ECCC2014 3rd International ECCC Conference: 5-7th May 2014				
Design & Life Assessment				
HOTEL BARCELO' Aran Mantegna Via Andrea Mantegna, 130 - 00147 Rome, Italy				
17.00.20.00	Sunday 4 May 20	014		
17.00-20.00	Registration Monday 5 Ma	v		
8.00-12.00	Registration	1		
8.30-8.40	ECCC2014 Conference Opening: introduction and scope	: P. Auerkari (conference and plenary session chairman)		
8.40-8.50	Welcome by Centro Sviluppo Materiali: CEO Dr. Mauro Pontremoli			
8.50-9.20	#14 The European Creep Collaborative Committee (ECCC) Revival – The Joint Industrial Programme (JIP); <u>D. J. Allen</u> , G. Merckling, M.W. Spindler, A. Di Gianfrancesco, J. Hald, M. Spiegel, W. Gamble, E. Zanin: ECCC			
9.20-9.40	World Energy Council key notes: D'Ermo, Callera			
	AUDITORIUM	SPACE 4A		
	A1: Low & High Chromium steels 1	B1: Superalloys for gas turbine 1		
	Chairman: Merckling, Brett	Chairman: Gamble, Latourte		
9.40-10.00	#3 P91 microstructure atlas of ASME Grade 91 and life assessment tools	#13 ECCC Test Programme and Data Assessment on GTD111 Creep Rupture, Strain and Ductility		
10.00-10.20	#1 Effect of tungsten on creep behavior of 9%Cr martensitic steels with cobalt additives	#90 Compression creep properties of a single crystal nickel-based superalloy CMSX-4 at 1323K		
10.20-10.40	#116 Microstructural modelling of 11-12Cr steel under creep conditions	#22 Creep-Fatigue Interaction of an Equiaxed Ni based Superalloy: Cyclic-Hold Characterisation and Verification by TMF Benchmark Tests < 10 40-11 10		
	AUDITORIUM	SPACE 4 A		
	A2: Low & High Chromium steels 2	B2: Superalloys for gas turbine 2		
	Chairman: Sawada, Allen	Chairman: Imano, Kuhn		
11.10-11.30	#111 The effect of high temperature processing on microstructural evolution during creep in high chromium creep resisting steels	#17 Damage evaluation based on EBSD method for a notched specime made of Nichel-base derectional solidified superallooy under creep conditions		
11.30-11.50	#92 Microstructrural Evolution Investigation of P92 Steel During Creep Test by TEM and EBSD	#31 Crack Growth Behavior and Micro Damage Accumulation Related to the Load Frequency Characteristic of Fracture Life for Directionally Solidified Ni-Base Superalloy CM247LC under Creep Fatigue Condition		
11.50-12.10	#96 Creep-fatigue behaviour assessment of P92 parent metal and welds	#114 Origin of microstructural evolution in nickel-based single crystal turbine blades after using in aircraft engines		
12.10-12.30	#75 Changes in Precipitate and Electrochemical Property of 12%Cr Ferritic Steels Due to Creep	#23 Small Punch Testing Technique for Creep Residual Life Evaluation on two Cast Ni based Superalloys		
	A3: Low & High Chromium steels 3	B3: Superallovs for steam power generation 1		
	Chairman: Di Gianfrancesco, Abe	Chairman: Takeyama, Klenk		
13.30.13.50	#50 Creep life prediction of P91 steel from stress relaxation tests	#9 Development of age-hardenable superalloy INCONEL alloy 740H for advanced ultra supercritical service		
13.50-14.10	#49 Change of 0.2% proof stress during creep exposure and its effect on creep strength evaluation in high Cr ferritic steels	#10 Creep deformation by dislocation movement in Waspaloy		
14.30-14.50	#44 Evaluation of Long-term Creep Life of Creep Strength Enhanced Ferritic Steels by Multi-region Analysis of their Rupture Data	#79 Influence of Service Exposure on Mechanical Properties and Microstructure of HR6W		
14.50-15.10	#66 Microstructural evolution of a 10%Cr martensitic steel during creep at 650°C	#125 Creep Rupture Properties of Ni-base Superalloy USC141TM as Solution Treated for 700°C Class A-USC boiler		
15.10-15.30	#73 An assessment of creep rupture strength in 9 Cr steels based on the quantification of the effects of microstructural degradation	#77 Verification of practical applicability of 45Ni-23Cr-7W alloy to thick-walled component for A-USC boilers		
		SDACE 4 A		
	A4: Low & High Chromium steels 4	B4: Superalloys for steam power generation 2		
	Chairman: Maruyama, Kaibyshev	Chairman: Dowson, Vacchieri		
15.50-16.10	#26 Modeling of creep deformation and creep life of Gr.91 and some ferritic steels	#69 ECCC assessment of creep rupture strength for the new nickel alloy Alloy 617B		
