

JRC SCIENCE AND POLICY REPORTS

Feasibility of a Monitoring Mechanism Supporting a Watch List under the Water Framework Directive

Final report of a Pilot Exercise

Michela Ghiani, Simona Tavazzi, Giulio Mariani, Giovanni Locoro, Robert Loos, Bruno Parachini, Fabrizio Sena, Gert Surkuusk, Oliver Gans, Stefan Weiß, Eric De Wulf, Martin Ferenčík, Michael Schluesener, Thomas Ternes, Arne Wick, Jan Koschorreck Maria Belli, Gerard Stroomberg, Robert Rand, James Thomas, Ray Thomas, Richard Walmsley, Caroline Whalley, Sara Comero and Bernd Manfred Gawlik

2014

European Commission Joint Research Centre Institute for Environment and Sustainability

Contact information Bernd Manfred Gawlik Address: Joint Research Centre, Via Enrico Fermi 2749, TP 101, 21027 Ispra (VA), Italy E-mail: bernd.gawlik@ec.europa.eu Tel.: +39 0332 78 9487 Fax: +39 0332 78 9831

http://ies.jrc.ec.europa.eu/ https://ec.europa.eu/jrc

Legal Notice

This publication is a Science and Policy Report by the Joint Research Centre, the European Commission's inhouse science service. It aims to provide evidence-based scientific support to the European policy-making process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication.

All images © European Union 2014

JRC88483

EUR 27002 EN

ISBN 978-92-79-44665-8 (PDF)

ISSN 1831-9424 (online)

doi:10.2788/950480

Luxembourg: Publications Office of the European Union, 2014

© European Union, 2014

Reproduction is authorised provided the source is acknowledged.

Abstract

This report describes work conducted to assess the feasibility of an experimental monitoring exercise in support to a so-called Watch List Mechanism under the Water Framework Directive 2000/60/EC in a collaborative design involving EU Member States laboratories and some 200 official monitoring station operated by the Member States.

The report includes all details on sampling stations, performance of analytical methods as well as the results of the analyses of all samples with regard to the occurrence and levels of 20 compounds of concern. The underlying analytical methods are carefully documented with regards to their performance characteristics. Obtained results are assessed statistically. Although the analysed single samples are insufficient to make any statement on the performance of the treatment processes leading to the compost, the collective of data allows having a glance at the pan-European situation as regards the studies compounds. Background information from literature describing the situation before the survey is included, too.

Abstract

This report describes work conducted by the European Commission's Joint Research Centre in the context of its support to the implementation of the Water Framework Directive 2000/60/EC. The work aimed at the feasibility assessment of an experimental monitoring exercise in support to a so-called Watch List Mechanism in a collaborative design involving EU Member States laboratories and some 200 official monitoring stations operated by the Member States.

The report includes all details on sampling stations, performance of analytical methods as well as the results of the analyses of all samples with regard to the occurrence and levels of 20 compounds of concern.

In total, 219 whole water samples originating from 25 EU Member States and 2 other European countries, were assessed for the contents of acesulfame, glyphosate and its metabolite AMPA, 1H-Benzotriazole and tolyltriazoles, bisphenol A, triclosan and triclocarban, carbamazepine and its metabolite 10,11-dihydro-10,11-dihydroxycarbamazepine, sulfamethoxazole, perfluoropropionic acid, tris-2-chloropropyl phosphate, methyl tert-butyl ether, silver, boron and chloride (Cl⁻) in water. Furthermore, 23 sediment samples were analysed for decabromodiphenylethane and decabromodiphenyl ether.

The underlying analytical methods are carefully documented with regards to their performance characteristics. Obtained results are assessed statistically and where possible compared to other findings.

Although the analysed single samples are insufficient to make a statement on water quality at a specific station over time, the collective data allow a glance at the pan-European situation as regards the studied compounds.

Background information from literature describing the situation before the survey is included, too.

The report is divided into a core part and two annexes. For practical reasons, the report is split into two volumes: Volume 1 contains the report and the single analytical results; volume 2 contains the documentation of the sampling stations.

Participating laboratories

The findings presented in this report are the result of a large collaborative effort. For confidentiality reasons, the identities of the participating sampling stations and sampling teams cannot be revealed in this public report, but are known to the European Commission. This anonymity shall not minder our acknowledgment of the considerable support and in-kind contribution behind the exercise. As regards the practical execution of the project organization and the work in the laboratories the following persons contributed actively.

Austria

Austrian Federal Agency for Environment, Spittelauer Lände 5, AT-1090 Vienna

• Staff involved: O. Gans, S. Weiss

Belgium

Vlaamse Milieumaatschappij, Raymonde de Larochelaan 1, BE-9051 Sint-Denijs-Westerem • Staff involved: E. De Wulf

Czech Republic

Povodí Labe, státní podnik, Odbor vodohospodářských laboratoří (OVHL), Víta Nejedlého 951 CZ- 50003 Hradec Králové

• Staff involved: M. Ferenčík

European Commission

Joint Research Centre, Institute for Environment and Sustainability, IT-21027 Ispra

• Staff involved: B. M. Gawlik, M. Ghiani, G. Locoro, R. Loos, G. Mariani, B. Parachini, F. Sena, G. Surkuusk, S. Tavazzi

Germany

German Federal Institute of Hydrology, Am Mainzer Tor 1, DE-56068 Koblenz

• Staff involved: M. Schluesener, Th. Ternes, A. Wick

German Federal Agency for Environment, Bismarckplatz 1, DE-14193 Berlin

• Staff involved: J. Koschorreck

Italy

Istituto Superiore per la Protezione e la Ricerca Ambientale, Servizio di Metrologia Ambientale, Via di Castel Romano, 100, IT-00128 Roma

• Staff involved: M. Belli

The Netherlands

Rijkswaterstaat, Zuiderwagenplein 2, P.O. Box 17, NL-8200 AA Lelystad

• Staff involved: G. Stroomberg

United Kingdom

National Laboratory Service, Olympia House, Gelderd Lane, Leeds, West Yorkshire, LS12 6DD

• Staff involved: R. Rand, J. Thomas, R. Thomas, R. Walmsley, C. Whalley

List of Abbreviations and Symbols

Throughout this report the following abbreviations and symbols are used:

2,4-D	2,4-Dichlorophenoxyacetic acid	Μ
2,4,5-T	2,4,5-Trichlorophenoxyacetic acid	Μ
AAS	atomic absorption spectrometry	Μ
AES	atomic emission spectrometry	Μ
AMA	advanced mercury analyzer	Μ
BCR	Bureau Communautaire de	Ρ
Referen		Ρ
BDL	below detection limit	Ρ
CRM	certified reference material	Ρ
CV	cold-vapour	Ρ
CV%	coefficient of variation	Ρ
D4	Octamethylcyclotetrasiloxane	d
D5	Decamethylcyclopentasiloxane	Ρ
D6	Dodecamethylcyclohexasiloxane	Ρ
DEA	diethyl-ammonium	Ρ
DDC	diethyl-dithiocarbamate	Ρ
DG	Directorate-General	Ρ
DL	dioxin-like	R
EC	European Commission	S
EU	European Union	S
F	factor (from PMF)	S
EVF	explained variation of factor	S
GC	gas chromatography	S
ICP	inductively coupled plasma	u
IES	Institute for Environment and	U
	Sustainability	u
IUPAC	International Union for Pure and	r
	Applied Chemistry	u
JRC	Joint Research Centre	r
K	coverage factor	u re
KOW	octanol/water partition coefficient	U
LC	liquid chromatography	0
LoD	limit of detection	U
LoQ	limit of quantification	ι
MBT	Mechanical Biological Treatment	v
MCPA acid	2-methyl-4-chlorophenoxyacetic	۷
MDL	method detection limit	

MDM	Octamethyltrisiloxane
MD2M	Decamethyltetrasiloxane
MD3M	Dodecamethylpentasiloxane
MRM	multiple reaction monitoring
MS	mass spectrometry
PAH	polyaromatic hydrocarbon
PCA	principal component analysis
PCB	polychlorinated biphenyls
PCM	polycyclic musk
PFASs	perfluoroalkyl substances
PCDD/F dioxin/f	polychlorinated dibenzo- urane
PFNA	perfluorononanoic acid
PFOA	perfluorooctanoic acid
PFOS	perfluorooctane sulfonate
PMF	positive matrix factorization
POP	persistent organic pollutant
R	repeatability
SOP	standard operation procedure
SRM	standard reference material
SSL	sewage sludge
STD	standard deviation
STP	sludge treatment plant
Ucombined	combined uncertainty
U	expanded uncertainty
u(r)	combined uncertainty for
repeata	
u(IP) repeata	combined uncertainty for bility
u(t) repeata	combined uncertainty for bility
UHPLC	Ultra High Pressure Liquid Chromatography
U.o.M.	unit of measurand
US	United States of America
WGS84	World Geodetic System 1984
WWTP	waste water treatment plant

Chemical elements are identified by the respective symbol according IUPAC

Table of contents

Abstra	Abstract III				
	Participating laboratoriesIV				
List of	List of Abbreviations and SymbolsV				
Table	Table of contentsVI				
List of	f Figure	s	.XI		
1 I	Introduc	tion	12		
1.1	Bac	kground of the study	12		
1.2	Cor	ncept	12		
2 F	Preparat	tory steps	14		
2.1	Info	prmation expected from the feasibility study	14		
2.2	Sub	ostance selection	14		
2	2.2.1	Acesulfame	14		
2	2.2.2	Glyphosate	15		
2	2.2.3	AMPA	16		
2	2.2.4	¹ H-Benzotriazole and Tolyltriazoles	16		
2	2.2.5	Bisphenol A	17		
2	2.2.6	Triclosan and triclocarban	18		
-	2.2.7	Carbamazepine and its metabolite 10,11-Dihydro-10,11-			
		kycarbamazepine			
-	2.2.8	Sulfamethoxazole			
_	2.2.9	Perfluoropropionic acid (PFPrA)			
	2.2.10	Tris-2-chloropropyl phosphate (TCPP)			
-	2.2.11	Methyl tert-butyl ether (MTBE)			
_	2.2.12	Decabromodiphenylethane (DBDPE)			
	2.2.13	Silver (Ag)			
_	2.2.14	Boron (B)			
	2.2.15	Chloride (Cl ⁻)			
2.3		e selection principle			
		collection and field work			
3.1		tructions and dispatch			
3.2		eived information			
		pry measurements			
4.1		alytical methods used			
	4.1.1	Acesulfame method used by Austria (Umweltbundesamt)			
	4.1.2	Benzotriazoles method used by Austria (Umweltbundesamt)			
	4.1.3	Boron and Silver method used by Belgium (VMM)			
	4.1.4	MTBE method used by the Netherlands (RWS)			
	4.1.5	MTBE method used by the United Kingdom (NLS)	32		
	4.1.6 Czoch P	Glyphosate and aminomethylphosphonic acid (AMPA) method used by the epublic (Podvodi Lab)	22		
,	4.1.6				
	4.1.6	.2 Reagents	32		
	4.1.6	.3 Calibration Standards	33		
	4.1.6	.4 Internal standards	33		

4.1.6.5	Apparatus	33
4.1.6.6	Sample pre-treatement	34
4.1.6.7	Calibration and sample measurement	34
4.1.6.8	Quality Control	34
United King	yphosate and aminomethylphosphonic acid (AMPA) method used by the dom (NLS) sphenol-A, triclosan and triclocarban method used by Germany (BFG) LC-MS analysis	36
4.1.8.2	Calibration	36
4.1.8.3	Method validation	37
4.1.9 Per (JRC) 37	rfluoropropionic acid (PFPrA) method used by the European Commission	
4.1.9.1	Chemicals	37
4.1.9.2	Apparatus and equipment	38
4.1.9.3	Instrumental equipment and conditions	38
4.1.9.4	QTRAP 5500 operative condition	39
4.1.9.5	Selectivity	10
4.1.9.6	Limit of Detection (LoD) and Limit of Quantification (LoQ)	10
4.1.9.7	Linearity study for PFPrA	10
4.1.9.8	Working Range	11
4.1.9.9	Trueness	11
4.1.9.10	Recovery	12
4.1.9.11	Repeatability, intermediate precision, and day to day variation	12
4.1.9.12	Sample storage stability study	12
Commission	Ifamethoxazol and carbamazepine method used by the European n (JRC) emicals Laboratory equipment	42
4.1.11.2	QTRAP 5500 operative condition for	13
4.1.11.3	Selectivity	13
4.1.11.4	Limit of Detection (LoD) and Limit of Quantification (LoQ)	14
4.1.11.5	Linearity study	14
4.1.11.6	Extension of the calibration for CBZ, CBZ-DiOH and SMZ analysis \ldots	15
4.1.11.7	Working Range	15
4.1.11.8	Trueness	15
4.1.11.9	Recovery 4	16
4.1.11.1	0 Repeatability, intermediate precision, and day to day variation	16

	4.1.1	1.11	Sample storage stability study 4	16
	4.1.12		P-method used by the European Commission (JRC)	
	4.1.12	2.1	Chemicals and reagents used	17
	4.1.12	2.2	Instrument conditions for TCPP method	17
	4.1.12	2.3	Selectivity	18
	4.1.12	2.4	Limit of Detection (LoD) and Limit of Quantification (LoQ)	18
	4.1.12	2.5	Linearity study for TCPP	18
	4.1.12	2.6	Extension of the calibration for TCPP analysis	19
	4.1.12	2.7	Working Range	19
	4.1.12	2.8	Trueness	19
	4.1.12	2.9	Recovery 2	19
	4.1.12	2.10	Repeatability, intermediate precision, and day to day variation	50
	4.1.12	2.11	Sample storage stability study	50
5	Results a	and d	liscussion	51
5	5.1 Sub	ostano	ce-wise assessment	51
	5.1.1	Findi	ngs for acesulfame	51
	5.1.2	Findi	ngs for glyphosate	51
	5.1.3	Findi	ngs for AMPA	52
	5.1.4		ngs for ¹ H-Benzotriazole and Tolyltriazoles	
	5.1.5		ngs for bisphenol A	
	5.1.6		ngs for triclosan and triclocarban	
	5.1.7		ngs for carbamazepine and its metabolite	
	5.1.8		ngs for sulfamethoxazole	
	5.1.9		ngs for perfluoropropionic acid (PFPrA)	
	5.1.10		ngs for tris-2-chloropropyl phosphate (TCPP)	
	5.1.11		ngs for methyl tert-butyl ether (MTBE)	
	5.1.12		ngs for silver (Ag)	
			ngs for boron (B)	
5			t and biota samples	
-	5.2.1		ervations from feasibility study	
	-		icability of Environmental Specimen Banks	
5			essment and analytical methods	
6			essment and analytical methods	
7			ments	
, 8		5	() ()	
9			alytical results	
9 10			mpling station location cards	
т0		- 3a		, ,

List of Tables

Table 1 - Chemical properties of acesulfame 15
Table 2 - Chemical properties of glyphosate 16
Table 3 - Chemical properties of AMPA
Table 4 –Chemical properties of ¹ H-Benzotriazole
Table 5 – Chemical properties of 4-Tolyltriazole 17
Table 6 –Chemical properties of 5-Tolyltriazole
Table 7 – Chemical properties of bisphenol A
Table 8 - Chemical properties of triclosan
Table 9 - Chemical properties of triclocarban 19
Table 10 - Chemical properties of carbamazepine19
Table 11 – Chemical properties of 10,11-Dihydro-10,11-dihydroxycarbamazepine
Table 12 - Chemical properties of perfluoropropionic acid 20
Table 13 – Chemical properties of methyl tert-butyl ether
Table 14 - Chemical properties of decabromodiphenylethane 22
Table 15 - Overview on allocated sample stations per country
Table 16 - Application of various site selection principles 26
Table 17 – Laboratories and compounds analysed in the campaign
Table 18 - Performance characteristics of method used for B and Ag determination 32
Table 19 - MRM transitions and MS parameters of the measured FMOC-derivatized substances
Table 20 - LC gradient profile used for determination of triclosan and triclocarban
Table 21 - MRM transitions and MS parameters of the target analytes 36
Table 22 - Recoveries (%) of triclosan and triclocarban in spiked surface water samples 37
Table 23 - UHPLC equipment and conditions 38
Table 24 - Gradient used for determinations 39
Table 25 – QTRAP 5500 operative conditions for PFPrA analysis
Table 26 - Selectivity data for PFPrA
Table 27 - LoD and LoQ values for analyte PFPrA 40
Table 28 - Coefficient of determination (R ²⁾ values for PFPrA calibration curves on different days 40
Table 29 - Working ranges for the PFPrA method 41
Table 30 - Results of the trueness study in the different concentration levels
Table 31 - Recovery of analytes at different concentration levels 42

Table 32 - Repeatability, day-to-day and intermediate precision variation in two differentconcentration levels42
Table 33 – QTRAP 5500 operative condition for sulfamethoxazol and carbamazepine method
Table 34 - Selectivity data for CBZ, CBZ-DiOH, and SMZ
Table 35 - LOD and LOQ values for CBZ, CBZ-DiOH, and SMZ
Table 36 - Coefficient of determination (R ²) values for CBZ, CBZ-DiOH and SMZ calibration curves on different days 44
Table 37 - Working ranges for CBZ, CBZ-DiOH and SMZ 45
Table 38 - Results of the trueness study in the different concentration levels
Table 39 - Recovery of analytes at different concentration levels 46
Table 40 - Repeatability, day-to-day and intermediate precision variation in two differentconcentration levels46
Table 41 -GC equipment and conditions 47
Table 42 - Single quadrupole conditions
Table 43 - LoD and LoQ values for analytes 48
Table 44 - Coefficient of determination (R2) values for TCPP calibration curves on differentdays48
Table 45 - Working ranges for TCPP 49
Table 46 - Results of the trueness study in the different concentration levels
Table 47 - Recovery of analytes at different concentration levels 50
Table 48 - Repeatability, day-to-day and intermediate precision variation in two differentconcentration levels for TCPP
Table 49 – Limits of detection and quantification observed for triazoles
Table 50 - Blank values (ng/L) for bisphenol A reported by BfG 55
Table 51 – Comparison of findings for MTBE analysed by NLS (UK) and Rijkswaterstaat (NL). The highlighted lines indicate anomalies. Issues were found with the project logistics which made track and tracing of sample IDs difficult. Calculation errors were identified in the reporting phase and corrected
Table 52 - Evaluation of tendering for analytical measurements 64
Table 53 – Additional workforce not covered by price quotations 65

List of Figures

Figure 1 - EU-wide monitoring mechanism as operated by the JRC
Figure 2 – Packaging and dispatch material used in the pilot study 27
Figure 3 – Overview on the geographical distribution of the sampling stations used in the context of this feasibility study
Figure 4 -Liquid chromatograph with triple quadrupole MS/MS (Waters Acquity UPLC with Quattro Premier XE)
Figure 5 -Summary findings for acesulfame 51
Figure 6 – Summary findings for glyphosate reported by Povodí Labe
Figure 7 - Summary findings for glyphosate reported by the National Laboratory Service 52
Figure 8 - Summary findings for AMPA reported by Povodí Labe
Figure 9 - Summary findings for AMPA reported by the National Laboratory Service
Figure 10 - Summary findings for 1 H-benzotriazole reported by Umweltbundesamt Vienna. 54
Figure 11 - Summary findings for 4-tolyltriazole reported by Umweltbundesamt Vienna 54
Figure 12 - Summary findings for 5-tolyltriazole reported by Umweltbundesamt Vienna 55
Figure 13 - Summary findings triclosan reported by BfG 56
Figure 14 - Summary findings triclocarban reported by BfG
Figure 15 - Summary findings for carbamazepine reported by JRC
Figure 16 - Summary findings for metabolite of carbamazepine reported by JRC 57
Figure 17 - Summary findings for sulfamethoxazole reported by JRC
Figure 18 - Summary findings for TCPP reported by JRC
Figure 19 – Summary findings for MTBE reported by Rijkswaterstaat. The pie chart (left) refers to the common set of samples analysed by both laboratories, while the bar chart (right) included all the samples analysed by a single laboratory
Figure 20 – Summary findings reported for MTB by National Laboratory Services. The pie chart (left) refers to the common set of samples analysed by both laboratories, while the bar chart (right) included all the samples analysed by a single laboratory
Figure 21 – Summary findings reported for born by VMM
Figure 22 – Summary findings for decabromodiphenylethane (DBDPE) in sediments reported by JRC
Figure 23- Summary findings for decabromodiphenyl ether (BDE-209) in sediments reported by JRC
Figure 24 – Impressions from the German Environmental Specimen Bank hosted by the Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg Germany. H. Rüdel explaining the storage of time series of sediment samples

1 Introduction

1.1 Background of the study

The Water Framework Directive (WFD) 2000/60/EC (Article 16(4)) requires that the list of Priority Substances (PS) be reviewed at least every four years (European Union, 2000). PS are defined as substances presenting a significant risk to or via the aquatic environment at EU level. In order to assess risk, both hazard and exposure need to be considered.

The recent review of the priority substances list, which was concluded in 2012, showed that although there has been an impressive improvement in the availability of monitoring data, these were not always fit-for-purpose for the risk assessment and the prioritisation. In some cases, information was available for only a limited geographical area. In other cases the analytical methods used in the routine monitoring was not sensitive enough to detect concentrations at the levels of no-effect for a particular substance, limiting the usefulness for risk assessment of the monitoring data.

In this context one option proposed to support the identification of additional PS was the establishing a *watch list* with the aim of ensuring targeted monitoring across the EU of substances of possible concern. For example, in the case of emerging pollutants only few monitoring data are available and such approach could help to provide a database of high-quality information fit for the purpose of prioritising PS. In such a setting, the substances would be monitored for a limited period of time, but sufficient to decide on whether to prioritise them or not. The risk-based decision on prioritisation would then be able to take into account the new monitoring information in combination with information on production, use and inherent hazardousness, some of which might already have been used to decide on inclusion in the watch list.

In order to investigate the technical feasibility of the EU-wide coordinated data collection and <u>assessment that would be required for the substances on a watch list</u>, the European Commission's Joint Research Centre (JRC) proposed, under the umbrella of the Common Implementation Strategy of the Water Framework Directive, to design a pilot exercise in collaboration with the Member States, based on the previous exercises of similar character.

The first outline of this pilot study was presented to the members of the CIS WFD WG E Subgroup on Chemical Monitoring and Emerging Pollutants (CMEP), who generally supported the proposal of such a pilot-exercise. Based on the comments received from this group, WG E and SCG, the outline was revised and amended accordingly. In addition, some further information on the time planning, the resulting next steps as well as the required allocation of resources were incorporated and finally approved by the Water Directors in Dec 2011.

This report presents the technicalities of the pilot exercise and its outcome and discusses the technical limitations and implications of a possible monitoring mechanism in support to watch list. The exercise used existing monitoring infrastructure and was designed to allow different levels of engagement in order to accommodate different availability of resources and analytical expertise in the various Member States' laboratories.

1.2 Concept

Investigation of the fate and the pathways of environmental pollutants is an integral part of all policies dealing with the management of environmental resources and activities affecting environmental quality. In the past three decades, Europe has developed a large amount of environmentally related legislation, much of which leads directly or indirectly to the introduction of more or less stringent limit values for conventional pollutants. When it comes to new or less investigated environmental pollutants, which are not subject to any explicit environmental regulations, the knowledge base is very poor and often available data lack comparability or are insufficiently documented in terms of geographical and metrological traceability. However, this information is needed to decide whether a given substance, which is detected in the environment after deliberate or accidental release, poses an emerging risk or not. In other words, one enters a vicious circle of substances not being regulated because of a lack of information regarding their occurrence in the environment and their unknown environmental fate, because they are not monitored in the context of environmental regulations. For this purpose, European Union (EU)-wide monitoring exercises following a nonprobabilistic approach have been shown to be a viable way to arrive quickly at a representative data set of known quality (Loos *et al.* (2009 a,b); Loos *et al.* (2010)). The logistics of these exercises follow a mechanism similar to the centralized dispatch of proficiency testing (PT) schemes or certification exercises involving the shipment of a series of test specimens or samples to laboratories in a way that the transportation does not affect sample stability (Gawlik *et al.* (2012)).

Fig. 1 gives an overview on this activity, which foresees the centrally coordinated collection of samples from European sampling stations, many of which are monitored in the context of national or regional monitoring activities. This has the advantage that the sampling stations are well documented, frequently visited and hence easily accessible in a cost-effective manner.

Following precise instructions, the samples are then dispatched to a sample-collection point or specimen bank, where samples and relevant information are carefully documented. The samples are next forwarded to the competent laboratories, which must have proved and documented measurement capability and expertise for the substance being investigated, and which are analyzing the whole sample pool under repeatability conditions (i.e. in one single analytical run). This is crucial to overcome day-to-day measurement variability or other within-laboratory effects, which may increase the uncertainty of the measurement result. The main advantage of this approach is that it overcomes all problems related to data comparability and necessarily costly mechanism of quality assurance and quality control (QA/QC) [e.g., PT schemes or the use of certified reference materials (CRMs)].

EU-wide campaigns organized so far by the JRC aimed primarily at research to anticipate and to identify emerging issues around new and less-investigated substances. The necessary knowledge for the preparation of suitable matrix reference materials, which are necessary for any QA/QC activity, is hence not usually available and would be too lengthy and costly. The laboratories chosen usually have a high degree of automation for their analytical procedures, which also increases the repeatability of the methods and decreases the cost per analysis.

Upon completion of the analytical work, the data and relevant background information regarding the analytical method is then compiled under the lead of the JRC.

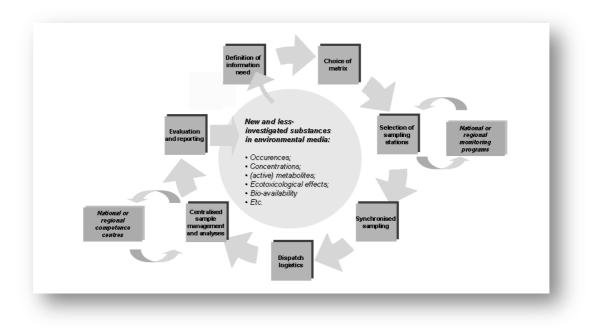


Figure 1 - EU-wide monitoring mechanism as operated by the JRC

This mechanism has been developed by the JRC in the period 2008-2011 and was employed very successfully for the investigation priority and emerging pollutants in surface water (Loos *et al.* (2009a), groundwater (Loos *et al.* (2010), sewage sludge (Tavazzi *et al.* (2012), effluents (Loos *et al.* (2012)) and treated biowaste (Tavazzi *et al.* (2013)). In the cases of sewage sludge and biowaste, the mechanism was used for the first time to deliver input to policy decisions influencing the revision process of the Sewage Sludge Directive 86/278/EEC (European Union, 1986) and the definition of End-of-waste criteria for biowaste.

In addition, the findings on the occurrence in surface and groundwaters of E955 sucralose, a novel persistent food additive released in 2005 to the European market, the mechanisms delivered valuable information to the European Environment Agency (EEA) to underpin the need for a better ecotoxicological investigation of E955 (Loos *et al.* (2009b)).

2 Preparatory steps

2.1 Information expected from the feasibility study

The main purpose of the pilot exercise was to assess the feasibility of a mechanism to support future Watch List monitoring in support of the prioritisation process, using the JRC's monitoring design. In this framework, the selection of the substances was a critical exercise due to the sensitive character of chemical monitoring information when geo-referenced. The set of substances had to cover various physic-chemical properties, e.g. in terms of polarity, volatility or stability, but needed also to be selected in function of available analytical resources. Furthermore, the feasibility study should provide a realistic overview on the work to be conducted for those substances, for which a standard method is not available. Additionally, information about number of sampling stations, comparability of data among laboratories and financial resources were expected from the study. More precisely the following questions had to be investigated and eventually answered:

- 1.) Is it possible to collect and centrally analyse a set of samples from 200-250 sampling stations across the EU and within a narrow range of time?
- 2.) What are the limitations of the EU wide snapshot mechanism developed by the JRC in terms of sample capacity, stability and in view of the analytes to be investigated?
- 3.) Is it possible to apply the mechanisms to sediment and biota samples?
- 4.) Can the study design deliver analytical methods developed on purpose for this exercise in a way that it can be the basis for further normative work and standardization?
- 5.) Are data for the same analyte obtained in different laboratories comparable?
- 6.) What is the cost of such an exercise and which resources are needed?
- 7.) What information can be obtained from such an exercise?

