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Abstract

A phase field (PF) approximation of fracture for functionally graded materials (FGM) using a diffusive crack
approach incorporating the characteristic length scale as a material parameter is herein proposed. A rule of
mixture is employed to estimate the material properties, according to the volume fractions of the constituent
materials, which have been varied according to given grading profiles. In addition to the previous aspects,
the current formulation includes the internal length scale of the phase field approach variable from point
to point, to model a spatial variation of the material strength. Based on the ideas stemming from the
study of size-scale effects, Γ-convergence for the proposed model is proved when the internal length scale is
either constant or a bounded function. In a comprehensive sensitivity analysis, the effects of various model
parameters for different grading profiles are analyzed. We first prove that the fracture energy and the elastic
energy of FGM is bounded by their homogeneous constituents. Constitutive examples of boundary value
problems solved using the BFGS solver are provided to bolster this claim. Finally, crack propagation events in
conjunction with the differences with respect to their homogeneous surrogates are discussed through several
representative applications, providing equivalence relationships for size-scale effects and demonstrating the
applicability of the current model for structural analysis of FGMs.

Keywords: Fracture mechanics; Γ-Convergence; Phase Field; Functionally Graded Materials; Finite
Element Method

1. Introduction

Mismatch in the material properties of mechanical components generally leads to the occurrence of
weak interfaces which induce abnormal stress concentrations, and eventually leading to failure. In order to
prevent such phenomena, the concept of Functionally Graded Materials (FGM), i.e. materials with spatial
composition, has been intensively exploited in the last decades precluding interfacial stress concentration,
and hence ameliorate resistance to failure [1]. Such a technological solution has attracted attention in the
engineering community and industry so far [2]. In the recent past, FGMs have gained a notable popularity
and have been applied in (but not limited to) turbine blades [3], rocket engines [4], artificial bone implants
[5], shell structures [6] and airplanes [1].

Various studies [7, 8] have shown that FGMs are fundamentally different from homogeneous materials,
and hence their corresponding crack propagation behavior can be especially complex [9]. There are multitude
of factors affecting the crack growth of FGMs including: the ratio of Young’s modulii [10], intrinsic toughness,
strength variations [11], geometry, residual stresses, grading laws, among many other aspects. These factors
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suggest that any predictive model for crack events in FGM should incorporate the intrinsic variation of
material properties according to its grading profile.

Cracks oriented perpendicular to the grading profile experiences asymmetric loading at the crack tip
and crack propagation may change its direction leading to mode-mixity, which in turn alters the stress
intensity [12, 13], while grading parallel to cracks leads to straight propagation [11]. The effective composite
properties of FGM generally vary in a continuous manner within the specimen domain as a combination of
its homogeneous constituents [9, 14]. Introduction of the continuous grading alters the stress field, leading
to modified stress intensity factors and mode mixity. Moreover, in this context, several studies revealed that
spatial variation in the toughness and in the yield strain [15, 16, 9] meant that the failure stress/strain values
at any point might depend on the grading. These factors inevitably restricts the study of cracks in FGM
using conventional numerical methods and hence their general behavior with respect to crack propagation.

Derived from the previous complex response, computational methods such as the finite element methods
(FEM) have been extensively used in the literature for exploring fracture in FGM and linear elastic fracture
mechanics, see [17, 18, 19]. Early investigation of mixed-mode cracks within the context of FEM can be
seen in [20]. Gu et al. [21] used domain integral technique to simplify the model for calculating crack tip
field for FGM. Anlas et al. [22] estimated stress-intensity factors in FGM using FEM by assigning different
homogeneous properties to each element. Bao et al. [23] studied multiple cracking in FGM coatings.
Kim and paulino [24] developed and implemented general purpose FEM formulation considering mixed-
mode cracks. Discrete numerical methods are widely used in the study of crack propagation phenomena
such as XFEM [25, 26, 27], scaled boundary FE formulation [28], re-meshing algorithms based on cohesive
elements (relying on the cohesive zone model, CZM) [29, 30], isoparametric graded finite element formulation
[31, 32, 33]. Recently, Hrishikesh et al. [34] explored the possibility to simulate fracture events in FGMs using
the phase field (PF) approach for fracture due to its strong potential (especially for composite structures
[35, 36, 37, 38] and heterogeneous media [39, 40, 41, 42, 43, 44, 45, 46]) and partially verified the results
with the experimental evidence. In this direction, recent studies concerned dynamic crack propagation in
FGM using the phase field method [47, 48], and meshfree methods [49], showing a tremendous potential,
and providing a plausible route for the thorough treatment of dynamic simulations.

In contrast to previous studies, in this investigation, we propose an extension of the phase field model
for fracture in [34] by considering the internal characteristic length scale as a intrinsic material parameter.
In this regard, first, we carefully analyze that for any given bounded characteristic length scale (not limited
to FGM), proving that the total energy Γ-converges to the Griffith’s theory under the size-scale effects using
the mathematical setting as derived in [50]. Also, we gain a further insight into the general mechanical
properties of FGM which can be used to analyze, create or modify future design of FGMs. Due to the
underpinned internal length scale, the difference in the failure strain at any material point is addressed in
line with [34, 9, 13]. These ingredients yield to a novel PF crack method for FGMs which provides a further
potential for the exploration of the different aspects of the characteristic material and length scale properties
onto the overall cracking response of the specimen.

The manuscript is organized as follows. In Section 2, the main aspects of the modeling framework to
simulate crack propagation in FGMs are presented by considering the internal length scale calculated using
the spatial variation of the FGM composition. Section 3 provides the results of Γ-converges by constructing a
sequence of minimisers such that the sequence of functionals converges to the Griffith’s potential. In Section
4, we discuss the finite element implementation of the proposed model using Broyden-Fetcher-Goldfard–
shanno (BFGS) algorithm in ABAQUS using UEL module. Section 5 presents several representative examples
starting with the validation experiment. In the sequel, mechanical insights for the effect of grading is
explored, whereby we first prove that the bulk energy and surface energy of the FGM is bounded between
those of its homogeneous constituents. Subsequently, we address the issue of crack propagation, the effects
of Young modulus on cracking response, apparent strength values, grading profile, initial crack length and
position. An equivalence relationship based on size-scale effects is provided along with the examples so that
the large models can be brought down to a smaller size to analyse them effectively and reduce computational
efficiency. An application example for a single fiber-reinforced FGM matrix is explored to further assess the
potential of the model for micromechanics.
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2. Variational formulation

2.1. Phase field approximation

Let Ω ⊂ Rndim (ndim = 1, 2, 3 denotes spatial dimension) be an arbitrary solid body containing a
functionally graded material in the ndim Euclidean space Rndim with the crack set Γ ⊂ Rndim−1. The body is
characterized by the kinematic displacement field u(x) and the strain field is defined as a symmetric gradient
(∇s(·)) of the displacement field ε(x) := ∇su(x) for all x ∈ Ω. The external boundary ∂Ω ⊂ Rndim−1 is
split into two disjoint sets, ∂Ωu and ∂Ωt, i.e ∂Ωu ∩ ∂Ωt = ∅ and ∂Ωu ∪ ∂Ωt = ∂Ω, such that displacement
ū(x) for x ∈ ∂Ωu and traction t̄(x) for x ∈ ∂Ωt is applied as shown in the Figure 1. The external work
P(u(x)) due to the applied loading defined above is given by

P(u(x)) :=

∫
Ω

fv · u dV +

∫
∂Ωt

t̄ · u dS, (1)

where fv : Ω→ Rndim is the distributed body force.

Ω

Ω

ΩΩ Ω Ω

Ω

Ω

fv fv

a) Sharp crack in the bulk b) Smeared crack

Figure 1: Schematic representation of diffusive cracks.

The variational approach to fracture according to Griffith’s theory can be interpreted as the competition
between the elastic energy Ψ(u) created by the body due to external forces and the surface energy Ψc(Γ)
created by crack propagation. In this context, the quasi static displacement field ut(x) and the crack set Γt
at any given discrete time step t ∈ [0, T ] are given as a minimization problem (see [51] for more details)

(ut,Γt) = arg min Π(u,Γ)S :=

∫
Ω\Γ

Ψ(ε) dV +GCHndim−1(Γ ∩ Ω\∂Ωt), (2)

with S := [u = ū on ∂Ωu, Γt ⊃ Γt−1] , Hndim−1(Γ) is the Hausdorff (ndim − 1) dimensional measure of the
unknown crack set Γ, GC [J/m2] is the critical energy release rate, and Ψ(ε) is the elastic energy density
that depends on the strain field ε(x).