16.10-16.30	#16 Analysis of ECCC Creep Rupture Data on Grade 91 Steel – The Influence of Nickel	#38 Hardening of the Ni-base Alloy 617B during primary creep – Numerical simulation and experiments on a component test bench		
16.30-16.50	#81 The Effect of Hot Bending on Creep in Thick-Walled P92 Steel Pipes	#94 IN718: higher temperature application range for an old superalloy		
16.50-17.10	#88 : Microstructural factors related to creep-strength in modified 9Cr-1Mo steel	#129 Characterization of Creep-Fatigue Crack Growth Behavior of Transversely Isotropic Materials Using Ct - parameter		
17.10-17.30	#2 Structural integrity assessment of pipes for high temperature applications			
	SPACE 4C			
18.00-20.00	Poster session and cocktail			

	#32 A Study of Grain Boundary Design to Enhance Creep Properties of Ni-Based Superalloys		
	#62 The effect of phase stability on creep rupture life at 625°C and 150MPa for P92	#29 Experimental creep degradation curve from P92 grade steel by on site X-ray diffraction	
	#101 Evaluation of the creep behaviour of a super duplex stainless steel for oil and gas applications	#35 Microstructure Evolution in a Low Carbon 9 pct Cr Martensitic Steel during Creep at 650°C under 100 Mpa	
	#110 Effect of prior aging on the creep properties of 2XXX age-hardenable AI alloys	#67 The Characterisation of Creep Properties of Advanced Manufactured Components Through Small Punch	
	#124 Strain-induced precipitation behavior of TP347H	#91 Assessment of remaining lifetime of the boiler tube and correlation of the results	
	#113 High temperature behaviour of a new nickel base superalloy for aeronautical single crystal blade	#30 Sensitivity of on site X-ray diffraction technology to detect creep phenomenon	
	applications #21 Effect of Temperature and Cyclic Behaviour on Elasto-Plastic Behaviour of a Single Crystal Ni based	#58: Microstructure investigation of nost weld heat treatment for the high-temperature steel T24	
	Superalloy #144 Development of 9% chromium creep-resistant steels and their manufacturing for Russian projects of		
	advanced thermal power plants' equipment #64 Computational design of of martensitic creen resistant steels with stable nercipitation strengthening and	# 85 Reserach on the materials property of superheater for USC boiler	
	high solid solution strengthening	#98 Prediction of Thermal Cyclic Creep Behavior of Automotive Bumper Polymer components	
0.00.40.00	Tuesday 6 Ma	У	
8.00-12.00	AUDITORIUM	SPACE 4 A	
	A5: High Chromium steels 5	B5: Austenitic & Superalloys & their welding	
	Chairman: Kimura, Vodarek	Chaiman: Uehara , Spindler	
8.30-9.00	Introductory keynote 130 Investigations on the Behavior of Materials and Components under High Temperature Conditions Loading - Achievements and Needs Andreas Klenk, Materialpruefungsanstalt Universität Stuttgart (MPA) Alfred Scholz, Institut für Werkstoffkunde, Technische Universität Darmstadt	Introductory keynote #127 Creep of the Novel Austenitic Heat Resistant Steels Strengthened by Fe2Nb Laves Phase under Steam Condition; M. Takeyama, T. Kimuraa, I.Tarigana, Y. Misosakua, N. Takata, M. Ueda, Tokyo Institute of Technology, Japan	
9.00-9.20	#52 Modeling Creep Crack Growth In High Chromium Steels	#33 Weldability of HR6W for Advanced High Efficient Power Plant	
9.20-9.40	#15 Analysis of ECCC Creep Rupture Strength and Ductility Data on Grade 92 and 91 Steels	#48 Effect of Stress-Relief Treatment on Microstructure and Mechanical Properties in Weld joints of Fe-23Cr- 4SNi-7W alloy	
9.40-10.00	#7 Uncertainty in Damage Assessment and Remaining Life Prediction of Engineering materials used in Power Plant and Petrochemical Industry:	#117 Application of stress relaxation testing and constant displacement rate testing to develop creep testing data for weldments and superalloys compared to conventional creep testing data	
10.00-10.20	#119 Creep testing of Grade 92 notch samples	#107 Damage mechanism and failure behaviour of Ni-base welded joints at 700°C	
10.20-10.40		#126 Spatially resolved creep deformation of a thick section stainless steel welded joint	
	Coffee break 10.40-11.10		