2.2 Substance selection

The substance selection for this pilot exercise was a sensitive step due to the political framework of the experiment. Thus, it was necessary from a scientific point of view to examine various technical aspects in the study, while not to interfere with the prioritisation process. Furthermore, it was necessary to consider those analytical resources and capabilities of the participating laboratories, which could be made available to this study. The following set of substances retained for this study is the result of these considerations. It has to be stressed that none of the substances was selected because of environmental concerns or in view of future prioritisation exercises.

2.2.1 Acesulfame

Acesulfame is commercially used as potassium salt, also known as Acesulfame-K. It is 200 times sweeter than table sugar. It is a very polar and water soluble compound. Artificial low-calorie sweeteners are consumed in considerable quantities with food and beverages. After ingestion, some sweeteners pass through the human metabolism largely unaffected, are

quantitatively excreted via urine and feces, and thus reach the environment associated with domestic wastewater. Acesulfame is poorly eliminated in wastewater treatment plants (WWTPs) and is moderately persistent in surface waters. Acesulfame and Sucralose were recently identified as ubiquitous (emerging) environmental contaminants. They were detected in untreated and treated wastewater, in surface waters, groundwater, ocean waters, and even in tap and drinking water samples (Buerge *et al.* (2009), Loos *et al.* (2009b), Mead *et al.* (2009), Scheurer *et al.* (2009)).

Acesulfame		
CAS Number	Log K _{ow}	Water Solubility [g/l]
33665-90-6	-1.3	250
55589-62-3 (K)		
Formula	Molecular weight	Chemical structure
C₄H₅NO₄S	163.15 g/mol	

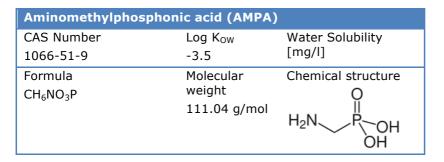
Table 1 - Chemical properties of acesulfame

Motivation for choice: Due to its persistence and release to the sewer system persistent food additives such as acesulfame have been established as tracer substances for emerging pollutants linked to food. The substance polarity requires measurement by LC-MS. Although the substance is increasingly analysed in environmental studies in particular aiming at to the interaction between effluents and surface waters, no standard method exist. The analytical difficulty of this substance is of medium complexity and the compound represents a good example of emerging pollutants with a low toxicological relevance but ubiquitous character. The substance is released predominantly via effluents of STP and leakage from sewer systems.

2.2.2 Glyphosate

Glyphosate is presumably the most used herbicide worldwide. It has a non-selective modeof-action with a broad application spectrum. It is widely applied in agricultural and urban environments. One of the reasons for its success was the development of glyphosate tolerant plants such as soy or maize. Due to its low toxicity and high efficiency, it is also a popular herbicide to control weed in urban areas. Glyphosate is a highly water soluble compound, but sorbs also strongly to the soil matrix and is therefore considered relatively immobile in soil. Furthermore, it undergoes microbial degradation in soil. Despite these facts glyphosate occurs in rather high concentrations in surface water (Hanke *et al.* (2010)).

Motivation for choice: Glyphosate is a highly water-soluble herbicide and degrades rapidly in soil, but only slowly in water. The substance is stable in water at a range of pH values at 35°C and resists also photo-degradation in buffered solution under natural sunlight. Its hydrolysis half-life is more than 35 days. Sediment appears to be the major sink for glyphosate residue (see AMPA). The substance is widely monitored at EU scale and standard methods are operated frequently. In the feasibility study, glyphosate (and its degradation product AMPA) is proposed to investigate typical behaviour of plant protection products. Given the routine character of the analytical method the substance is also used for an intercomparison for samples analysed independently in two different laboratories.


Table 2 - Chemical properties of glyphosate

Glyphosate		
CAS Number	Log K _{ow}	Water Solubility [g/l]
1071-83-6	-3.5	10
Formula	Molecular weight	Chemical structure
C ₃ H ₈ NO ₅ P	169.07 g/mol	

2.2.3 AMPA

AMPA (Aminomethylphosphonic acid) is the primary degradation product of glyphosate, and often detected in surface waters in higher concentrations than Glyphosate. In addition, it tends to accumulate in sediment (bound residues) (Al-Rajab & Schiavon (2010), Botta *et al.* (2009)).

Table 3 - Chemical properties of AMPA

Motivation for choice: AMPA is the primary metabolite of herbicide glyphosate and tends to accumulate in sediment. The assessment was proposed to facilitate a link between sediment monitoring (carried out only very rudimentary in this study). More important is the investigation of parent compound and metabolite.

2.2.4 ¹H-Benzotriazole and Tolyltriazoles

¹H-Benzotriazole and Methylbenzotriazoles¹ are a class of high production volume chemicals, which find broad applications in various industrial processes as well as in households. They show metal complexing properties and are used as anticorrosive additives and flame retardants in aircraft de-icers and anti-ice fluids, in cooling and hydraulic fluids and for silver protection in dishwashing agents. Benzotriazoles are compounds with high water solubility and a high polarity. Moreover, they are quite persistent against biological and photochemical degradation processes in the aquatic environment. Acute toxicity to aquatic organisms is in the low to moderate mg/L range, but there is a lack of a complete set of good quality ecotoxicological data on possible chronic effects of these high use chemicals (Janna *et al.* (2011), Reemtsma *et al.* (2010), Weiss *et al.* (2006)).

Motivation for choice: Benzotriazoles are high production-volume chemicals used in a wide range of industrial and household applications. They are generally considered to be stable, but may degrade under certain conditions, e.g. may react to changes in oxygen levels, thus they are useful to assess sample stability issues, if need arises.

¹ Tolyltriazole, TT, used as a technical mixture of 4- and 5-TT

Table 4 – Chemical properties of ¹H-Benzotriazole

¹ H-Benzotriazole		
CAS Number	Log K _{ow}	Water Solubility [g/l]
95-14-7	1.23	20
Formula	Molecular weight	Chemical structure
$C_6H_5N_3$	119.13 g/mol	HN N N

Table 5 – Chemical properties of 4-Tolyltriazole

4-Tolyltriazole		
CAS Number	Log K _{ow}	Water Solubility [mg/l]
29878-31-7	1.89	
Formula	Molecular weight	Chemical structure
$C_7H_7N_3$	133.15 g/mol	ÇH₃
		N.N. N.H.

Table 6 – Chemical properties of 5-Tolyltriazole

5-Tolyltriazole		
CAS Number	Log K _{ow}	Water Solubility [mg/l]
136-85-6	1.89	
Formula	Molecular weight	Chemical structure
C ₇ H ₇ N ₃	133.15 g/mol	H ₃ C N N H

2.2.5 Bisphenol A

Bisphenol A (BPA) is widely used in the production of polycarbonate plastics and phenolicepoxy resins, which have a variety of applications, such as plastic food containers and epoxy food-can coatings. Additional applications of BPA include printed circuit boards, composites, adhesives, and tooling. BPA is relatively easily degraded in water. However, due to the continuous release of BPA into the environment, in comparison to plasticizers such as phthalates, BPA is commonly detected in aquatic ecosystems. Various studies revealed its endocrine disrupting activity (European Commission (2003, 2008), Gallart-Ayala *et al.* (2010), Oehlmann *et al.* (2008), Quednow & Püttmann (2008)).

Motivation for choice: Bisphenol A is mainly used in the production of epoxy resins and polycarbonate plastics, the latter being frequently used in laboratory and sampling

equipment. The analysis of the substance is technically very challenging due to risk of sample contamination during sampling and pre-treatment. The substance is proposed in order to investigate the influence of the sampling equipment and sample container.

Bisphenol A		
CAS Number	Log K _{ow}	Water Solubility [mg/l]
80-05-7	3.4	300
Formula	Molecular weight	Chemical structure
C ₁₅ H ₁₆ O ₂	228.29 g/mol	но-СН ₃ -Он

2.2.6 Triclosan and triclocarban

Triclosan is currently used as an antimicrobial agent in toothpaste, mouthwash, liquid soap and in functional clothing such as functional shoes and underwear, as a stabilizing agent in a multitude of detergents and cosmetics and as an antimicrobial agent in polymeric food cutting boards. The primary emission route for Triclosan after usage is through wastewater. In wastewater treatment plants (WWTPs) ~90% of the incoming Triclosan is removed from the water (also by adsorption to sludge), which is a high but not complete removal. As a result, it has been found in WWTP effluents as well as in surface water and ground water (and sewage sludge) in many countries (Bester (2009), Chen *et al.* (2012), European Commission (2009), Heidler & Halden (2008), Singer *et al.* (2002)). Triclocarban is used as an antimicrobial and antibacterial agent in liquid soaps and deodorants, and antibacterial mouthwashes and toothpastes (personal care products). Its maximum amount allowed in Europe in cosmetic products is 0.2 %. Due to its environmental persistence and widespread use, Triclocarban was found in surface water in concentrations up to microgram/liter levels, and recent studies show that it accumulates in snails and algae (Kwon & Xia (2012), Schebb *et al.* (2011)).

Motivation for choice: The substances are antibacterial and antifungal agents used in various consumer products such as soaps, deodorants, skin-care products, but also in textiles and food contact material. Both substances are only slightly soluble in water and do not decompose under normal storage conditions. In aquatic environments, triclosan and triclocarban are expected to attach to the surface of suspended solids and sediments and may bioaccumulate. The usefulness in the pilot include the investigation of aspects of cross contamination caused by staff handling. Adsorption on the sampling container may also be an issue for water samples. The substance triclocarban was included as an additional compound to better illustrate that a strict single substance approach may lead not to capture the full picture in terms of occurrence and levels of emerging pollutants. In the evaluation, data will be useful to evaluate whether similar substances feature similar distribution patterns.

Table 8 - Chemica	l properties	of triclosan
-------------------	--------------	--------------

Triclosan		
CAS Number	Log K _{ow}	Water Solubility [mg/l]
3380-34-5	4.8	10
Formula	Molecular weight	Chemical structure
C ₁₂ H ₇ Cl ₃ O ₂	289.53 g/mol	

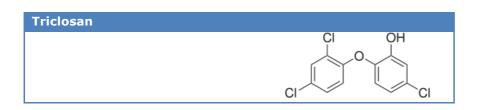


Table 9 - Chemical properties of triclocarban

Triclocarban		
CAS Number	Log K _{ow}	Water Solubility [mg/l]
101-20-2	4.9	0.11
Formula	Molecular weight	Chemical structure
C ₁₃ H ₉ Cl ₃ N₂O	315,58 g/mol	

2.2.7 Carbamazepine and its metabolite 10,11-Dihydro-10,11-dihydroxycarbamazepine

Carbamazepine (CBZ), used as an anti-epileptic and mood-stabilizing drug, is one of the most frequently detected pharmaceutical residues in water bodies, since it is poorly removed in WWTPs. Investigations found that Carbamazepine is persistent and its removal efficiencies by WWTPs are mostly below 10%, because it is resistant to biodegradation at low concentrations, and it is purely adsorbed to sludge (Fenet *et al.* (2012), Zhang *et al.* (2008)). 10,11-Dihydro-10,11-dihydroxycarbamazepine (CBZ) (De Laurentiis *et al.* (2012)).

Table 10 – Chemical properties of carbamazepine

Carbamazepine		
CAS Number	Log K _{ow}	Water Solubility [mg/l]
298-46-4	2.45 - 2.77	17.7
Formula	Molecular weight	Chemical structure
C ₁₅ H ₁₂ N ₂ O	236.3 g/mol	O NH ₂

Table 11 – Chemical properties of 10,11-Dihydro-10,11-dihydroxycarbamazepine

10,11-Dihydro-10,11-dihydroxycarbamazepine		
CAS Number	Log K _{ow}	Water Solubility [mg/l]
58955-93-4	0.81	
	Molecular weight	Chemical structure
	270.1 g/mol	

Motivation for choice: Carbamazepin is an anticonvulsant and mood-stabilizing drug used primarily in the treatment of epilepsy and bipolar disorder, as well as trigeminal neuralgia. It is highly persistent in the water/sediment system and features an elevated level of sorption onto the sediment, but also readily detectable in surface water. The metabolite has a more polar character. The use of the couple will be useful to illustrate that monitoring the mother molecule may not be sufficient to assess the environmental occurrence of a given substance.

2.2.8 Sulfamethoxazole

Sulfamethoxazole (SMZ) is one of the most prescribed antibiotics worldwide. It is used to treat a vast array of infections in humans and animals. SMZ is also used in combination with Trimethoprim for the treatment of respiratory and urinary tract infections. SMZ is, due to its persistency, one of the most frequently detected antibiotics in the environment (Haack *et al.* (2012)).

Sulfamethoxazole		
CAS Number	Log K _{ow}	Water Solubility [mg/l]
723-46-6	0.92	281-610
Formula	Molecular weight	Chemical structure
$C_{10}H_{11}N_3O_3S$	253.28 g/mol	H ₂ N N-O

Motivation for choice: Sulfamethoxazole is released not only by sewer systems and the respective treatment plants, but this drug is registered for use in humans, dogs, horses, cattle, and swine, thus likely to enter the environment also by diffuse sources.

2.2.9 Perfluoropropionic acid (PFPrA)

Short-chain perfluorinated acids and sulfonates are increasingly being used in industry as substitues for Perfluorooctansulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA). In the literature, very little information is available on perfluoropropionic acid (PFPrA). It has been analysed in Japan in precipitation using weak anion-exchange SPE (WAX) followed by LC-MS-MS analysis. Trifluoroacetic acid (TFA), the atmospheric degradation product of (hydrofluoro)carbons and (hydrochlorofluoro)carbons, and several short-chain perfluorinated acids are major compounds found in rainwater (Li *et al.* (2010), Kwok *et al.* (2010), Taniyasu *et al.* (2005, 2008)).

Table 12 - Chemical properties	s of perfluoropropionic acid
--------------------------------	------------------------------

Perfluoropropionic acid		
CAS Number	Log K _{ow}	Water Solubility [mg/l]
422-64-0		Very soluble

Formula	Molecular weight	Chemical structure
C ₃ HF ₅ O ₂	164.03 g/mol	

Motivation for choice: Perfluoropropionic acid is a typical situation of a less-investigated environmental pollutant, which due to its chemical and physico-chemical similarity to another critical substance can be expected to pose similar problems. In this study, the substance illustrates also the complexity of analytical method development from scratch. This information is expected to be useful in the evaluation if the mechanism can deliver prenormative input.

2.2.10 Tris-2-chloropropyl phosphate (TCPP)

Organophosphates (OPs) are employed as flame retardants and plasticizers in a large variety of consumer products (plastics, textiles, electronic equipment, as well as furniture and construction material). The chlorinated OPs Tris(2-chloroethyl) phosphate (TCEP) and Tris(2-chloropropyl) phosphate (TCPP) are predominantly used as flame retardants, whereas the non-chlorinated esters Tris(2-butoxyethyl) phosphate (TBEP), Tri-iso-butyl phosphate (TiBP), and Tri-n-butyl phosphate (TnBP) are mostly applied as plasticizers, antifoaming agents, and additives. TCPP is used as a flame retardant agent mostly in polyurethane foams for rigid polyurethane foam as used, e.g., to place and fix window frames etc. in buildings. TCEP was mainly substituted by TCPP in Europe since the mid 1990s due to its toxic effects to aquatic organisms and its classification in the European Union (EU) as "potential human carcinogen". Several studies have shown the occurrence of the OPs in the aquatic, terrestrial, and atmospheric environment as a result of anthropogenic activities (Andresen *et al.* (2004), Reemtsma *et al.* (2008), Regnery & Püttmann (2010)).

Tris-2-chlorop	ropyl phosphate	
CAS Number	Log K _{ow}	Water Solubility [g/l]
13674-84-5	2.6	0.9
Formula	Molecular weight	Chemical structure
C ₉ H ₁₈ Cl ₃ O ₄ P	327.55 g/mol	

Motivation for choice: This flame retardant is mainly linked to the use of polyurethane foam. As such it is widely used in the construction sector and industrial sector in general. TCPP is defined as semi-polar and shown to occur in significant concentrations in surface water, groundwater and precipitations. It is resistant to hydrolysis in neutral or acidic waters and to photolysis and characterised by a low biodegradability. The substance is proposed to be analysed by GC-MS and is seen as analytically challenging as a new method development is required.

2.2.11 Methyl tert-butyl ether (MTBE)

Methyl *tert*-butyl ether (MTBE) is a flammable liquid which is used as an organic solvent and an additive in unleaded gasoline, used as an oxygenate to raise the octane number (antiknocking agent). MTBE is a volatile contaminant, but small amounts may dissolve in water and get into ground water where it remains for a long time. MTBE can enter streams in association with urban storm water runoff or ground water discharge. Direct spills of gasoline to rivers are also possible (Li et al. (2008), Werner et al. (2001)).

Motivation for choice: MTBE is almost exclusively used as a fuel component in fuel for gasoline engines. It can enter streams in urban stormwater runoff or groundwater discharge. Direct spills of gasoline to streams is also possible. MTBE sorbs only weakly to subsurface of solids. Therefore, sorption does not retard the transport of MTBE by groundwater. Generally it resists biodegradation by indigenous bacteria in ground water. In this study, MTBE has been proposed to investigate the influence of volatilisation and loss due to adsorption on sample container walls or headspace formation. MTBE is also analysed in parallel and independently in two laboratories.

Methyl tert-b	utyl ether	
CAS Number	Log K _{ow}	Water Solubility [g/l]
1634-04-4	1.24	48
Formula	Molecular weight	Chemical structure
$C_5H_{12}O$	88.15 g/mol	
		-/ 0-

2.2.12 Decabromodiphenylethane (DBDPE)

Polybrominated Diphenylether (PBDE) usage has been voluntarily phased out in several countries or is restricted by law due to concerns regarding human and wildlife health. This has created a demand for alternative flame retardants. Decabromodiphenylethane (DBDPE) was introduced as an alternative flame retardant to Decabromodiphenylether in the early 1990s. With increasing regulation and phasing-out of production of the commercial usage of PBDEs, it is expected that the production and usage of DBDPE will be predominant in the coming future. The structures of the two chemicals are similar, and hence DBDPE may also become an environmental contaminant of concern. Over the past 20 years, PBDEs have been shown to be ubiquitously present and persistent in the environment. In 2003, DBDPE was discovered in the environment for the first time (Kierkegaard *et al.* (2004), Ricklund *et al.* (2008)).

Decabromodiphenylethane		
CAS Number	Log K _{ow}	Water Solubility [mg/l]
84852-53-9	11.3	almost insoluble
Formula	Molecular	Chemical structure
$C_{14}H_4Br_{10}$	weight	Br
	971.27	Br Br Br
		Br
		Br Y Br D'

 Table 14 - Chemical properties of decabromodiphenylethane

Motivation for choice: Decabromodiphenylethane is one of the newer flame retardants, which poses analytical challenges due to hydrophobicity and the related low water

concentrations. The substance tend to be bound on particulate matter or hydrophobic surfaces and is hence a suitable candidate substance to assess the mechanism for sediment/biota monitoring.

2.2.13 Silver (Ag)

Silver occurs naturally in the environment, but it is also used in various businesses and industries, particularly photofinishing. A growing tendency is the use of silver in its nanoform for different applications due to is anti-bacteriological properties. Products with antimicrobial effect based on silver nanoparticles are increasingly used in Asia, North America and Europe. The use of silver nanoparticles incorporated in consumer products (textiles and plastics) has become common in the last years because of the biocidal effect of the silver ion. Industry makes use of this new technology in food contact applications, in the interior of automobiles such as steering wheels and in building materials such as sanitary tubing and coverings. Another field of application for products with antimicrobial effect based on silver ions is medical equipment such as catheters, infusion systems and medical textiles. The biocidal mechanism of silver-containing products results from a long term release of silver ions (Ag⁻) by oxidation of metallic silver (Ag⁰) in contact with water (Blaser *et al.* (2008), Flegal *et al.* (2007)).

Motivation for choice: Silver is monitored in the dissolved water phase and this requires an additional sample pre-treatment step, i.e. filtration and acidification. Furthermore, silver is the only metal, addressed in this study. Expected levels are likely to be very low.

2.2.14 Boron (B)

Boron is a nonmetallic element, which has five protons in its nucleus along with five to six neutrons, resulting in two stable isotope forms: ¹⁰B (abundance of 19.8%) and ¹¹B (abundance of 80.2%), averaging its atomic weight at 10.81 Da. Boron exists in nature in the form of boric acid (H_3BO_3) or borates, mainly sodium borate ($Na_2B_4O_7 \cdot 10H_2O$), also known as borax. Boric acid and sodium borates are used as antibacterial and antifungal agents. Despite the fact that boron exists in fertilizers, where it is described as an essential constituent for the growth of plants and vegetation, boron contamination is a serious threat to crops, because they are very sensitive to high levels of boron in the irrigation waters. Boron is detected in surface water and groundwater in various locations around the world, including sea and river waters, where it is present mainly in the form of boric acid (Farhat *et al.* (2013)).

Motivation for choice: Boron is monitored in the dissolved water phase and this requires an additional sample pre-treatment step, i.e. filtration and acidification. Its analytical determination related to Ag, but boron is a non-metal.

2.2.15 Chloride (Cl^{-})

Motivation for choice: Chloride measurements are carried out on a routine basis in water monitoring laboratories. The parameter has been included as a conservative parameter to better relate to various national measurements.

2.3 Site selection principle

The study design foresaw originally a maximum capacity for ca. 350 sampling stations, of which 250 stations were suggested for EU-27 and the rest other European countries, in case these countries wanted to adhere to the experiment. The number of sites to be assessed needed to be distributed over the countries considering the different size of a country in terms of geographical surface and population. Furthermore, an indicator for industrial and anthropogenic pressure had to be included. To this end, it was agreed to base the allocation on an arithmetic pooling of country surface (excluding eventual territories overseas),

population and energy consumption expressed as kT of oil equivalent. The energy use refers to use of primary energy before transformation to other end-use fuels, which is equal to indigenous production plus imports and stock changes, minus exports and fuels supplied to ships and aircraft engaged in international transport (International Energy Agency (IEA Statistics © OECD/IEA, http://www.iea.org/stats/index.asp). The sampling stations were then distributed per country as listed in Table 15.

Based on this allocation, Member States were invited to provide contact persons, name and addresses of sampling stations as well as further information. Out of the 248 sampling stations allocated per country, the final selection included 220 stations of which 219 were assessed successfully.

Name of country	Number of stations proposed	Stations contacted successfully	Stations assessed
France	18	7	7
Germany	18	17	17
Spain	17	17	17
Italy	15	13	13
United Kingdom	15	15	15
Poland	13	0	0
Sweden	12	7	7
Finland	11	11	11
Romania	11	11	11
Netherlands	10	5	5
Czech Republic	9	9	9
Austria	8	8	7
Belgium	8	8	8
Greece	8	8	8
Hungary	8	8	8
Portugal	8	8	8
Bulgaria	7	7	7
Denmark	7	7	7
Ireland	7	7	7
Slovak Republic	7	7	7
Latvia	6	6	6
Lithuania	6	6	6
Estonia	5	5	5
Slovenia	5	0	0
Cyprus	3	3	3

Table 15 - Overview on allocated sample stations per country

PILOT STUDY ON THE FEASIBILITY OF "WATCH LIST" MONITORING

	TOTAL	220	219	
SubTOTAL2	14	13	13	
Iceland	6	5	5	
Norway	8	8	8	
Non EU				
SubTOTAL1	248	207	206	
Malta	3	3	3	
Luxembourg	3	4	4	

Order per surface		Order per population		Order per population density	lensity	Order per energy use		Allocation based on average*	srage*
							se		1
State k	Number of km ² stations	Name of country	Number of Population stations	Name of country	Population Number of density stations	Name of country	(kt of oil Number of equivalent) stations	Name of country stat	Number of stations
France	674843 1	18 Germany	83,251,851 18	18 Malta	1,257.90 2	26 Germany	318,528.90	18 France	18
Spain	506030 1	18 France	63,182,000 18	18 Netherlands	393 1	16 France	256,217.20	18 Germany	18
Sweden	449964 1	18 United Kingdom	61,100,835 18	18 Belgium	336.8 1	16 United Kingdom	196,762.50	18 Spain	17
Germany	357050 1	18 Italy	58,751,711 16	16 United Kingdom	244.2 1	14 Italy	164,630.00	18 Italy	15
Finland	338145 1	18 Spain	45,061,274 16	16 Germany	233.2 1	14 Spain	126,519.90	¹⁸ United Kingdom	15
Poland	312683 1	12 Poland	38,625,478 16	16 Italy	191.6 1	12 Poland	93,987.20	12 Poland	13
Italy	301318 1	12 Romania	21,698,181 14	14 Luxembourg	173.5 1	12 Netherlands	78,174.80	12 Sweden	12
United Kingdom	244820 1	10 Netherlands	16,318,199 12	2 Czech Republic	130.1 1	10 Belgium	57,218.70	10 Finland	11
Romania	238391 1	10 Greece	10,645,343	8 Denmark	129	9 Sweden	45,408.30	10 Romania	11
Greece	131990	8 Portugal	10,409,995	8 Poland	123.5	9 Czech Republic	41,990.40	10 Netherlands	10
Bulgaria	110910	8 Belgium	10,274,595	8 France	115.5	9 Romania	39,416.70	9 Czech Republic	6
Hungary	93030	8 Czech Republic	10,256,760	8 Slovakia	111	9 Finland	33,169.90	9 Austria	00
Portugal	92391	8 Hungary	10,075,034	8 Portugal	110.1	9 Austria	31,657.60	9 Belgium	00
Austria	83871	8 Sweden	9,090,113	8 Hungary	108.3	9 Greece	29,438.80	8 Greece	∞
Czech Republic	78866	8 Austria	8,169,929 8	8 Austria	97.4	8 Hungary	24,859.20	8 Hungary	00
Ireland	70273	7 Bulgaria	7,621,337	7 Slovenia	95.3	8 Portugal	24,095.90	8 Portugal	80
Lithuania	65303	7 Denmark	5,564,219	7 Romania	91	8 Denmark	18,605.50	7 Bulgaria	7
Latvia	64589	7 Slovakia	5,422,366	7 Spain	89.3	7 Bulgaria	17,480.20	7 Denmark	7
Slovakia	49037	7 Finland	5,157,537	7 Cyprus	85	7 Slovak Republic	16,722.60	7 Ireland	7
Estonia	45226	7 Ireland	4,234,925	7 Greece	80.7	7 Ireland	14,339.40	7 Slovak Republic	7
Denmark	43094	7 Lithuania	3,601,138 6	6 Bulgaria	68.7	6 Lithuania	8,387.60	s Latvia	9
Netherlands	41526	7 Latvia	2,366,515 6	6 Ireland	60.3	6 Slovenia	6,968.80	s Lithuania	9
Belgium	30528	5 Slovenia	1,932,917	5 Lithuania	55.2	5 Estonia	4,748.40	4 Estonia	2
Slovenia	20273	5 Estonia	1,415,681	5 Latvia	36.6	4 Latvia	4,219.80	4 Slovenia	5
Cyprus	9251	3 Cyprus	788,457	3 Estonia	31.3	4 Luxembourg	3,949.40	3 Cyprus	e
Luxembourg	2586	3 Luxembourg	448,569	3 Sweden	19.7	3 Cyprus	2,505.60	3 Luxembourg	e
Malta	316	3 Malta	397,499	3 Finland	15.3	3 Maita	799.6	3 Malta	e
								TOTAL	248
Non EU		Non EU		Non EU		Non EU		Non EU	
Turkey	783,562 1	12 Albania	3,600,523 12	2 Albania	125.2 1	12 Ukraine	115,472.10	12 Ukraine	11
Ulkraine	603,700 1	12 Bosnia and Herzegovina	3,843,126 12	2 Bosnia and Herzegovina	75.2 1	12 Turkey	97,660.70	12 Turkey	9
Norway	324,220	8 Croatia	4,437,460	8 Croatia	7.77	8 Norway	28,244.90	8 Norway	8
Iceland	103,000	7 Iceland	307,261	7 Iceland	2.7	7 Switzerland	26,952.30	8 Bosnia and Herzego	7
Serbia	77,275	7 Republic of Macedonia	2,054,800	7 Republic of Macedonia	81.1	7 Serbia	14,449.70	7 Croatia	7
Croatia	56,542	5 Norway	4,525,116	5 Norway	14	5 Croatia	8,702.40	7 Albania	9
Bosnia and Herzegovina	51,129	5 Serbia	7,120,666	5 Serbia	85.4	5 Bosnia and Herzegovina	5,952.60	s Iceland	9
Switzerland	41,290	3 Switzerland	7,507,000	3 Switzerland	176.8	3 Iceland	5,224.90	s Serbia	9
Albania	28,748	3 Turkey	71,517,100	3 Turkey	93	3 Macedonia, FYR	2,780.60	3 Macedonia, FYR	5
Republic of Macedonia	25,713	8 Ukraine	48,396,470 8	8 Ukraine	80.2	8 Albania	1,717.20	3 Switzerland	5
								TOTAL	70

Table 16 - Application of various site selection principles

3 Sample collection and field work

3.1 Instructions and dispatch

Dispatch logistics and sample pick-up was organized by the JRC using a private courier service. The material for packaging as well as the respective sample containers were agreed among the analyzing laboratories. In addition, some control analyses on pre-conditioned containers were organized. The material together with the instruction were packed in thermo-insolated boxes (Figure 2).