Since Γ in Eq.(2) is unknown a priori, the numerical approximation of the functional given in the former
expression is crafted as a free-discontinuity problem based on the Tortorelli’s elliptical regularization [52]
of the Mumford-Shah potential used in image segmentation [53], and later adapted to brittle fracture in
[54, 51]. In this framework, the crack set Γ is replaced by (Hndim−1, ndim − 1) rectifiable borel jump set
of u, J(u). Then, there exists a sequence (Γi)

∞
i of C1 hyper-surfaces, covering almost all of J(u). ie

H1(Ju/
∞⋃
i=1

Γi) = 0, in a suitable space such as SBD(Ω)/GSBD(Ω) as detailed in Section 3, see [50, 55, 56]
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for more details. Hence, the surface energy associated with the crack is approximated using a scalar field
d ∈ [0, 1] (denominated as crack phase field variable), and the internal length scale l ∈ R+ governing the
width of the diffusive crack such that, d = 0 for an intact material and d = 1 for completely damaged
material takes the form, see Fig. 1

Ψc(Γ) =

∫
Γ

GC dS ≈
∫

Ω

GC
4cw

γ(d; ∇d) dV, (3)

where, γ(d; ∇d) is the crack surface energy density function [57] defined as

γ(d; ∇d) :=
α(d)

l
+ l |∇d|2 . (4)

Here, cw :=
∫ s

0

√
α(s)ds is the normalization parameter, α(d) := d2 is the continuous monotonic function

with α(0) = 0 and α(1) = 1, called as geometric crack function which determines the distribution of the

phase field in line with AT-2 model [58, 59, 60]. The term α(d)
l is local part, and l |∇d|2 is the non-local

part, which incorporates the internal length scale l. Due to the regularization of the crack Γ by the phase
field variable d, the elastic energy now not only depends on the displacement field u(x), but also on the
variable d(x) as

Ψ(u, d) =

∫
Ω

g(d)Ψ0(ε(u)) dV, (5)

where g(d) is the energetic degradation function characterized by the deterioration of the initial elastic
energy function Ψ0(ε) defined as g(d) = (1 − d)2 + Kl, with g(0) = 1, g(1) = 0, dgdd < 0, and Kl = O(l).
Since d is bounded, the degradation function g(d) = (1−d)2 which maps g(d) : [0, 1]→ [1, 0] is also bounded.
Hence, the stored energy functional in Eq. (5) describes the transition from the intact state to the fully
damaged state.

Thus, the total regularized energy functional of the solid in Eq. (2) takes the form:

Πl(u,Γ) =

∫
Ω

[g(d) +Kl] Ψ(ε) dV +

∫
Ω

GC
4cw

[
α(d)

l
+ l |∇d|2

]
dV

−
∫

Ω

fv · u dV−
∫
∂Ω

t̄ · u dS. (6)

The choice of α(d) is motivated [57] by the fact that quadratic function for α(d) ensures the admissible
range d ∈ [0, 1] with an infinite support. As a consequence, the phase field should be solved in the whole
computational domain. However, the high computational time due to finer mesh size in order to resolve the
gradients in the phase field is overcome by creating external localized band on the crack path.

The elastic energy function given above is defined as Ψ(ε) = ε(u)T : C : ε(u), where C is the constitutive
tensor relating stresses and strains.

2.2. Extension to Functionally Graded Materials

In the context of FGMs, it is evident that the the material properties exhibit a spatial variation within
the specimen domain, and therefore they are functions of the material point [61, 62], i.e. depending on
the location. Consider a FGM with grading profile Vf = Vf (x) as a function of spatial variable x. Then
all the material properties can be expressed as a function of Vf (x) i.e GC = GC(x, Vf ) = GC(x) and the
compliance tensor C = C(x, Vf ) = C(x). The compliance tensor for the 2D plane strain takes the form:

C(x) =
E(x)

(1 + ν(x))(1− 2ν(x))

 1− ν(x) ν(x) 0
ν(x) 1− ν(x) 0

0 0 1−2ν(x)
2

 ,
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where E(x) and ν(x) is the position-dependent Young’s modulus and Poisson ratio respectively. See Section
5 for a complete set of examples.

As an example, for ndim = 2, and x =[x, y] within a rectangular plate of width 2w and height 2b, and

grading in the y-direction, the volume fraction Vf of the material A can be defined as Vf (x) =
(

1
2 + y

h

)K
,

where K represent a material gradient index.
Then, via the invocation of the rule of mixtures, the Young’s modulus at a generic point x as E(x) =

EA + (EB −EA)Vf (x), where EA, EB are the Young’s modulus of material A and material B, respectively.
Similarly, the fracture toughness KIC and the Poisson ratio ν are expressed as KIC(x) = KICA + (KICB −
KICA)Vf (x) and ν(x) = νA+ (νB − νA)Vf (x) and hence the fracture energy for plane strain condition takes

the form GIC(x) =
(1−ν(x)2)K2

IC(x)

E(x) .

The internal length scale l is largely considered as a material parameter [63]. This length scale l was
experimentally determined in [64] for homogeneous materials, relating its value to the apparent material
strength. Once the material parameter such as Young’s modulus E , fracture toughness GC are known,
then the failure stress σc can be obtained using the closed-form relation σc =

√
GCE/L, where L is the

characteristics size of the specimen. In particular, Tanné and co-authors [65] proposed that, once these

material properties are known, i.e σc, E, GC , then the characteristic length l can be set as l = 27
256

(
GIcE
σ2
c

)
.

The rationale behind the choice of constant length scale in [34] is due to the intricate relation between
critical stress σc and fracture toughness KIC = σcY

√
πa where Y is a geometric factor and ”a” is crack

size. Under such conditions, the length scale given by l = 27
256

(
K2
IC

σ2
c

)
= 27

256 (Y 2πa) is a constant. However,

within the context of FGM, this analysis can be assumed as simplification rendering the condition that the
fracture toughness can be approximated as KIC = σ∞Y

√
πac, where ac is the smallest defect size, which

in principle is an internal defect size depending upon the intrinsic material properties. Moreover, a general
analysis might suggest that failure stress for FGM at different locations might also happen at different values,
yielding that the critical stress σc required for cracking is also a function of grading. This later condition
leads to approximate σc as a function of grading Vf (x), and possibly the characteristics length scale l would
be also a function of the spatial variation, i.e. function of the material point location x. Thus, the variation
of E,GIc, Vf on x suggests that each material point x ∈ Ω has different characteristics, see [16] and the
references therein. Accordingly, and without any loss of generality, we assume in the sequel that σc = f(Vf )
[65, 66]

l(x) =
27

256

(
GIc(x)E(x)

σ2
c (x)

)
. (7)

Analyzing the previous expression, it is worth noting that the variation of length scale l(x) depends
on the elastic mismatch. For certain elastic mismatch, the variation of l(x) can span across one order of
magnitudes, as is discussed in the forthcoming Sections.

Consequently, the total energy functional of Eq.(6) in the context of FGM is given by

Πl(x)(u, d) =

∫
Ω

[
(1− d)2 +Kl

]
(Ψ(ε)) dV +

∫
Ω

GC(x)

2

[
d2

l(x)
+ l(x) |∇d|2

]
dV

−
∫

Ω

fv · u dV−
∫
∂Ω

t̄ · u dS, (8)

with Ψ(ε) = ε(u)T : C(x) : ε(u)
Note that in order for the second integral in Eq.(8) to be mathematically meaningful, i.e [67, 68]∫

Ω

GC(x)

2

[
d2

l(x)
+ l(x) |∇d|2

]
dV ∈ L1(Ω),

GC(x) and l(x) has to be at least locally integrable functions, i.e GC(x), l(x) ∈ L1
loc(A) in a compact

set A ⊂ Ω with l(x) 6= 0 for all x ∈ Ω. It is easy to see that, if Vf (x) ∈ L1
loc(A), then by construction

GC(x), l(x) ∈ L1
loc(A) for some compact set A.
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2.3. Governing equation in strong form

The solution to Eq. (8) can be obtained by solving it as a minimization problem, i.e determine (u, d)
from

(u(x), d(x)) = arg min
x
{Πl(x)(u, d)}. (9)

The governing (Euler-Lagrangian) equations under quasi-static conditions are determined by taking first
variation of the functional Πl(x)(u, d) in Eq. (8) in terms of Gateaux derivative for the variation δu and δd
of u and d respectively, resulting in

[
(1− d)2 +Kl

]
∇ · σ(x) + fv0 on Ω, (10a)

with σ · n = t̄ on ∂Ωt, (10b)

GC(x)

[
d

l(x)
− l(x)∆d

]
− 2(1− d)Ψ (ε,x) = 0 on Ω, (10c)

with ∇d · n = 0 on ∂Ω, (10d)

where n is the outward normal vector on ∂Ω. Note that on boundary, ∇d · n = 0 and residual stiffness
Kl = 0 because of compactness property [50, 52].

The unilateral stationary condition [51] of the total energy functional implies that δΠl(x) = 0 for each
δd, δu > 0 and δΠl(x) > 0 for δd, δu = 0, along with the irriversibility [51, 69] and boundedness of d leads
to the following first order optimality (KKT) conditions for the quasi-static evolution.

ḋ ≥ 0, (11a)

GC(x)

[
d

l(x)
− l(x)∆d

]
− 2(1− d)Ψ(ε,x) ≤ 0, (11b)

ḋ

{
GC(x)

[
d

l(x)
− l(x)∆d

]
− 2(1− d)Ψ(ε,x)

}
= 0, (11c)

where ḋ = dd
dt . The expression GC(x)

[
d
l(x) − l(x)∆d

]
indicates the energetic crack resistance and 2(d −

1)Ψ(ε) is the crack driving force.