	Coffee breal	k 10.40-11.10	
	Coffee breat	k 10.40-11.10 SPACE 4 A	
	Coffee breal AUDITORIUM A6: Rotor steels	k 10.40-11.10 SPACE 4 A B6: Austenitic steels 1	
	Coffee breal AUDITORIUM A6: Rotor steels Chairman: Masuyama, Auerkari	k 10.40-11.10 SPACE 4 A B6: Austenitic steels 1 Chairman: Holmstrom, Hirata	
11.10-11.30	Coffee breat AUDITORIUM A6: Rotor steels Chairman: Masuyama, Auerkari #63 Effect of geometry on the microstructural ageing of a 1CrMoNiV turbine rotor steel	k 10.40-11.10 SPACE 4 A B6: Austenitic steels 1 Chairman: Holmstrom, Hirata Key note # 142 Creep strength in austenitic stainless steels: Rolf Sandström Royal Institute of Technology (KTH), Stockholm, Sweden	
11.10-11.30	Coffee breal AUDITORIUM A6: Rotor steels Chairman: Masuyama, Auerkari #63 Effect of geometry on the microstructural ageing of a 1CrMoNiV turbine rotor steel #57 Life assessment of Grade 91 components based on hardness and creep void density (HaVoC)	k 10.40-11.10 SPACE 4 A B6: Austenitic steels 1 Chairman: Holmstrom, Hirata Key note # 142 Creep strength in austenitic stainless steels: Rolf Sandström Royal Institute of Technology (KTH), Stockholm, Sweden #47 Creep strength and microstructural evolution of Type 316L(N) stainless steel	
11.10-11.30 11.30-11.50 11.50-12.10	Coffee breat AUDITORIUM A6: Rotor steels Chairman: Masuyama, Auerkari #63 Effect of geometry on the microstructural ageing of a 1CrMoNiV turbine rotor steel #57 Life assessment of Grade 91 components based on hardness and creep void density (HaVoC) #8 Creep Strength and Microstructural Change after Creep Exposure in Martensitic High Cr Steel Large Forgings for Steam Turbine Rotors	k 10.40-11.10 SPACE 4 A B6: Austenitic steels 1 Chairman: Holmstrom, Hirata Key note # 142 Creep strength in austenitic stainless steels: Rolf Sandström Royal Institute of Technology (KTH), Stockholm, Sweden #47 Creep strength and microstructural evolution of Type 316L(N) stainless steel #51 Creep damage and metallurgical characterization of high alloyed reformer tubes after long service time	
11.10-11.30 11.30-11.50 11.50-12.10 12.10-12.30	Coffee bread AUDITORIUM A6: Rotor steels Chairman: Masuyama, Auerkari #63 Effect of geometry on the microstructural ageing of a 1CrMoNiV turbine rotor steel #57 Life assessment of Grade 91 components based on hardness and creep void density (HaVoC) #8 Creep Strength and Microstructural Change after Creep Exposure in Martensitic High Cr Steel Large Forgings for Steam Turbine Rotors #95 Experience in manufacture and behaviours of high Chromium forged steels	k 10.40-11.10 SPACE 4 A B6: Austenitic steels 1 Chairman: Holmstrom, Hirata Key note # 142 Creep strength in austenitic stainless steels: Rolf Sandström Royal Institute of Technology (KTH), Stockholm, Sweden #47 Creep strength and microstructural evolution of Type 316L(N) stainless steel #51 Creep damage and metallurgical characterization of high alloyed reformer tubes after long service time #24 Nitrogen effect on creep properties of austenitic stainless steel	
11.10-11.30 11.30-11.50 11.50-12.10 12.10-12.30	Coffee bread AUDITORIUM A6: Rotor steels Chairman: Masuyama, Auerkari #63 Effect of geometry on the microstructural ageing of a 1CrMoNiV turbine rotor steel #57 Life assessment of Grade 91 components based on hardness and creep void density (HaVoC) #8 Creep Strength and Microstructural Change after Creep Exposure in Martensitic High Cr Steel Large Forgings for Steam Turbine Rotors #95 Experience in manufacture and behaviours of high Chromium forged steels Lunch 12	k 10.40-11.10 SPACE 4 A B6: Austenitic steels 1 Chairman: Holmstrom, Hirata Key note # 142 Creep strength in austenitic stainless steels: Rolf Sandström Royal Institute of Technology (KTH), Stockholm, Sweden #47 Creep strength and microstructural evolution of Type 316L(N) stainless steel #51 Creep damage and metallurgical characterization of high alloyed reformer tubes after long service time #24 Nitrogen effect on creep properties of austenitic stainless steel 2.30-13.30	