Figure 2 – Packaging and dispatch material used in the pilot study

:

Each contact person established for the respective sampling station received from the JRC the following material:

- For water samples
- For sediment samples :
- 6 plastic bottles (1 L) and 4 aluminium bottles (1 L) 1 square plastic bottle (500 mL)
- For biota sampling :
- 3 plastic bags

In addition, sampling stations where only water samples were foreseen, the participants received a sample container for a field blank, which was either in aluminium or plastic. All bottles dispatched were labeled with the name of the station and a unique identifier. For sampling stations where biota and/or sediment sampling was foreseen, no field balnk could be collected due to space restrictions. The participants were instructed, upon sampling, to prepare the pick-up of the samples using the cooling boxes received with the empty containers. Cooling elements to ensure a temperature of 10°C or below were supplied, too. The ready box needed to be placed in a carton box suitable for shipment with proper labeling. Upon contacting the JRC liaison staff, pick-up was arranged using a private courier services. Samples arrived within 48h at the JRC where they were immediately processed prior to analyses. In order to ensure speedy processing, ready packages were only on Mondays, Tuesdays or Wednesday. Sampling operations were conducted in May (first sampling: 7th May) to September 2012 (last sample 17th September). For logistic reasons during the summer period, it was decided not to take samples in the period from 10th July to 21st August.

To find a compromise between the need for harmonization of sampling and the necessity not to interfere too much with normal sampling programmes participants received only a set of generic guidelines. Thus, in the case of water sampling, participants were instructed to fill all sample containers received, with the exception of the field blank for which separate instructions were given to each participant. Since some compounds of interest might be enriched in the surface film, it was important to avoid water from the surface film and consequently, samples should be collected with a sampler that opens and closes beneath the water surface (at least 20 cm). If not available, a bottle should be immersed upside down, and turned below the surface. Sample containers were already conditioned for use, however it was strongly recommended to rinse each sampling bottle prior to filling with water from the sampling site. In order to avoid contamination with PFCs (one of the compound groups of interest) participants were asked to ensure that the sampling device did not contain parts in PTFE or similar and that during the sampling, the person collecting the sample did not wear PTFE-containing polymers or clothing which had been treated with stain or water repelling

agents. Generally good sampling practice for the sampling of trace contaminants had to be followed and the provided pre-cleaned bottles had to be filled leaving an as small as possible headspace. In case that contact with PTFE-containing equipment was unavoidable, it had to be clearly indicated in the Sampling Bill.

Participants were asked to document each sample and sampling station carefully, using a sampling bill template provided by the JRC. The compiled sampling was sent to the JRC together with additional documentation (e.g. pictures taken during the sampling). This information can be found in the annex to this report.

Upon sampling, samples had to be stored in the dark at 4°C until dispatch.

For sediment samples, a 500 mL square plastic bottle was provided and to be filled with a grab sample. Sieving over a sieve with aperture of 2 mm was recommended.

For biota sampling, participants were invited to provide as a minimum a pool of 5 fish (approx. 500 g of fillet, 100 g from each fish) and the livers. No indications were given on the species, but non-migrating fish species such as carp or trout were recommended. For mussel tissue, 500 g was suggested as target quantity. No further instructions were provided.

Instructions for handling of the field blank were straightforward; participants were invited to open the bottle when sampling of the other samples started and to close it at the end of the operation. The participants were instructed to avoid cross-contamination e.g. by touching the cap without any precautions.

3.2 Received information

All information provided by the participants is compiled in the annex to this report. For confidentiality reasons, geographical coordinates are not readable, but are available to authorities from the participating Member States. The figure below illustrates the distribution of the sampling sites across Europe. A good coverage of typical European scenarios was achieved despite the fact that some countries were not included in the study. As can be seen from the sampling bills received, many participants documented also their sites with photographic material, additional site-specific measurements and supplementary information. The documentation received is sufficient to establish a permanent network of stations and a contact database, which will facilitate a watch list monitoring mechanism.

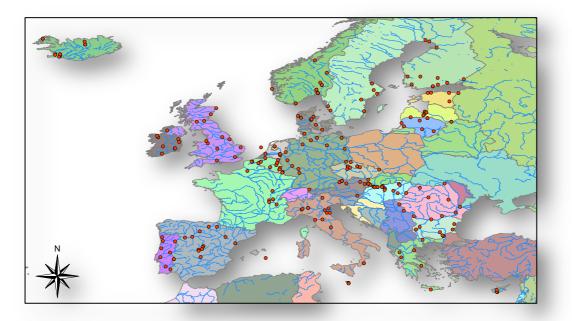


Figure 3 – Overview on the geographical distribution of the sampling stations used in the context of this feasibility study

It has to be stressed that the analytical information derived from the study aimed at the investigation of the feasibility of the approach. In cases of successful sampling and analysis, the summary data may be seen as a snapshot of the occurrence and levels of a given substance in Europe. In some other cases, apparent short-comings of the mechanism are put in evidence.

In all cases, the derived information is NOT APPROPRIATE to make a conclusive statement on the chemical water quality at the single sampling station for the investigated compound. The value of the exercise is the collection of a representative number of snapshots of the instantaneous occurrence of the investigated compounds, which, if taken collectively, well represents a European picture.

Nevertheless, the snapshot approach does not grasp seasonal variations, which may occur for some compound classes, e.g. some pesticides or selected pharmaceuticals.

4 Laboratory measurements

The measurements for the study compounds were carried out in the laboratories listed in the table below. Where available, already implemented and validated routine methods were used. In some other cases, methods had to be developed from scratch. All laboratories were invited to provide full documentation on the analytical method including performance data, material employed and instrumentation used. Amount and detail of the information provided differs greatly among the laboratories.

Substance	Technique	Laboratory	Country
Acesulfam	LC/MS	Umweltbundesamt GmbH	Austria
Benzotriazole	LC/MS		
Boron	ICP/MS	Vlaamse Milieumaatschappij	Belgium
Silver	ICP/MS		
Glyphosate	LC/MS	Povodí Labe	Czech Republic
АМРА	LC/MS		
Decabromodiphenylethane	GC/MS		European Commission
ТСРР	GC/MS		
Perfluoropropionic acid	LC/MS		
Chloride	IC		
Sulfamethoxazol	LC/MS		
Carbamazepine	LC/MS		
10,11-Dihydro-10,11- dihydroxycarbamazepine	LC/MS		
Triclosan	LC/MS	Bundesanstalt für Gewässerkunde	Germany
Bisphenol A,	LC/MS		
МТВЕ	GC/MS	Rijkswaterstaat	The Netherlands
МТВЕ	GC/MS	NLS	United Kingdom
Glyphosate	LC/MS		

4.1 Analytical methods used

The following sections describe all details on the analytical methodology used by the laboratories listed above. In those cases, where a method was applied to the analyses of more than one substance, the method is described only once. In the case that the same substance was analysed by more than one laboratory, the two methods are described. The level of detail of information submitted varies. It reflects the information available to the JRC at the moment of drafting this report. Methods used by the JRC were subject to a full method validation following the principles of the EURACHEM/CITAC Guide on Quantifying Uncertainty in Analytical Measurement (2012). Given the high level of detail of the underlying method validation and uncertainty estimation, the findings were published as a self-standing report

(Tavazzi *et al.* (2013)). Since the JRC methods were developed in occasion of this experiment, this report may serve as an example of how to use this type of experimental work as pre-normative input to the development of standard methods by a standardisation body such as CEN or ISO, in case that this would be requested by future prioritisation exercises.

4.1.1 Acesulfame method used by Austria (Umweltbundesamt)

Acesulfame was analyzed by means of liquid chromatography tandem mass spectrometry (LC-MS/MS). Analysis was performed on a HP 1290 (Agilent) UPLC system that was coupled to a 4000 QRTAP mass spectrometer (Applied Biosystems). Eluents were water modified with 2mM ammonium actetate and methanol. The separation was performed using 2 x 100 mm Triart C18 column with 3 μ m particle size (YMC) at 35°C. A sample volume of 10 μ L was directly injected into the system. The flow rate was set to 300 μ L min⁻¹. In the beginning Methanol was set to 2% and was increased to 75% (6 minutes). The ratio was decreased to 2% (0,1min) and was maintained for 3 minutes. The mass spectrometer was operated in multiple reaction monitoring (MRM) mode using the following parameters for negative electrospray ionization: spray voltage -4000V, temperature 750°C and curtain gas 30. The transitions 162 > 82 as quantifier and 162 > 78 as qualifier were used. Quantitation was performed using an external standard calibration. For quality assurance every tenth sample was spiked to check for matrix effects (standard addition).

4.1.2 Benzotriazoles method used by Austria (Umweltbundesamt)

1-H-benzotriazole, 4 -tolyltriazole and 5 - tolyltriazole were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) according to Weiss and Reemtsma (2005). Analysis was performed on a HP 1200 (Agilent) HPLC system that was coupled to a 4000 QRTAP mass spectrometer (Applied Biosystems). The separation was performed using a Pursuit Diphenyl column (Varian) with 3 μ m particle size at 40°C. A sample volume of 100 μ L was directly injected into the system. The flow rate was set to 300 μ L min⁻¹. The eluents were water and methanol each modified with 0.1% formic acid. The initial conditions were 34% methanol with 0.1% formic acid. Methanol was increased to 53% in 5 minutes and was hold for 2.5 minutes. The ratio of methanol was decreased to 34% in one minute and was maintained for 6.5 minutes. The mass spectrometer was operated in multiple reaction monitoring (MRM) mode using following parameters for positive electrospray ionization: spray voltage 5500, temperature 700°C and curtain gas 30. The transitions for benzotriazol were 120 > 65 as quantifier and 120 > 92 as qualifier, for both tolyltriazole isomers the transitions were 134 > 77 as quantifier and 134 > 79 as qualifier. Quantitation was performed using an external standard calibration. For quality assurance every tenth sample was spiked to check for matrix effects (standard addition).

4.1.3 Boron and Silver method used by Belgium (VMM)

The method operated by VMM is based on ICP-MS. The VMM laboratory operates the respective method on a routine basis and has an accreditation according to ISO 17025. The Belgium BELAC is the responsible accreditation authority. During the exercise a conditioning was done by JRC upon instructions from VMM. For this purpose, to a 100 mL of filtered sample aliquot 1 mL HNO₃ conc. was added. Before filling the sample bottles with the ready sample, the bottle was rinsed with 50 mL of the filtered material. The following chemicals were used upon proposal from VMM:

- Merck suprapur ref. 1,00441.1000 .
- Filters Whatman art. 10463401 Polydisc GW Filter 50mm 0,45µ Nylon w QF
- Syringes VWR: ref. 613-3925 syringe PLASTIPAK 50 mL Luer-Lock

The following performance characteristics of the analytical method used for the determination of Ag and B using ICP-MS were provided by VMM.

 Table 18 - Performance characteristics of method used for B and Ag determination

Parameter	Unit	LOD	u (%)
Ag (dissolved)	µg/L	0.2	44
B (dissolved)	µg/L	30	25

4.1.4 MTBE method used by the Netherlands (RWS)

MTBE was analysed by RWS using a validated method operated on a routine level at RWS. No description of the analytical method was provided. The analytical method, however, has been validated in accordance with NEN 7777 (2011) and NEN 7779 (2008) and is operated in the RWS laboratories under ISO 17025 (2005) accreditation as part of a regular monitoring programme. The LoQ of the method was reported to be 0.01 μ g/L.

4.1.5 MTBE method used by the United Kingdom (NLS)

NLS performed MTBE determination using a multi-compound method including approximately 50 other compounds including BTEX and chlorinated solvents. The method has been developed for both, fresh and saline waters and is using Gas Chromatography – Mass Spectrometry instrumentation. The following measurement principle has been applied: the sample vial is agitated and heated until the volatile compounds have diffused into the gaseous phase (headspace). A sample of the headspace is then taken and introduced into the GC. The GC is temperature programmed to separate the volatile compounds. Detection is by Mass Spectrometry. The range of application of the NLS methods is up to 10 μ g/L and may be extended by dilution of the sample. LoD and LoQ have been reported to 0.1 μ g/L.

Samples were stored at 5°C \pm 3°C until analyses. Precision was reported to be better than 25% RSD. Bias was reported to be better than 20% Bias. The control of the method was ensured by participation in External Quality Control campaigns provided by AQUACHECK.

4.1.6 Glyphosate and aminomethylphosphonic acid (AMPA) method used by the Czech Republic (Podvodi Lab)

4.1.6.1 <u>Short description of the method</u>

The method used is based on ISO 21458 (2008) and the papers of Ibáñez *et al.* (2006) and Hanke *et al.* (2006). It has been adapted for direct injection of water samples after *in-situ* derivatization with 9-fluorenylmethyl-chloroformate chloride (FMOC-Cl) and subsequent HPLC separation with triple quadrupole tandem mass spectrometry detection in positive mode electrospray ionization (HPLC-ESI-MS/MS) with multiple-reaction monitoring (MRM), which have high selectivity, sensitivity and accuracy when isotopic labelled standards are being utilised.

4.1.6.2 <u>Reagents</u>

The following reagents were used:

- Analytical reagent grade hydrochloric acid (HCl) 35% (PN:10033-A35, Lach-Ner, s.r.o., Neratovice, CZ) diluted to 6 mol/L (254.6 mL of HCl up to 500 mL with water in 500 mL volumetric flask)
- 3 mol/L of potassium hydroxide (Merck PN: 1.05033.1000, 84.165 g/0.5 L)
- 0.2 mol/L di-Sodium tetraborate decahydrate (Merck PN: 1.06308.1000, 76.269 g/L)
- mol/L Ethylenediaminetetraacetic acid Tetrasodium salt Hydrate (Fluka, PN: 03699, 20.81 g/0.5L)
- LC-grade water obtained by purifying demineralised water (GORO, s.r.o., Prague, CZ) in a Ultra Pure Water System (Ultra Clear TWF UV plus TM, Siemens (SG Water), Barsbüttel, Germany) with UV lamp and TOC monitoring.
- the derivatization agent 9-fluorenylmethyl chloroformate chloride (FMOC Chloride), ≥99.0%, puriss p.a., for HPLC derivatization (Fluka (PN 23186-5G), 8 mmol/L was prepared in acetonitrile (207 mg/100 mL). It was deemed to be stable at least for one week at 4-10 °C.

- Mobile phase A was prepared from 5% vol. of methanol (mob.phase B) in 5 mmol/L ammonium acetate (puriss p.a. for mass spectrometry, Fluka PN: 73594-100G-F) and 0.025% ammonia (0.25 mL/L of ammonium solution (Suprapur, Merk PN: 1.05428.0250) in LC water) to give pH 9. The solution was used for three consequtive davs at maximum.
- Mobile phase B was methanol (LC-MS Chromasolv, Fluka PN: 34966-2.5L) with 5 mmol/L ammonium acetate and 0.1% ammonia (1 mL/L of 25% ammonium solution).

4.1.6.3 Calibration Standards

Each neat standard was weighted and diluted in water (20.0 mg/20.00 mL) and mixtures of Glyphosate and AMPA made at concentration 0.8 µg/mL in methanol by microsyringe $(8 \mu l/10 mL, stable at 4-8 \circ C$ for 6 months) and by diluting of this solution to 0.08 $\mu g/mL$ in methanol (every month).

The following standards were used:

- Glyphosate, 99.3%, (Chem Service, PN: PS-1051, Lot: 452-156A, expiration 10/2013)
- AMPA, 99%, (Chem Service, PN: Met-1051A, Lot: 432-36C, expiration 11/2016)
- QC Standards:
 - Glyphosate, 99.2%, (Fluka, PN: 45521-250MG, Lot: SZB9320XV, expiration 0 16/11/2014
 - o AMPA, 99%, (Aldrich, PN: 324817-250MG, Lot: MKBC7625, expiration --

4.1.6.4 Internal standards

A mixture of isotopic labelled standards (ILSs) is prepared from individual solutions to give concentration of 10 μ g/mL in methanol and stored at 4-8 °C for at least 6 months.

The following standards were used:

- $1,2^{-13}C_2 \ ^{15}N$ Glyphosate, 99% TRC (PN: G765002) or Dr. Ehrenstorfer (PN: XA14050100WA, >98%, 100 μg/mL in water). ¹³C ¹⁵N AMPA (Dr. Ehrenstorfer PN: XA10205100WA, 100 μg/mL in water).

4.1.6.5 Apparatus

Waters Acquity UPLC chromatographic system with upgrade to 250 µL sample loop coupled to triple quadrupole tandem mass spectrometer Waters Premier XE operated in positive electrospray atmospheric pressure ionisation (ESI) in MRM mode were used for the measurement. Chromatographic separation was achieved using column XBridge C_{18} , 3.5 μ m, 30 mm x 2.1 mm connected with 10mm Guard column with the same stationary phase. The injection volume for LC-MS/MS analysis was 250 μ L, injected by the mode full-loop needle overfill. The LC gradient for the separation was: from 0 to 3 min, isocratic 5% of B; at 3 min step to 30% of B, then linear gradient from 3 to 6 min of B from 30 to 50%; from 6 to 7 min, a linear increase of B from 50 to 100%. Initial conditions were re-established in 0.1 min. Run time of LC and MS method was 7.0 min. Total cycle time 11 min 36 s. Divert valve was activated to waste from 0 to 4.46 min and after the last peak at 6.65 to 7.0 min. The flow rate was 0.3 mL/min and the column temperature was 40 °C.

Time (min)	Substance	Confirmati on transition	сv [V]	CE [eV]	Quantificatio n transition	сv [V]	CE [eV]	MRM seg.	IS
5.0	Glyphosate	392.0 > 178.8	21	26	392.0 > 213.8	21	10	1	
5.0	1,2- ¹³ C ₂ ¹⁵ N glyphosate, IS1	395.0 > 90.8	26	19	395.0 > 181.8	26	25	1	1
6.0	AMPA	334.2 > 111.8	24	13	334.2 > 155.8	24	9	2	
6.0	¹³ C ¹⁵ N AMPA, IS 2	336.0 > 111.8	24	13	336.0 > 157.8	24	9	2	2

Positive mode, Dwell time 50 ms, Inter-scan delay 20 ms, Inter-channel delay 10 ms

The MS/MS instrument operated in positive mode with 1.5 mass unit resolution and optimized parameters were: ESI capillary voltage +3500 V, Extractor 3, RF Lens 0.1 V, ion source temperature 150 °C, Desolvation Temperature 450 °C, Desolvation nitrogen flow 700 L/h, Cone nitrogen flow 100 L/h, collision gas flow (Argon 5.5, SIAD) 0.02 mL/min, Entrance-2, Exit 2, Ion Energy-1 0.5, Ion Energy-2 2.0, Photomultiplier voltage 675 V.

MS substance-specific parameters for transitions from Precursor ions $([M+H]^+)$ to Product ions are given in Table 19.

50 mL Glass stop-cock conical flask (Glassco, Vitrum, Prague, CZ) were used for in-situ derivatization. All glassware (flasks, 10 mL pipettes, volumetric flasks) were hand-washed without using aggressive cleaning agents. pH-meter EUTECH Instruments PC 510, variable pipette 100-1000 μ L (TreffLab, Transferpette) with 1 mL polypropylene tips.

4.1.6.6 <u>Sample pre-treatement</u>

Samples were stored in the refrigerator at a temperature around 4 °C immediately after dispatch, till the analysis. When analyses were not performed within a week, samples were frosted at minus 18 °C. 8 mL aliquot of water sample was dispensed by a 10 mL glass pipette into 50 mL Glass stop-cock flasks. In order to eliminate possible interaction of Glyphosate with matrix components (divalent cations, organic matter) acidification to pH 1 was realized by addition of 160 μ L of 6 mol/L hydrochloric acid and thorough circular mixing. 10 μ I of internal standard solution of 1 ng/ μ L of ILS was added. After approximately 15 min neutralization to pH 7-8 with 380 μ L of 3 mol/L of potassium hydroxide solution was made and the mixture was mixed. (This step is necessary, to optimize by pH-meter, after each new preparation of HCl or KOH solutions or when atypical water pH is expected, as in-situ derivatization with FMOC-Cl occurs at approximately pH 9 of the reaction mixture.). 400 µL of 0.1 mol/l EDTA solution was added and mixed. Subsequently 1 mL of 0.2 mol/L tetraborate solution was added and mixed vigorously by circular shaking, so that minimum droplets, left on the flask walls. Finally 1 mL of 8 mmol/L acetonitrile solution of FMOCCI was dispensed, closed tightly by a glass stopper and mixed properly. White precipitation appears immediately unless proper reaction conditions (pH, acetonitrile content, sufficient FMOCCI concentration) preserved. After 2 hours at room temperature the reaction was stopped by acidifying the solution to pH 3 by adding 100 μ L of formic acid. The solution was filtered prior to the LC-MS/MS analysis by Nylon 0,2 micron syringe filters in 3 mL polypropylene syringe (B-Braun) and filled in MS-certified 2 mL clear glass vial with pre-slit PTFE/silicone septa screw closures (National Scientific, PN: C4000-95W, AP Servis, CZ) and kept at 4 °C in thermostat up to seven days.

4.1.6.7 <u>Calibration and sample measurement</u>

The calibration was performed on seven concentration levels (0, 25, 50, 100, 200, 500, 1000, 2000 ng/L) made by spiking of corresponding volumes of working standard solutions of 0.8 μ g/mL and 0.08 μ g/mL, respectively, and checked by QC standards at 100 and 1000 ng/L, by the whole procedure and quantified using internal standard method. The calibration curves were calculated using a weighted (1/X) linear regression model. All samples, calibration and QC standards were measured in triplicate and averages calculated.

4.1.6.8 Quality Control

Calibration model was constructed each time the sample batch was measured. Good linearity defined by minimum 0.99 correlation coefficient and concentrations of QC standards within range of 75-120 % fulfilled. The analysis of unknown samples was repeated, when recovery of ILS in unknown samples were not in the range of 70-130 % (pH adjustment related problems, high salinity samples).

The limit of quantification (LOQ) was defined as the lowest calibration level of linear calibration curve with required uncertainty of 30 % and minimal signal to noise ratio of 10 for quantification transition and was 25 ng/L for Glyphosate and AMPA, respectively. Method detection limit (MDL or LOD) was defined as minimal signal to noise 3:1 and was 10 ng/L for both substances.

Selectivity of the measurement was assured by MRM measurement and the ratio of chromatographic peak areas of quantification and qualification transitions (± 20 %) and retention times of the compounds (retention times precision better then 2 %).

Expanded standard measurement uncertainty (30 % for Glyphosate and AMPA) was composed from experimentally determined intermediate measurement precision (QC Standards), which covers uncertainty of Reference Material, preparation of calibration and QC standards, measurement repeatability, and from successful results of Proficiency Testing Trials (spiked water organised by RTC in 2009, the whole matrix water by AQS BW Sttutgard in 2010, interlaboratory comparison with Povodi Vltavy in 2011, Aquacheck 2012).

Figure 4 -Liquid chromatograph with triple quadrupole MS/MS (Waters Acquity UPLC with Quattro Premier XE).

4.1.7 Glyphosate and aminomethylphosphonic acid (AMPA) method used by the United Kingdom (NLS)

Mass labeled internal standards which are representative of the compounds determined are added to the aqueous sample. Any Glyphosate and AMPA present in the sample is derivatised using 9-Fluorenylmethyl chloroformate (FMOC-Cl) and extracted by means of Solid Phase Extraction (SPE) using a vacuum manifold. The SPE cartridges are eluted with methanol and the solvent extract -evaporated to low volume (50 uL) with a stream of nitrogen gas in a Turbo-vap evaporation system. The concentrated extract is reconstituted with mobile phase solution and an aliquot of the extract is injected onto a Liquid Chromatograph where the compounds of interest are separated on a Hypersil GOLD (C_{18}) column. The eluent from the column is transferred into a Mass Spectrometer and determined using Electrospray Ionisation operating in negative ion mode.

The method is applicable from 0.1 μ g/L up to 10 μ g/L. The range of application can be extended by dilution of the sample. MRV is 0.1 μ g/L for glyphosate in freshwater and 0.2 μ g/L for AMPA in freshwater.

Within Laboratory Quality Control & Performance Criteria:

- Total Error Target: < 50%
- Bias Target: < 20%
- Precision Targets: < 15% RSD

4.1.8 Bisphenol-A, triclosan and triclocarban method used by Germany (BFG)

4.1.8.1 <u>LC-MS analysis</u>

The HPLC system consisted of a G1367E autosampler, a G1312B binary HPLC pump, a G1379B degasser and a G1314B column oven (all Agilent 1260 SL Series, Waldbronn, Germany). The detection was performed on an API 5500 QTrap mass spectrometer (Applied Biosystems, Foster City, CA, USA).

Separations were performed using a Synergi-Luna-HST column (2 mm i.d., length 50 mm, particle size 2.5 μ m) and a SecurityGuard (both Phenomenex, Torrance, CA, USA) at 20 ± 2 °C. The flow rate was 0.4 mL/min. The HPLC gradient was established by mixing two mobile phases. Phase A consisted of MilliQ water supplemented with 40 mg/L ammonia acetate and phase B consisted of pure methanol. Chromatographic separation was achieved with the following gradient: 0-0.8 min: 10% B; 0.8 min -> 1.2 min: 10% -> 98% B; 1.2-4.8 min: 98% B; 4.8 min -> 4.9 min: 98% -> 10% B; 4.8-8 min: 10% B (Table 20). One hundred μ L of each water sample was directly injected without any sample pre-treatment.

Time (min)	Flow Rate (µL/min)	Solvent B (%)	
0.0	400	10	
0.8	400	10	
1.2	400	98	
4.8	400	98	
4.9	400	10	
8.0	400	10	

Table 20 - LC gradient profile used for determination of triclosan and triclocarban

The tandem mass spectrometer (API 5500 Qtrap with turboionspray ionization, Applied Biosystems, Foster City, CA) was operated in negative ion mode using nitrogen as collision gas and multiple reaction monitoring (MRM) for quantification. Parameters adjusted were collision gas (CAD), medium; curtain gas (CUR), 55 psi; ion source gas 1 (GS1), 40 psi and ion source gas 2 (GS2), 50 psi; source temperature (TEM), 550 °C; entrance potential (EP), -10 V. The ionspray voltage (IS) was adjusted to -4500 V and the interface heater (ihe) set on. Two MRM transitions for each substance were monitored for identification and quantification of the analytes. Parameters such as declustering potential, collision energy, and cell exit potential were optimized in the auto-tuning routine of the Analyst 1.6.1 software. Table 21 gives an overview of all MRM parameters.

4.1.8.2 Calibration

The calibration was performed using an internal standard. Stock solutions were produced by dissolving 1 mg of the analytes in 10 mL methanol each. The stock solutions were stored at 4°C in the dark and were renewed after 6 months. Calibration standards (0, 1, 3, 10, 30, 100, 300, and 1000 ng/L) were made by serial dilution of the stock solutions in MilliQ water. 100 ng/L of each surrogate standard were added to the calibration standards. The calibration curves were calculated using a weighted (1/X) linear regression model.