3. Γ-Convergence analysis

As mentioned above, due to the bounded nature of l(x), which may also involve non-linearity due to
heuristic differences in the material properties, the Γ-convergence in the sense of [52, 50, 70] can still be
applied under the assumption that the domain Ω is size-scaled.

We use the existing results in [50] and prove that the model in Eq. (6), under scaling in two dimension,
mimics that of the AT-2 model with a little variation. Note that, it is possible to apply the more recent
advancements as in [71, 55, 72] with small modifications, but we choose to use [50] because of the mechanical
insight that can be derived from the L∞ bounds on u(x).

In order for this proof to be self-consistent, we provide few important definitions and results, while further
details can be seen in [50] and references therein which are omitted here for the sake of brevity. The proof
is organised as follows, first we redefine the problem in terms of a scaling function, convert the total energy
in terms of scaling which is similar to that of the classical AT-2 model. Using density and compactness
results of the space SBD(Ω), we prove that the reduced energy functional satisfies lim-sup inequality by
constructing a recovery sequence and later show that the results of [50] can be directly applied with small
modification to get lim-inf inequality, if l(x) is a bounded function (like in FGM) or even a constant (like
in [73, 74])
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3.1. Mathematical setting

Given u ∈ Ω, where Ω is open subset of Rndim , one says displacement u : Ω → Rndim has bounded

deformation (BD), whenever the symmetric part of the distributional derivative ε(u) =

(
Du +DTu

2

)
is a

bounded radon measure [56]. Moreover ε(u) can be decomposed into three parts, one absolutely continuous
part with respect to Lebesgue measure dx, denoted by e(u)dx, jump set carried by the rectifiable (N − 1)
dimensional set Ju of points where the function u has approximate limits u+(x) and u−(x) together with
some normal vector vu and Cantor part εc(u) which vanishes on Borel sets of finite Hndim−1 measure.
Meaning that, the crack set Γ (with respect to Lebesgue measure) is completely represented by the jump
set Ju of u. The space of SBD(Ω) (special function of bounded deformation) is defined as

SBD(Ω) := {u ∈ BD(Ω); εc(u) = 0} .

Restricting the analysis to 2D case, i.e. Ω ⊂ R2. Let ū be a position vector ū = [ū, v̄] defined on Ω
such that for all ū ∈ Ω, the kinematic displacement field in Ω be defined as u(ū) = [u(ū), v(ū)]. Define the

scaling function Sε :=

(
1

2
+

1

2ε

)
and the continuous map Su : Ω→ Ω′ with Su ∈ R2×2 as

Su := Sε

[
1 0
0 1

]
. (12)

Define the inverse mapping S−1
u : Ω′ → Ω as

S−1
u :=

1

Sε

[
1 0
0 1

]
,

where ε > 0 is a positive constant that goes to zero, and Ω′ is the scaled domain such that Ω′ = SuΩ ⊂ R2.
Let x be a position vector x := [x, y] defined on Ω′, then for all x ∈ Ω′, x is defined in terms of scaling as

x = Su (ū)
T
. Meaning that

x = [x, y] = Sε

[
1 0
0 1

] [
ū
v̄

]
= Sε[ū, v̄] = Sεū.

The corresponding displacement field on Ω′ is defined as u(x). Assuming that each of the displacement
field is bounded uniformly (by applied displacement) in L∞(Ω′), for a fixed large enough applied displacement
M ′, we have the following theorem.

Theorem 1. Let Ω′ be a Lipschitz-regular bounded open set. Let M ′ > 0, ε > 0, for a positive bounded
function l(x) ∈ L1

loc(Ω
′), define the functional for (u, d) ∈ L2(Ω′, R2)× L2(Ω′),

Πl(x)(u, d) =


∫

Ω′

[
(1− d)2 +Kε

]
Ψ(e(u)) dV +

∫
Ω′
GC(x)

2

[
d2

l(x)
+ l(x) |∇d|2

]
dV if (u, d) ∈ H1(Ω′, R2)×

H1(Ω′), and ‖u‖L∞ ≤M ′

+∞ otherwise,

(13)
with Kε = o(ε)→ 0 as ε→ 0. Then, as ε→ 0, Πl(x)(u, d) Γ−converges (in L2(Ω′, R2)× L2(Ω′)) to

Π(u, d) =

{∫
Ω

Ψ(e(u)) dV +GCH1(Ju) if u ∈ SBD(Ω), d = 1 and ‖u‖L∞ ≤M ′

+∞ otherwise
. (14)

First, consider for all ū ∈ Ω, for displacement u(ū), it is assumed that u(ū) ∈ SBD(Ω), and is bounded
by ‖u‖L∞ ≤ M. Then, it is easy to see that for all x ∈ Ω′, there exists a constant M ′ depending on the
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scaling factor Sε and M such that the deformation ‖u‖L∞(Ω′) ≤ M ′. Hence, without loss of generality, we

can assume that ‖u‖L∞(Ω′) ≤M ′ where M ′ is applied displacement on Ω′.

Physically, this means that, if body Ω with the applied displacement M(u) produces a strain of ε(u),
then, depending on the scaling factor Sε, the same applied displacement M(u) creates the strain proportional

to
ε(u)

Sε
in Ω′ (assuming uniform deformation). Hence, the applied displacement that is required to create

the same strain ε(u) in Ω′ depends on the scaling factor. To be precise M ′ ∝ SεM.
In [50], the compactness results for u ∈ SBD(Ω) are shown in [Theorem 5.1, [50]]: If a sequence

(un)n≥1 in SBD(Ω) is such that supn≥1 Πl(x)(u,Γ) < ∞, then up to a subsequence, there exists u ∈
SBD(Ω) such that un → u strongly in L2(Ω,R2), e(un) → e(u) weakly in L2(Ω; S2×2) and HN−1(Ju) ≤
lim infn→∞(Jun). Also, [Theorem 2, [50]] provides the density results for u ∈ SBD(Ω)∩L2(Ω,R2). Assuming
supn≥1 Πl(x)(u,Γ) < ∞, then there exist a sequence (un) of displacement in SBD(Ω) ∩ L2(Ω,R2), and
‖un − u‖L2(Ω,R2) → 0, such that Jun is closed in Ω, contained in a finite union of closed connected pieces of

C1 curves, un ∈ H1(Ω/Jun ; R2) and lim supn→∞Πl(x)(u, ¯Jun) ≤ Π(u, Ju).
With compactness and density results at hand, the proof of the Theorem 1 is organized as follows. First

we show that Eq. (13), by a simple change of variable can be reduced to the energy potential function similar
to that of the potential used in [50], but with a little difference. Later, we show the existence of minimizing
sequence (uε, dε) to the reduced model so as to prove the lim-sup inequality. Later, we show that for the
lim-inf inequality, the reduced model follows the same proof of lim-inf as in [50]. Due to the existence of
minimizing sequence, and lim-sup inequality assuming a suitable coercivity property of the functional, the
proof of the Theorem 1 is immediate.

3.2. Model reduction

Consider the energy functional in Eq. (13)

Πl(x)(u, d) =

∫
Ω′

[
(1− d)2 +Kε

]
Ψ(e(u)) dV +

∫
Ω′

GC(x)

2

[
d2

l(x)
+ l(x) |∇d|2

]
dV,

notice that Ω′ = SuΩ is the sizing domain which contains Sε, the size-scaling factor. The choice of Sε is
motivated by the fact that when ε = 1, Sε = 1 which coincide with the domain Ω. As ε → 0, Ω′ expands
and gives the same effect as if l→ 0 in Ω, meaning that as ε→ 0, the surface energy asymptotically goes to
the H1(Ju) approaching a sharp crack.

Since, dealing with the expanding boundaries is mathematically challenging, by using simple change of
variable, it is possible to move Sε inside the integral. For this reason, consider the scaling as defined before
x = Sεū implying x = Sεū and y = Sεv̄.
From change of variable, we have ∫

Ω′

f(x, y)dx =

∫
Ω

f(Sεū, Sεv̄) |J| dū,

for the Jacobian,

|J| = ∂(x, y)

∂(ū, v̄)
=

∣∣∣∣∣∣∣
∂x

∂ū

∂x

∂v̄
∂y

∂ū

∂y

∂v̄

∣∣∣∣∣∣∣ =
∂x

∂ū

∂y

∂v̄
= (Sε)

2
.

Now, the gradients can be defined as

∇u(x) =

[
∂u

∂x
,
∂u

∂y

]
,

∂u

∂x
=
∂u

∂ū

∂ū

∂x
+
∂u

∂v̄

∂v̄

∂x
=
∂u

∂ū

1

Sε
,
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and
∂u

∂y
=
∂u

∂ū

∂ū

∂y
+
∂u

∂v̄

∂v̄

∂y
=
∂u

∂v̄

1

Sε
.

Now, ∇u(x) =
1

Sε
∇u(ū) where u(ū) is the displacement at scaled points. Notice that no assumption of

the displacement is made here. Hence, we have ε(u(x)) =

(
∇u +∇Tu

2

)
=

1

Sε
ε(u(ū)).

