers, 

has promoted the development of deep learning in the field of facial expression recognition, 
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specifically, emotion recognition. In the present study, the last connection layer was modified 

to change from classifying 1000 classes to 6 classes corresponding to the scores obtained by 

the FLACC scale (0, 1, 2, 3, 4, and 5). 

The fourth architecture is the VGG-FACE descriptor. The VGG family of architectures, as shown 

in Figures 1 and 2, have the same structure in the first three sets of convolutional layers, and 

the overall structure contains five sets of convolutional layers. The VGG16 and VGG19 

networks are also widely used for the task of emotion classification. In the present study, the 

last connecting layer of both networks was modified from 1000 to 6 classes. The VGG-FACE 

network was previously trained on a large set of face images [31], which contains approximately 

2.6 million face images to classify 2622 identities in the face recognition task. The output 

neurons of the last layer (fc8 layer) were also replaced by 6 classes. 

The choice of these pre-trained CNNs allows to investigate the difference between using 

networks trained on a relatively similar data set (i.e., VGG-FACE, Face Dataset) and networks 

trained on a relatively different data set (i.e., AlexNet, VGG16 and VGG19, ImageNet) to one's 

own data set. 

The image set was randomly divided into training set, validation set, and test set. The test data 

set was used to select the best classifier, where the loss function would reach the minimum. 

The challenge that arose in the development of this study was the limited number of face 

images. The proposed solution was to use learning by transfer [32], [33] to address the problem 

of limited availability of tagged data. By making use of this technique, it is possible, as a first 

option, to preserve all the previously trained layers before the last output layer and to connect 

these intermediate layers to a new layer designed for the new classification problem. 
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Figure 1. Architectures AlexNet, VGG-16 and VGG-19. 

 

Source: own. 

Figure 2. Architecture VGG-Face. 

 

Source: own. 
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The second option is to adjust more layers, or even the entire set of pre-trained network layers. 

It is also possible to keep the first convolutional layer fixed, as this layer is often used for edge 

extraction, which is common for generic image processing problems. 

In this study, it was decided to adjust all the parameters of each of the pre-trained models. In 

addition, to obtain an unbiased evaluation in the ratings, three experiments were used to 

evaluate the performance of the model by adjusting the hyperparameters. The selection of the 

hyperparameters was based on several studies [34]-[40] focused on the area of facial 

expression recognition, emotions, and pain. In these studies, the policy of updating the stepwise 

learning rate is developed, specifying the values for each of the hyperparameters and the 

combination of these. 

The total number of times for training was 100. The training algorithm applied was the stochastic 

gradient descent with the hyperparameters defined in Table 2 (momentum, weight decay, initial 

learning rate). The learning rate was reduced by a specific gamma factor every certain number 

of times established by the size of the steps. A lot size of 32 and 16 was used for the training 

and validation set, respectively. 

Table 2. Hyperparameters established by each proposed experiment. 

Hyperparameters 

\ No Experiments 

Initial 

learning rate 

Gamma 

factor 
Momentum Step size 

Decay of 

weights 

Experiment 1 0.000001 10.0 0.99 5.0 0.0005 

Experiment 2 0.001 10.0 0.9 5.0 0.0005 

Experiment 3 0.001   0.1 0.9 5.0 0.0005 

Source: own. 

The entire data set was randomly divided into a training set (±50%, 1388 frames), a validation 

set (±20%, 529 frames), and a test set (±30%, 813 frames). 
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4. Analysis of results  

To classify the facial expression of pain of babies and children, a total of 2730 facial images 

were entered as input to the four CNNs architectures mentioned above for the final 

classification. All the networks were implemented in the Google Collaboratory environment 

using the Python programming language and the PyTorch library. Training performance was 

reported using accuracy and loss. 