Analyte	Q1	Q3	CE [eV]	DP [V]	СХР [V]	IS
Bisphenol A	227	133	-33	-110	-10	Bisphenol A –d ₁₆
	227	211	-43			
	227	212	-26			

Table 21 - MRM transitions and MS parameters of the target analytes

Analyte	Q1	Q3	CE [eV]	DP [V]	СХР [V]	IS
Bisphenol A -d ₁₆	241	142	-42	-110	-10	
	241	222	-26			
Triclosan	287	35	-40	-45	-10	Triclosan ¹³ C ₁₂
	289	35	-40			
Triclosan ¹³ C ₁₂	299	35	-40	-45	-10	
	301	35	-40			
Triclocarban	313	160	-22	-90	-10	Triclocarban-d ₄
	315	162	-22			
Triclocarban-d ₄	317	160	-22	-90	-10	
	319	162	-22			

4.1.8.3 <u>Method validation</u>

The method was primarily validated by spiking 1 L of surface water with the stock solutions to produce a concentration of 100 ng/L. The spiked water samples (n = 66) were also directly injected into the LC-MS/MS system. Excellent recoveries of 100 \pm 12% and 112 \pm 3% were achieved for triclosan and triclocarban, respectively (Table 22). For bisphenol A no recoveries could be calculated due to high blank values of the sampling bottles (see below).

Table 22 - Recoveries (%) of triclosan and triclocarban in spiked surface water samples

	Triclosan	Triclocarban
n	66	66
Mean	100%	112%
SD	12%	3%

The limit of quantification (LOQ) was defined as a signal-to-noise ratio of 10:1 for the dominant transition used for quantification. The second transition used for confirmation had to fulfill the criteria of a signal-to-noise ratio of 3:1. The signal-to-noise ratios were calculated from the chromatograms of the internal standard calibration and were also controlled in the native samples. The LOQ was 5 ng/L for all target compounds.

4.1.9 Perfluoropropionic acid (PFPrA) method used by the European Commission (JRC)

4.1.9.1 Chemicals

The following standards were used:

- Pentafluoropropionic acid (CAS 422-64-0), lot 78896PM, purity 98.9%, density 1.56 g/mL, release date March 2011, code 245917, Sigma Aldrich, MO (USA);
- Perfluoro-n-[1,2,3,4-13C₄] butanoic acid, 50 \pm 2.5 µg/mL, lot MPFBA0911, purity >99% ¹³C(1,2,3,4-13C₄), expiry date September 2014, code MPFBA, Wellington Laboratories, Southgate (CA).

The following reagents were used:

- Ethyl acetate for traces analysis (Carlo Erba Reactifs-SDS);
- Methanol, code 701091.1612, (LC-MS) PAI, Panreac Quimica, Barcelona (Spain);
- MilliQ water obtained from a MilliQ water system, Millipore, Bedford, MA (USA);
- Hexane for analysis of dioxins, furans and PCB (Sigma-Aldrich, Germany);
- Ammonium acetate 99.99+%, code 431311, Sigma Aldrich, MO (USA);

- Acetonitrile, code 701881.1612, (LC-MS) PAI, Panreac Quimica, Barcelona (Spain);
- Acetic acid, code 07692, TraceSelectUltra for trace analysis, Sigma Aldrich, MO (USA);
- Ammonium hydroxide, 28% in water, 99.99 metals basis, code 338818, Sigma Aldrich, Germnay
- OASIS HLB cartridges 6CC (0.2 g), code WAT106202, Waters, Milford, MA, USA.
- OASIS WAX cartridges 6 CC (0.15 g), code 186002493, Waters, Milford, MA USA

Standard solutions were produced according to the following instructions:

PFPrA stock standard solution (1000 µg/mL)

- a. Transfer 0.0064 mL of PFPrA in a 10 mL volumetric flask.
- b. Dissolve and dilute to volume with water and mix.

PFPrA intermediate standard solution 1 (10 µg/mL)

- a. Transfer 0.01 mL of PFPrA stock standard solution in a 10 mL volumetric flask.
- b. Dissolve and dilute to volume with water and mix.

PFPrA intermediate standard solution 2 (500 ng/mL)

- a. Transfer 1 mL of PFPrA stock standard solution in a 20 mL volumetric flask.
- b. Dissolve and dilute to volume with water and mix.

PFPrA intermediate standard solution 3 (100 ng/mL)

- a. Transfer 0.01 mL of PFPrA stock standard solution in a 10 mL volumetric flask.
- b. Dissolve and dilute to volume with water and mix.

PFPrA intermediate standard solution 4 (10 ng/mL)

- a. Transfer 0.1 mL of PFPrA stock standard solution in a 10 mL volumetric flask.
- b. Dissolve and dilute to volume with water and mix.

Internal standard working solution (PFBA ¹³C₄, 50 ng/mL)

- a. Transfer 0.5 mL of PFBA ${}^{13}C_4$ 100 μ g/mL and into a 10 mL volumetric flask.
- b. Dilute to 10 mL with methanol and mix.

4.1.9.2 Apparatus and equipment

- Analytical balance: model AX204, Mettler-Toledo SpA
- Automatic pipettes: Eppendorf research (Milan, Italy).
- Microsyringes: Microliter Syringes, Hamilton (Reno, CA, U.S.A.).
- Autosampler
- for LC-MS: Micro-V vials target Dp clear, 1.5 mL, 12x22 mm National Scientific (Germany)
- Volumetric flasks: Grade A various sizes, Duran®.
- Volumetric pipettes: Grade A various sizes, Duran ®
- Dionex Autotrace AT280 automated SPE system (Thermo Scientific, Waltham, MA, USA)
- Vortex Genius, Ika, Staufen, Germany;

4.1.9.3 Instrumental equipment and conditions

UHPLC equipment and conditions are listed below (Table 23). The chromatography was performed in gradient mode according to the scheme shown in:

Parameter	Value
Pumps:	Binary Solvent Manager, Model UPB, Waters (Milford, MA, USA).
Autosampler:	Sample Manager, Model UPA, Waters (Milford, MA, USA).

Table 23 - UHPLC equipment and conditions

vials

PILOT STUDY ON THE FEASIBILITY OF "WATCH LIST" MONITORING

Parameter	Value
Detector:	QTRAP 5500, Applied Biosystems MDS SCIEX, (Foster City, CA, U.S.A) equipped with Turbo V ^{m} ion source.
Flow rate:	400 μL/min
Injection volume:	5 μL
Analytical column:	Triart C18, 1.9 μ m, 50 x 2.1 mm, YMC (Dinslaken, Germany) equipped with UHPLC column saver (Fortis, Technologies)
Mobile phase:	5 mM ammonium acetate – acetonitrile -methanol (90:5:5, % v/v/v)

Table 24 - Gradient used for determinations

Time	А	В	Flow (mL/min)
0	90	10	0,4
1	90	10	0,4
9	5	95	0,4
9.1	5	95	0,4
9.2	90	10	0,4
12	90	10	0,4

Under these conditions the retention time of PFPrA was about 1.3 min, respectively. The run time was about 12.5 min.

4.1.9.4 QTRAP 5500 operative condition

An ABSciex QTRAP5500 mass spectrometer equipped with Turbo VTM ion source was used. The instrument was previously tuned and calibrated in electrospray mode using PPG's. Prior to analysis all the specific parameters were optimised infusing a 1 µg/mL standard solution of analytes and I.S.s.

The eluate from the column was introduced directly into the ion source. The rapid desolvatation and vaporization of the droplets minimizes thermal decomposition and preserved their molecular identity. The data were collected using the software program Analyst 1.5.1. All calculations were based on chromatographic peak area ratios for the MRM precursor-product ion transitions for analytes versus I.S.s. The general operating conditions were as in Table 25.

Table 25 – QTRAP 5500 operative conditions for PFPrA analysis

Parameter	Value
Scan Type	Scheduled MRM
Polarity	Negative for PFPrA
Ion Source	Turbo Spray
Resolution Q1	Unit
Resolution Q3	Unit
MR Pause	5.0000 msecparan
CUR	25.00
CAD	Medium

Parameter	Value
TEM	550.00
IS	-4500.00
EP	-10.00
СХР	-11.00
GS1	55
GS2	45

4.1.9.5 <u>Selectivity</u>

For the identification of PFPrA two MRM transitions between the precursor ions and two most abundant fragment ions were monitored. The first one was used for quantification purposes, whereas the second one was to confirm the presence of the target compounds in the sample. The quantified analyte was identified through retention time comparison of the corresponding standard and the isotopic ratio between two ions recorded (±30%). The selected mass transitions used for quantification were 163/119 for PFPrA and 217/172 for PFBA $^{13}C_4$ ().

Table 26 - Selectivity data for PFPrA

Analyte	Time(min)	DP	CE
PFPrA (163>119)	1.3	-113	-20
PFPrA (163>69)	1.3	-113	-45

4.1.9.6 Limit of Detection (LoD) and Limit of Quantification (LoQ)

All limits of detection and quantification of JRC employed methods were performed using the following approach and employing blank samples. From the data achieved from these experiments the mean value of the blank samples (b) and standard deviation (SD) were calculated. LOD and LOQ were estimated using the following formulas, recommended by Eurachem Guide (Eurachem Group, 1998).

LOD=b+3SD;

LOQ=b+10SD.

The results of the LOD and LOQ estimation for every analyte are shown in Table 27.

Table 27 - LoD and LoQ values for analyte PFPrA

Analyte	Nr of blanks analyzed	LoD (ng/L)	LoQ (ng/L)
PFPrA	5	0.59	1

4.1.9.7 Linearity study for PFPrA

For PFPrA the linearity was studied in the concentration range 1-200 ng/L. In order to verify the linearity of the calibration curve, a blank sample spiked only with labelled internal standard and six spiked MilliQ water samples (i.e.: 0, 1, 5, 10, 20, 100, 200 ng/L) were extracted and analyzed in three replicates on five different days. The received calibration curves are reported in the Annex of this report. The mean R^2 values (calculated over five calibration curves) were ≥ 0.99 . Results are reported in Table 28.

Table 28 - Coefficient of determination (R²⁾ values for PFPrA calibration curves on different days

Validation day	PFPrA
1	0.9990
2	0.9990

Validation day	PFPrA
3	0.9970
4	0.9970
5	0.9980
Average R ²	0.9980
RSD%	0.1

The study of the distribution of residuals revealed randomly dispersed shapes around the horizontal axis, proving the pertinence of the linear regression model for interpreting the data. The received residual plots are reported in the annex to this report.

4.1.9.8 Working Range

The working range is defined as the range of concentrations where the chosen calibration curve is valid. The working range of these methods were therefore defined by the limits of quantification and highest points in the respective calibration curve. Table 29 summarizes the working range established.

Table 29 - Working ranges for the PFPrA method

Analyte	Working range (ng/L)
PFPrA	1.0-200

4.1.9.9 Trueness

The significance test (e.g. t-test) was used to decide weather the difference between the mean values of spiked water quality control samples (evaluated on n relicates) and their nominal concentration was significant, using the following formula:

$$t = \frac{(x - \mu) \times \sqrt{n}}{s}$$

where (x) is the mean value of (n) samples with standard deviation (s) and (μ) is the nominal concentration. The confidence level for critical t-values were chosen to be 0.05 (95%).

Fifteen quality control samples at low and high concentration levels (i.e.: about 3 and 150 ng/L) were extracted and analysed and the back calculated concentrations evaluated for demonstrating the truthfulness of the null hypothesis (H_0 : the analytical method is not subject to systematic error).

As reported in Table 30, the calculated t-values were lower than the critical values for all the analytes at all the studied concentration levels, demonstrating the absence of evidence of systematic errors in analyte quantification.

Table 30 - Results of the trueness study in the different concentration levels

	Mean value (ng/L)	Ν	Degrees of freedom	Theoretical value (µ) ng/L	STD of samples ng/L	t-value	Critical t ₄ P=0.05	Decision
PFPrA	3.06	15	14	3	0.25	0.96	2.14	ОК
	150.07	15	14	150	11.98	0.02	2.14	ОК

4.1.9.10 <u>Recovery</u>

Recovery was evaluated by extracting and analysing in triplicate MilliQ water samples (0.1 L volume for PFPrA) spiked, before extraction, with native analytes only. Internal standards were then added to the extracts at the end of sample preparation with the aim of allowing the estimation of analytes loss during processing.

The recovery has been evaluated comparing the ratios analyte/IS in spiked samples to the same ratios obtained by analysing a standard solution containing native compounds and labelled ones at the same concentration levels, not subject to any handling. The spiking levels were 30 and 150 ng/L for PFPrA. The results of recovery experiments are reported below.

Analyte		Mean Recovery (%) (n=9)	SD (ng/L)	RSD%
PFPrA	Low	120.4	15.3	12.7
	High	94.7	7.2	7.5

4.1.9.11 Repeatability, intermediate precision, and day to day variation

For repeatability, intermediate precision and day to day variation estimation, quality control samples at two concentration levels were tested on five different days. For each sample three replicate injections were made. Using one-way ANOVA the results were obtained as shown in Table 32.

Table 32 - Repeatability, day-to-day and intermediate precision variation in two different concentration levels

Ana	lyte	Lower concentra	tion level	Higher concentration level			
		Repeatability (%)	Day-to- day variation (%)	Intermediate precision (%)	Repeatability (%)	Day-to- day variation (%)	Intermediate precision (%)
PFP	PrA	8.1	6.5	2.4	7.9	11.4	13.8

4.1.9.12 Sample storage stability study

Stability of PFPRa analytes was not investigated in this exercise, but extrapolated from a previous study on PFOS/PFOA [Gawlik et al. (2012)].

4.1.10 Sulfamethoxazol and carbamazepine method used by the European Commission (JRC)

4.1.11 Chemicals

The following chemicals and reagents were used:

- Carbamazepine (CAS 298-46-4), lot 100M1207V, purity (TLC) 100%, retest date October 2016, code C4024, Sigma Aldrich, MO (USA);
- Carbamazepine d₁₀ 100 µg/mL in acetonitrile−D3, lot SCJK-006, purity ≥ 98%, expiry date May 2015, code DLM-2806-S, Cambridge Isotope Laboratories, Inc., Andover, MA (USA);
- 10,11-Dihydro-10,11-dihydroxy-carbamazepine, lot 1071-050A1, purity 99.9%, retest date May 2015, Spectra 2000 SrL, Rome (Italy);
- Sulfamethoxazole (CAS 723-46-6), lot 80416, purity 99.5 ± 0.5%, Dr. Erhrenstorfer, Ausburg (Germany);

- Sulfamethoxazole (Ring-¹³C₆, 99%) 100 µg/mL in acetonitrile, lot SCJI-015, purity ≥ 98%, expiry date October 2019, code CLM-6944-S, Cambridge Isotope Laboratories, Inc., Andover, MA (USA);
- Ethyl acetate for traces analysis (Carlo Erba Reactifs-SDS);
- Methanol, code 701091.1612, (LC-MS) PAI, Panreac Quimica, Barcelona (Spain);
- MilliQ water obtained from a MilliQ water system, Millipore, Bedford, MA (USA);
- Hexane for analysis of dioxins, furans and PCB (Sigma-Aldrich, Germany);
- Ammonium acetate 99.99+%, code 431311, Sigma Aldrich, MO (USA);
- Acetonitrile, code 701881.1612, (LC-MS) PAI, Panreac Quimica, Barcelona (Spain);
- Acetic acid, code 07692, TraceSelectUltra for trace analysis, Sigma Aldrich, MO (USA);
 Ammonium hydroxide, 28% in water, 99.99 metals basis, code 338818, Sigma Aldrich,
- Germnay;
- OASIS HLB cartridges 6CC (0.2 g), code WAT106202, Waters, Milford, MA, USA;
- OASIS WAX cartridges 6 CC (0.15 g), code 186002493, Waters, Milford, MA USA.

4.1.11.1 Laboratory equipment

The same equipment was used in the case of PPRA (page 37). Under these conditions the retention time of CBZ, CBZ-DiOH, and SMZ were about 6.0, 4.6, and 2.9, respectively. The run time was about 12.5 min.

4.1.11.2 <u>QTRAP 5500 operative condition for</u>

The same ABSciex QTRAP5500 mass spectrometer equipped with Turbo V^m ion source was used as in the case of PRPRP. The general operating conditions were as follows:

Table 33 - OTRAP 5500 ope	rative condition for sulfamethoxazo	l and carbamazenine method

Parameter	Value			
Scan Type	Scheduled MRM			
Polarity Positive for CBZ, CBZ and SMZ				
Ion Source	Turbo Spray			
Resolution Q1	Unit			
Resolution Q3	Unit			
MR Pause	5.0000 msecparan			
CUR	25.00			
CAD	Medium			
ТЕМ	550.00			
IS	+4500.00			
EP	+10.00			
СХР	+13.00			
GS1	55			
GS2	45			

4.1.11.3 Selectivity

For the identification of CBZ, CBZ-DiOH, and SMZ two MRM transitions between the precursor ions and the two most abundant fragment ions were monitored. The first one was used for quantification purposes, whereas the second one was to confirm the presence of the target compounds in the sample. The quantified analyte was identified through retention time comparison of the corresponding standard and the isotopic ratio between two ions recorded ($\pm 30\%$).

The selected mass transitions used for quantification were 237.00/194.00 for CBZ, 271.00/180.00 for CBZ-DiOH, 254.00/156.00 for SMZ, 247.00/204.00 for CBZ d₁₀, 260.00/98.00 for SMZ $^{13}C_6$.

Analyte	Time(min)	DP	CE
CBZ (237>194)	6	250	28
CBZ (237>165)	6	250	60
CBZ-DiOH (271>180)	4.6	80	47
CBZ-DiOH (271>180)	4.6	80	19
SMZ (254>156)	2.9	150	22
SMZ (254>156)	2.9	150	38

Table 34 - Selectivity data for CBZ, CBZ-DiOH, and SMZ

4.1.11.4 Limit of Detection (LoD) and Limit of Quantification (LoQ)

Limits of detection and quantification were estimated by analysing blank samples applying the same principles and calculations outlined above. The results of the LOD and LOQ estimation are shown in the Table 35.

Table 35 - LOD and LOQ values for CBZ, CBZ-DiOH, and SMZ

Analyte	Nr of blanks analyzed	LoD (ng/L)	LoQ (ng/L)
CBZ	5	0.03	0.07
CBZ-DiOH	5	0.10	0.26
SMZ	5	0.05	0.13
ТСРР	7	2.00	4.00

4.1.11.5 Linearity study

For CBZ, CBZ-DiOH and SMZ the linearity was studied in the concentration range 0.2-100 ng/L. In order to verify the linearity of the calibration curve, a blank sample spiked only with labelled internal standard and five spiked MilliQ water samples (i.e.: 0, 0.2, 1, 2, 40, 100 ng/L) were extracted and analyzed in three replicates on five different days. The calibration curves are reported in the Annex 1.

Table 36 - Coefficient of determination (R^2) values for CBZ, CBZ-DiOH and SMZ calibration curves on different days

Validation day	CBZ	CBZ-DiOH	SMZ
1	1.0000	0.9962	0.9988
2	0.9993	0.9991	0.9986
3	0.9988	0.9893	0.9977
4	0.9993	0.9868	0.9991
5	0.9900	0.9860	0.9784
Average	0.9975	0.9915	0.9945
RSD%	0.4	0.6	0.9

The study of the distribution of residuals revealed randomly dispersed shapes around the horizontal axis, proving the pertinence of the linear regression model for interpreting the data. The received residual plots are reported in the annex to this report.

4.1.11.6 Extension of the calibration for CBZ, CBZ-DiOH and SMZ analysis

Considering the environmental concentrations of the analytes of interest reported in literature, we initially set the upper limit of the calibration curve at 100 ng/L. In order to be able to quantify real water samples with analyte concentrations above the reported upper limit of the calibration curve (100 ng/L), an extended calibration curve (up to 2000 ng/L) was evaluated. A blank sample spiked only with labelled internal standard and six spiked MilliQ water samples (i.e.: 0, 0.2, 2, 40, 100, 1000, 2000 ng/L) were extracted and analyzed in three replicates on a single day basis. Even in the wider concentration range, the coefficient of determination (R^2) resulted to be >0.99 and the residual plot showed a random distribution against x axis. The calibration curves of the extended linearity study are shown in the in annex to this report.

4.1.11.7 Working Range

The working range is defined as the range of concentrations where the chosen calibration curve is valid. The working range of these methods were therefore defined by the limits of quantification and highest points in the respective calibration curve. Table 5 summarizes the working ranges established for the developed procedures.

Tahla 37 -	Working	ranger	for CB7	CBZ-DiOH and SMZ
Table S7 -	working	ranyes	IUI CDZ,	CDZ-DION AND SMZ

Analyte	Working range (ng/L)
CBZ	0.07-2000
CBZ-DiOH	0.26-2000
SMZ	0.13-2000
ТСРР	4.0-3000

4.1.11.8 Trueness

Fifteen quality control samples at low and high concentration levels (i.e.: about 3 and 90 ng/L) were extracted and analysed and the back calculated concentrations evaluated for demonstrating the truthfulness of the null hypothesis (H_0 : the analytical method is not subject to systematic error). As reported in the table below, the calculated t-values resulted to be lower than the critical values for all the analytes at all the studied concentration levels, demonstrating the absence of evidence of systematic errors in analyte quantification.

Analyte	Mean value ng/L	Ν	Degrees of freedom	Theoretical value (μ) ng/L	STD of samples (s) ng/L	t-value	Critical t ₄ P=0.05	Decisio n
CBZ	3.24	15	14	3.12	0.43	1.09	2.14	ОК
	91.26	15	14	93.6	10.4	-0.87	2.14	ОК
CBZ-DiOH	2.95	15	14	2.94	0.378	0.10	2.14	ОК
	91.8	15	14	88.2	9.694	1.44	2.14	ОК
SMZ	3.47	15	14	3.39	0.378	0.82	2.14	ОК
	104.5	15	14	101.7	9.694	1.12	2.14	ОК

Table 38 - Results of the trueness study in the different concentration levels

4.1.11.9 <u>Recovery</u>

Recovery was evaluated by extracting and analysing in triplicate MilliQ water samples (1 L volume for CBZ, CBZ-DiOH, SMZ) spiked, before extraction, with native analytes only. Internal standards were then added to the extracts at the end of sample preparation with the aim to allow the estimation of analytes loss during processing. The recovery has been evaluated comparing the ratios analyte/IS in spiked samples to the same ratios obtained by analysing a standard solution containing native compounds and labelled ones at the same concentration levels, not subject to any handling. The spiking levels were 3 and 90 ng/L for CBZ, CBZ-DiOH, and SMZ, 30 and 300 ng/L. The results of recovery experiments are reported below.

Analyte	Spike level	Mean Recovery (%) (n=9)	SD (ng/L)	RSD%
CBZ	Low	84.1	3.99	4.7
	High	87.9	2.01	2.3
CBZ-DiOH	Low	74.2	5.65	7.6
	High	85.2	5.13	6
SMZ	Low	74	12.08	16.3
	High	96.9	9.21	9.5

Table 39 - Recovery of analytes at different concentration levels

4.1.11.10 <u>Repeatability, intermediate precision, and day to day variation</u>

For repeatability, intermediate precision and day to day variation estimation, quality control samples at two concentration levels were tested on five different days. For each sample three replicate injections were made (Table 40).

Table 40 - Repeatability,	day-to-day ar	nd intermediate	precision	variation i	n two	different	concentration
levels							

Analyte	Lower concent	ration level		Higher concent	Higher concentration level			
	Repeatability (%)	Day-to-day variation (%)	Intermediate precision (%)	Repeatability (%)	Day-to-day variation (%)	Intermediate precision (%)		
CBZ	3.7	13.6	14.1	9.4	7.0	11.7		
CBZ-DiOH	3.2	13.4	13.8	2.7	1.0	2.9		
SMZ	11.2	9.0	14.4	7.6	8.1	11.2		

4.1.11.11 Sample storage stability study

Stability of analytes in water samples during storage was studied by analysing low and high QC samples, prepared on August 03, 2012 and stored at identical temperature and lighting conditions (i.e.: $+5^{\circ}$ C, darkness) as the real water samples.

Stability samples for CBZ, CBZ-DIOH and SMZ were extracted and analysed on day 0, 38, 83 and 96 after spiking. Concentrations in stability samples fall within \pm 2 times the standard deviation of the concentrations of quality control samples used for repeatability evaluation. The stability study covers the time elapsed from the collection of the first sample to the end of the analytical work of the project.

4.1.12 TCPP-method used by the European Commission (JRC)

4.1.12.1 Chemicals and reagents used

The following chemicals and reagents were used for the development and validation of this method.

- Tri-n-butyl-d₂₇ phosphate (Product No. 9491.12-100-IO), Chiron AS (Norway);
- Tris(1-chloro-2-propyl)phosphate, 50 μg/mL in toluene, LOT: 209071282, AccuStandard, Inc. (USA);

4.1.12.2 Instrument conditions for TCPP method

Table 41 and Table 42 summarise the instrumental conditions for the TCPP method.

Table 41 -GC equipment and conditions

GC equipment	GC equipment and conditions							
GC	Agilent 6890 N	Ramps:	Rate	Final Temp.	Final Time			
Column	SGE ID- BPX-50	1	30°C/min	180°C	0 min			
Nominal length	60 m	2	10°C/min	300°C	15 min			
Nominal Diameter	250 µm	Run time	31.33 min					
Nominal film thickness	0.25 µm	Front Inlet (CIS4)	Gerstel CIS 4					
Mode	constant flow	Mode	Splitless					
Initial flow	1 mL/min	Initial Temperature	250°C					
Initial Temperature	80 °C	Equilibration time	0.05 min					
Initial Time	1 min							

Table 42 - Single quadrupole conditions

Single quadrupole conditions	
MS	Agilent 5973 Mass Selective Detector
Pressure	180 kPa
Initial Time	0.10 min
Purge Flow	100 mL/min
Purge Time	1 min
Rate	10 °C/sec
Final Temp	280 °C
Total Flow	104.1 mL/min
Hold Time	10 min
Gas saver	Off

Gas Type	Helium
MS Quad	150 °C
MS Source	230 °C

4.1.12.3 Selectivity

TCPP (sum of three isomers) was identified in SIM (Selected Ion Monitoring) mode, recording the following ion traces: 277 and 279 amu (two isotopic ions of the cluster Cl). The quantified analyte was identified through retention time comparison of the corresponding standard and the isotopic ratio between two ions recorded ($\pm 20\%$).

4.1.12.4 Limit of Detection (LoD) and Limit of Quantification (LoQ)

Limits of detection and quantification were estimated as described above. The results of the LoD and LoQ estimation for every analyte are shown in Table 43.

Table 43 - LoD and LoQ values for analytes

Analyte	Nr of blanks analyzed	LoD (ng/L)	LoQ (ng/L)
ТСРР	7	2.00	4.00

4.1.12.5 Linearity study for TCPP

For TCPP the linearity was studied in the concentration range 0-500 ng/L. In order to verify the linearity of the calibration curve, a blank sample spiked only with labelled internal standard and five spiked MilliQ water samples (i.e.: 0, 10, 25, 50, 200 and 500 ng/L) were extracted and analyzed in three replicates on eight different days. The received calibration curves are shown in the annex to thus report.

The linearity of the calibration plots was estimated by calculating the regression coefficient R^2 and by checking the shape of distribution of residuals. The calculated R^2 values were ≥ 0.99 for all calibration curves and the residuals were randomly dispersed around the horizontal axis (see the residual plots for TCPP in annex).

Table 44 - Coefficient of determination (R2) values for TCPP calibration curves on different days

Validation day	ТСРР
1	0.9947
2	0.9999
3	1.0000
4	0.9989
5	0.9990
6	0.9996
7	0.9999
8	0.9992
Average	0.9989
RSD %	0.18%

The linear regression model proved to be appropriate for interpreting the data.

4.1.12.6 Extension of the calibration for TCPP analysis

According to the information received from scientific literature (Andresen *et al.* (2004), Bollmann *et al.* (2012), Regnery & Püttmann (2010)) the linearity of the method was first tested in the concentration range from 0 ng/L to 500 ng/L as described. After finalising the measurements of the real samples it was realised that around 15% of the results were exceeding the concentration of the maximum calibration point. In order to check the linearity of the method at higher concentration levels, additional experiments were carried out and the linearity study was extended to 3000 ng/L by analysing 6 calibration solutions with concentrations 10, 50, 200, 750, 1500 and 3000 ng/L. The calibration solutions were prepared by spiking 1L of MilliQ water with CRMs and extracted by SPE like real samples.