As in the case of the linear elasticity Ψ(ε(u)) = ε(u) : C(ū) : ε(u), having a quadratic form and since
C(x) is positive definite matrix, C(ū) is the continuous one to one mapping from Ω′ to Ω without changing

the matrix or its positive definiteness. From this, we can conclude that Ψ(ε(u(x))) =
1

S2
ε

Ψ(ε(u(ū))).

Now, the bulk energy becomes:∫
Ω′

[
(1− d)2 +Kε

]
Ψ(e(u))dx =

∫
Ω

[
(1− d)2 +Kε

] 1

S2
ε

Ψ(ε(u(ū))) |J| dū =

∫
Ω

[
(1− d)2 +Kε

]
Ψ(ε(u(ū))) dū.

Physically, this means that for a fixed applied displacement M ′, the bulk energy released by body Ω and
Ω′ are equal which can also be readily seen numerically in forthcoming analysis. Now consider the surface
energy in Eq. (13), ∫

Ω′

GC(x)

2

[
d2

l(x)
+ l(x) |∇d|2

]
dx.

In order to inherit the result of [50], it is required that d∗ = 1 for intact material and d∗ = 0 for fully
broken state. Hence, renaming d, set d∗ = (1− d), we have surface energy as∫

Ω′

GC(x)

2

[
(1− d∗)

2

l(x)
+ l(x) |∇d∗|2

]
dx.

Applying change of variable here would result in

∫
Ω′

GC(x)

2

[
(1− d∗)

2

l(x)
+ l(x) |∇d∗|2

]
dx =

∫
Ω

GC(x)

2

[
(1− d∗(Sεū))

2

l(x)
S2
ε + l(x) |∇d∗(Sεū)|2

]
dū.

Without loss of generality, relabeling and renaming the variables leads to∫
Ω′

GC(x)

2

[
(1− d∗)

2

l(x)
+ l(x) |∇d∗|2

]
dx =

∫
Ω

GC(x)

2

[
(1− d∗)

2

l(x)
S2
ε + l(x) |∇d∗|2

]
dx. (15)

Combining bulk energy and surface energy leads to

Πl(x),ε(u, d
∗) =

∫
Ω

[
d∗2 +Kε

]
Ψ(ε(u)) dx+

∫
Ω

GC(x)

2

[
(1− d∗)

2

l(x)
S2
ε + l(x) |∇d∗|2

]
dx, (16)

with ‖u‖L∞ ≤M ′, d∗ = 0 for fully broken state and d∗ = 1 for intact state and d∗ : Ω→ [0, 1].
Now, it becomes clear identify that functional in Eq. (13) and Eq. (16) are equivalent to each other.

Also, this equivalence has an important consequence as an engineering application which is explained in
Section 5.3.3. With the results on SBD(Ω) and L∞ bounds on u, Theorem 1 is equivalent to showing the
Γ−convergence to the following Theorem

9



Theorem 2. Let Ω be a lipschitz-regular bounded open set. Let M ′ > 0, ε > 0, for a positive bounded
function l(x) ∈ L1

loc(Ω), define the functional for (u, d∗) ∈ L2(Ω, R2)× L2(Ω),

Πl(x),ε(u, d
∗) =


∫

Ω

[
d∗2 +Kε

]
Ψ(ε(u)) dx+

∫
Ω

GC(x)

2

[
(1− d∗)

2

l(x)
S2
ε + l(x) |∇d∗|2

]
dx if (u, d∗) ∈ H1(Ω, R2)×

H1(Ω) and ‖u‖L∞ ≤M ′

+∞ otherwise,

(17)
with Kε = o(ε)→ 0 as ε→ 0. Then, as ε→ 0, Πl(x),ε(u, d

∗) Γ−converges (in L2(Ω, R2)× L2(Ω)) to

Π(u, d∗) =

{∫
Ω

Ψ(e(u))dx+GCH1(Ju) if u ∈ SBD(Ω), d∗ = 1 and ‖u‖L∞ ≤M ′

+∞ otherwise
. (18)

Proof. First notice that mechanical energy is the same in both Eq. (13) and (17) , also recall that Ju is(
H1, 1

)
rectifiable. Because of Theorem 3 of [50], we just need to prove lim-inf inequality for (u, d∗) with

d∗ = 0 and u ∈ SBD(Ω) with H1(J̄u) < ∞, replacing H1(Ju) by H1(J̄u) in the energy (also assuming the
closure of Ju, i.e J̄u is rectifiable). Define distance function

d(x) := dist(x, J̄u).

The volume of the area bounded by s-level set of d is

l(s) =
∣∣{x ∈ R2; d(x) ≤ s

}∣∣ for all s > 0.

The distance function is 1-lipshitz, i.e |∇d(x)| = 1 a.e. Now the co-area formula for lipshitz functions is
given by

l(s) =

∫ s

0

H1({x; d(x) = t})dt,

so that, in particular we have that

l′(s) = H1({x; d(x) = s}).
Now, we can easily see that

lim
s→0

l(s)

s
= lim
s→0

∫ s

0

H1({x; d(x) = t})dt = H1(J̄u),

as s→ 0, d(x)→ 0 much faster than s itself and hence
l(s)

s
shrinks to H−measure. i.e

lim
s→0

l(s)

s
= H1(J̄u).

The proof of the Lim-inf inequality result is mostly now standard [75, 76, 77] and Chambolle el at. [50]
proved the result for linear elasticity. Hence, we show that the functional in Eq. (17) reduces to the already
proven results and sketch the proof afterwards.

Consider a sequence (uε, d
∗
ε ) that converges to (u, d∗) such that supε≥1 Πl(x),ε(uε, d

∗
ε ) < ∞, then it

is easy to show by taking for each ε a level set with sε ' 1/2 such that supε>0H1
(
∂∗
{
d∗j > s

})
< ∞,

then there exists a sub-sequence (uεj , d
∗
εj ) converges to some (u, d∗) in L2(Ω) as εj → 0(or j → ∞) such

that supj≥1 Πl(x),ε(uεj , d
∗
εj ) < ∞. First note that, we must have d∗ = 1, and consider the surface energy

functional, and apply young’s inequality in L2(Ω) with a2 =
(1− d∗)

2

l(x)
S2
ε , b2 = l(x) |∇d∗|2 and 2ab ≤ a2+b2,

we have

10



∫
Ω

[(
1− d∗j

)2
l(x)

S2
εj + l(x)

∣∣∇d∗j ∣∣2
]

dx ≥
∫
Ω

[∣∣(1− d∗j
)∣∣ (1 +

1

εj

) ∣∣∇d∗j ∣∣] dx,

≥
∫
Ω

[∣∣(1− d∗j
)∣∣ ∣∣∇d∗j ∣∣] dx+

∫
Ω

[∣∣(1− d∗j
)∣∣ ( 1

εj

) ∣∣∇d∗j ∣∣] dx,

≥
∫
Ω

[∣∣(1− d∗j
)∣∣ ∣∣∇d∗j ∣∣] dx,

so that, using the co-area formula, we obtain

Πl(x),εj (uj , d
∗
j ) ≥

1∫
0

ds

 ∫
{d∗j>s}

2sΨ(ε(uj)) dx+ (1− s)H1
(
∂∗
{
d∗j > s

}) .

Here,
(
∂∗
{
d∗j > s

})
is the reduced boundary of the finite perimeter set

{
x; d∗j (x) > s

}
as in [78, 56, 50].

We can adopt here the results of SBD case with uniform L∞ bound on the u as in proof of [lemma 5.1 [50]],
we have for almost each s ∈ (0, 1), we have that

∫
Ω

2sΨ(ε(u)) dx+ 2(1− s)H1 (Ju) ≤ lim inf
ε→0

1∫
0

ds

 ∫
{d∗j>s}

2sΨ(ε(uj)) dx+ (1− s)H1
(
∂∗
{
d∗j > s

}) .

Integrating over s and using Fatou’s lemma and pass to the limits, we have the lim-inf inequality. i.e

Πl(x)(u, d
∗) ≤ lim inf

ε→0
Πl(x),εj (uj , d

∗
j ).

Now for the lim-sup inequality, we construct a sequence (uε, d
∗
ε ) which converge in L2 to (u, d∗), meaning

that there exists a sequence that can go upto the Griffith’s energy potential. If the constructed sequence
of minimizers converges to a minimum, and sequence of functional also converge to the minimum value
of the functional, then the limit of the sequence functions of minimizing sequence also converges upto a
subsequence.

Consider the following sequence of minimizers

uε(x) =


d(x)

αε
u(x) if 0 ≤ d(x) ≤ αε

u(x) Otherwise,
(19)

d∗ε (x) =


0 if 0 ≤ d(x) ≤ αε

1− ε√
2l(x)

exp

(
−d(x)− αε

ε2

)
if d(x) ≥ αε.