11.10-11.30 11.30-11.50 11.50-12.10 12.10-12.30	Coffee bread AUDITORIUM A6: Rotor steels Chairman: Masuyama, Auerkari #63 Effect of geometry on the microstructural ageing of a 1CrMoNiV turbine rotor steel #57 Life assessment of Grade 91 components based on hardness and creep void density (HaVoC) #8 Creep Strength and Microstructural Change after Creep Exposure in Martensitic High Cr Steel Large Forgings for Steam Turbine Rotors #95 Experience in manufacture and behaviours of high Chromium forged steels Lunch 12 AUDITORIUM	k 10.40-11.10 SPACE 4 A B6: Austenitic steels 1 Chairman: Holmstrom, Hirata Key note # 142 Creep strength in austenitic stainless steels: Rolf Sandström Royal Institute of Technology (KTH), Stockholm, Sweden #47 Creep strength and microstructural evolution of Type 316L(N) stainless steel #51 Creep damage and metallurgical characterization of high alloyed reformer tubes after long service time #24 Nitrogen effect on creep properties of austenitic stainless steel 2.30-13.30 SPACE 4 A	
11.10-11.30 11.30-11.50 11.50-12.10 12.10-12.30	Coffee bread AUDITORIUM A6: Rotor steels Chairman: Masuyama, Auerkari #63 Effect of geometry on the microstructural ageing of a 1CrMoNiV turbine rotor steel #57 Life assessment of Grade 91 components based on hardness and creep void density (HaVoC) #8 Creep Strength and Microstructural Change after Creep Exposure in Martensitic High Cr Steel Large Forgings for Steam Turbine Rotors #95 Experience in manufacture and behaviours of high Chromium forged steels Lunch 12 AUDITORIUM A7: Welded joints 1	k 10.40-11.10 SPACE 4 A B6: Austenitic steels 1 Chairman: Holmstrom, Hirata Key note # 142 Creep strength in austenitic stainless steels: Rolf Sandström Royal Institute of Technology (KTH), Stockholm, Sweden #47 Creep strength and microstructural evolution of Type 316L(N) stainless steel #51 Creep damage and metallurgical characterization of high alloyed reformer tubes after long service time #24 Nitrogen effect on creep properties of austenitic stainless steel 2.30-13.30 SPACE 4 A B7: Austenitic steels 2	
11.10-11.30 11.30-11.50 11.50-12.10 12.10-12.30	Coffee bread AUDITORIUM A6: Rotor steels Chairman: Masuyama, Auerkari #63 Effect of geometry on the microstructural ageing of a 1CrMoNiV turbine rotor steel #57 Life assessment of Grade 91 components based on hardness and creep void density (HaVoC) #8 Creep Strength and Microstructural Change after Creep Exposure in Martensitic High Cr Steel Large Forgings for Steam Turbine Rotors #95 Experience in manufacture and behaviours of high Chromium forged steels Lunch 12 AUDITORIUM A7: Welded joints 1 Chairman: Nonaka, Sorrentino	k 10.40-11.10 SPACE 4 A B6: Austenitic steels 1 Chairman: Holmstrom, Hirata Key note # 142 Creep strength in austenitic stainless steels: Rolf Sandström Royal Institute of Technology (KTH), Stockholm, Sweden #47 Creep strength and microstructural evolution of Type 316L(N) stainless steel #51 Creep damage and metallurgical characterization of high alloyed reformer tubes after long service time #24 Nitrogen effect on creep properties of austenitic stainless steel 2.30-13.30 SPACE 4 A B7: Austenitic steels 2 Chairman: Schwienheer, Whittaker	
11.10-11.30 11.30-11.50 11.50-12.10 12.10-12.30 13.30-13.50	Coffee bread AUDITORIUM A6: Rotor steels Chairman: Masuyama, Auerkari #63 Effect of geometry on the microstructural ageing of a 1CrMoNiV turbine rotor steel #57 Life assessment of Grade 91 components based on hardness and creep void density (HaVoC) #8 Creep Strength and Microstructural Change after Creep Exposure in Martensitic High Cr Steel Large Forgings for Steam Turbine Rotors #95 Experience in manufacture and behaviours of high Chromium forged steels Lunch 12 AUDITORIUM AUDITORIUM AT state of damage of a Grade 91 header after long-term high temperature service	k 10.40-11.10 SPACE 4 A B6: Austenitic steels 1 Chairman: Holmstrom, Hirata Key note # 142 Creep strength in austenitic stainless steels: Rolf Sandström Royal Institute of Technology (KTH), Stockholm, Sweden #47 Creep strength and microstructural evolution of Type 316L(N) stainless steel #51 Creep damage and metallurgical characterization of high alloyed reformer tubes after long service time #24 Nitrogen effect on creep properties of austenitic stainless steel .30-13.30 SPACE 4 A B7: Austenitic steels 2 Chairman: Schwienheer, Whittaker #103 Effect of elastic follow-up on the creep deformation of 316H austenitic stainless steel at 550°C	