Even in this case the established R^2 value was >0.99. It can be stated, that inside the tested concentration range the method is linear. The calibration curve of the extended linearity study is shown in the annex.

4.1.12.7 Working Range

The working range is defined as the range of concentrations where the chosen calibration curve is valid. The working ranges of these methods were therefore defined by the limits of quantification and highest points in the respective calibration curve. The table below summarizes the working ranges established for the developed procedure.

Table 45 - Working ranges for TCPP

Analyte	Working range (ng/L)
ТСРР	4.0-3000

4.1.12.8 Trueness

Eight spiked water samples with a concentration of 30 ng/L and eight spiked water samples with a concentration of 300 ng/L were analysed and the back calculated concentrations evaluated for demonstrating the truthfulness of the null hypothesis (H_0 : the analytical method is not subject to systematic error).

Table 46 - Results of the trueness study in the different concentration levels

Mean value (x) ng/L	Nr of samples (n)	Nr of degrees of freedom	Theoretical value (µ) ng/L	STD of samples (s) ng/L	Calculated t-value	Critical t₄ P=0,05	Decision
34.1	8	7	30	5.33	2.19	2.36	ОК
324	7	6	300	37.37	1.71	2.36	ОК

4.1.12.9 Recovery

Recovery was evaluated by extracting and analysing in triplicate MilliQ water samples (1 L volume for TCPP) spiked, before extraction, with native analyte only. Internal standards were then added to the extracts at the end of sample preparation with the aim of allowing the estimation of analytes loss during processing.

The recovery has been evaluated comparing the ratios analyte/IS in spiked samples to the same ratios obtained by analysing a standard solution containing native compounds and labelled ones at the same concentration levels, not subject to any handling.

The spiking levels were 30 and 300 ng/L for TCPP. The results of recovery experiments are reported in the Table below.

Table 47 - Recovery of analytes at different concentration levels

Analyte	Spike level	Mean Recovery (%) (n=9)	SD (ng/L)	RSD%
ТСРР	Low	126	2.31	1.8
	High	106	2.85	2.7

4.1.12.10 Repeatability, intermediate precision, and day to day variation

For repeatability, intermediate precision and day to day variation estimation, quality control samples at two concentration levels were tested on five different days. For each sample three replicate injections were made. Using one-way ANOVA the results were obtained as shown in Table 48.

Table 48 - Repeatability,	day-to-day and	d intermediate	precision	variation	in two	different d	concentration
levels for TCPP							

ТСРР	Lower concentration level			Higher concentration level		
	Repeatability (%)	Day-to- day variation (%)	Intermediate precision (%)	Repeatability (%)	Day-to- day variation (%)	Intermediate precision (%)
	2.5	6.5	6.9	1.1	5.9	6.0

4.1.12.11 Sample storage stability study

Stability of analytes in water samples during storage was studied by analysing low and high QC samples, prepared on August 03, 2012 and stored at identical temperature and lighting conditions (i.e.: $+5^{\circ}$ C, darkness) as the real water samples. Stability samples for TCPP were extracted and analysed after 40, 84 and 97 days. The stability study covers the time elapsed from the collection of the first sample to the end of the analytical work of the project and were published by Tavazzi *et al.* (2013).

5 Results and discussion

5.1 Substance-wise assessment

The following section summarises the individual findings per substance. The individual results are summarised in the annex to this report. It has to be stressed that the following discussion is not meant to be an assessment of the substance in view of its environmental occurrence, but focuses on the performance characteristics of the employed monitoring mechanism. No interpretation of measured concentration vs property of the sampling station is made. To better visualise the data, frequencies of positive detection vs detection/quantification limits are used. This allows, *inter alia*, assessing if an employed analytical method is already sufficiently performing and whether with this performance the investigated substance can be assessed. Clearly, this does not imply that the method used in this investigative monitoring is already suitable to implement possible future EQS, which may be more challenging. Furthermore, the establishment of LoD/LoQ allows issues of contamination by the sampling process itself, e.g. as in the case of bisphenol A, to be addressed.

5.1.1 Findings for acesulfame

Acesulfame is an artificial sweetener and its environmental occurrence is largely related to the release of effluents from wastewater treatment plants or leakage of sewer systems. In this pilot exercise the substance was detected successfully in 86% of the samples. All acesulfame measurements were carried out by Umweltbundesamt Vienna. The established LoD (27 ng/L) and LoQ (54 ng/L) are suitable for routine operations and no particular difficulties were encountered during the analytical step. Highest concentrations were observed in inland water samples with a maximum of 57 μ g/L with a median of 1.75 μ g/L and an average of 3.71 μ g/L. Samples from coastal areas featured a considerably lower concentration with a maximum of 5.6 μ g/L, a median of 0.83 μ g/L and an average of 2.0 μ g/L.

Sample containers used were made of high-density polyethylene. In total, 23 field blanks were checked. No contamination by acesulfame was detected. Considering these observations and findings, the experimental set-up tested for acesulfame or substances of similar physicochemical characteristics and release pathways appeared to be fit-for-purpose.

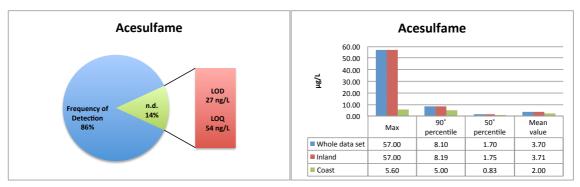


Figure 5 -Summary findings for acesulfame

5.1.2 Findings for glyphosate

Glyphosate was one of three substances for which ca. 50 % of the samples were analysed independently in two laboratories. This was done to assess comparability of results among laboratories, reflecting the fact that a future watch list monitoring mechanism could involve several Member States' laboratories. Due to the fact that glyphosate is analysed on a routine basis in many water monitoring laboratories there was no need to develop a new analytical method.

Glyphosate was analysed in the Czech Republic (Povodí Labe) and the United Kingdom (National Laboratory Service) both using standard methods implemented and operated on a routine basis in their laboratories. Results obtained are displayed in Figure 6 and Figure 7

respectively. While Povodí Labe analysed all 219 samples received for glyphosate, NLS processed only 130 samples. In this regard, the Czech data set is a better representation of the experiences made during this pilot study. While the Czech method features a detection limit of 10 ng/L, the NLS method features a LoD of 60 ng/L and a LoQ of 100 ng/L. In 51% of samples Povodí Labe detected quantifiable amounts of glyphosate with a maximum value of 2280 ng/L with an average of 207 ng/L. As expected, concentrations in inland water samples were significantly higher compared to coastal samples, where average concentrations were five times lower. None of the 19 field blanks tested positive for glyphosate. This result confirms the appropriateness of HDPE containers for this analyte.

Figure 6 – Summary findings for glyphosate reported by Povodí Labe

The National Laboratory Service found glyphosate in quantifiable amounts only in 15% of the analysed samples (130 in total) with a maximum of 1080 ng/L and average of 300 ng/L, thus being comparable to the mean value reported on the whole dataset.

Comparing those samples for which two analytical results are reported, one observes a good agreement between values being reported "< LoD" by NLS and the results obtained by Povodí Labe. For 20 of the 130 samples both laboratories reported quantifiable amounts of glyphosate. However, of these only for 4 samples were the observed differences less than 10%, indicating poor comparability of quantified values. This raises some doubts about the applicability of the mechanisms for those cases where the same analyte is measured in different laboratories. It appears to be necessary in these cases to implement a cost-intensive intercomparison and calibration mechanism, e.g. through proficiency testing schemes or similar quality assurance mechanisms. As regards the logistical set-up the used sampling containers were demonstrated to be fit for purpose in both laboratories.

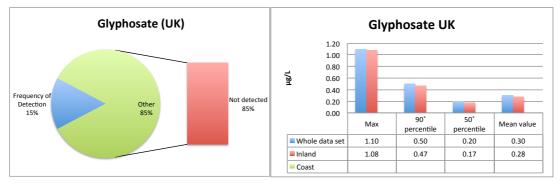


Figure 7 - Summary findings for glyphosate reported by the National Laboratory Service

5.1.3 Findings for AMPA

AMPA is one of the primary degradation products of glyphosate and the observed findings in this pilot exercise have to be set into relationship to glyphosate. As in the latter case, AMPA was analysed independently in the same two laboratories, i.e. Povodí Labe (Czech Republic) and National Laboratory Service (United Kingdom) both using standard methods operated on a routine basis. Results are shown in Figure 8 and Figure 9, respectively.

Unlike its precursor, AMPA was found in 75 per cent of all analysed samples in concentrations ranging from ng/L level up to 11.4 μ g/L with a mean value of 1.3 μ g/L and lower median of 0.5 μ g/L. Although concentrations observed in the coastal area were generally lower, the observed differences were not particularly significant. As in the case of glyphosate none of the 19 field blanks tested positively for AMPA, thus indicating the appropriateness of the chosen sample containers and set-up.

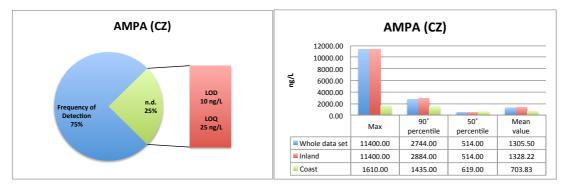


Figure 8 - Summary findings for AMPA reported by Povodí Labe

Of the 219 samples received, 130 samples were analysed in both laboratories. For 77 samples, both laboratories reported quantifiable amounts of AMPA. In these cases, NLS results were on average 71.5 % of the reported value of Povodí Labe, a fact which might be ascribed to the better performance characteristics of the Czech method. However, generally results are in sufficient agreement for the purpose of the exercise. In one case, results for NLS were 8 % higher. In one sample, AMPA was not detectable by Povodí Labe, but a concentration was obtained with the less sensitive NLS method. Given the good results obtained with the field blanks, no explanation can be given for this anomaly.

Povodí Labe reported a LoD of 10 ng/L and a LoQ of 25 ng/L. NLS reported a LoD of 80 ng/L and a LoQ of 100 ng/L.

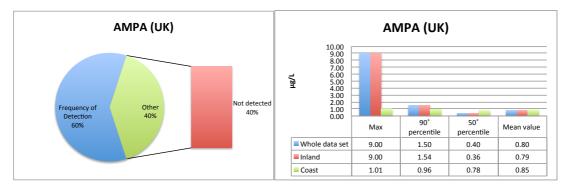


Figure 9 - Summary findings for AMPA reported by the National Laboratory Service

The AMPA findings confirm the observations made already for glyphosate, indicating some restrictions among datasets obtained in different laboratories, if no appropriate quality assurance programme is used.

5.1.4 Findings for ¹H-Benzotriazole and Tolyltriazoles

The set of three triazoles (¹H-benzotriazole, 4-tolyltriazole and 5-tolytriazole were analysed with the same analytical method by Umweltbundesamt Vienna. The substances were used to

investigate proper peak identification and separation of multiple, similar structures. Due to their versatile use as corrosion inhibitors, ingredients of hydraulic fluids, as antifreezers or photographic chemicals, they have multiple pathways to enter the aquatic environment and illustrate nicely the behaviour of many industrial chemicals.

The summary findings of the three substances are displayed in the figures below. In all three cases, the observed concentrations in inland water samples were higher by a factor of 5 approximately if compared to the concentration in coastal samples. 23 field blanks tested negatively, thus indicating the appropriateness of the HDPE containers used for these compounds. The substances were detected in quantifiable amounts in ca. 2/3rd of samples analysed. The reported LoD/LoQs are summarised in the following table and indicate a sufficient performance level for the investigated samples pool.

Substance	LoD in ng/L	LoQ in ng/L		
¹ H-benzotriazole	4.3	16		
4-tolyltriazole	5.3	20		
5-tolytriazole	6.3	24		

 Table 49 – Limits of detection and quantification observed for triazoles

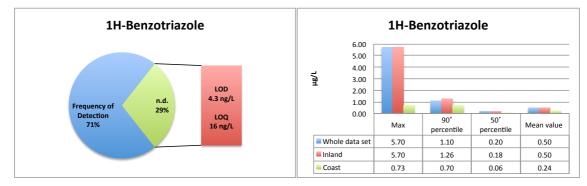


Figure 10 - Summary findings for ¹H-benzotriazole reported by Umweltbundesamt Vienna

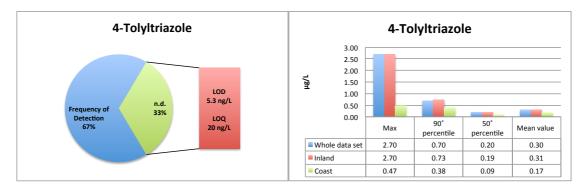


Figure 11 - Summary findings for 4-tolyltriazole reported by Umweltbundesamt Vienna

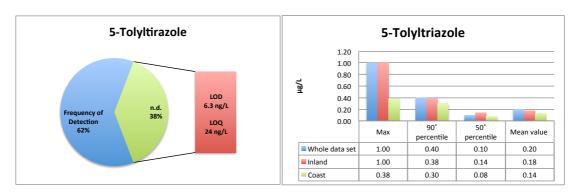


Figure 12 - Summary findings for 5-tolyltriazole reported by Umweltbundesamt Vienna

5.1.5 Findings for bisphenol A

Environmental sampling and analyses of bisphenol A is known to be very challenging. Bisphenol A measurements were executed by BFG, Germany. Due to its use, bisphenol A occurrence is closely related to the use of various plastic materials. Consequently, the use of HDPE containers was not a viable option for this pilot study. Preliminary tests executed between JRC and BFG revealed that aluminium sample containers are a suitable and more robust alternative to traditional glass bottles. However, careful washing and conditioning of the containers is key. Thus, experiments revealed that it was necessary to wash and rinse the containers three times with analytical grade methanol followed by three fold rinsing with analytical grade water. Despite the positive result in a pre-campaign experiment, BfG measurements of blank samples revealed high blank values for bisphenol A in the aluminum sampling bottles. The measured concentrations of bisphenol A in the blanks ranged from 4 to 47 ng/L (Table 50) which is within the concentration range measured in the water samples. Hence, the measured concentrations of bisphenol A had to be omitted from further consideration. Since lab blanks from samples which came not into contact with the aluminium bottles were below the LoQ (<5 ng/L), it was concluded that the aluminium bottles were not conditioned properly and the samples taken could not be processed for analysis of bisphenol A. Careful enquiry in the JRC laboratories, where the conditioning took place, revealed a deviation from the conditioning protocol originally established. The incident highlights the need to carefully control proper sample container conditioning, but also the usefulness of field blanks in the context of such a study.

Location code	Sampling Station	Bisphenol A (ng/L)
0049_SWW_00017	Vltava Zelčin	12
0049_SWW_00019	Labe Valy	27
0049_SWW_00020	Jizera Nový Vestec	14
0049_SWW_00058	IX Xghajra	47
0049_SWW_00072	Jochenstein	6
0049_SWW_00076	Leverkusen-Rheindorf	8
0049_SWW_00078	Vreden	13
0049_SWW_00172	Umbria Tiber	14
0049_SWW_00204	STO 01.15.16	6

Table 50 - Blank values	(ng/L) for bisphenol A reported by BfG	
Tuble 50 Blank Values		

5.1.6 Findings for triclosan and triclocarban

Triclosan and triclocarban were both measured by BfG laboratories using a single analytical method featuring a LoD of 5 ng/L. Triclosan was detected in 33 of 218 analyzed samples (15%) at concentrations above the LoQ of 5 ng/L. Triclocarban was found only in two samples (0.9%). The maximum concentrations were 120 ng/L for triclosan and 81 ng/L for triclocarban and were both measured in the same sample (0049_SWW_00136). None of the nine field blanks tested featured any contamination with the analytes of interest.

While triclocarban was not detectable in coastal waters, trichlosan appeared with almost identical mean values in both inland and coastal waters. Generally, concentrations appeared to be the same order for both water types. Both substances are related to personal care products.

Findings for the substances are summarized in Figure 13 and Figure 14, respectively. The proposed analytical approach can be assumed to be fit-for-purpose and the reported LoQ of 5 ng/L is suitable for ultratrace measurements.

Figure 13 - Summary findings triclosan reported by BfG

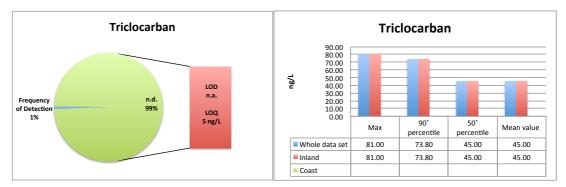


Figure 14 - Summary findings triclocarban reported by BfG

5.1.7 Findings for carbamazepine and its metabolite

The analyses of carbamazepine and its metabolite are a typical example of what can be expected for future watch list monitoring. There is an increasing awareness that it might also be necessary to consider stable metabolites in environmental monitoring, in particular if formed quickly after application. The investigation of carbamazepine and its metabolite reflect this scenario. Both molecules were quantified in the premises of the European Commission's JRC. The validated method featured an excellent LoQ of 0.07 ng/L for carbamazepine and a slightly higher LoQ of 0.26 ng/L for its metabolite 10,11-dihydroxy-10, 11-dihydrocarbamazepine (CBZ-DiOH).

These very low detection limits allowed some interesting observations in the use of the field and laboratory blanks. 15 laboratory blanks were analysed in parallel, and none of these

laboratory blanks returned a positive result. As regards the field blanks, 28 samples were analysed. In 4 of these samples, results indicated anomalies of the analytical methods, presumably due to a malfunctioning of the sample pre-treatment device used by the JRC. 5 field blank values were similar to values from the respective site. Consequently, the analyses were repeated upon corrective maintenance of the instrument. Furthermore, in 4 additional field blanks the analytes were detectable, indicating a cross-contamination caused in the field. However, no corrective action was taken as the concentrations were 1/100th of the observed concentration.

The substances were found in quantifiable amounts in almost all samples investigated. Concentrations in coastal waters were one order of magnitude lower than inland waters, where peak concentration of several hundreds of ng/L could be observed for carbamazepine and its metabolite. Concentrations of the two substances were closely correlated as expected. The findings are summarised in the figures below.



Figure 15 - Summary findings for carbamazepine reported by JRC

The findings illustrate the need and usefulness of field and laboratory blanks. The observed field blank contaminants could be clearly attributed to a wrong understanding of the instructions received. The applied methodology is fit-for-purpose and the achievable performance characteristics of the method are suitable to investigate compounds similar to carbamazepine and its metabolite at pictogram levels.

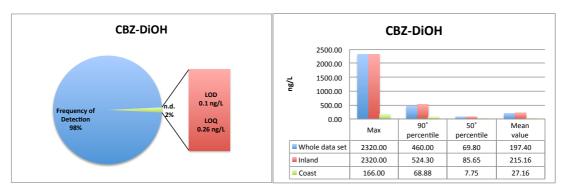


Figure 16 - Summary findings for metabolite of carbamazepine reported by JRC

5.1.8 Findings for sulfamethoxazole

Sulfamethoxazole was analysed using the same analytical method used for carbamazepine. Similar performance characteristics were observed. Thus, the method featured a LoD of 0.05 ng/L and a LoQ of 0.26 ng/L. The blank issues reported above, were also observable in the case of sulfamethoxazole. The substance was detectable in 89% of the samples with highest concentrations in inland waters with a highest concentration of 656 ng/L in one sample. Concentrations in coastal water samples were ca. 20% compared to the values observed for inland waters. The results are summarised in Figure 17.

The analytical method results to be suitable for the purpose used.

Figure 17 - Summary findings for sulfamethoxazole reported by JRC

5.1.9 Findings for perfluoropropionic acid (PFPrA)

Perfluoroproprionic acid was analysed by the JRC. Unlike the methods used by the JRC, in this case a re-validation of the method became necessary due to a breakdown of a sample pre-treatment device. As a consequence only 30% of total samples were analysed for the PFPrA. However, also in these cases the analyte was detectable only in very few samples. The LoD (0.05 ng/L) and LoQ (0.13 ng/L) demonstrated good performance of the analytical method. Blank samples tested after replacement of the SPE pre-treatment device were negative. The low number of detections in the limited dataset did not allow a statistical evaluation and the respective figures are omitted.

5.1.10 Findings for tris-2-chloropropyl phosphate (TCPP)

TCPP is a chemical compound used as a flame retardant, plasticizer, and viscosity regulator in various types of polymers including polyurethanes, polyester resins, and polyacrylates. The compound was analysed by the JRC using an in-house developed GC-MS method featuring a LoD of 2 ng/L and a LoQ of 4 ng/L based on experimental findings. The summary findings displayed in Figure 18 show that although highest concentrations are observed in inland waters, mean and median values are comparable between inland and seawaters. The high frequency of detection of 92% proofs the chosen analytical approach to be fit-for-purpose. In total, 30 field blanks were tested of which 1 field blank was found positive at 4. 17 ng/L i.e. slightly above the stated limit of quantification. Laboratory blanks all resulted as negative.

Figure 18 - Summary findings for TCPP reported by JRC

5.1.11 Findings for methyl tert-butyl ether (MTBE)

MTBE was selected as a representative for volatile compounds. Similar to glyphosate and AMPA, also MTBE was analysed in two laboratories, thus allowing us to compare analytical findings obtained on the same substance in two laboratories. While the Dutch laboratory of Rijkswaterstaat analysed the whole set of samples, the British NLS examined 130 of 219 samples. 4 samples shipped to the Netherlands were not usable due to leakage of the bottles.

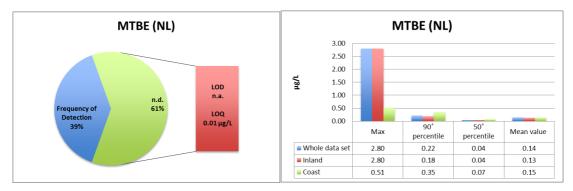


Figure 19 – Summary findings for MTBE reported by Rijkswaterstaat. The pie chart (left) refers to the common set of samples analysed by both laboratories, while the bar chart (right) included all the samples analysed by a single laboratory.

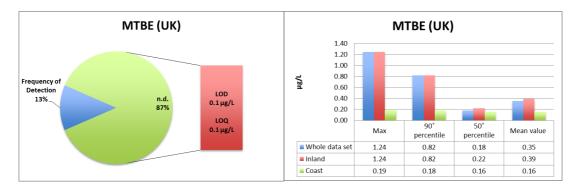


Figure 20 – Summary findings reported for MTB by National Laboratory Services. The pie chart (left) refers to the common set of samples analysed by both laboratories, while the bar chart (right) included all the samples analysed by a single laboratory.

The analytical method used by Rijkswaterstaat reported a LoQ of 10 ng/L compared to a 10 fold higher LoQ of the method used by NLS. The summary findings for both laboratories are shown in Figure 19 and Figure 20, respectively. The data indicate a rather comparable distribution of MTBE concentrations between inland and coastal waters in both datasets. NLS tested 13 field blank samples, in none of which was found detectable amounts of MTBE. No data for blank samples were received from Rijkswaterstaat.

As regards the comparison between both laboratories, it has to be stressed that both use routine methods for MTBE determination, which are operated on a regular basis. While for a majority of samples analysed in both laboratories (85%, 108 samples) the reported findings agreed well, this was not the case in 15% (19 samples) of the cases. In these cases, concentrations differences were so significant (2 to 3 orders of magnitude), that it was enquired whether the results were reported correctly. The significantly higher concentrations in these 19 samples were all reported by the Dutch laboratory (Table 51).

Considering these results and anomalies, it has to be concluded that results produced for the same analyte in different laboratories are of limited comparability despite the fact that standardised methods have been used. The possible shortcomings may require the introduction of an accompanying analytical quality assurance programme, which may increase significantly the cost of the exercise.

Table 51 – Comparison of findings for MTBE analysed by NLS (UK) and Rijkswaterstaat (NL). The highlighted lines indicate anomalies. Issues were found with the project logistics which made track and tracing of sample IDs difficult. Calculation errors were identified in the reporting phase and corrected.