(20)

Clearly uε(x)→ u in L2(Ω) as ε→ 0 i.e∫
Ω

(uε − u)
2

dx =

∫
0≤d(x)≤αε

(
d(x)

αε
u(x)− u(x)

)2

dx+

∫
d(x)≥αε

(u(x)− u(x))
2

dx = 0,

meaning that ‖uε − u‖L2(Ω) = 0.
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Similarly, d∗ε (x) → 1 as ε → 0 almost everywhere since d∗ε ≤ 1 and
ε√

2l(x)
exp

(
−d(x)− αε

ε2

)
→ 0 as

ε→ 0. Hence, we have that ‖d∗ε − d∗‖L2(Ω) = 0.
Now consider the bulk energy

∫
Ω

[
d∗2 +Kε

]
Ψ(ε(u)) dx ≤

∫
0(x)≤αε

[
d∗ε

2 +Kε

]
Ψ(ε(uε)) dx+

∫
d(x)≥αε

[
d∗ε

2 +Kε

]
Ψ(ε(uε)) dx,

≤
∫

0≤d(x)≤αε

KεΨ(ε(uε)) dx+

∫
d(x)≥αε

[1 +Kε] Ψ(ε(uε)) dx.

Note that for d(x) ≤ αε

∇uε(x) =
d(x)

αε
∇u(x) +

∇d(x)

αε
u(x) ≤ d(x)

αε
∇u(x) +

M ′

αε
.

Here, we used 1-Lipshitz characteristic of d(x) and L∞ bounds on the u. With this it is immediate that
as ε→ 0, the volume of the integral between 0 ≤ d(x) ≤ αε shrinks to zero and for d(x) ≥ αε,

Ψ(ε(uε)) ≤
(
d(x)

αε
∇u(x)

)2

+

(
M ′

αε

)2

+
d(x)

αε
|∇u(x)|M

′

αε
,

∫
Ω

[
d∗2 +Kε

]
Ψ(ε(u)) dx ≤

∫
0≤d(x)≤αε

Kε

(
d(x)

αε

)2

Ψ(ε(uε)) dx+

∫
0≤d(x)≤αε

Kε

(
M ′

αε

)2

dx

+

∫
0≤d(x)≤αε

Kε

(
d(x)

αε

)2

M ′
√

Ψ(ε(uε)) dx+

∫
d(x)≥αε

[1 +Kε] Ψ(ε(uε)) dx.

Now as ε→ 0, αε = o(ε)→ 0 faster than ε. Setting Kε = o(αε)→ 0 faster than αε . So,
Kε

αε
→ 0,

d(x)

αε
→

0 and ∫
0≤d(x)≤αε

Kε

(
M ′

αε

)2

dx = Kε

(
M ′

αε

)2

l(αε)→ 0.

With this, we can conclude that

lim sup
ε→0

∫
Ω

[
d∗2 +Kε

]
Ψ(ε(u)) dx ≤

∫
Ω

Ψ(ε(u)) dx. (21)

Similarly, consider the surface energy term without GC(x).

∫
Ω

[
(1− d∗)

2

2l(x)
S2
ε +

l(x)

2
|∇d∗|2

]
dx ≤

∫
0≤d(x)≤αε

[
(1− d∗ε )

2

2l(x)
S2
ε +

l(x)

2
|∇d∗ε |

2

]
dx+

∫
d(x)≥αε

[
(1− d∗ε )

2

2l(x)
S2
ε +

l(x)

2
|∇d∗ε |

2

]
dx

For d(x) ≥ αε
d∗ε = 1− ε√

2l(x)
exp

(
−d(x)− αε

ε2

)
,

12



(
1 + ε

2ε

)2

|1− d∗ε |
2

=
(1 + ε)

2

2l(x)
exp

(
−d(x)− αε

ε2

)
.

Calculating |∇d∗ε |
2
, with a simple algebraic manipulation results in l(x) |∇d∗ε |

2 ≤ 1

2ε2
exp

(
−d(x)− αε

ε2

)
.

Putting this in the surface energy, we have

∫
Ω

[
(1− d∗)

2

2l(x)
S2
ε +

l(x)

2
|∇d∗|2

]
dx ≤

∫
0≤d(x)≤αε

1

2l(x)
S2
ε dx+

∫
d(x)≥αε

(1 + ε)
2

2l(x)
exp

(
−d(x)− αε

ε2

)
dx

+

∫
d(x)≥αε

1

2ε2
exp

(
−d(x)− αε

ε2

)
dx.

In this inequality, first term and second term goes to zero as ε → 0 is immediate. Consider the third
term

∫
d(x)≥αε

1

2ε2
exp

(
−d(x)− αε

ε2

)
dx =

1

2ε2

∫
d(x)≥αε

exp

(
−s
ε2

)
exp

(αε
ε2

)
H1({d(x) = s})dx,

=
1

2ε2

∫
d(x)≥αε

exp

(
−s
ε2

)
exp

(αε
ε2

)
l′(s)dx.

by setting
s

ε2
:= t, changing the variable and integrating it by parts would result in

∫
d(x)≥αε

1

2ε2
exp

(
−d(x)− αε

ε2

)
dx =

l′(αε)

2
+
e

(αε
ε2

)
2ε2

∫
d(x)≥αε

(αε
ε2

+ t
) l(αε + ε2t)

2 (αε + ε2t)
e−tdt.

Taking limit of the function as ε→ 0 leads to

lim sup
ε→0

∫
Ω

[
(1− d∗)

2

2l(x)
S2
ε +

l(x)

2
|∇d∗|2

]
dx ≤ H1(J̄u).

Combining both surface energy and bulk energy we have the lim-sup inequality.
i.e

lim sup
ε→0

Πl(x),ε(uε, d
∗
ε ) ≤ Π(u, d∗).

and hence the proof of Theorem 2. By equivalence relation as stated, we also have the proof of Theorem 1.

4. Finite element formulation

In this section, the FE implementation of the multi-field displacement-phase field model proposed in
Eqs. (10a) and (10c) is presented. In order to construct the numerical solution of the corresponding initial
boundary value problem (IBVP), we consider the weak form of the former set of equations for the test
functions δu and δd of the primary fields u, d respectively:
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∫
Ω

[
(1− d)2 +Kl

]
σ : ε(δu)dV−

∫
Ω

fvδu dV−
∫
∂Ω

t̄δu dS = 0,∫
Ω

GC(x)

[
d

l(x)
δd + l(x)∇d · ∇δd

]
dV−

∫
Ω

2(1− d)Ψ (ε,x) δd dV = 0.

Note that, it is often recommended to use unequal interpolation orders for the coupled multi-field prob-
lems in order to avoid stress oscillations and potential numerical interlocking. Notwithstanding, it can be
argued from previous investigations [79, 80, 81] that this strategy is not required in the present study since
the stress oscillations and numerical locking might only arise in a very narrow band of crack propagation
and have negligible effects on the convergence rates and numerical results of the overall problem.

Accordingly, we define dicretization Ω → Ωe, u → ue, δu → δue, d → de, δd → δde such that ue ∈ Uh,
ve ∈ Vh, de ∈ Ud, δde ∈ Uδd, and partition of unity holds for the functional space for approximate functions

Uh(u) =

{
u ∈ H1(Ω)

∣∣∣∣∣∇u ∈ L2(Ω); u = ud on ∂Ωd

}
, (22a)

Vh(δu) =

{
δu ∈ H1(Ω)

∣∣∣∣∣∇δu ∈ L2(Ω); δu = 0 on ∂Ωd

}
, (22b)

Ud(d) =

{
d ∈ H1(Ω)

∣∣∣∣∣d(x) ∈ [0, 1], ḋ ≥ 0 ∀x ∈ Ω

}
, (22c)

Uδd(δd) =

{
δd ∈ H1(Ω)

∣∣∣∣∣δd ≥ 0 ∀x ∈ Ω

}
. (22d)

Upon the above setting, the displacement field ue and the strain field ε(ue) are interpolated in terms of
the nodal displacements du as follows

ue(x) ≈ N(x)du ∇ue(x) ≈ B(x)du, (23)

where N(x) is the matrix that arranges the shape functions associated with at the element in computational
domain Ωe, and B(x) identifies its corresponding spatial derivative (also denominated as compatibility
operator).