11.10-11.30 11.30-11.50 11.50-12.10 12.10-12.30 13.30-13.50 13.50-14.10	Coffee bread AUDITORIUM AGE: Rotor steels Chairman: Masuyama, Auerkari #63 Effect of geometry on the microstructural ageing of a 1CrMoNiV turbine rotor steel #57 Life assessment of Grade 91 components based on hardness and creep void density (HaVoC) #8 Creep Strength and Microstructural Change after Creep Exposure in Martensitic High Cr Steel Large Forgings for Steam Turbine Rotors #95 Experience in manufacture and behaviours of high Chromium forged steels Lunch 12 AUDITORIUM A12 AUDITORIUM #131 Evaluation of the state of damage of a Grade 91 header after long-term high temperature service #11 Creep and damage investigation of advanced martensitic chromium steel weldments for high temperature application in thermal power plants	k 10.40-11.10 SPACE 4 A B6: Austenitic steels 1 Chairman: Holmstrom, Hirata Key note # 142 Creep strength in austenitic stainless steels: Rolf Sandström Royal Institute of Technology (KTH), Stockholm, Sweden #47 Creep strength and microstructural evolution of Type 316L(N) stainless steel #51 Creep damage and metallurgical characterization of high alloyed reformer tubes after long service time #24 Nitrogen effect on creep properties of austenitic stainless steel 2.30-13.30 SPACE 4 A B7: Austenitic steels 2 Chairman: Schwienheer, Whittaker #103 Effect of elastic follow-up on the creep deformation of 316H austenitic stainless steel at 550°C #122 The Degradation of Long-term Creep Strength and Microstructure Evolution in Super304H	
11.10-11.30 11.30-11.50 11.50-12.10 12.10-12.30 13.30-13.50 13.50-14.10	Coffee bread AUDITORIUM AG: Rotor steels Chairman: Masuyama, Auerkari #63 Effect of geometry on the microstructural ageing of a 1CrMoNiV turbine rotor steel #57 Life assessment of Grade 91 components based on hardness and creep void density (HaVoC) #8 Creep Strength and Microstructural Change after Creep Exposure in Martensitic High Cr Steel Large Forgings for Steam Turbine Rotors #95 Experience in manufacture and behaviours of high Chromium forged steels Lunch 12 AUDITORIUM A7: Welded joints 1 Chairman: Nonaka, Sorrentino #131 Evaluation of the state of damage of a Grade 91 header after long-term high temperature service #11 Creep and damage investigation of advanced martensitic chromium steel weldments for high temperature application in thermal power plants	k 10.40-11.10 SPACE 4 A B6: Austenitic steels 1 Chairman: Holmstrom, Hirata Key note # 142 Creep strength in austenitic stainless steels: Rolf Sandström Royal Institute of Technology (KTH), Stockholm, Sweden #47 Creep strength and microstructural evolution of Type 316L(N) stainless steel #51 Creep damage and metallurgical characterization of high alloyed reformer tubes after long service time #24 Nitrogen effect on creep properties of austenitic stainless steel 2.30-13.30 SPACE 4 A B7: Austenitic steels 2 Chairman: Schwienheer, Whittaker #103 Effect of elastic follow-up on the creep deformation of 316H austenitic stainless steel at 550°C #122 The Degradation of Long-term Creep Strength and Microstructure Evolution in Super304H B8: Modeling 1	
11.10-11.30 11.30-11.50 11.50-12.10 12.10-12.30 13.30-13.50 13.50-14.10	Coffee bread AUDITORIUM A6: Rotor steels Chairman: Masuyama, Auerkari #63 Effect of geometry on the microstructural ageing of a 1CrMoNiV turbine rotor steel #57 Life assessment of Grade 91 components based on hardness and creep void density (HaVoC) #8 Creep Strength and Microstructural Change after Creep Exposure in Martensitic High Cr Steel Large Forgings for Steam Turbine Rotors #95 Experience in manufacture and behaviours of high Chromium forged steels Lunch 12 AUDITORIUM A7: Welded joints 1 Chairman: Nonaka, Sorrentino #131 Evaluation of the state of damage of a Grade 91 header after long-term high temperature service #11 Creep and damage investigation of advanced martensitic chromium steel weldments for high temperature application in thermal power