16 December 2014

Lacation code UK NTBE MTBE Location code UK NTBE MTBE 00449 SWW_00001 < L0Q < L0Q 0049 SWW_00003 < L0Q						
0049 SWW_00001 < L0Q < L0Q 0049 SWW_00088 < L0Q < L0Q < L0Q 0049 SWW_000001 < L0Q < L0Q 0049 SWW_000901 < L0Q < L0Q 0049 SWW_00005 < L0Q < L0Q 0049 SWW_00091 < L0Q < L0Q 0049 SWW_00005 < L0Q < L0Q 0049 SWW_00093 0.23 0.255 0049 SWW_000013 < L0Q < L0Q 0049 SWW_00095 < L0Q < L0Q 0049 SWW_00013 < L0Q < L0Q 0049 SWW_00095 < L0Q < L0Q 0049 SWW_00016 < L0Q < L0Q 0049 SWW_00095 < L0Q < L0Q 0049 SWW_00100 < L0Q 0.026 0049 SWW_00016 < L0Q < L0Q 0049 SWW_00101 < L0Q 0.026 0049 SWW_0017 < L0Q < L0Q 0049 SWW_00104 < L0Q < L0Q 0049 SWW_0013 < L0Q < L0Q 0049 SWW_00122 < L0Q < L0Q 0049 SWW_0013 < L0Q < L0Q 0049 SWW_00123 < L0Q < L0Q < L0Q	Location code		MTBE	Location code		MTBE
0049_SWW_00003 <loq< td=""> <loq< td=""></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>	0049 SWW 00001			0049 SWW 00088		
0049_SWW_00005 <loq< td=""> LOQ <loq< td=""> <loq< td=""></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>					-	· · ·
0049_SWW_00006 <loq< td=""> <loq< td=""> 0049_SWW_00091 <loq< td=""> 0,044 0049_SWW_00006 <loq< td=""> <loq< td=""> 0.049_SWW_00092 <loq< td=""> 0,044 0049_SWW_000091 <loq< td=""> <loq< td=""> 0.049_SWW_00093 0.23 0,255 0049_SWW_00013 <loq< td=""> <loq< td=""> 0.049_SWW_00994 <loq< td=""> <loq< td=""> 0049_SWW_00015 <loq< td=""> 0.049_SWW_000994 <loq< td=""> <loq< td=""> 0.049_SWW_00108 <loq< td=""> 0.049_SWW_00018 <loq< td=""> 0.049_SWW_001010 <loq< td=""> 0.049_SWW_001010 0.186 0.2251 0049_SWW_00017 0,734 0,838 0049_SWW_001010 <loq< td=""> 0.0455 0049_SWW_00018 0,101 0,0264 0049_SWW_001010 <loq< td=""> 0.045 0049_SWW_00022 0,124 0.0981 0049_SWW_00110 <loq< td=""> <loq< td=""> 0049_SWW_00023 0,156 0.508 0049_SWW_00124 <loq< td=""> <loq< td=""> 0049_SWW_0022 <loq< td=""> 0.0266 0049_SWW_00123 <loq< td=""> <loq< td=""> 0049_SWW_00023 0,156 0.049_SW</loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>					· · ·	
0049_SVW_00007 < LOQ < LOQ 0049_SVW_00093 0.23 0.235 0049_SVW_00007 < LOQ < LOQ 0049_SVW_00093 < LOQ						
0049_SWW_00009 <loq< td=""> <loq< td=""> 0049_SWW_00094 <loq< td=""> <loq< td=""> 0049_SWW_00013 <loq< td=""> <loq< td=""> 0049_SWW_00094 <loq< td=""> <loq< td=""> 0049_SWW_00013 <loq< td=""> <loq< td=""> 0049_SWW_00098 <loq< td=""> <loq< td=""> 0049_SWW_00016 <loq< td=""> 0.049_SWW_000998 <loq< td=""> <loq< td=""> 0.049_SWW_00019 <loq< td=""> 0.016 0049_SWW_00017 0.734 0.266 0049_SWW_001010 <loq< td=""> 0.0189 0049_SWW_00118 0.101 0.0624 0049_SWW_001011 <loq< td=""> 0.0189 0049_SWW_00120 <loq< td=""> <loq< td=""> 0.024 0.024 <loq< td=""> <loq< td=""> 0049_SWW_00021 <loq< td=""> <loq< td=""> 0.049_SWW_00113 <loq< td=""> <loq< td=""> 0049_SWW_00022 <loq< td=""> 0.0266 0049_SWW_00122 <loq< td=""> <loq< td=""> 0049_SWW_00023 <loq< td=""> 0.0256 0049_SWW_00124 <loq< td=""> <loq< td=""> 0049_SWW_00024 <loq< td=""> 0.0415 0049_SWW_00126 <loq< td=""> <loq< td=""> 0049_SWW_00023 <loq< td=""> <t< th=""><th></th><th></th><th>v</th><th></th><th>· · ·</th><th></th></t<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>			v		· · ·	
0049 SWW_00013 <loq< td=""> <loq< td=""> 0049 SWW_00955 <loq< td=""> <loq< td=""> 0049 SWW_00014 <loq< td=""> <loq< td=""> 0049 SWW_00955 <loq< td=""> <loq< td=""> 0049 SWW_00016 <loq< td=""> <loq< td=""> 0049 SWW_00100 0.108 0.201 0049 SWW_00016 <loq< td=""> <loq< td=""> 0049 SWW_00100 0.108 0.201 0049 SWW_00116 <loq< td=""> 0.021 0.021 <loq< td=""> 0.014 0049 SWW_00119 0.101 0.0824 0049 SWW_00130 <loq< td=""> <loq< td=""> 0049 SWW_00020 <loq< td=""> <loq< td=""> 0049 SWW_001310 <loq< td=""> <loq< td=""> <loq< td=""> 0.024 <loq< td=""> <loq< td=""> 0.049 SWW_001213 <loq< td=""> 0.049 SWW_00122 <loq< td=""> 0.049 SWW_00122 <loq< td=""> 0.049 SWW_00122 <loq< td=""> 0.049 SWW_00122 <loq< td=""> 0.0148 0049 SWW_00122 <loq< td=""> 0.0120 0.0149 0.0149 0.0149</loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>					· · ·	
0049 SWW_00013 < L0Q < L0Q 0049 SWW_00095 < L0Q < L0Q 0049 SWW_00015 < L0Q 0.0439 0049 SWW_00099 < L0Q < L0Q 0049 SWW_00016 < L0Q < L0Q 0.0439 SWW_00101 < L0Q < L0Q 0049 SWW_00016 0.121 0.038 0049 SWW_00101 < L0Q 0.0455 0049 SWW_00012 0.121 0.026 0.049 SWW_00110 < L0Q < L0Q 0049 SWW_00022 0.124 0.094 SWW_00113 < L0Q < L0Q < L0Q 0049 SWW_00223 0.156 0.088 0049 SWW_00123 < L0Q < L0Q 0049 SWW_00224 < L0Q < C0Q 0.048 SWW_00123 < L0Q < L0Q 0049 SWW_00227 < L0Q 0.0266 0049 SWW_00123 < L0Q < L0Q 0049 SWW_00237 < L0Q 0.0228 0049 SWW_00127 < L0Q < L0Q 0049 SWW_0033 < L0Q 0.0126 0049 SWW_00127 < L0Q < L0Q 0049 SWW_0033 < L0Q 0					· · · · · · · · · · · · · · · · · · ·	· · · · · ·
0049 SWW_00015 < L0Q 0049 SWW_00098 < L0Q < L0Q 0049 SWW_00016 < L0Q < 0049 SWW_00100 0.188 0.0251 0049 SWW_00017 0.734 0.838 0049 SWW_00101 < L0Q 0.0455 0049 SWW_00118 0.211 0.026 0049 SWW_00104 1.24 1.33 0049 SWW_00202 < L0Q < L0Q 0.049 SWW_00113 < L0Q < L0Q 0049 SWW_00220 0.124 0.0991 0049 SWW_00113 < L0Q < L0Q 0049 SWW_00223 0.124 0.0991 0049 SWW_00123 < L0Q < L0Q 0049 SWW_00223 0.126 0.026 0049 SWW_00123 < L0Q < L0Q 0049 SWW_00223 < L0Q 0.0228 0.049 SWW_00128 < L0Q < L0Q 0049 SWW_00233 < L0Q 0.0228 0.049 SWW_00128 < L0Q < L0Q 0049 SWW_0033 < L0Q 0.0216 0.049 SWW_00138 < L0Q < L0Q 0049 SWW_0033 < L0Q 0.0215 0049 SWW_00138 < L0Q L						
0049 SWW_00016 < L0Q < V.0Q 0049 SWW_00101 < L0Q 0.049 0049 SWW_00117 0,734 0,838 0049 SWW_001013 < L0Q 0,0458 0049 SWW_00113 0,219 0,206 0049 SWW_00103 < L0Q 0,0458 0049 SWW_00113 < L0Q < L0Q 0.049 SWW_00113 < L0Q < L0Q 0049 SWW_00123 < L0Q < L0Q 0.049 SWW_00113 < L0Q < L0Q 0049 SWW_00223 0.156 0,508 0049 SWW_00123 < L0Q < L0Q 0049 SWW_00226 < L0Q 0.0266 0049 SWW_00123 < L0Q < L0Q 0049 SWW_00226 < L0Q 0.0228 0049 SWW_00127 < L0Q < L0Q 0049 SWW_00233 < L0Q 0.0261 0049 SWW_00127 < L0Q < L0Q 0049 SWW_00333 < L0Q 0.0126 0049 SWW_00133						
0049 SWW_0017 0.734 0.039 SWW_00101 <.LOQ 0.049 SWW_0013 <.LOQ 0.0189 0049 SWW_0019 0.101 0.026 0049 SWW_0013 <.LOQ 0.045 0049 SWW_0019 0.101 0.0824 0049 SWW_00113 <.LOQ <.L					-	
0049 SWW_0011 ()						-
0049_SWW_00018 0,219 0,206 0049_SWW_00103 0049			0,838		< LOQ	0,0189
0049_SWW_00022 <.LOQ	0049_SWW_00018			0049_SWW_00103		
0049_SWW_00022 <loq< td=""> <loq< td=""></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>	0049_SWW_00019	0,101	0,0824	0049_SWW_00104	1,24	1,33
0049_SWW_00023 0.156 0.508 0049_SWW_0121 < LOQ	0049_SWW_00020	< LOQ	< LOQ	0049_SWW_00110	< LOQ	
0049_SWW_00023 0.156 0.508 0049_SWW_0121 < LOQ	0049_SWW_00022	0,124	0,0981	0049_SWW_00113	< LOQ	< LOQ
0049_SWW_00024 < L0Q < 0.026 0049_SWW_00123 < L0Q < 0.023 0049_SWW_00026 < L0Q 0.0266 0049_SWW_00123 < L0Q < 0.02 0049_SWW_00027 < L0Q 0.028 0049_SWW_00124 < L0Q < L0Q < L0Q < L0Q < < L0Q < < L0Q	0049_SWW_00023	,	,			< LOQ
0049 SWW_00025 < LOQ		•	•		-	
0049_SWW_0026 < L0Q 0049_SWW_00126 < L0Q L						
0049_SWW_00027 < L0Q	0049_SWW_00026					< LOQ
0049_SWW_00030 < L00 0,0413 0049_SWW_00126 < L00 < L00 0049_SWW_00031 < L00 0,0148 0049_SWW_00127 < L00 < L00 0049_SWW_00033 0,167 0,145 0049_SWW_00128 < L100 < L00 < L00 0049_SWW_00033 < L00 0,0126 0049_SWW_00131 < L00 < L00 < L00 0049_SWW_00039 < L00 0,012 0049_SWW_00132 0,125 < L00 0049_SWW_00040 < L00 0,012 0049_SWW_00132 0,125 < L00 0049_SWW_00042 < L00 0,0216 0049_SWW_00133 0,158 0,146 0049_SWW_00042 < L00 0,0216 0049_SWW_00143 0,219 0,218 0049_SWW_00046 < L00 0,0239 0049_SWW_00143 0,219 0,218 0049_SWW_00050 < L00 0,029 0049_SWW_00143 0,219 0,518 0049_SWW_00051 < L00 0,049_SWW_00150 < L00 0,029 SWW_00143 0,219 0,518	0049_SWW_00027	< LOQ	0,0228	0049_SWW_00125	< LOQ	
0049_SWW_00032 < LOQ 0,0326 0049_SWW_00128 0,116 0,130 0049_SWW_00033 0,167 0,145 0049_SWW_00129 < LOQ < LOQ 0049_SWW_00033 < LOQ 0,015 0049_SWW_00130 < LOQ < LOQ 0049_SWW_00039 < LOQ 0,012 0049_SWW_00131 < LOQ < LOQ 0049_SWW_00041 < LOQ 0,0216 0049_SWW_00133 0,158 0,146 0049_SWW_00042 < LOQ 0,0216 0049_SWW_00133 0,158 0,146 0049_SWW_00045 < LOQ 0,0289 0049_SWW_00141 < LOQ < LOQ 0049_SWW_00047 < LOQ 0,0279 0049_SWW_00143 0,219 0,918 0049_SWW_00051 < LOQ 0,0239 0049_SWW_00148 0,817 0,542 0049_SWW_00051 < LOQ 0,015 0049_SWW_00150 < LOQ < LOQ 0049_SWW_00055 < LOQ < LOQ 0049_SWW_00151 < LOQ < LOQ 0049_SWW_00055 < LOQ < LOQ 0049_SWW_00151	0049_SWW_00030	< LOQ	0,0413	0049_SWW_00126	< LOQ	< LOQ
0049_SWW_00033 0,167 0,145 0049_SWW_0129 < L0Q < L0Q 0049_SWW_00033 < L0Q 0,0261 0049_SWW_00131 < L0Q < L0Q 0049_SWW_00040 < L0Q 0,015 0049_SWW_00132 0,125 < L0Q 0049_SWW_00041 < L0Q 0,0216 0049_SWW_00133 0,158 0,146 0049_SWW_00042 < L0Q 0,0216 0049_SWW_00133 < L0Q < L0Q 0049_SWW_00043 < L0Q 0,0216 0049_SWW_00143 < L0Q < L0Q 0049_SWW_00047 < L0Q 0,0289 0049_SWW_00146 < L0Q 0,0218 0049_SWW_00051 < L0Q 0,0239 0049_SWW_00148 0,817 0,542 0049_SWW_00051 < L0Q 0,015 0049_SWW_00150 < L0Q < L0Q 0049_SWW_00052 < L0Q 0,0238 0049_SWW_00151 < L0Q < L0Q 0049_SWW_00055 < L0Q < L0Q 0049_SWW_00154 < L0Q < L0Q 0049_SWW_00058 < L0Q < L0Q 0049_SWW_0015	0049_SWW_00031	< LOQ	0.0148	0049_SWW_00127	< LOQ	< LOQ
0049 SWW_00034 < L0Q 0,0261 0049 SWW_00130 < L0Q < L0Q 0049 SWW_00039 < L0Q 0,015 0049 SWW_00131 < L0Q < L0Q 0049 SWW_00041 < L0Q 0,012 0049 SWW_00133 0,1158 0,146 0049 SWW_00042 < L0Q 0,0216 0049 SWW_00131 < L0Q < L0Q 0049 SWW_00042 < L0Q 0,0289 0049 SWW_00141 < L0Q < L0Q 0049 SWW_00046 < L0Q 0,0289 0049 SWW_00143 0,219 0,218 0049 SWW_00047 < L0Q 0,0289 0049 SWW_00147 < L0Q 0,0770 0049 SWW_00051 < L0Q 0,015 0049 SWW_00150 < L0Q 0,0170 0049 SWW_00052 < L0Q 0049 SWW_00151 < L0Q < L0Q 0049 SWW_00055 < L0Q < L0Q 0049 SWW_00151 < L0Q	0049_SWW_00032	< LOQ	0,0326	0049_SWW_00128	0,116	0,130
0049_SWW_00039 < L0Q 0,015 0049_SWW_00131 < L0Q < L0Q 0049_SWW_00040 < L0Q 0,012 0049_SWW_00133 0,125 < L0Q 0049_SWW_00041 < L0Q 0,0216 0049_SWW_00139 < L0Q < L0Q 0049_SWW_00045 < L0Q 0,0216 0049_SWW_00143 0,219 0,218 0049_SWW_00047 < L0Q 0,0379 0049_SWW_00143 0,219 0,218 0049_SWW_00047 < L0Q 0,0339 0049_SWW_00146 < L0Q 0,0710 0049_SWW_00050 < L0Q 0,0239 0049_SWW_00148 0,817 0,542 0049_SWW_00051 < L0Q 0,015 0049_SWW_00149 < L0Q < L0Q 0049_SWW_00052 < L0Q < L0Q 0049_SWW_00151 < L0Q < L0Q 0049_SWW_00055 < L0Q < L0Q 0049_SWW_00153 < L0Q < L0Q 0049_SWW_00056 < L0Q < C0Q 0049_SWW_00153 < L0Q < L0Q 0049_SWW_00066 < L0Q < C0Q 0049_SWW_00153	0049_SWW_00033	0,167	0,145	0049_SWW_00129	< LOQ	< LOQ
0049_SWW_00040 < LOQ 0,012 0049_SWW_00132 0,125 < LOQ 0049_SWW_00041 < LOQ 0,0934 0049_SWW_00133 0,158 0,146 0049_SWW_00045 < LOQ 0,0216 0049_SWW_00141 < LOQ < LOQ 0049_SWW_00045 < LOQ 0,0216 0049_SWW_00141 < LOQ < LOQ 0049_SWW_00046 < LOQ 0,0988 0049_SWW_00143 < LOQ 0,0710 0049_SWW_00047 < LOQ 0,0239 0049_SWW_00147 < LOQ 0,0710 0049_SWW_00050 < LOQ < LOQ 0,049_SWW_00148 0,817 0,542 0049_SWW_00051 < LOQ < LOQ 0049_SWW_00150 < LOQ < LOQ 0049_SWW_00052 < LOQ < LOQ 0049_SWW_00151 < LOQ < LOQ 0049_SWW_00055 < LOQ < COQ 0049_SWW_00153 < LOQ < LOQ 0049_SWW_00058 < LOQ < COQ 0049_SWW_00154 < LOQ < LOQ 0049_SWW_00058 < LOQ < COQ < 049_SWW_00	0049_SWW_00034	< LOQ	0,0261	0049_SWW_00130	< LOQ	< LOQ
0049_SWW_00041 < LOQ 0,0934 0049_SWW_00133 0,158 0,146 0049_SWW_00042 < LOQ 0,0216 0049_SWW_00133 < LOQ < LOQ 0049_SWW_00045 < LOQ 0,0289 0049_SWW_00143 0,219 0,218 0049_SWW_00047 < LOQ 0,0289 0049_SWW_00143 0,219 0,218 0049_SWW_00047 < LOQ 0,0299 0049_SWW_00147 < LOQ 0,0770 0049_SWW_00050 < LOQ 0,0239 0049_SWW_00148 0,817 0,542 0049_SWW_00051 < LOQ < LOQ 0049_SWW_00150 < LOQ < LOQ 0049_SWW_00052 < LOQ < LOQ 0049_SWW_00151 < LOQ < LOQ 0049_SWW_00055 < LOQ < LOQ 0049_SWW_00151 < LOQ < LOQ 0049_SWW_00058 < LOQ < LOQ 0049_SWW_00154 < LOQ < LOQ 0049_SWW_00057 < LOQ < COQ 0049_SWW_00154 < LOQ < LOQ 0049_SWW_00056 < LOQ < COQ < COQ	0049_SWW_00039	< LOQ	0,015	0049_SWW_00131	< LOQ	< LOQ
0049_SWW_00042 < L0Q						
0049_SWW_00045 < LOQ		•	•		•	•
0049_SWW_00046 < LOQ	0049_SWW_00042	< LOQ	0,0216	0049_SWW_00139	< LOQ	< LOQ
0049_SWW_00047 < L0Q						
0049_SWW_00049 < L0Q						
0049_SWW_00050 < LOQ < LOQ 0049_SWW_00148 0,817 0,542 0049_SWW_00051 < LOQ 0,015 0049_SWW_00149 < LOQ < LOQ 0049_SWW_00052 < LOQ < LOQ 0049_SWW_00150 < LOQ < LOQ 0049_SWW_00054 < LOQ < LOQ 0049_SWW_00151 < LOQ < LOQ 0049_SWW_00057 < LOQ 0,0238 0049_SWW_00152 < LOQ < LOQ 0049_SWW_00059 < LOQ < LOQ 0049_SWW_00153 < LOQ < LOQ 0049_SWW_00059 < LOQ < LOQ 0049_SWW_00155 < LOQ < LOQ 0049_SWW_00066 < LOQ < LOQ 0049_SWW_00159 < LOQ < LOQ 0049_SWW_00067 < LOQ < LOQ 0049_SWW_00160 < LOQ < LOQ 0049_SWW_00068 < LOQ < LOQ 0049_SWW_00163 < LOQ < LOQ 0049_SWW_00070 < LOQ < LOQ 0049_SWW_00171 < LOQ < LOQ 0049_SWW_00073 < LOQ < LOQ 0049_SWW_00172 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
0049_SWW_00051 < LOQ 0,015 0049_SWW_00149 < LOQ < LOQ 0049_SWW_00052 < LOQ < LOQ 0049_SWW_00150 < LOQ < LOQ 0049_SWW_00055 < LOQ < LOQ 0049_SWW_00151 < LOQ < LOQ 0049_SWW_00057 < LOQ < LOQ 0049_SWW_00153 < LOQ < LOQ 0049_SWW_00058 < LOQ < LOQ 0049_SWW_00154 < LOQ < LOQ 0049_SWW_00058 < LOQ < LOQ 0049_SWW_00154 < LOQ < LOQ 0049_SWW_00064 < LOQ < LOQ 0049_SWW_00159 < LOQ < LOQ < LOQ 0049_SWW_00066 < LOQ < LOQ < 0049_SWW_00161 < LOQ < LOQ 0049_SWW_00067 < LOQ < < LOQ < 0049_SWW_00162 < LOQ < LOQ 0049_SWW_00070 < LOQ < < LOQ < 0049_SWW_00163 < LOQ < LOQ 0049_SWW_00071 < LOQ < < LOQ < < LOQ < < LOQ < < LOQ 0049_SWW_00077 < LOQ < < LOQ <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
0049_SWW_00052 < L0Q < L0Q 0049_SWW_00150 < L0Q < L0Q 0049_SWW_00054 < L0Q < L0Q 0049_SWW_00151 < L0Q < L0Q 0049_SWW_00055 < L0Q < L0Q 0049_SWW_00152 < L0Q < L0Q 0049_SWW_00057 < L0Q < 0029 SWW_00153 < L0Q < L0Q 0049_SWW_00059 < L0Q < L0Q 0049_SWW_00155 < L0Q < L0Q 0049_SWW_00065 < L0Q < L0Q 0049_SWW_00159 < L0Q < L0Q 0049_SWW_00065 < L0Q < L0Q 0049_SWW_00160 < L0Q < L0Q 0049_SWW_00066 < L0Q < L0Q 0049_SWW_00161 < L0Q < L0Q 0049_SWW_00067 < L0Q < L0Q 0049_SWW_00163 < L0Q < L0Q 0049_SWW_00070 < L0Q < L0Q 0049_SWW_00164 < L0Q < L0Q 0049_SWW_00071 < L0Q < 0.02 0049_SWW_00171 < L0Q < 0.042 0049_SWW_00073 < L0Q < 0.03 0049_SWW_00181						•
0049_SWW_00054 < L0Q < L0Q 0049_SWW_00151 < L0Q < L0Q 0049_SWW_00055 < L0Q < L0Q 0049_SWW_00152 < L0Q < L0Q 0049_SWW_00057 < L0Q 0,0238 0049_SWW_00153 < L0Q < L0Q 0049_SWW_00058 < L0Q < L0Q 0049_SWW_00155 < L0Q < L0Q 0049_SWW_00064 < L0Q < L0Q 0049_SWW_00159 < L0Q < L0Q 0049_SWW_00066 < L0Q < L0Q 0049_SWW_00160 < L0Q < L0Q 0049_SWW_00067 < L0Q < L0Q 0049_SWW_00161 < L0Q < L0Q 0049_SWW_00067 < L0Q < L0Q 0049_SWW_00163 < L0Q 0,0703 0049_SWW_00070 < L0Q < L0Q 0049_SWW_00170 < L0Q 0,0703 0049_SWW_00073 < L0Q < L0Q 0049_SWW_00171 < L0Q 0,0153 0049_SWW_00077 < L0Q < 0,0758 0049_SWW_00172 < L0Q 0,0153 0049_SWW_00073 < L0Q < 0,0256 0049_SWW						
0049_SWW_00055 < LOQ < LOQ 0049_SWW_00152 < LOQ < LOQ 0049_SWW_00057 < LOQ 0,0238 0049_SWW_00153 < LOQ < LOQ 0049_SWW_00058 < LOQ < LOQ 0049_SWW_00153 < LOQ < LOQ 0049_SWW_00059 < LOQ < LOQ 0049_SWW_00155 < LOQ < LOQ 0049_SWW_00064 < LOQ < LOQ 0049_SWW_00160 < LOQ < LOQ 0049_SWW_00065 < LOQ < LOQ 0049_SWW_00160 < LOQ < LOQ 0049_SWW_00066 < LOQ < LOQ 0049_SWW_00161 < LOQ < LOQ 0049_SWW_00067 < LOQ < LOQ 0049_SWW_00162 < LOQ 0,0703 0049_SWW_00070 < LOQ < LOQ 0049_SWW_00170 < LOQ 0,0465 0049_SWW_00071 < LOQ < LOQ 0049_SWW_00170 < LOQ 0,0153 0049_SWW_00073 < LOQ < LOQ 0049_SWW_00171 < LOQ 0,0153 0049_SWW_00073 < LOQ < 0,0226 0049_SWW_00						
0049_SWW_00057 < LOQ						
0049_SWW_00058 < LOQ						
0049_SWW_00059 < L0Q			•		-	
0049_SWW_00064 < LOQ < LOQ 0049_SWW_00159 < LOQ < LOQ 0049_SWW_00065 < LOQ < LOQ 0049_SWW_00160 < LOQ < LOQ 0049_SWW_00066 < LOQ < LOQ 0049_SWW_00161 < LOQ < LOQ 0049_SWW_00067 < LOQ < LOQ 0049_SWW_00162 < LOQ < LOQ 0049_SWW_00068 < LOQ < LOQ 0049_SWW_00163 < LOQ < LOQ 0049_SWW_00070 < LOQ < LOQ 0049_SWW_00164 < LOQ < LOQ 0049_SWW_00071 < LOQ < LOQ 0049_SWW_00170 < LOQ 0,0465 0049_SWW_00073 < LOQ < LOQ 0049_SWW_00171 < LOQ 0,0153 0049_SWW_00076 < LOQ < 0,0758 0049_SWW_00172 < LOQ < LOQ 0049_SWW_00077 < LOQ < 0,03 0049_SWW_00182 < LOQ < LOQ 0049_SWW_00078 < LOQ < 0,0256 0049_SWW_00199 < LOQ < LOQ 0049_SWW_00080 < LOQ < 0,0256 0049_SWW						
0049_SWW_00065 < LOQ						
0049_SWW_00066 < LOQ						
0049_SWW_00067 < LOQ			v			
0049_SWW_00068 < LOQ					-	
0049_SWW_00070 < LOQ						
0049_SWW_00071 < LOQ						•
0049_SWW_00072 < LOQ						
0049_SWW_00073 < LOQ						•
0049_SWW_00076 < LOQ			0,0758			
0049_SWW_00078 < LOQ	0049_SWW_00076		< LOQ			< LOQ
0049_SWW_00079 0,818 0,458 0049_SWW_00199 < LOQ	0049_SWW_00077	< LOQ	0,03	0049_SWW_00182	< LOQ	< LOQ
0049_SWW_00080 < LOQ	0049_SWW_00078	< LOQ	0,0226	0049_SWW_00194	< LOQ	< LOQ
0049_SWW_00081 < LOQ	0049_SWW_00079	0,818	0,458	0049_SWW_00199	< LOQ	< LOQ
0049_SWW_00082 < LOQ	0049_SWW_00080	< LOQ	0,0256	0049_SWW_00200	< LOQ	< LOQ
0049_SWW_00083 < LOQ			0,0445		-	
0049_SWW_00084 < LOQ	0049_SWW_00082	< LOQ	0,0574	0049_SWW_00202	< LOQ	< LOQ
0049_SWW_00085 < LOQ		< LOQ	< LOQ		< LOQ	< LOQ
0049_SWW_00086 < LOQ 0,0567 0049_SWW_00209 < LOQ < LOQ			v			
0049_SWW_00087 0,117 0,0428 0049_SWW_00218 < LOQ < LOQ						
	0049_SWW_00087	0,117	0,0428	0049_SWW_00218	< LOQ	< LOQ

5.1.12 Findings for silver (Ag)

The tentative analyses of silver was introduced into the feasibility study in order to investigate the mechanism's applicability to non-organic compounds. All measurements were done with a routine method using ICP-MS operated by the Flemish VMM laboratories. Unfortunately, the method's performance characteristics (LoD = 150 ng/L, LoQ = 390 ng/L) did not allow the detection of Ag ions in the samples taken. Consequently, no conclusive statement can be made.

5.1.13 Findings for boron (B)

Boron, as a non-metallic element, was analysed by the same ICP-MS setup used for Ag by VMM. With the limitations of the method used, boron was detected and quantified in 11% of the samples, with concentrations in coastal water samples being obviously much higher compared to inland water samples, due to the natural salinity. Results are summarised in Figure 21. The findings indicate an applicability of the mechanism.



Figure 21 – Summary findings reported for born by VMM

5.2 Sediment and biota samples

It is commonly agreed that monitoring of sediment and/or biota can be used together with the water matrix to provide a coherent and comprehensive picture of the status of the water bodies within each river basin district. The initial screening of certain chemicals in the monitoring programme will help to identify areas of concern and areas where additional effort is needed, such as increased intensity of sediment, biota, or water monitoring or direct measurements.

According to this guidance, sediment is a recommended matrix for the assessment of the chemical status for some metals and hydrophobic compounds in marine and lentic water bodies. For the purpose of trend monitoring, sediment, or alternatively SPM, and biota are the most suitable matrices for many substances because they integrate, in time and space, the pollution in a specific water body; the changes of pollution in these compartments are not as fast as in the water column and long-term comparisons can be made.

The choice of the matrix to be monitored depends firstly on the physico-chemical properties of the substances and it in the context of this feasibility study it had to be assessed whether the monitoring mechanisms could be used also for sediment and biota samples.

5.2.1 Observations from feasibility study

In total only 7 biota samples were received. Given the limited number of samples and the variety of tissues, it was decided that an analysis of the biota samples could be omitted. However, it was concluded that retrieval of biota samples by the tested mechanism would be possible, but would require further instructions.

In the same context, 23 sediment samples were received and processed by the JRC for analysis by means of GC-MS for two selected PBDE compounds. The results are summarised in the figures below. The two substances were detectable in 22% of the samples for BDE-209

and in half of the samples for DBDPE, which proves the appropriateness of the analytical method for the study purpose. No contamination issues were reported. The mechanism can be used for sediment samples.

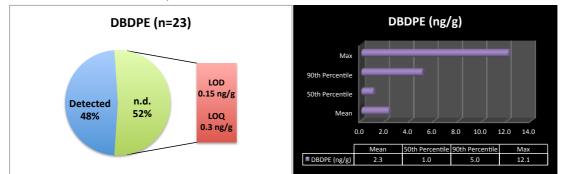


Figure 22 - Summary findings for decabromodiphenylethane (DBDPE) in sediments reported by JRC

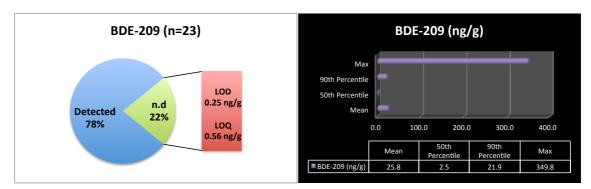


Figure 23- Summary findings for decabromodiphenyl ether (BDE-209) in sediments reported by JRC

5.2.2 Applicability of Environmental Specimen Banks

The difficulty in obtaining representative biota samples lead to a consultation with various partners and contact persons involved in the study if there are suitable alternatives. In this context, the existence of the European Specimen Bank Network has to be cited.