In a similar manner, complying with an isoparametric formulation, the FE discretization of phase field
d variable and the gradient ∇d in terms of nodal phase field dd renders

de(x) ≈ N(x)dd ∇de(x) ≈ Bd(x)dd, (24)

where the same order of interpolation is chosen for the displacement and the phase field variables.
Through the insertion of the previous interpolation scheme for the displacement and the crack-like phase

field variable, the discrete versions of the element residual vectors for both fields are given by

ru =

∫
Ωe

(
(1− d)2 +Kl

)
BT(x)σ dV−

∫
Ωe

NT(x)fv dV−
∫
∂Ωe

BT(x)t̄ dS.

rd :=

∫
Ωe

−2(1− d)NT(x)Ψ (ε,x) dV +

∫
Ωe

GC(x)

l(x)

[
NTd + l(x)2(Bd)T∇d

]
dV,
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The solution is computed using quasi-newton solver. In line with [82, 83], the stiffness matrix is updated
after each iteration according to Broyden-Fletcher-Goldfarb-Sahnno(BFGS) algorithm . In such case the
initial guess for BFGS to estimate (t+ ∆t)th time step takes the form[

du
dd

]
t+∆t

=

[
du
dd

]
t

−
[

Kuu 0
0 Kdd

]−1

t

[
ru
rd

]
t

. (25)

Equivalently, we can express

(z)t+∆t = (z)t −K−1
t (r)t (26)

where

∂Ru

∂du
= Kuu =

∫
Ωe

(
(1− d)2 +Kl

)
BTC(x)B dV, (27)

∂Rd

∂dd
= Kdd =

∫
Ωe

2NTNĤ dV +

∫
Ωe

GC(x)

l(x)

[
NTN + l(x)2(Bd)(Bd)T

]
dV. (28)

are the elemental tangent stiffness matrix.
The above system of equations incorporates the history variable as in [84], denoted as Ĥ, in order to

ensure irreversibility of the crack defined as

Ĥ = max
τ∈[0,t]

(Ψ(t)). (29)

The approximated stiffness matrix K̃ is updated after a set number of iterations in case of not having
an converged solution using

K̃ = K̃t −
(K̃t∆z)(K̃t∆z)T

∆zK̃t∆z
+

∆r∆rT

∆zT∆r
(30)

where ∆z = zt+∆t − zt, and ∆r = rt+∆t − rt. Therefore, that the approximated stiffness matrix K̃
satisfies

K̃∆z = ∆r (31)

The system of equations has been implemented in finite element software ABAQUS in order to take advan-
tage of the in-built BFGS solver. For this purpose, a user defined UEL is written for the coupled equilibrium
equations. Moreover, with regard to the FGM formulation, the corresponding variation of material proper-
ties has been implemented at each material integration point in a continuous manner by fetching the data
COORDS(nnode, mcrd) in abaqus UEL subroutine.

5. Numerical experiments

In this section, for validation purposes, a comprehensive numerical example of asymmetric three-point
bending of PMMA beam is discussed. A qualitative assessment of crack path is performed, which is validated
against available experimental results in order to show the predictive capabilities of the proposed model.
Subsequently, using the classical benchmark problem of single-edge notched plate under tensile loading
conditions, mechanical insights based on variation of Young’s modulus ratio, initial crack length and position
of the model are pinpointed, in conjunction with a final discussion on size-scale effects emphasizing the
equivalence relationship. Finally, the current PF method for FGM is applied to study the failure initiation
and propagation at the micro-scale in a single-fiber reinforced FGM matrix problem.
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y(mm) EA(MPa) ν KIC,A (MPa
√

m)
0 1780 0.41 0.99
60 4000 0.39 1.19

Table 1: Material Properties of PMMA beam

5.1. Material properties/ grading

Let A and B are two material compositions of the functionally graded material with the volume fraction
of Material A in the y-direction given as

Vf (x) =

(
1

2
+
y

h

)K
, (32)

where K is a grading constant. The volume fraction of Material B can be estimated as VB(x) = 1− Vf (x).
Based on the rule of mixtures, the corresponding Young’s modulus, fracture toughness, Poisson ratio and
apparent strength in terms of volume fractions takes the form:

E(x) = E1 + (E2 − E1)Vf (x), (33a)

KIC(x) = K1c,1 + (K1c,2 −K1c,1)Vf (x), (33b)

ν(x) = ν1 + (ν2 − ν1)Vf (x), (33c)

σc(x) = σc1 + (σc2 − σc1)Vf (x). (33d)

Assuming plain strain condition for all the numerical experiments, we have

GC(x) =
(1− ν(x)2)KIC(x)2

E(x)
, l(x) =

27

256

(
GC(x)E(x)

σ2
c (x)

)
. (34)

All the material properties in the subsequent sections take the form as mentioned, unless specified.

5.2. Validation experiment

In this section, we investigate crack propagation in a graded PMMA beam subjected to three-point
bending with unsymmetrical loading conditions. In this example, we consider the grading along the y-
direction with the boundary condition shown in Figure 2. All the material properties are taken as the linear
combination of the homogeneous properties in the grading direction according to the rule of mixtures as in
Section 5.1. The material properties of the PMMA beam are listed in Table 1 in line with [85].

The domain is discretized with 97371 4-node quadrilateral plane stress elements. The length of each side
of element near the process zone is kept less than 0.2 mm in order to ensure that gradient of the phase-field
is resolved properly.

Fig. 3a shows the crack propagation path due to asymmetrical loading. Fig. 3b shows the comparison
of the crack trajectories for the graded PMMA beam obtained by the present model and the experimental
(averaged) results as in [85]. The crack propagation path due to the present model shows an excellent
agreement with the experimental results. Moreover, Fig. 4 shows the comparison of the reaction force v/s
displacement curve for the constant characteristic length scales of l = 1.49, l = 2.51 and the variable length
scale l(x). The results indicates that the small variation in the length scale affects the system behaviour
which are reflected in the reaction force vs displacement curve (note that the grading profile chosen in this
application is relatively smooth).
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Figure 3: Crack propagation of PMMA beam under unsymmetrical loading condition. a)Crack propagation b)Comparison
with experimental results.

5.3. Insights on the role of the different parameters of the formulation. Comprehensive analysis of grading
profiles

In this section, we present several numerical examples which include a classical benchmark problem,
corresponding a single-edge notched plate under monotonic tensile loading conditions up to failure. For
each of the examples herein investigated, the effects of Young’s modulus ratio, size effects, crack length
and position effects, grading profiles on the crack propagation are pinpointed. Also, we provide a general
behavior discussion on the response of FGM specimens using simple mathematical manipulations in order
to support the numerical examples.

With the aim of understanding the effects of change of l at every material point, we invoke and recall
the following theorem.
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Theorem 3. With the usual notations mentioned before, for every x ∈ Rndim , under the same domain Ω
and loading conditions, for any given grading function Vf ∈ L1

loc(Ω),
1. Elastic energy Ψ(u, d) of FGM is comprised (bounded from above and below) between its homogeneous

material composition. i.e

Ψ(u, d)

∣∣∣∣
Emin

≤ Ψ(u, d) ≤ Ψ(u, d)

∣∣∣∣
Emax

.

2. Surface energy Ψc(d) created due to fracture is bounded between its homogeneous material composition

if the function f(x) = σ2(x)
E(x) is monotonic

Ψc(d)

∣∣∣∣
f(x)min

≤ Ψc(d) ≤ Ψc(d)

∣∣∣∣
f(x)max

.

Proof. Part-1: Let FGM has its constituents as Material A and B. Assume EA > EB , then for all x ∈ Ω,
Vf (x) ∈ L1

loc(Ω) is a function such that, by construction

EB = Emin ≤ E(x) ≤ Emax = EA meaning that E(x) ∈ [EB , EA].

Extending this inequality for the compliance tensor C(x) along with the fact that C(x) is positive definite1

leads to

C

∣∣∣∣
EB

≤ C(x) ≤ C

∣∣∣∣
EA

(35)

Consider the elastic energy of the FGM

Ψ(u, d) =

∫
Ω

[
(1− d)2 +Kl

] (
ε(u)T : C : ε(u)

)
dV, (36)

then for all x ∈ Ω, d ∈ [0, 1] implies that
[
(1− d)2 +Kl

]
≥ 0. Hence, the Eq. (36) can be bounded using

Eq. (35) as

Ψ(u, d)

∣∣∣∣
EB

≤ Ψ(u, d) ≤ Ψ(u, d)

∣∣∣∣
EA

.

1[Note that Youngs modulus E is many orders of magnitude larger than Poisson ratio ν, and hence the effect of ν is almost
zero].
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Now, if EB > EA, then the above arguments holds true with EA ≤ E(x) ≤ EB and hence the inequality
now takes the form

Ψ(u, d)

∣∣∣∣
EA

≤ Ψ(u, d) ≤ Ψ(u, d)

∣∣∣∣
EB

.

In both case, the elastic energy is bounded by its homogeneous constituent materials.
Part-2:- We will only prove for the case EA > EB , since the case EB > EA is a trivial extension.

Consider the surface energy of the FGM

Ψc(d) =

∫
Ω

GC(x)

2l(x)
d2 +GC(x)l(x) |∇d|2 dV,

From Eq. (7) , we have

GC(x) =

(
1− ν(x)2

)
K2
IC(x)

E(x)
, l(x) =

27

256

(
GC(x)E(x)

σ2
c (x)

)
Surface energy can be bounded by the following chain of inequalities.

∫
Ω

256σ2
min

27EA
d2 +

27
(
1− ν(x)2

)2
K4
IC(x)

256σ2
minEA

|∇d|2 dV

≤
∫
Ω

256σ2
c (x)

27E(x)
d2 +

27
(
1− ν(x)2

)2
K4
IC(x)

256σ2
c (x)E(x)

|∇d|2 dV

≤
∫
Ω

256σ2
max

27EB
d2 +

27
(
1− ν(x)2

)2
K4
IC(x)

256σ2
maxEB

|∇d|2 dV (37)

Case-1 When σmin = σA and σmax = σB
If σmin = σA and σmax = σB meaning that σB ≥ σA, then σ(x) ∈ [σA, σB ], then the surface energy of

FGM is trivially bounded between its homogeneous constituents. i.e

Ψc(d)

∣∣∣∣
A

≤ Ψc(d) ≤ Ψc(d)

∣∣∣∣
B

.