plants	k 10.40-11.10 SPACE 4 A B6: Austenitic steels 1 Chairman: Holmstrom, Hirata Key note # 142 Creep strength in austenitic stainless steels: Rolf Sandström Royal Institute of Technology (KTH), Stockholm, Sweden #47 Creep strength and microstructural evolution of Type 316L(N) stainless steel #51 Creep damage and metallurgical characterization of high alloyed reformer tubes after long service time #24 Nitrogen effect on creep properties of austenitic stainless steel 2.30-13.30 SPACE 4 A B7: Austenitic steels 2 Chairman: Schwienheer, Whittaker #103 Effect of elastic follow-up on the creep deformation of 316H austenitic stainless steel at 550°C #122 The Degradation of Long-term Creep Strength and Microstructure Evolution in Super304H B8: Modeling 1 Chairman: Rantala; Servetto	
11.10-11.30 11.30-11.50 11.50-12.10 12.10-12.30 13.30-13.50 13.50-14.10 14.10-14.30	Coffee bread AUDITORIUM AGE: Rotor steels Chairman: Masuyama, Auerkari #63 Effect of geometry on the microstructural ageing of a 1CrMoNiV turbine rotor steel #57 Life assessment of Grade 91 components based on hardness and creep void density (HaVoC) #8 Creep Strength and Microstructural Change after Creep Exposure in Martensitic High Cr Steel Large Forgings for Steam Turbine Rotors #95 Experience in manufacture and behaviours of high Chromium forged steels Lunch 12 AUDITORIUM AUDITORIUM #131 Evaluation of the state of damage of a Grade 91 header after long-term high temperature service #11 Creep and damage investigation of advanced martensitic chromium steel weldments for high temperature application in thermal power plants #25 Creep/Creep Dominant C-F Failure Initiation in Martensitic Steels Welds	k 10.40-11.10 SPACE 4 A B6: Austenitic steels 1 Chairman: Holmstrom, Hirata Key note # 142 Creep strength in austenitic stainless steels: Rolf Sandström Royal Institute of Technology (KTH), Stockholm, Sweden #47 Creep strength and microstructural evolution of Type 316L(N) stainless steel #51 Creep damage and metallurgical characterization of high alloyed reformer tubes after long service time #24 Nitrogen effect on creep properties of austenitic stainless steel .30-13.30 SPACE 4 A B7: Austenitic steels 2 Chairman: Schwienheer, Whittaker #103 Effect of elastic follow-up on the creep deformation of 316H austenitic stainless steel at 550°C #122 The Degradation of Long-term Creep Strength and Microstructure Evolution in Super304H B8: Modeling 1 Chairman: Rantala; Servetto #145 ECCC Guidance for Creep Rupture Data Assessment - M W Spindler et al (ECCC)	
11.10-11.30 11.30-11.50 11.50-12.10 12.10-12.30 13.30-13.50 13.50-14.10 13.50-14.10 14.10-14.30 14.30-14.50	Coffee bread AUDITORIUM AGE: Rotor steels Chairman: Masuyama, Auerkari #63 Effect of geometry on the microstructural ageing of a 1CrMoNiV turbine rotor steel #57 Life assessment of Grade 91 components based on hardness and creep void density (HaVoC) #8 Creep Strength and Microstructural Change after Creep Exposure in Martensitic High Cr Steel Large Forgings for Steam Turbine Rotors #95 Experience in manufacture and behaviours of high Chromium forged steels Lunch 12 AUDITORIUM #131 Evaluation of the state of damage of a Grade 91 header after long-term high temperature service #131 Evaluation of the state of damage of a Grade 91 header after long-term high temperature service #11 Creep and damage investigation of advanced martensitic chromium steel weldments for high temperature application in thermal power plants #25 Creep/Creep Dominant C-F Failure Initiation in Martensitic Steels Welds #112 Creep Damage Assessment System for Longitudinal Welded Joints of High Chromium Steels	k 10.40-11.10 SPACE 4 A B6: Austenitic steels 1 Chairman: Holmstrom, Hirata Key note # 142 Creep strength in austenitic stainless steels: Rolf Sandström Royal Institute of Technology (KTH), Stockholm, Sweden #47 Creep strength and microstructural evolution of Type 316L(N) stainless steel #51 Creep damage and metallurgical characterization of high alloyed reformer tubes after long service time #24 Nitrogen effect on creep properties of austenitic stainless steel 2.30-13.30 SPACE 4 A B7: Austenitic steels 2 Chairman: Schwienheer, Whittaker #103 Effect of elastic follow-up on the creep deformation of 316H austenitic stainless steel at 550°C #122 The Degradation of Long-term Creep Strength and Microstructure Evolution in Super304H B8: Modeling 1 Chairman: Rantala; Servetto #145 ECCC Guidance for Creep Rupture Data Assessment - M W Spindler et al (ECCC) #59 A comprensive creep model based on the internal stress	