There are 17 environmental specimen banks (ESBs) in Europe with many millions of samples from different ecosystem types in ultra-low temperature archives. Ten ESBs systematically collect and store specific samples to provide long term chemical trends in support of chemical regulation. Among these are the German ESB and the UK Fish Tissue Bank in central Europe. Scandinavian countries have a long tradition of maintaining ESBs. This includes Sweden where time trends go back to the late 1960s. France and Spain operate ESBs in Southern Europe. An EU funded INTERREG programme just started between Spain, France and Portugal with the aim to foster systematic monitoring and specimen banking in this European region.

Traditionally, ESBs focus on samples from the marine and limnic compartment, e.g. fish, mussels, suspended particles and fish eating predators. However, larger ESBs also sample specimens from terrestrial ecosystems and human populations. ESBs have analysed temporal trends for a range of metals and organic compounds, e.g. legacy POPs, flame retardants, PFCs, PAHs, organotin compounds, siloxanes, personal care products and pharmaceuticals. Recently, spatial and temporal trend data were reported on mercury in fish from four European ESBs, i.e. in Germany (Lepom, 2012), Sweden and Finland (Miller, 2013) and in the UK ESB (Jürgens, 2013 submitted).

Figure 24 – Impressions from the German Environmental Specimen Bank hosted by the Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg Germany. H. Rüdel explaining the storage of time series of sediment samples.

Environmental specimen banks (ESBs) provide human and environmental samples for the retrospective analysis of chemicals. Typical ESB features are:

- Environmental samples are routinely collected in a highly standardised manner and all procedures are strictly documented. This greatly reduces the risk that inaccurate sampling and processing of wildlife samples flaw analytical results;
- Retrospective analysis can be initiated with archived samples at any given time to unravel the environmental and human contamination of the past. This enables fast regional or even global geographical monitoring of emerging substances;
- The samples reflect the actual contamination levels and pattern at the time of sampling. Ultra-low temperatures ensure that the chemical and biological information within the samples does not change over time. A time series may therefore cover a large range of historical contamination levels and patterns;
- Regulators can use results from ESBs as authentic evidence for the contamination of the environment. Typical questions from chemical regulation to ESBs are:
 - Is chemical management effective; are contamination levels in general decreasing?
 - Are specific risk management options effective; are contamination levels of those substances decreasing that have been restricted or totally banned from markets?
 - What are the trends for emerging chemicals of concern: are they increasing or decreasing?
 - Can we improve our understanding of environmental contamination by investigating historical samples with state of the art analytical methods?

In view of the scope of this exercise and the upcoming watch list mechanism it is concluded that Environmental Specimen Banks can provide knowledge and data from biota and sediment/SPM monitoring. These data may support existing and upcoming monitoring obligations for substances in these matrices. Existing trend data from retrospective monitoring may feed into the WFD prioritisation process for priority substances candidates.

In addition, it was concluded that a crossover of knowledge may be useful by

- sharing ESBs vast experience on systematic and continuous sampling of biota and sediment/SPM;
- providing recommendations for the statistical evaluation of trend data including trend and species comparisons;
- providing spatial data and time trends from retrospective analysis to the European chemical database IPCHEM;
- foster capacity building for preserving specimens at ultra-low temperatures.

5.3 Cost assessment and analytical methods

In order to put Member States and the Commission into a position to decide on the applicability of a monitoring mechanism it was necessary to establish a careful analysis of the underlying ADDITIONAL costs compared to normal monitoring operations. To this end, the following calculation was made.

First, it was assumed that the costs of occurring operations for sampling at each monitoring station are negligible as it was agreed to assess only those monitoring stations which are already part of routine chemical monitoring under the Water Framework Directive.

Costs for dispatch of material and samples as well as packaging materials were easily retrievable from the JRC accounting system. In order to realistically estimate the cost of the analytical measurements, it was decided to tender the analyses of the compounds of interest. For this purpose, four commercial providers of analytical services were contacted outside the study. The companies were not informed about the use or context of the measurements, but were invited to send price quotations for the analytes of interest in 200 water samples. Four European laboratories offering analytical services on a commercial basis, among which one research institute, were invited to submit a price quotation.

The summary results of the tendering are shown in Table 52.

Parameter	Minimum cost per sample (€)	Maximum cost per sample (€)	Average cost (€)	Maximum cost*/sample (€)	Average cost (€)
Acesulfame, 1H-Benzotriazole and Tolyltriazoles	25	230	127,5	161	93
AMPA/Glyphosate	25	155	90	108,5	66,75
Bisphenol A	25	293	159	205,1	115,05
Triclosan	25	191	108	133,7	79,35
Triclocarban	25	229	127	160,3	92,65
Carbamazepine + metabolite, Sulfamethoxazole	25	244	134,5	170,8	97,9
Pentafluoroproprionic acid	25				25
Tris-2-chloropropyl phosphate	25	375	200	262,5	143,75
Methyl tert-butyl ether	20	146	83	102,2	61,1
Decabromodiphenylethane	25	436	230,5	305,2	165,1
Boron	5	67	36	46,9	25,95
Chloride	5	35	20	24,5	14,75
МТВЕ					
Total costs/sample (€)	255	2401	1315,5	1680,7	980,35
Total costs of Pilot Exercise (€)	56100	528220	289410	369754	215677

Table 52 – Evaluation of tendering for analytical measurements

*: discounted of about 30% for a batch of 220 samples

Based on the evaluation of the costs for dispatch operations using the European Commission's current Framework Contract for dispatching operations using a private courier service a sum of 50610 \in were spent for the feasibility study. This includes the dispatch of empty packaging containers as well as the pick-up from the sampling storage facilities in the Member States.

To these figures, a realistic cost estimate in terms of work time of the organisation of the study has to be added. Furthermore, the analytical cost estimate for the development and validation of new methods for the purpose of this exercise have to be considered. Based on

the staff tariffs applied by the EC JRC for Commission support activities the figures in the table below are obtained.

Operation	Man Months	Grade of staff	cost evaluation according to AA TARIFF in €
Samples dispatch	2	AST 3	12736
Full validation of analytical methods (4 analytes)	3	AST 3/ FG IV	19785
Real sample preparation	4	AST 3	25472
Reporting (Analytical Validation Reports)	2	AST 3/ FG IV	13190
Reporting (Study report)	2	AST 3 / AD 11 (50/50)	18823

Summing the costs of analyses (Table 52) and additional staff costs (Table 53) plus the dispatch costs, the total costs of this feasibility study can be estimated at 356.293, - \in based on these figures.

If one considers, in addition, a certain need for contingency as well as other costs, which are difficult to quantify in the context of this study, e.g. overheads, devalorisation of instrumentations, and so forth it is realistic to estimate the cost of such an exercise in the range of 500 to 550 k \in if only water samples are analysed. The estimate may reach up to 1000 k \in , if sediment and biota measurements are to be included. Furthermore, costs are significantly higher if QA/QC measures are to be implemented (same parameter in different labs).

6 Conclusions

Based on the feedback received from this study and the experiences gained, a number of important conclusions and recommendations can be made. To begin with, there is an obvious need for a careful documentation of sites and the respective point of contact in order to properly organise the various logistical operations. Although this seems to be trivial, the importance of this step can only be stressed once more. During the pilot study, as on many other occasions, direct communication issues are often the source of delays and problems which in the worst case may lead to loss of the samples to be investigated. The selection of sites should be done in function of likely emission scenarios for the substance to be investigated. It is therefore recommended to build up a sufficiently large number of sampling stations, e.g. 300 to 400. The *ad hoc* selection of sites is not recommended as this will lead to an unnecessary duplication of information gathering when preparing such an exercise for a future watch list.

The example of bisphenol A has clearly underlined the need for a careful protocol for sample container conditioning. Similarly, the use of field blanks and laboratory blanks was very useful to better identify "unexplainable" findings. Although not done in this particular study, it is recommended strongly to perform a stability check of the analytes of interest prior to the actual experiment. Mechanisms and approaches as being used for instance for similar investigations in the field of reference materials have been shown to be useful for this purpose.

As regards the issue of biota and sediment sampling, the mechanism tested seems to be applicable. However, for biota measurements a careful standardisation and harmonisation effort is needed. The use of existing environmental specimen banks has been identified as a useful and viable additional option. Although the ESBs samples will not feature the same degree of spatial representativity, they do allow the establishment of time series and trend analyses.

The study clearly showed the limited comparability of data if measurements are performed in different laboratories for the same analyte. As usual for these cases, a proper programme for analytical quality assurance is needed. Standardised methods, which were also used in this study for glyphosate or MTBE, are not a guarantee per se that the analytical findings are comparable.

As regards the questions raised at the origin of this study (see p. 14) the following answers can be provided

Question 1

Is it possible to collect and centrally analyse a set of samples from 200-250 sampling stations across the EU and within a narrow range of time?

A centrally coordinated approach is possible and could be conducted once or twice per year.

Question 2

What are the limitations of the EU wide snapshot mechanism developed by the JRC in terms of sample capacity, stability and in view of the analytes to be investigated?

Some limitations exist in terms of the number of samples which can be handled by the JRC in a single exercise. We estimate that samples from up to 300 stations is a logistic limit for the current infrastructure. Based on the targeted substances it is recommended, however, to build a larger network of monitoring stations (1000 or so), and to make a sub-selection for specific scenarios.

The issue of analyte stability has to be considered too, in particular if water samples are to be shipped. On-going technological developments using in-situ solid-phase extraction devices, as being investigated by the JRC, may offer a solution to this issue. Within these limits the mechanism can be applied to all analytes of interest.

Question 3

Is it possible to apply the mechanisms to sediment and biota samples?

Although not studied in detail, first findings of this pilot and similar experiences obtained with matrices such as treated biowastes and sewage sludges imply applicability to sediment and biota samples. Synergies with existing infrastructure for environmental specimen banking are strongly suggested.

Question 4

Can the study design deliver analytical method developed on purpose for this exercise in a way that it can be the basis for further normative work and standardization?

The study design can deliver analytical methods as a basis for or input to further normative work. To this end methods need to be targeted to specific compounds and a careful validation and uncertainty budgeting are needed.

Question 5

Are data for the same analyte obtained in different laboratories comparable?

Data for the same analyte obtained in different laboratories are of limited comparability, yet possible. In these cases, the costs for an appropriate QA/QC programme may become significant.

Question 6

What is the cost of such an exercise and which resources are needed?

The estimated costs of this pilot exercise as a whole range from 500 k \in to 1000 k \in , which is a reliable basis to extrapolate to future watch list monitoring. However, actual costs of watch list monitoring will be influenced by the matrix/analyte combination, and by how far the monitoring can "piggy back" on existing sampling and analysis. Biota monitoring will cost more per sample compared with water monitoring. The precise costs in the individual member states will depend upon whether they choose to do the analyses in house, in which case there would be an element of method validation and analytical quality control to cover, even though the analysis costs might otherwise be cheaper per sample than if contracting out. Member states might choose to share the "overheads" of the analytical burden. The intended guidance on analytical methods for the substances would be expected to ensure reasonable comparability between member states' results.

Question 7

What information can be obtained from such an exercise?

The accessible data are useful scientific information including pan-European concentrations of the investigated analytes. The tool as such should be made accessible to research activities, e.g. via the Science-Policy Interface. If so, a significantly greater amount of information and knowledge could be generated.

Additional observations and comments

Considerations forwarded and raised after consultation of findings

The following considerations and annotation were received from Germany as an additional input to this section and are complimentary to the above-made statements. Since they form an additional valuable input to the design of watch list monitoring, the authors decided to include them in this chapter:

- The occurrence of substances in surface water is determined by human activities and hydrological characteristics. The selection of sites [in an actual watch list monitoring] depends not only on the emission scenario and use pattern, but also on the run-off, which influences in return also the timing of sampling.
- There is a need for a clear protocol for conditioning the sample container, which itself needs to be made of suitable material for the subsequent analyses. In addition, the sampling procedure itself should be described in detail – including ideally recommendations for suitable sampling devices and pre-cleaning of the samplers. Precautions to be taken by the personnel executing the sampling operations should be described in detail. Any possible source of contamination should be highlighted. Thus, use of plastic buckets, rubber boats, rubber clothes or hand creams should be avoided, when appropriate.
- Methods used for watch list monitoring should be described and documented to a level that they can be used as pre-normative input to standardization or for direct implementation in the laboratories. Guidelines should address also sampling and pre-treatment for which advice should be provided. Aspects of occupational health and hygiene as well as guality assurance and control measures are to be considered.
- Suitable QA/QC measures, in particular for novel and not commonly monitored substances are essential and should be provided. Such information should include

inter alia substance specific requirements on validated analytical methods (minimum performance criteria). Laboratories should be of proven competence and it has to be assessed whether one or more laboratories should be involved in the analyses.

The pilot exercise triggered considerable innovation in monitoring technology to decrease the cost of analyses. Thus, a novel SPE extraction device was developed and tested. Results of this will be presented in a separate technical report of the Commission's in-house science service. This innovative potential of the mechanism could be developed further, e.g. by integrating the previously organised onsite exercises into the watch list monitoring.

As a concluding remark the authors of this report wish to thank all contributing persons involved directly and indirectly in this pilot. The pilot exercise as described here is a result of a considerable commitment of all laboratories participating and should be brought to the attention of a larger audience.

7 Acknowledgements

The authors gratefully acknowledge the useful input on the legal framework as well as comments and suggestions provided by Helen Clayton (DG ENV). Special thanks are due to Kevin Douglas (DG JRC) for assisting us actively in spell-checking and proof-reading.

8 References

- Al-Rajab AJ, Schiavon M (2010). Degradation of ¹⁴C-glyphosate and aminomethylphosphonic acid (AMPA) in three agricultural soils. *Journal of Environmental Sciences* **22**, 1374–1380.
- Andresen JA, Grundmann A, Bester K (2004). Organophosphorus flame retardants and plasticisers in surface waters. *Science of the Total Environment* **332**, 155-166.
- Bester K (2003). Triclosan in a sewage treatment process balances and monitoring data. *Water Research* **37**, 3891-3896.
- Blaser SA, Scheringer M, MacLeod M, Hungerbühler K (2008). Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. *Science of the Total Environment* **390**, 396-409.
- Botta F, Lavison G, Couturier G, Alliot F, Moreau-Guigon E, Fauchon N, Guery B, Chevreuil M, Blanchoud H (2009). Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems. *Chemosphere* **77**, 133–139.
- Buerge IJ, Buser HR, Kahle M, Müller MD, Poiger T (2009). Ubiquitous occurrence of the artificial sweetener acesulfame in the aquatic environment: an ideal chemical marker of domestic wastewater in groundwater. *Environmental Science & Technology* **43**, 4381– 4385.
- Chen X, Richard J, Liu Y, Dopp E, Tuerk J, Bester K (2012). Ozonation products of triclosan in advanced wastewater treatment. *Water Research* **46**, 2247-2256.
- De Laurentiis E, Chiron S, Kouras-Hadef S, Richard C, Minella M, Maurino V, Minero C, Vione D (2012). Photochemical fate of carbamazepine in surface freshwaters: Laboratory measures and modeling. *Environmental Science & Technology* **46**, 8164–8173.
- Ellison SLR, Williams A (2012). *Eurachem/CITAC guide: Quantifying Uncertainty in Analytical Measurement*, Third edition, (2012) ISBN 978-0-948926-30-3. Available from www.eurachem.org.
- European Commission (2003, updated in February 2008). Joint Research Centre, European Chemicals Bureau, European Union Risk Assessment Report: Bisphenol A, EUR 20843 EN.
- European Commission (2009). DG Health & Consumer Protection, *Scientific Committee on Consumer Products, Opinion on Triclosan*, SCCP/1192/08, COLIPA nr. P32.
- European Union (1986). Council Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture, OJ L 181, 4.7.1986, p. 6–12.
- European Union (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy OJ L327 of 22.12.2000. http://eur-lex.europa.eu/LexUriServ.LexUriServ.do?uri=CELEX:02000L0060-20090113:EN:NOT
- Farhat A, Ahmad F, Arafat H (2013). Analytical techniques for boron quantification supporting desalination processes: A review. *Desalination* **310**, 9–17.
- Fenet H, Mathieu O, Mahjoub O, Li Z, Hillaire-Buys D, Casellas C, Gomez E (2012). Carbamazepine, carbamazepine epoxide and dihydroxycarbamazepine sorption to soil and occurrence in a wastewater reuse site in Tunisia. *Chemosphere* **88**, 49–54.
- Flegal AR, Brown CL, Squirea S, Ross JRM, Scelfo GM, Hibdon S (2007). Spatial and temporal variations in silver contamination and toxicity in San Francisco Bay. *Environmental Research* **105**, 34–52.
- Gallart-Ayala H, Moyano E, Galceran MT (2010). On-line solid phase extraction fast liquid chromatography-tandem mass spectrometry for the analysis of bisphenol A and its chlorinated derivatives in water samples. *Journal of Chromatography A* **1217**, 3511–3518.

- Gawlik BM, Loos R, Bidoglio G, Fauler G, Guo X, Lankmayr E, Linsinger T (2012). Testing sample stability in short-term isochronous stability studies for EU-wide monitoring surveys of polar organic contaminants in water. *Trends in Analytical Chemistry* **36**, 36-46.
- Haack SK, Metge DW, Fogarty LR, Meyer MT, Barber LB, Harvey RW, LeBlanc DR, Kolpin DW (2012). Effects on groundwater microbial communities of an engineered 30-day in situ exposure to the antibiotic sulfamethoxazole. *Environmental Science & Technology* **46**, 7478–7486.
- Hanke I, Winter H, Hollender J (2008). Ultratrace-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in natural waters by solid-phase extraction followed by liquid chromatography-tandem mass spectrometry: performance tuning of derivatization, enrichment and detection. *Anal. Bioanal. Chem.* **391**(6). 2265-76.
- Hanke I, Wittmer I, Bischofberger S, Stamm C, Singer H (2010). Relevance of urban glyphosate use for surface water quality. *Chemosphere* **81**, 422–429.
- Heidler J, Halden RU (2008). Meta-analysis of mass balances examining chemical fate during wastewater treatment. *Environmental Science & Technology* **42**, 6324-6332.
- Ibañez M, Pozo ÓJ, Sancho JV, López FJ, Hernández F (2006). Re-evaluation of glyphosate determination in water by liquid chromatography coupled to electrospray tandem mass spectrometry. *J. Chromatogr. A* **1134**, 51-55.
- ISO 21458 (2008). Water quality Determination of glyphosate and AMPA Method using high performance liquid chromatography (HPLC) and fluorometric detection.
- ISO/IEC 17025 (2005). General requirements for the competence of testing and calibration laboratories.
- Janna H, Scrimshaw MD, Williams RJ, Churchley J, Sumpter JP (2011). From Dishwasher to Tap? Xenobiotic substances benzotriazole and tolyltriazole in the environment. *Environmental Science & Technology* **45**, 3858-3864.
- Jürgens M, Johnson AC, Jones KJ, Hughes D, Lawlor AJ (2013). The presence of EU priority substances mercury, hexachlorobenzene, hexachlorobutadiene and PBDE's in wild fish from English rivers. *Science of the Total Environment* **461-462**, 441-452.
- Kierkegaard A, Bjoerklund J, Friden U. (2004). Identification of the flame retardant decabromodiphenyl ethane in the environment. *Environmental Science & Technology* 38, 3247–3253.
- Klečka GM, Staples CA, Clark KE, Van der Hoeven N, Thomas DE, Hentges SG (2009). Exposure analysis of Bisphenol A in surface water systems in North America and Europe. Environmental Science & Technology **43**, 6145–6150.
- Kwok KY, Taniyasu S, Yeung LWY, Murphy MB, Lam PKS, Horii Y, Kannan K, Petrick G, Shina RK, Yamashita N (2010). Flux of perfluorinated chemicals through wet deposition in Japan, the United States, and several other countries. *Environmental Science* & *Technology* 44, 7043–7049.
- Kwon JW, Xia K (2012). Fate of Triclosan and Triclocarban in soil columns with and without biosolids surface application. *Environmental Toxicology and Chemistry* **31**, 262–269.
- Lepom P, Irmer U, Wellmitz J (2012). Mercury levels and trends (1993-2009) in bream (Abramis brama L.) and zebra mussels (Dreissena polymorpha) from German surface waters. *Chemosphere* **86**, 202-2011.
- Li K, Hokanson DR, Crittenden JC, Trussell RR, Minakata D (2008). Evaluating UV/H2O2 processes for methyl tert-butyl ether and tertiary butyl alcohol removal: Effect of pretreatment options and light sources. *Water Research* **42**, 5045-5053.
- Li F, Zhang C, Qu Y, Chen J, Chen L, Liu Y, Zhou Q (2010). Quantitative characterization of short- and long-chain perfluorinated acids in solid matrices in Shanghai, China. *Science of the Total Environment* **408**, 617–623.

- Loos R, Gawlik BM, Locoro G, Rimaviciute E, Contini S, Bidoglio G (2009a). EU-Wide survey of polar organic persistent pollutants in European river waters. *Environmental Pollution* **157** (2), 561-568.
- Loos R, Gawlik BM, Boettcher K, Locoro G, Contini S, Bidoglio G (2009b). Sucralose screening in European surface waters using a solid-phase extraction-liquid chromatography-triple quadrupole mass spectrometry method. *J Chromatogr A*. **1216(7)**, 1126-1131.
- Loos R, Locoro G, Comero S, Contini S, Schwesig D, Werres F, Balsaa P, Gans O, Weiss S, Blaha L, Bolchi M, Gawlik BM (2010). Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. *Water Research* **44**(14), 4115-26.
- Loos R, Carvalho R, António DC, Blaha L, Jarosova B, Voorspoels S, Schwesig D, Haglund P, Fick J, Gans O, Comero S, Ghiani M, Lettieri T, Locoro G, Paracchini B, Tavazzi S, Gawlik BM (2012). *EU Wide Monitoring Survey on Waste Water Treatment Plant Effluents.* EUR 25563 EN.
- Mead RN, Morgan JB, Brooks Avery Jr G, Kieber RJ, Kirk AM, Skrabal SA, Willey JD (2009). Occurrence of the artificial sweetener sucralose in coastal and marine waters of the United States. *Marine Chemistry* **116**, 13–17.
- Miller A, Bignert A, Porvari P, Danielsson S, Verta M (2013). Mercury in perch (perca fluviatilis) from Sweden and Finland. *Water, Air & Soil Pollution* **224**, 1472
- NEN (2008). Nederlandse nom NEN 7779. Milieu Meetonzekerheid http://www.nen.nl/NEN-Shop/Norm/NEN-77792008-nl.htm
- NEN (2011). Nederlandse norm NEN 7777- Milieu en voedingsmiddelen Prestatiekenmerken van meetmethoden. http://www.nen.nl/NEN-Shop/Norm/NEN-77772011-nl.htm
- Oehlmann J, Oetken M, Schulte-Oehlmann U (2008). A critical evaluation of the environmental risk assessment for plasticizers in the freshwater environment in Europe, with special emphasis on bisphenol A and endocrine disruption. *Environmental Research* **108**, 140–149.
- Quednow K, Püttmann W (2008). Endocrine disruptors in freshwater streams of Hesse, Germany: Changes in concentration levels in the time span from 2003 to 2005. *Environmental Pollution* **152**, 476-483.
- Reemtsma T, Benito Quintana J, Rodil R, García-López M, Rodríguez I (2008). Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate. *Trends in Analytical Chemistry* **27**, 727-737.
- Reemtsma T, Miehe U, Duennbier U, Jekel M (2010). Polar pollutants in municipal wastewater and the water cycle: Occurrence and removal of benzotriazoles. *Water Research* **44**, 596-604.
- Regnery J, Püttmann W (2010). Occurrence and fate of organophosphorus flame retardants and plasticizers in urban and remote surface waters in Germany. *Water Research* **44**, 4097-4104.
- Ricklund N, Kierkegaard A, McLachlan MS (2008). An international survey of decabromodiphenyl ethane (deBDethane) and decabromodiphenyl ether (decaBDE) in sewage sludge samples. *Chemosphere* **73**, 1799–1804.
- Schebb NH, Inceoglu B, Ahn KC, Morisseau C, Gee SJ, Hammock BD (2011). Investigation of human exposure to triclocarban after showering and preliminary evaluation of its biological effects. *Environmental Science & Technology* **45**, 3109–3115.
- Scheurer M, Brauch HJ, Lange FT (2009). Analysis and occurrence of seven artificial sweeteners in German waste water and surface water and in soil aquifer treatment (SAT). *Analytical Bioanalytical Chemistry* **394**, 1585–1594.
- Singer H, Müller S, Tixier C, Pillonel L (2002). Triclosan: Occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment

plants, surface waters, and lake sediments. *Environmental Science & Technology* **36**, 4998-5004.

- Taniyasu S, Kannan K, So MK, Gulkowska A, Sinclair E, Okazawa T, Yamashita N (2005). Analysis of fluorotelomer alcohols, fluorotelomer acids, and short- and long-chain perfluorinated acids in water and biota. *Journal of Chromatography A* **1093**, 89–97.
- Taniyasua S, Kannan K, Yeung LWY, Kwok KY, Lam PKS, Yamashita N (2008). Analysis of trifluoroacetic acid and other short-chain perfluorinated acids (C_2 - C_4) in precipitation by liquid chromatography-tandem mass spectrometry: Comparison to patterns of long-chain perfluorinated acids (C_5 - C_{18}). *Analytica Chimica Acta* **619**, 221-230.
- Tavazzi S, Locoro G, Comero S, Sobiecka E, Loos R, Gans O, Ghiani M, Umlauf G, Suurkuusk G, Paracchini B, Cristache C, Fissiaux I, Alonso Riuz A, Gawlik BM (2012). *Occurrence and levels of selected compounds in European Sewage Sludge Samples Results of a Pan-European Screening Exercise (FATE-SEES)*. European Commission EUR 25598 EN.
- Tavazzi S, Locoro G, Comero S, Sobiecka E, Loos R, Eder P, Saveyn H, Blaha L, Benisek M, Gans O, Voorspoels S, Ghiani M, Umlauf G, Mariani G, Suurkuusk G, Paracchini B, Cristache C, Fissiaux I, Alonso-Ruiz A, Gawlik BM (2013a). Occurrence and levels of selected compounds in European compost samples - Results of a Pan European Screening exercise FATE-COMES. European Commission EUR 25563 EN.
- Tavazzi S, Suurkuusk G, Paracchini B, Loos R, Mariani G, Gawlik BM (2013b). Validation of analytical methods for the WFD "watch list" pilot exercise. EUR 26081 EN.
- Weiss S, Reemtsma T (2005). Determination of Benzotriazole Corrosion Inhibitors from Aqueous Environmental Samples by Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry. *Analytical Chemistry* **77** (22), 7415-7420.
- Weiss S, Jakobs J, Reemtsma T (2006). Discharge of three benzotriazole corrosion inhibitors with municipal wastewater and improvements by membrane bioreactor treatment and ozonation. *Environmental Science & Technology* **40**, 7193-7199.
- Werner I, Koger CS, Deanovic LA, Hinton DE (2001). Toxicity of methyl-tert-butyl ether to freshwater organisms. *Environmental Pollution* **111**, 83-88.
- Zhang Y, Geißen SU, Gal C (2008). Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. *Chemosphere* **73**, 1151–1161.

9 Annex 1 – Analytical results

The entry of analytical results in Table 1A, 1B and 1C has been harmonized considering the following set of parameters:

- < *LOD*: lower than the limit of detection
- < *LOQ*: lower than the limit of quantification
- *n.a.*: not analysed

<u>Note 1</u>: due to the fact that different calculation methods for LOD/LOQ were applied in the various laboratories, data below these thresholds are of limited comparability.

<u>Note 2</u>: in Table 1B, the highlighted lines indicate anomalies. Issues were found with the project logistics which made track and tracing of samples IDs difficult. Calculation errors were identified in the reporting phase and corrected.