Case-2: When σmin = σB and σmax = σA.
If σmin = σB , σmax = σA then the bound for surface energy in terms of its homogeneous constituents

exist if
σ2
min

EA
≤ σ2(x)

E(x)
≤ σ2

max

EB

is true.
In many materials, E(x) is some orders of magnitude greater than σ2(x), (assuming that both are in

MPa ) otherwise, clearly σ2(x) is dominant. But in some materials, E(x) can be of same order or less than

σ2(x). Under these circumstances, we incorporate an extra condition such as the function f(x) = σ2(x)
E(x) is

monotone. Thus, if f(x) is monotonic, then clearly the extremes of the function lies on the boundaries since
f(x) is bounded function. Hence, we have

σ2

E

∣∣∣∣∣
A

≤ σ2(x)

E(x)
≤ σ2

E

∣∣∣∣∣
B

or
σ2

E

∣∣∣∣∣
B

≤ σ2(x)

E(x)
≤ σ2

E

∣∣∣∣∣
A

,

depending on weather the function is monotonically increasing or decreasing. Hence substituting this in the
surface energy inequality Eq. (37), we have that surface energy of FGM is bounded by its homogeneous
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constituents if the function f(x) is monotone2 3. Physically, this also means that the function f(x) is also
constituent for the crack driving force and not just E(x).

5.3.1. Effect of grading on the Young’s modulus

Consider a pre-cracked plate with displacement on one side of the boundary and fix the other side as
shown in the Figure 5. In this specimen configuration, a denotes the length of the initial crack, b and w
are the height and the width centered at (0, 0). In this section, we consider values of K1cA = 3.5MPa

√
m,

K1cB = 8MPa
√

m, νA = 0.21 and νB = 0.31 as the effects of small perturbation to their values shows to be
non-sensitive and have no significant difference in the overall system behaviour. The model is discretized
with 118400 4-node quadrilateral plane stress elements.

Figure 5: Plate with an edge crack under uni-axial tension.

In the context of crack propagation, the initial characterization for FGM can be done in terms of elastic
mismatch and further can be made based on the apparent strength. Theoretically, it is possible to create
a functionally graded materials with any combination of materials and hence it is better to consider an
abstract value than that of the exact material properties so that the extreme effects can be simulated for
further research development. To support this claim, consider Alumina-Zircona which has Young’s modulus
ratio of approximately 1.65, similarly Aluminum-Alumina, Alumina-Silica, Alumina-Epoxy have ratios of
4.78, 10, 100 respectively, see [9] for more details. Hence, in this section, we consider four ratios of EA

EB
with

2,5,10 and 20 by setting EA = 300 GPa, to demonstrate the effects of elastic mismatch.
As in Theorem 3, the influence of Young’s modulus cannot be considered in a separate manner, since the

effect of fracture stress plays a major role in the crack propagation and surface energy release rates of the

2Note: The case that f(x) is not monotone would arise if
σ2
min
EA

' σ2
max
EB

, in other words if the ratio
(
σmin
σmax

)2 (Emin
Emax

)
'

1,then the bounds are very tight and hence the function f(x) losses its monotonicty since f(x) is quadratic function. Example

of such case is given in Figure 9. Also notice that if the ratio
(
σmin
σmax

)2 (Emin
Emax

)
< 1, then the system behaves like in case-1

and hence bounds are guaranteed. We give numerical example showing all the cases in the example-1.
3Note: Notice that the constants in the non-local part of the surface energy is very small due to the product σ2(x)E(x),

also the variation of the surface energy would lead to negative constants and hence have no effect on the bounds.
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EA(GPa) EB(GPa) σA(MPa) σB(MPa) KIC,A (MPa
√

m) KIC,B(MPa
√

m) νA νB

Case-1
300 150

600 300
3.5 8 0.21 0.31

Case-2 300 600

Table 2: Material Properties for EA
EB

= 2

FGM. For this reason, we consider cases when material A has strength greater than material B (Case-1 in
Theorem 3) and when material B has greater strength than material-A (Case-2 in Theorem 3). The reaction
curves for the EA

EB
= 2 can be seen in Fig. 6 with material properties as reported in Table 2 along with their

constitutive behaviour as in Eq. (33) and (34) for different values of the grading constant K. Similarly, for
the reaction curves for the ratios EA

EB
= 5 and EA

EB
= 10 are given in Fig. 7.
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Figure 6: Material properties for EA
EB

= 2 (Left) Reaction forces for the case-1, (Right) Reaction forces for case-2.
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Figure 7: Reaction curves with σA = 600MPa and σB = 300 MPa for (Left) EA
EB

= 5, (Right) EA
EB

= 10

Analyzing the present results, it is possible to observe that when EA
EB

= 20 is considered, as in Fig. 8, the

results are not different from that outlined in Theorem 3. For any material property with EA
EB

= 20 (which
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is usually the case), the difference in length scale parameter is at least one order magnitude greater than
the smallest length scale. In such cases, relying on the present computational results, we can argue that the
variation of the length scale within the specimen domain cannot be neglected. We have also shown previously
that the failure stress plays a major role in the crack propagation which is inversely proportional to the
length scales, which is also consistent with the previous investigations on the matter, see [34, 86, 61, 66].

Continuing with the analysis of the present results, we notice that with the material properties used to
obtain the results plotted in Fig. 6, 7 and 8, the crack propagation direction is towards minimum Young’s
modulus. The steepness in the reaction forces representing the crack nucleation is due to the mismatch in
Young’s modulus. As expected, configurations with the highest mismatch exhibit the steepest gradients. The
FGM variation in this case is linear as the difference in mechanical energy release rate due to the change of
grading of volume fraction is linear, see Eq. (35). This implies, depending on the volume fraction, the crack
nucleation in the FGM is a linear combination of its homogeneous constituents. Similarly, σ determines
the maximum value (cut-off) of the reaction curves, with a trend consistent with what is expected for
homogeneous materials. FGM formed due to variation of σ in turn on l is quadratic in nature from Eq. (7).

Meaning that, depending on volume fraction and σ2

E ratio, the apparent strength is a quadratic combination

of its homogeneous constituents. In order to understand what happens when the monotonicity of σ2

E is lost,

consider the following example with the Young’s modulus ratio EA
EB

= 1.5, and σA = 300 MPa and σB = 245
MPa and keeping the rest as in Table-2 can be seen in Fig. 9. Even though all intrinsic material properties

are monotone, the ratio of σ2

E is not monotonic so far, and hence the surface energies neither fall under
case-1 nor case-2, hence crack propagation and the reaction forces of these FGMs cannot be predicted using
its homogeneous constituents only in an accurate manner. This aspect suggests that the crack path cannot
be easily predicted, requiring either the conduction of a careful experimental campaign (producing such
complex samples) or the use of suitable numerical models that enabling capturing such intricate response.
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Figure 8: (Left) Reaction forces for the case-1, (Right) Reaction forces for case-2 with EA
EB

= 20.

5.3.2. Effect of initial crack position and crack length

In this subsection, we explore the effect of the initial crack position and crack length in the FGM with
linear grading, by considering EA

EB
= 2, with EA = 300 GPa and σA = 600MPa and σB = 300MPa,

K1cA = 3.5 MPa
√

m and K1cA = 8 MPa
√

m. The overall behavior with respect to any other cases (as well
as grading profiles) are similar. In this concern, if a represents the length of crack as in Fig. 5, keeping
the w = b = 10 the variation of the crack length keeping everything else the same results in the reaction
curves as shown in Fig. 10 (a). Stemming from these results, it becomes evident that, as the initial crack
length decreases the elastic energy required for the crack to propagate is higher. Hence, we can see that
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Figure 9: Material properties along with EA
EB

= 1.5 (Left) Material Properties, (Right) Corresponding Reaction forces.

the steepness in reaction curves due to the elastic energy release rate increases as crack length decreases.
Similarly, the surface energy required for the material to fracture is also higher with decrease in crack length.

In line with the previous discussion, if a square plate with a = w = b = 10 in Fig. 5 is taken, but the
crack is placed at a distance c in the y-direction from center of the specimen, then we obtain the results
depicted in Fig. 10 (b). Analyzing this graph, we can observe that the overall mechanical energy is nearly
coincident for all the experiments, since the initial crack length is the same for each of the cases, but the
surface energy is slightly different from each other due to asymmetric loading on the crack tip. As a major

conclusion, by changing position of the initial crack tip in the direction of increasing σ2

E would decrease the
surface energy.
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Figure 10: Load-displacement curves for (Left) change of crack length (Right) change of crack position.

Figure 11 shows the reaction curves for different grading profiles. From this graph, it is easy to notice
that, if the grading direction is along the x-axis (Grading-6 as in 11) opposite to the crack propagation path,
the reaction curves shows a gradual drop. Also, Grading-1, Grading-2 , Grading-3 and Grading-4 profiles has
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Figure 11: Load-displacement curves for different grading profiles

different material properties at their crack tip and the corresponding reaction curves shows similar surface
energies release rates but different elastic energy release rate.