11.10-11.30 11.30-11.50 11.50-12.10 12.10-12.30 13.30-13.50 13.50-14.10 13.50-14.10 14.10-14.30 14.30-14.50 14.50-15.10	Coffee bread AUDITORIUM A6: Rotor steels Chairman: Masuyama, Auerkari #63 Effect of geometry on the microstructural ageing of a 1CrMoNiV turbine rotor steel #57 Life assessment of Grade 91 components based on hardness and creep void density (HaVoC) #8 Creep Strength and Microstructural Change after Creep Exposure in Martensitic High Cr Steel Large Forgings for Steam Turbine Rotors #95 Experience in manufacture and behaviours of high Chromium forged steels Lunch 12 AUDITORIUM A7: Welded joints 1 Chairman: Nonaka, Sorrentino #131 Evaluation of the state of damage of a Grade 91 header after long-term high temperature service #11 Creep and damage investigation of advanced martensitic chromium steel weldments for high temperature application in thermal power plants #25 Creep/Creep Dominant C-F Failure Initiation in Martensitic Steels Welds #112 Creep Damage Assessment System for Longitudinal Welded Joints of High Chromium Steels #104 Microstructural Stability of P23/P91 Dissimilar Welds during Creep at 550°C	k 10.40-11.10 SPACE 4 A B6: Austenitic steels 1 Chairman: Holmstrom, Hirata Key note # 142 Creep strength in austenitic stainless steels: Rolf Sandström Royal Institute of Technology (KTH), Stockholm, Sweden #47 Creep strength and microstructural evolution of Type 316L(N) stainless steel #51 Creep damage and metallurgical characterization of high alloyed reformer tubes after long service time #24 Nitrogen effect on creep properties of austenitic stainless steel 2.30-13.30 SPACE 4 A B7: Austenitic steels 2 Chairman: Schwienheer, Whittaker #103 Effect of elastic follow-up on the creep deformation of 316H austenitic stainless steel at 550°C #122 The Degradation of Long-term Creep Strength and Microstructure Evolution in Super304H B8: Modeling 1 Chairman: Rantala; Servetto #145 ECCC Guidance for Creep Rupture Data Assessment - M W Spindler et al (ECCC) #59 A comprensive creep model based on the internal stress #89 The Capability of Traditional and Modern Creep Lifng Methods to Predict Long-Term Creep Properties	

15.30-15.50	#4 Evaluation of Extrapolation Methods for Creep and Creep Rupture Data	
16.30-19.00	Guided Visit to Roman Sites: Colosseum, Palatino, Roman Forum and Campidoglio Hill. Departure is scheduled by buses at 16.30 from HOTEL BARCELO' Aran Mantegna Via Andrea Mantegna, 130 - 00147 Rome, Italy	
19.00-20.00	Tour by bus in the Old Appian Way: the most romantic street of the world http://en.wikipedia.org/wiki/Appian_Way; http://www.aviewoncities.com/rome/viaappia.htm http://www.frommers.com/destinations/rome/705644	
20.00-24.00	Social dinner at Restaurant l'Archeologia, www.larcheologia.it - After dinner, buses will return the participants to the Hotel Barcelò	

Wednesday 7 May

8.00-12.00	Registration		
	AUDITORIUM	SPACE 4A	
	A8: Welded joints 2	B9: Modeling 2	
	Chairman: Sandstrom, Mayr	Chairman: Bonora, Zuzek	
8.30-9.00	Introductory keynote #118 EPRI research in support of the construction and successful operation of advanced plant . Jonathan Parker EPRI USA	Introductory keynote #133 A Review of the LICON Methodology for Predicting; E. Hosseini, S.R. Holdsworth: EMPA, E. Mazza Swiss Federal Institute for Materials Science and Technology,	
9.00-9.20	#128 X10CrWMoVNb9-2 (Grade 92) Martensitic Steel: Welded joints between piping and fittings for high pressure and temperature service.	#123 Electron backscatter diffraction (EBSD) measurement of accumulated strain	
9.20-9.40	#46 Effect of the Stress Multi-Axiality on the Creep Damage in Fine Grained HAZ of Mod. 9Cr-1Mo Steels	#102 Preventing failures in high temperature pressure components: the role of technical standards.	