The first column of results in Table 3, reports the performance of the pain assessment by 

applying the hyperparameters established for experiment #1 (Initial learning rate: 0.000001, 

Gamma factor: 10.0, Time: 0.99, Step size: 5.0, Weight Decay: 0.0005). The evaluation of the 

networks was carried out in this way because we wanted to evaluate how the choice of the 

hyperparameters affects the performance of the classification. The AlexNet network, for 

experiment #1, had the best performance, obtaining good accuracy and relatively low loss. 

Table 3. Pain Assessment Performance with AlexNet, VGG-16, VGG-19 and VGG-FACE. 

 Experiment #1 Experiment #2 Experiment #3 

 Accuracy Loss Accuracy Loss Accuracy Loss 

AlexNet 0.641 0.238 0.679 0.199 0.583 1.106 

VGG-16 0.171 2.355 0.937 1.075 0.623 0.342 

VGG-19 0.344 1.612 0.929 0.062 0.536 1.223 

VGG-FACE 0.295 3.126 0.836 0.178 0.468 1.136 

Source: own. 

The second column of Table 3 shows the performance of the pain assessment by applying the 

hyperparameters established for experiment #2 (Initial learning rate: 0.001, Gamma factor: 

10.0, Time: 0.9, Step size: 5.0, Weight Decay: 0.0005). Comparing the performance of the first 

and second column the hyperparameters chosen for experiment #2 significantly improved the 
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overall performance for each of the models. The accuracy of the pain assessment was 

improved for the VGG16, VGG19 and VGG-FACE networks. However, the loss obtained for 

the VGG-16 network was too high. Therefore, it can be concluded that the VGG-19 and VGG-

FACE networks achieved the best overall performance, since they have high accuracies and 

low losses, with VGG-19 being the best option. 

The last column of Table 3 provides the performance of the networks using the 

hyperparameters chosen for experiment #3 (Initial learning rate: 0.001, Gamma factor: 0.1, 

Time: 0.9, Step size: 5.0, Weight Decay: 0.0005). The VGG-16 network, for experiment #3, had 

the best performance, obtaining good accuracy and relatively low loss. 

The next step was to evaluate the VGG-19 model, in the test phase, on each of the classes in 

the data set, the statistical accuracy metrics, given in equation (1); sensitivity (True Positive 

Rate - TPR), equation (2); specificity (True Negative Rate - TNR), equation (3); false positive 

rate or 1-Sensitivity (False Positive Rate - FPR), equation (4) and false negative rate (False 

Negative Rate - FNR), shown in equation (5). 

• Accuracy: Represents the overall performance of the model through the total 

percentage of hits. 

Accuracy =  
TP +TN

TP + TN + FP+FN
                                                (1) 

• Sensitivity (TPR): Represents the fraction of positive tests that are correctly labeled. 

TPR =  
TP

TP + FN
                                                       (2) 

• Specificity (TNR): Represents the fraction of negative tests that are correctly labeled. 

TNR =  
TN

TN + FP
                                                        (3) 

• False positive rate (FPR): Represents the fraction of negative tests that are incorrectly 

labeled as positive. 

FPR =  
FP

FP + TN
                                                          (4) 
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• False negative rate (FNR): Represents the fraction of positive tests that are incorrectly 

labeled as negative. 

FNR =  
FN

FN+ TP
                                                          (5) 

Where the values of TP, FP, FN, TN are explained graphically with the confusion matrix, which 

can be seen in Table 4. 

Table 4. Confusion matrix for classification. 

 
Manual classification (reality) 

Positive Negative 

Automatic 

classification 

(predictions) 

Positive True positive (TP) False positive (FP) 

Negative False negative (FN) True negative (TN) 

Source: own. 