5.3.3. Size-scale effects

In this subsection, we consider the size-scale effects for FGMs with linear grading and keeping the material
properties as in Subsection 5.3.2, while change the dimensions w to account for a square specimen. If we scale
the Fig. 5 including also the crack length, keeping the internal length scale constant, it is easy to see from
Eq.(8) that the potential energy increases as the domain is expanded. Also, from the numerical viewpoint,
the same conclusion holds for the reaction forces, whilst the elastic energy release rate is kept constant but
the surface energy release becomes higher. Since the maximum reaction force is directly proportional to the
maximum surface energy release rate, it is also interesting to see that the scaling factor follows a power law
as in Fig. 12(b). This constitutes the main idea of the Γ−convergence proof presented in Section 3.

We emphasize on the equivalence relation that, from Eq. (13) and Eq. (17) it is easy to see that for
every increase in size (of domain) of Eq. (13), there exists a ε in Eq. (17) such that the bulk and the surface
energies are equal due to continuous mapping Su. Meaning that, it is possible to find a ε value in Eq. (17)
which mimics the size-scale effects of Eq. (13). This idea can have direct applications in engineering design
and analysis.

Recalling this idea, let consider a problem of fracture on a large model, which is possible to reduce
to model to a very small convenient size and find the ε such that the reduced model mimics the original
one. For example, by setting b = w = 10, ε value for Eq. (17) using the following straightforward relation
b′ = 1

2 (1+ 1
ε )b, to mimic any value of b′. For b′ = 25, 50, 100, the value of ε = 0.25, 0.110, 0.05263 respectively

are equivalent. Meaning that, it is possible to simulate the behaviour of the model b′ = 25, with ε = 0.25
and b = 10 from Eq. (17). As one expects, the comparison between numerical experiments done using Eq.
(13) and Eq. (17) would give same results as in Fig. 12(b). For b 6= w, ε is calculated by the approximate
area of the domain such that b′w′ = ( 1

2 (1 + 1
ε ))2bw for some fixed b, w.

Also, it can be seen from the power law that as the scaling approaches infinity in Eq. (13) (or ε
approaches zero from Eq. (17)), the maximum reaction force also approach infinity asymptotically, hence
can be considered as the numerical evidence for Γ−Convergence.
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Figure 12: (Left) angle of crack deflection due to different Young’s modulus ratio (Right) maximum reaction due to size effects.

5.4. Micromechanical application

In this subsection, the proposed model is applied to a fiber-reinforced specimen with a functionally graded
material matrix. This application intends to revisiting the cases presented in [39, 51] for homogeneous matrix.
Nevertheless, differing from precedent investigations of the authors [39], we neglect the potential presence
of fibre-matrix decohesion events (usually modelled via interface-like models) in order to preserve the main
focus of the current investigation. In addition to the previous considerations, it is worth mentioning that
the present application inherently incorporates different scale separations due to he homogenized FGM
properties in the matrix (which implies a FGM microstructure) and the explicit discretization of the fiber.
A more careful analysis scale separation assumptions could be investigated via the methodology developed
in [87].

The baseline single-fiber domain is subjected to transverse loading conditions from micro-mechanical
perspective is considered as in [39] and the reference therein. A squared 2D domain complying with a brittle
response contains a circular fibre, see Fig. 13. The domain is meshed with 120000 first order plane-stress
elements and 1000 steps are used to run the computations under displacement control.

The system properties consists of circular transverse section of side length vs radius L
R = 4. Both, the

fiber and the matrix are considered to obey a linear elastic material behaviour with a FGM matrix. Without
any loss of generality, the baseline properties for the present numerical investigations recall some standard
values previously reported in the related literature [39]. In this regard, the properties of the fiber is taken
to be Ef = 78 GPa and Poisson’s ratio of νf = 0.22. The FGM properties are EA = 2.8 GPa, νA = 0.33 ,
GC,A = 0.016 N

mm . Keeping these properties constant, the material properties such as EB , GC,B are varied

to understand the effects of different grading, and preserving the ratio
Ef
EA

= 27.8 throughout the section in

conjunction with varying EA
EB

ratio and
GC,A
GC,B

ratio.

The dimensionless parameters d
L for the applied displacement d is plotted against R

LσA
(R denoting R

is overall reaction forces at left edge of the system) for different Young’s Modulus ratio EA
EB

with
GC,A
GC,B

= 2,

see Fig. 14.a. Similarly, the variation of fracture toughness ratio
GC,A
GC,B

, keeping EA
EB

= 2 constant is plotted

in Fig. 14.b for the comprehensive visualization of the spatial variability regarding the material properties.
Analyzing these results, it is observed that, as the Young’s modulus ratio increases, the asymmetry in
the loading increases leading to asymmetrical crack propagation. Fig. 15 depicts the crack initiation and
propagation condition for the different ratio of Young’s modulus. As mentioned earlier as in Theorem-3.
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Figure 13: Micromechanics of fiber-reinforced FGM material under transverse tensile loading conditions: geometry and bound-
ary conditions.

The asymmetry is the case of single-fiber transverse loading starts towards the lowest Young’s modulus
side.

For EA
EB

= 2, crack propagation happens from only one side and, in subsequent loading stages, a secondary
crack starts appearing on the other side of the fibre-matrix edge, see Fig. 15. This behaviour is also reflected
in the reaction force curve which displays two sudden drops, see Fig. 14a. For EA

EB
≥ 5, crack propagation

is asymmetrical, see Fig. 15. The
GC,A
GC,B

ratio plays a significant role in crack propagation, as the
GC,A
GC,B

ratio increases, the reaction force also increases and delays the crack nucleation. Finally, with respect to the
cracking pattern for different EA

EB
values (Fig. 16), we observe a general trend in this numerical experiment

exhibiting a lower kinking angle towards the matrix of the main crack as EA
EB

decreases.

6. Conclusions

In this article, the phase field approximation of fracture in FGM’s by considering variation of material
properties has been proposed by considering the internal length scale of the phase field as a characteristic
property of the material. The proof of Γ-Convergence has been provided when the characteristics internal
length scale l is constant or is a bounded function. It can be seen from the power law that as the scaling
approaches infinity in Eq. (13) (or ε approaches zero from Eq. (17)), the maximum reaction force also
approach infinity asymptotically, hence can be considered as the numerical evidence for Γ−Convergence.

As an engineering application, it is possible to exploit the theoretical results upon size-scale effects to
design experiments on scaled down specimens which do reproduce the behaviour of the real (full-scale) ones,

by varying material properties. Moreover, it is shown that σ2

E , and position of the initial crack tip affects
the crack propagation and not only E(x).
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financial support under the contract US-1265577-Programa Operativo FEDER Andalućıa 2014-2020.
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Figure 15: Crack initiation and crack propagation in single fiber reinforced composite due to different material conditions.
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[39] T. Guillén-Hernández, I. G. Garćıa, J. Reinoso, M. Paggi, A micromechanical analysis of inter-fiber failure in long reinforced
composites based on the phase field approach of fracture combined with the cohesive zone model, International Journal
of Fracture (2019). doi:10.1007/s10704-019-00384-8.
URL https://doi.org/10.1007/s10704-019-00384-8

[40] A. Quintanas-Corominas, J. Reinoso, E. Casoni, A. Turon, J. Mayugo, A phase field approach to simu-
late intralaminar and translaminar fracture in long fiber composite materials, Composite Structures (2019).
doi:10.1016/j.compstruct.2019.02.007.

[41] J. Reinoso, A. Arteiro, M. Paggi, P. Camanho, Strength prediction of notched thin ply laminates using finite fracture
mechanics and the phase field approach, Composites Science and Technology 150 (2017) 205 – 216.

[42] V. Carollo, J. Reinoso, M. Paggi, A 3d finite strain model for intralayer and interlayer crack simulation coupling the phase
field approach and cohesive zone model, Composite Structures 182 (2017) 636 – 651.
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[83] P. K. Kristensen, E. Mart́ınez-Pañeda, Phase field fracture modelling using quasi-newton methods and a new adaptive step
scheme, Theoretical and Applied Fracture Mechanics 107 (2020) 102446. doi:https://doi.org/10.1016/j.tafmec.2019.102446.
URL http://www.sciencedirect.com/science/article/pii/S0167844219305580

[84] C. Miehe, F. Welschinger, M. Hofacker, Thermodynamically consistent phase-field models of fracture: Variational principles
and multi-field fe implementations, International Journal for Numerical Methods in Engineering 83 (10) (2010) 1273–1311.
doi:10.1002/nme.2861.

[85] E. M. G. G. Galvez, J., J. Planas, Crack trajectories under mixed mode and non-proportional loading., International Journal
of Fracture (1996) 171–193.

[86] J.-R. Cho, Evaluation of stress intensity factors in functionally graded materials by natural element method, Journal of
Mechanical Science and Technology 33 (1) (2019) 299–306. doi:10.1007/s12206-018-1229-y.

[87] F. Fantoni, A. Bacigalupo, M. Paggi, J. Reinoso, A phase field approach for damage propagation in periodic microstructured
materials, International Journal of Fracture 223 (2029) 53–76.

31