9.40-10.00	#39 The Effect of Welding Procedural Variables on the Cross-Weld Performance of Grade 92 Pipe Steel	#97 Influence of size and distribution of carbide particles on activation energy for creep deformation	
10.00-10.20	#71 Negligible creep of P91 steel	#60 Modeling creep response of high temperature steels under multiaxial state of stress	
	Coffee break 10.20-10.50		
	AUDITORIUM	SPACE 4 A	
	A9: Welded joints 3	B10: Modeling 3	
	Chairman: Parker, Rothwell	Chairman: Tonti; Huysman	
10.50-11.10	#78 Microstructure and property assessement of creep aged 12Cr steel after welding	#61 Creep performance of steels for challenging applications	
11.10-11.30	#108 Numerical Simulation of Deformation and Damage in Martensitic Welds	#99 Methods to Assess and Compare Low Cycle Fatigue Model Performances	
11.30-11.50	#132 Creep failure of a P91 simulated heat affected zone material under multiaxial states of stress	#87 Safe structural design for fatigue and creep using cyclic yield strength	
11.50-12.10	#36 Proposal of Creep Residual life Prediction Procedure for Mod.9Cr-1Mo Steel based on Omega Method	#72 Long term stress relaxation modelling	
12.10-12.30	#40 Creep strength behavior of Boron added P91 steel and its weld in the temperature range of 600-650*	#80 The FEM analysis of creep damage development considering the anisotropy of crystal grain	
	Lunch 12.30-13.30		
	AUDITORIUM	SPACE 4A	
	A10: Special testing & modeling 1	B11: Nonferrous alloys 1	
	Chairman: Naumenko , Gonzalez	Chairman: Hurst, Gorash	
13.30-13.50	#70 The Application of Small Scale Sampling and Impression Creep Testing to Power Plant	#82 A 'cold creep' model for time dependent deformation and damage at low temperatures in Ti-6Al-4V	
13.50-14.10	#76 Evaluation of miniature creep testing technique for remaining life assessment of power generation components	#120 Oxidation effect on the creep behavior of thin samples of titanium alloy at 600°C	
14.10-14.30	#100 Small Ring Testing of High Temperature Materials	#27 Crepp curve behaviou of TiAl-8Ta intermetallic alloy	
14.30-14.50	#43 Size effects in miniature specimen creep testing of P91	#42 Creep performance of OFP copper for the final repository canister	
14.50-15.10	#54 Creep assessment on a 14Cr ODS steel	#45 Modelling the anisotropic creep behaviour of an Al-Cu-Mg-Si alloy	
15.10-15.30	#68 Small Punch Creep Testing of Next Generation TiAl alloys	#53 E-AIMgSi Wire and Full-Scale Conductor Testing for Improving Electricity Transmission	
	Coffee break 15.30-15.50		
	AUDITORIUM	SPACE 4 A	
	A11: Special testing & modeling 2	B12: Nonferrous alloys 2	
	Chairman: Yoon, Shibli	Chairman: Viguier, Smith	
15.50-16.10	#37 Robust approaches for the assessment of stress concentration in the creep range	#56 Requirements and application of notched bar creep testing for assessing multi-axial creep behaviour of OFP copper	
16.10-16.30	#55 Microstructure evolution and creep properties of High Performance Ferritic (HiPerFer) steels at 600, and 650 °C		
16.30-16.50	#28 The lattice anisotropic model of creep phenomenon		

17.00-17.30 End of conference by Pertti Auerkari