Table 5 presents the performance of the VGG-19 network under experiment #2 in the test 

phase. The purpose of examining these metrics was to evaluate how the selected 

hyperparameters affect the performance of the classification along with the true positive rate 

(TPR) and the false positive rate (FPR). As shown in Table 5, particularly good accuracy values 

are obtained for each of the classes to be predicted by the model. The TNR and FPR values 

are generally good, however, the TPR values are low and the FNR is remarkably high. It is 

important to clarify that the purpose is to obtain high values for accuracy, TPR and TNR and to 

achieve low values for FPR and FNR. Analyzing these last two metrics is crucial in the case of 

pain assessment, since, in the literature, there are many pediatric studies where overtraining 

(associated with TPR) and undertraining (associated with NRF) are present. Therefore, it is 

concluded that the CNN VGG-19 model achieved a good performance in a general way 

obtaining good specificity, however, it could have suffered from mismatch. In addition to this, it 



Classification of Facial Expression of Post-Surgical Pain in Children: Evaluation of Convolutional Neural Networks 

 

Visión Electrónica • vol. 15 no. 1 (2021) • January-June • ISSN 1909-9746 • ISSN-E 2248-4728 • Bogotá (Colombia 

 

can also be observed that the results obtained for classes 3, mild pain, and 4, moderate pain, 

are not optimal. 

The possible reasons for these results were: 

1. The fact of having 50 patients, which is a weakness of the project 

2. The pain assessment by the Anesthesiology nurses and resident doctors was not 

independent, therefore, the categorization of the images could have been biased. 

Table 5. Confusion matrix for classification. 

 Accuracy TPR TNR FPR FNR 

0 vs All 85.4% 56.1% 94.1% 5.9% 26.1% 

1 vs All 86.7% 55.3% 96.3% 3.7% 18.0% 

2 vs All 79.5% 34.6% 95.5% 4.5% 26.7% 

3 vs All 72.7% 43.7% 12.2% 25.5% 90.28% 

4 vs All 89.9% 0% 91.4% 8.6% 100% 

5 vs All 99.5% 97.5% 1% 0% 0% 

Source: own. 

3. Much of the bias may also have occurred because of the design of the data set. 

4. The images categorized in classes 3, mild pain, and 4, moderate pain, probably cannot be 

differentiated well, so the model cannot distinguish between these classes. 

5. Conclusions  

Assessment of childhood pain can be inconsistent since it depends largely on medical 

judgment, and medical personnel are required to be well trained to ensure proper use of the 

assessment scales. This can result in late intervention and inadequate pain management. 

Because pain assessment is crucial to pain management, automatic tools need to be developed 

to allow optimal pain assessment. 
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This work evaluates different convolutional neural network architectures, widely used for the 

classification and detection of emotions, in the task of automatic pain classification in three 

different experiments. All networks, AlexNet, VGG16, VGG19 and VGG-FACE were evaluated 

using the proprietary dataset. The experimental results showed that the selection of 

hyperparameters influences the performance of the models. The selected hyperparameters for 

experiment #2 (Initial learning rate: 0.001, Gamma factor: 10.0, Momentum: 0.9, Step size: 5.0, 

Weight Decay: 0.0005) influenced to obtain the best results with respect to the other two 

experiments. With the VGG-19 network, the best performance was obtained in comparison with 

the other networks, achieving an accuracy of 92.9% and a loss of 6.2% for the validation phase. 

However, when analyzing the accuracy, precision, TPR, TNR, FPR and FNR metrics in the test 

phase, it could be observed that the model, despite having a good performance at a general 

level and achieving good specificity, did not achieve good sensitivity and possibly presented 

training mismatch. The reasons for this are considered to correspond to the distribution of the 

images in the different classes and/or in the divisions of the training, validation, and test sets. 

To solve this problem, it is proposed, before improving the technique, to improve the data set, 

and to make an exhaustive analysis of the error in a manual way, analyzing image by image, 

taking advantage of the fact that it is a relatively small data set, and to confirm that the labeling 

of the data has been correct and to carry out the necessary measures, such as merging classes 

that may not be differentiable. This will possibly help to improve the performance of the model 

and not suffer from either over- or under-training. 

These results are encouraging and suggest that automatic recognition of childhood pain is a 

viable and more efficient alternative to the current standard of pain assessment. By following 

the proposed improvements, it is expected to have a robust system capable of classifying the 

level of child pain with particularly good results, thus solving the problem of biased pain 

assessment that occurs every day. 
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