Location code 0049_SWW_00001 0049_SWW_00002 0049_SWW_00003 0049_SWW_00005 0049_SWW_00006 0049_SWW_00007 0049_SWW_00007 0049_SWW_000010 0049_SWW_00011 0049_SWW_00012	Sampling Station Devin Bratislava Bratislava Medvedov Komarno Komarno Kamenica nad Hronom Salka Ettelbruck Wasserbillig Rodange pont à Athus Kautenbach	Ag dissolved (Hg/L) < LOD < LOD	B dissolved (Hg/L)	Chloride (mg/L) 40.7 11.5 11.3 11.7 25.2 12.5 42.2 46.9 28.1 41.9 26.3	Acesulfame (Fg/L) 3.9 0.66 0.76 0.63 2.3 1.4 6.8 4.1 2 2 4.4	fame (µg/L) 3.9 0.66 0.76 0.63 2.3 2.3 2.3 1.4 6.8 4.1 4.1 4.1 4.1 4.1 2 2 2	¹ H-Benzotri	¹ H-Benzotriazole 4-Tolyltri (µg/l) 0.57 0.14 0 0.18 0.17 0 1.4 0 0.18 0 0.11 0 0.11 0 0.86 0.86 0.17 2.3 0.071
_00011 _00012 _00013		< LOD	~ LOD ~ LOD		41.9 26.3 27.7	0	4.4 0.97 2.6	4.4 2.3 0.97 0.071 2.6 0.27 0
0049_SWW_00014	Lužickà Nisa Hrádek nad Nisou	< LOD	< LOD		58.5	58.5 5.5		5.5
0049_SWW_00015 0049_SWW_00016	Morava Lanžhot Odra Bohumin	< LOD	~ LOD		33.7 86.9	33.7 3.3 86.9 3.3		ຜ. ຜ.ຜ
0049_SWW_00017 0049_SWW_00018	Vltava Zelčin Labe Obříství	< LOD	~ LOD		23.3 29.6	23.3 1.8 29.6 2.2		1.8 2.2
0049_SWW_00019 0049_SWW_00020	Labe Valy Jizera Nový Vestec	< LOD	~ LOD		26.4 19.3	26.4 1.7 19.3 1.6		1.7 1.6
0049_SWW_00021 0049_SWW_00022	Orlice Nepasice Kristianand	< LOD	< LOD 2850		11.8 n.a.	11.8 0.99 n.a. < LOD	٨	0.99 < LOD
0049_SWW_00023	Bømlo Trondheimsfiorden	< LOD	1610		n.a. a.	· ·	< LOD	- < LOD < LOD < LOQ
0049_SWW_00024	Trondheimsfjorden	< Lod	1610		n.a.	n.a. < LOD		- < LOD

Annex I: Table 1A - Analytical results for silver, boron, chloride, acesulfame, ¹H-benzotroazole, 4-tolyltriazole and 5-tolytriazole. Units of measurement are specified in the table

0049_SWW_00048	0049_SWW_00047	0049_SWW_00046	0049_SWW_00045	0049_SWW_00044	0049_SWW_00043	0049_SWW_00042	0049_SWW_00041	0049_SWW_00040	0049_SWW_00039	0049_SWW_00038	0049_SWW_00037	0049_SWW_00036	0049_SWW_00035	0049_SWW_00034	0049_SWW_00033	0049_SWW_00032	0049_SWW_00031	0049_SWW_00030	0049_SWW_00029	0049_SWW_00027	0049_SWW_00026	0049_SWW_00025	Location code
00048	00047	00046	00045	00044	00043	00042	00041	00040	00039	00038	00037	00036	00035	00034	00033	00032	00031	00030	00029	00027	00026	00025	n code
Amblève	Escaut	Meuse	Meuse	Kulpe ties Kryziu kalnu	Venta zemiau Mazeikiu	Neris aukščiau Paneriu	Akmena-Dane ziotyse	Nemunas aukščiau Rusnes	Nemunas zemiau Kaun ties Kulautuva	Zagyva at Ujszast	Hortobagy-Berettyo at Mezotur	Sajo at Sajolad downstream	Babony-patak at Sajoecseg downstream	Mosoni-Duna at Vének downstream	Kenyérmezei-patak downstream	Budapest downstream	Budapest upstream	Vansjø	Femunden	Mjøsa	Skogsfjordevatnet	Oslofjorden	Sampling Station
< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD		< LOD		< LOD	< LOD	Ag dissolved (µg/L)				
< Lod	< Lod	< Lod	< LOD	< LOQ	< Lod	< Lod	< Lod	< Lod	< lod	< LOQ	< LOQ	< Lod	< LOQ	< LOD	< LOQ	< Lod	< Lod		< Lod		< Lod	2100	B dissolved (µg/L)
15.2	53.4	30.5	14.3	94.8	12.6	11.7	167.1	15.9	16.6	65.8	26.8	58.8	466.5	28.4	73.4	11.3	10.9		0.7		8.5	n.a.	Chloride (mg/L)
0.78	7	1.9	0.54	4.6	0.18	0.22	0.28	0.14	0.16	20	З	6.4	16	2.3	32	0.78	0.73	0.075		< LOD	< LOD	0.12	Acesulfame (µg/L)
0.037	0.45	0.16	0.024	0.094	< LOQ	< LOQ	< LOQ	< LOQ	0.02	0.27	0.1	0.25	0.066	0.27	0.48	0.22	0.22	< LOD		< LOQ	< LOD	0.018	¹ H-Benzotriazole (µg/L)
0.028	0.77	0.36	0.067	0.12	< LOQ	< loq	0.05	< LOQ	0.029	0.55	0.12	0.57	0.27	0.14	0.5	0.073	0.066	< LOD		< LOD	< LOD	< LOQ	4-Tolyltriazole (µg/L)
0.036	0.48	0.21	0.049	0.18	< LOQ	< LOQ	0.037	< LOQ	0.024	0.47	0.057	0.16	0.25	0.079	0.39	0.043	0.038	< LOD		< LOD	< LOD	< LOQ	5-Tolyltirazole (µg/L)

0049_SWW_00100 S1	0049_SWW_00099 Ekvoles Loudia Aliakmona	0049_SWW_00098 Limni Pamvotida	0049_SWW_00097 EVROS_UP	0049_SWW_00096 PROMAXON	0049_SWW_00095 P004	0049_SWW_00094 Lielupe River	0049_SWW_00093 Misa River	0049_SWW_00092 Lake Kisezers	0049_SWW_00091 Musa	0049_SWW_00090 Daugava	0049_SWW_00089 101A station	0049_SWW_00088 Groß Rosenburg	0049_SWW_00087 Friedrichstadt	0049_SWW_00086 Bremen	0049_SWW_00085 Anklam	0049_SWW_00084 Lübeck-Moisling	0049_SWW_00083 Hohenwutzen	0049_SWW_00082 Seemannshöft	0049_SWW_00081 Herbrum	0049_SWW_00080 Koblenz	0049_SWW_00079 Schmilka, rechts	0049_SWW_00078 Vreden	0049_SWW_00077 Goch	0049_SWW_00076 Leverkusen-Rheindorf	0049_SWW_00075 Kleve-Bimmen	Location code Sampling Station
< LOD	ia < LOD	< LOD			< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD			< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	Ag dissolved (µg/L)
3030	< LOD	< LOD			< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	560	< LOQ	< LOD	< LOD	< LOD	< LOD			< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	B dissolved (µg/L)
n.a.	13.5	31.4			10.7	9.6	31.9	36.1	24.0	3.8	n.a.	n.a.	38.6	273.0	57.2	163.6			225.0	157.6	35.8	52.0	56.3	44.4	59.7	Chloride (mg/L)
< LOQ	0.18	0.13	4.3	1.8	0.077	0.073	0.25	< LOD	0.36	< Lod	< LOQ	5.1	0.89	4.3	0.72	3.9	2.4	3.5	2.7	2.9	1.9	4.4	14	6.1	1.6	Acesulfame (µg/L)
0.02	< rod	< LOD	< LOQ	< LOD	< LOD	< LOD	0.065	0.04	< LOQ	< LOD	< LOQ	0.94	0.085	0.7	0.087	0.4	0.23	0.6	0.67	0.43	0.24	1.4	3.3	3.3	0.56	¹ H-Benzotriazole (µg/L)
0.071	0.023	< LOQ	< LOQ	< LOQ	< LOD	< LOD	0.031	< LOD	< LOQ	< LOD	< LOD	0.37	0.023	0.43	0.037	0.19	0.43	0.41	0.32	0.49	0.23	0.84	0.63	1.2	0.27	4-Tolyltriazole (µg/L)
< LOQ	< rod	< LOD	< LOQ	< LOQ	< LOD	< LOD	< rod	< LOD	< rod	< LOD	< LOD	0.18	0.024	0.14	< rod	0.081	0.11	0.16	0.15	0.25	0.14	0.27	0.4	0.38	0.15	5-Tolyltirazole (µg/L)

	0049_SWW_00125 Thames < LOD	0049_SWW_00124 Mersey Estuary < LOD	0049_SWW_00123 River Humber < LOD	0049_SWW_00122 River Usk < LOD	0049_SWW_00121 River Dee < LOD	0049_SWW_00120 River Ugie < LOD	0049_SWW_00119 River Almond < LOD	0049_SWW_00118 River North Esk < LOD	0049_SWW_00117 River Clyde at tidal weir < LOD	0049_SWW_00116 River Quoile < LOD	0049_SWW_00115 River Lagan < LOD	0049_SWW_00114 Br. at Killaloe < LOD	0049_SWW_00113 Ford 2 km u/s Gweestion < LOD River	0049_SWW_00112 Leemount Br < LOD	0049_SWW_00111 Graiguenamanagh Br < LOD	0049_SWW_00110 Lucan Br < LOD	0049_SWW_00109 Slane Br < LOD	0049_SWW_00108 Red Burn Bridge < LOD	0049_SWW_00107 Vääna < LOD	0049_SWW_00106 Oreküla HP < LOD	0049_SWW_00105 Purtse < LOD	0049_SWW_00104 Kavastu	0049_SWW_00103 Narva	0049_SWW_00102 Messara < LOD	0049_SWW_00101 Ekvoles Spercheiou < LOD	Ag dissolved Ag dissolved Ag dissolved	
		^	۸	^	۸	^	^	۸	۸	^	^	^	۸	^	۸	^		٨	۸						^	Ag d	
		< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD		< LOD	< LOD						< LOD	Ag dissolved (µg/L)	
	2170	2390	1440	< Lod	< lod	< Lod	< lod	< Lod	< Lod	< lod	< lod	< Lod	< LOD	< lod	< lod	< lod	< Lod	< Lod	< Lod	< Lod	< loq			3040	< lod	B dissolved (µg/L)	
	n.a.	n.a.	n.a.	11.8	19.1	35.1	45.1	10.9	18.8	24.1	39.6	13.6	12.1	14.3	18.8	14.8	14.7	6.2	10.3	5.6	13.9		n.a.	n.a.	124.7	Chloride , (mg/L)	
	5.6	1.7	4.6	0.87	1.7	0.69	9.5	0.14	5.2	1.5	6	0.17	0.14	0.15	0.54	1.3	0.49	< Lod	0.071	< Lod	< Lod	0.094	< Lod	< LOD	3.1	1 Acesulfame (µg/L)	
	0.69	0.32	0.73	0.042	0.22	0.026	0.99	< rod	0.1	0.022	0.066	< LOD	< LOD	< LOQ	0.017	0.083	0.018	< lod	< rod	< lod	0.49	< LOQ	< LOD	< lod	0.084	¹ H-Benzotriazole (µg/L)	
	0.47	0.15	0.32	< rod	0.067	0.023	0.2	< LOD	0.068	0.025	0.12	< LOQ	< LOD	< LOQ	0.028	0.062	0.02	< LOD	< rod	< LOD	0.37	< LOQ	< LOD	< LOD	0.094	4-Tolyltriazole (µg/L)	
0	0.38	0.11	0.22	< LOQ	0.042	0.025	0.07	< rod	0.063	0.028	0.069	< LOD	< LOD	< Fog	< rod	0.041	< rod	< LOD	< rod	< LOD	< rod	< Fod	< LOD	< LOD	0.14	5-Tolyltirazole (µg/L)	

0049_SWW_00151	0049_SWW_00150	0049_SWW_00149	0049_SWW_00148	0049_SWW_00147	0049_SWW_00146	0049_SWW_00145	0049_SWW_00144	0049_SWW_00143	0049_SWW_00142	0049_SWW_00141	0049_SWW_00140	0049_SWW_00139	0049_SWW_00138	0049_SWW_00137	0049_SWW_00136	0049_SWW_00135	0049_SWW_00134	0049_SWW_00133	0049_SWW_00132	0049_SWW_00131	0049_SWW_00130	0049_SWW_00129	0049_SWW_00128	0049_SWW_00127	Location code
Valada_Tejo	Perais	Ponte Formoselha	Alb. Crestuma	Barca d'Alva	Penide Areias de Vilar	Noordwijk NOORDWK	Ijsselmeer VROUWDZ	Nieuwe Waterweg MAASSS	Maas IJSDPTN	Rijn/Bovenrijn (Bijilands Kanaal) LOBPTN	Reni RO14390	Oroftiana RO130100	Vranceni RO12500	downstream Tandareni RO114220	Clatesti RO107600	Islaz RO87600	Bazias RO14011	Otelec locality RO50400	Ungheni RO40900	Cheresig RO33400	Cicarlau RO24300	Hampshire Avon	River Tame	River Wensum	Sampling Station
< Lod	< LOD	< Lod	< Lod	< LOD	< Lod	< Lod	< Lod	< Lod	< LOD	< LOD	< LOD	< Lod	< LOD	< LOD	< LOD	< Lod	< LOD	< Lod	< LOD	< LOD	< Lod	< Lod	< LOD	< LOD	Ag dissolved (µg/L)
< lod	< Lod	< LOD	< Lod	< LOD	< LOD	2560	< LOD	536	< Lod	< LOD	< LOD	< LOD	< LOQ	< LOQ	< Lod	< LOD	< Lod	< Lod	< Lod	< Lod	< LOD	< LOD	394	< LOD	B dissolved (µg/L)
78.1	78.4	18.3	20.0	16.8	7.4	n.a.	115.7	n.a.	49.9	92.2	21.1	48.7	329.2	270.9	47.9	73.7	18.3	22.6	45.0	16.7	201.9	20.4	102.2	53.1	Chloride (mg/L)
3.4	4.9	1.2	0.77	0.83	0.65	0.36	2.9	2.5	3.2	2.7	0.82	0.48	0.74	1.4	6.7	0.32	0.85	0.4	1.7	1.7	2.3	1.5	57	4.1	Acesulfame (µg/L)
0.066	0.11	0.052	0.051	0.038	0.046	0.072	0.31	0.6	0.27	0.57	0.15	< LOD	0.052	0.08	0.26	0.017	0.15	0.083	0.12	0.053	0.066	0.097	5.7	0.17	¹ H-Benzotriazole (µg/L)
0.17	0.15	0.051	0.045	0.046	0.034	0.053	0.21	0.36	0.45	0.4	0.072	< LOQ	< LOQ	0.15	0.21	< LOQ	0.094	0.08	0.057	< rod	< LOQ	0.054	2.7	0.088	4-Tolyltriazole (µg/L)
0.083	0.14	0.081	0.046	0.047	0.052	0.027	0.11	0.13	0.18	0.13	0.037	< rod	< LOQ	0.19	0.19	< rod	0.045	0.051	0.2	< rod	< rod	0.05	0.65	0.044	5-Tolyltirazole (µg/L)

0049_SWW_00175 En	0049_SWW_00174 To	0049_SWW_00173 To	0049_SWW_00172 Ur	0049_SWW_00171 Le	0049_SWW_00170 L'	0049_SWW_00169 Gu	0049_SWW_00168 Az	0049_SWW_00167 Ar	0049_SWW_00166 Re	0049_SWW_00165 OL	0049_SWW_00164 KL	0049_SWW_00163 IS	0049_SWW_00162 OL	0049_SWW_00161 Kc	0049_SWW_00160 No	0049_SWW_00159 AL	0049_SWW_00158 Va	0049_SWW_00157 Po	0049_SWW_00156 Ka	0049_SWW_00155 Hu	0049_SWW_00154 Va	0049_SWW_00153 M	0049_SWW_00152 AI	Location code
Emilia Po Ferrara	Toscana Arno 2	Toscana Arno 1	Umbria Tiber	Les Évoissons à Bergicourt (CHANGE)	L'Yser à Bambecque (CHANGE)	Guiers à Saint Genix sur Guiers	Azergues à Lucenay	Ardières à Saint Jean d'Ardières	Reyssouze à Viriat	Ouche à Crimolois	KUKKOLA	ISOHAARA	Oulujoki	Kojo 35 Pori-Tre	Nokiankoski 8200 ala	Aura 54 ohikulku	Vantaa	Porvoonjoki	Kalkkistenkoski	Huruksela	Vastuupuomi	Monte da Vinha	Alb. Roxo	Sampling Station
< LOD	< LOD	< LOD	< LOD	< LOD	< Lod	< LOD	< Lod	< LOD	< LOD	< LOD	< Lod	< LOD	< LOD	< LOD	< LOD	< LOD	< Lod	< LOD	< LOD	Ag dissolved (µg/L)				
< LOD	< LOQ	485	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< Lod	< LOD	< Lod	< Lod	< Lod	< Lod	< Lod	< Lod	< Lod	< Lod	< Lod	< Lod	< Lod	< Lod	< LOD	B dissolved (µg/L)
21.9	50.4	n.a.	29.2	62.3	64.5	8.8	66.6	21.9	80.7	46.5	0.9	1.0	1.1	5.5	4.0	11.0	22.5	20.4	4.9	4.7	3.3	64.5	231.3	Chloride (mg/L)
0.63	2.2	л	1.1	8.1	7.8	0.5	4.7	1.9	12	6.3	< LOD	< LOQ	< LOQ	0.33	0.3	0.43	з.з	7.8	0.13	0.13	0.069	2.2	0.31	Acesulfame (µg/L)
0.13	0.57	2.3	0.16	0.47	0.29	0.058	0.62	0.11	4.6	1.4	< LOD	< LOD	< LOD	0.024	0.034	0.016	0.089	0.95	< LOQ	< LOQ	< LOD	0.052	< LOQ	¹ H-Benzotriazole (µg/L)
0.049	0.19	0.68	0.19	0.46	1.1	0.026	0.36	0.054	0.73	0.32	< LOD	< LOD	< LOD	< loq	< loq	< LOQ	0.098	0.36	< LOQ	< LOQ	< LOD	0.057	< LOD	4-Tolyltriazole (µg/L)
0.036	0.16	0.56	0.14	0.25	0.36	< LOQ	0.17	0.045	0.7	0.31	< LOD	< LOD	< LOD	< Fog	< LOQ	< rod	0.076	0.25	< Fog	< LOD	< LOQ	0.047	< LOQ	5-Tolyltirazole (µg/L)

$\begin{array}{c} 1 \\ 0.025 \\ 0.025 \\ 0.026 \\ 0.026 \\ 0.026 \\ 0.026 \\ 0.0029 \\ 0.011 \\ 0.0021 \\ 0.0022 \\ 0.0022 \\ 0.0020 \\ 0.0020 \\ 0.0084 \\ 0.0084 \\ 0.0084 \\ 0.0020 \\ 0.0032 \\ 0.026 \\ 0.026 \\ 0.024 \\ 0.0047 \\ 0.094 \end{array}$	Location code	Sampling Station	Ag dissolved (µg/L)	B dissolved (µg/L)	Chloride (mg/L)	Acesulfame (µg/L)	¹ H-Benzotriazole (µg/L)	4-Tolyltriazole (µg/L)	5-Tolyltirazole (µg/L)
Emilia Reno Ravema 2 < 100 < 100 < 100 < 3.8 < 0.52 < 0.41 Boizano Adige < 100 < 100 < 100 < 100 < 0.02 < 100 Lumbardia Lambro < 100 < 100 < 100 < 3.1 < 0.33 < 0.32 < 100 Pienote Tanaro < 100 < 100 < 100 < 100 < 0.02 < 0.02 < 0.02 Pienote Panote Po < 100 < 100 < 100 < 100 < 0.02 < 0.02 Pienote Po < 100 < 100 < 100 < 100 < 100 < 100 Stockholm Centrabiron < 100 < 100 < 100 < 100 < 100 Abbro < 100 < 100 < 100 < 100 < 100 < 100 Abbra < 100 < 100 < 100 < 100 < 100 < 100 Abbra < 100 < 100 < 100 < 100 < 100 < 100 Abbra < 100 < 100 < 100 < 100 < 100 < 100 Abbra < 100 < 100 < 100 < 100 < 100 < 100 Abbra < 100 < 100 < 100 < 100 < 100 < 100 < 100 Abbra < 100 < 100 < 100 < 100 < 100 < 100 < 100 Abbra < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 Abbra < 100 < 100 < 100 < 100	0049_SWW_00176		< LOD	< LOQ	64.4	5.2	1	0.62	
Bolzano Adige $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ Lumbardia Lambro $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ $< (100)$ </th <th>0049_SWW_00177</th> <th>Emilia Reno Ravenna 2</th> <th></th> <th></th> <th>55.8</th> <th>3.8</th> <th>0.52</th> <th>0.41</th> <th></th>	0049_SWW_00177	Emilia Reno Ravenna 2			55.8	3.8	0.52	0.41	
Lombardia Lambro< LOD	0049_SWW_00178	Bolzano Adige	< LOD	< Lod	4.5		0.025	< LOQ	٨
Veneto Adige< < 1.00	0049_SWW_00179	Lombardia Lambro	< LOD	< Lod	39.1	ω	0.69	0.26	
Piemonte Tanaro< (.10)	0049_SWW_00180	Veneto Adige	< LOD	< Lod	4.7	0.38	0.036	0.034	
Permonte Po $<$ (LOD $<$	0049_SWW_00181	Piemonte Tanaro	< LOD	< Lod	9.6		0.029	< rod	Δ
ITIBAmato3 $<$ LOD $<$ LODStockholm Centralbron $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LODAleyckan $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LODNorrköping $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LOQAleyckan $<$ LOD $<$ LOD $<$ LOD $<$ LOQ $<$ LOQNorrköping $<$ LOD $<$ LOD $<$ LOD $<$ LOQ $<$ LOQStruna $<$ LOD $<$ LOD $<$ LOD $<$ LOQ $<$ LOQFyrsån Flottsund $<$ LOD $<$ LOD $<$ LOD $<$ LOQ $<$ LOQMartsa 1 $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LOQ $<$ LOQJakar $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LODJakar $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LODJakar $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LODJakar $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LODJakar $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LODJakar $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LODJakar $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LODJakar $<$ LOD $<$ LOD $<$ LOD <th>0049_SWW_00182</th> <th>Piemonte Po</th> <th>< LOD</th> <th></th> <th>10.8</th> <th>0.18</th> <th>0.11</th> <th>0.058</th> <th></th>	0049_SWW_00182	Piemonte Po	< LOD		10.8	0.18	0.11	0.058	
ITIBRC39< < 1.00	0049_SWW_00183	IT18Amato3	< LOD	< Lod	15.2		< LOD	< LOD	٨
Stockholm Centralbron< LOD	0049_SWW_00184	IT18RC39	< LOD	2980	n.a.		< LOD	< LOD	٨
Åbro< LOD	0049_SWW_00185	Stockholm Centralbron	< LOD	< Lod	15.0	0.71	0.022	0.026	۸
Aleyckan< (100	0049_SWW_00186	Åsbro	< LOD	< Lod	12.1	0.35	< LOQ	< LOQ	^
Norrköping $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LOQ <th>0049_SWW_00187</th> <th>Alelyckan</th> <th>< LOD</th> <th>< Lod</th> <th>76.6</th> <th>0.11</th> <th>< LOQ</th> <th>< LOD</th> <th>^</th>	0049_SWW_00187	Alelyckan	< LOD	< Lod	76.6	0.11	< LOQ	< LOD	^
Ävkarleby< (LOD	0049_SWW_00188	Norrköping	< LOD	< Lod	11.9	0.28	< LOQ	0.025	^
Emsfors $<$ LOD $<$ LOD $<$ LOD $<$ LOQ $<$ LOQ $<$ LOQFyrisån Flottsund $<$ LOD $<$ LOD $<$ LOD 24.3 2.1 0.084 0.057 Struma $<$ LOD $<$ LOD $<$ LOD 18.6 16 0.029 0.027 Maritsa 1 $<$ LOD $<$ LOD $<$ LOD 21.0 $<$ LOQ $<$ LOQTimok $<$ LOD $<$ LOD 20.0 1.4 $<$ LOD $<$ LODIskar $<$ LOD $<$ LOD 21.0 1.5 $<$ LOD $<$ LODBurgas $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LODARH230902 $<$ LOD $<$ LOD $<$ Na. 0.83 0.032 0.023 Fyn690017 $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LODRBSD10 $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LOD $<$ LOD	0049_SWW_00189	Älvkarleby	< LOD	< Lod	2.0		< LOD	< LOQ	^
Fyrisån Flottsund< LOD	0049_SWW_00190	Emsfors	< LOD	< Lod	10.2	0.25	< LOQ	< rod	۸
Struma< LOD	0049_SWW_00191	Fyrisån Flottsund	< LOD	< Lod	24.3	2.1	0.084	0.057	
Maritsa 1< LOD	0049_SWW_00192	Struma	< LOD	< Lod	18.6	16	0.029	0.027	0
Maritsa 2< LOD	0049_SWW_00193				13.9	4.5	< LOQ	< LOQ	^
Timok< LOD	0049_SWW_00194	Maritsa 2	< LOD	< Lod	20.0	5.6	0.032	0.027	۸
Iskar< LOD	0049_SWW_00195	Timok	< LOD	< Lod	20.0	1.4	< LOD	< LOD	۸
Devnenska < LOD < LOD 45.0 1.5 < LOD < LOD < LOD Burgas < LOD < LOD 310.2 23 0.24 0.11 ARH230902 < LOD 782 n.a. 0.83 0.032 0.085 Fyn6900017 < LOD 1900 n.a. 0.76 0.047 0.064 RKB5010 < LOD < LOD 35.4 1.4 0.094 0.11	0049_SWW_00196	Iskar	< LOD		37.8	27	0.26	0.24	
Burgas < LOD	0049_SWW_00197	Devnenska	< LOD	< Lod	45.0	1.5	< LOD	< LOD	۸
ARH230902 < LOD	0049_SWW_00198	Burgas	< LOD	< LOQ	310.2	23	0.24	0.11	
- Fyn6900017 < LOD 1900 n.a. 0.76 0.047 0.064 . RKB5010 < LOD < LOD 35.4 1.4 0.094 0.11	0049_SWW_00199	ARH230902	< LOD	782	n.a.	0.83	0.032	0.085	0
RKB5010 < LOD < LOD 35.4 1.4 0.094 0.11	0049_SWW_00200	Fyn6900017	< LOD	1900	n.a.	0.76	0.047	0.064	0
	0049_SWW_00201	RKB5010	< LOD	< LOD	35.4	1.4	0.094	0.11	0.

Location code 0049_SWW_00202 0049_SWW_00203	Sampling Station RKB8290 ARH 90293	Ag dissolved (Hg/L) < LOD	B dissolved (µg/L) 330 < LOD	Chloride (mg/L) n.a. 36.7	Acesulfame (۱۹۶/۲) 0.083 0.12	¹ H-Benzotriazole (µg/l) < LOD < LOD	4-Tolyltriazole (µg/L) < LOD < LOQ	riazole (µg/L) < LOD
0049_SWW_00203 0049_SWW_00204	ARH 90293 STO 01.15.16	< LOD	< lod	36.7 78.2	0.12 0.22	< LOD		< LOQ 0.02
0049_SWW_00205	ARH 110114	< Lod	< LOD	46.5	6.2	0.16		0.33
0049_SWW_00206	R. Guadiana-E.A. Balbuena	< Lod	< LOD	54.0	0.79	< rod		< Loq
0049_SWW_00207	Captacion Bochanza	< Lod	< LOQ	441.7	0.81	< rod		< LOQ
0049_SWW_00208	Guadiana en Azud de Benavides	< LOD	< LOD	66.2	2.9	0.045		0.059
0049_SWW_00209	E. Puente Navarro-Presa	< Lod	217	330.3	2.5	< LOQ		< LOQ
0049_SWW_00210	Ebro / Tortosa	< Lod	< Lod	176.9	1.3	0.06		0.072
0049_SWW_00211	Zadorra / Vitoria - Trespuentes	< LOD	< LOQ	62.0	4.9	0.4		0.83
0049_SWW_00212	Ebro / Presa Pina	< Lod	< LOD	418.8	3.8	0.15		0.12
0049_SWW_00213	Arga / Ororbia	< Lod	< LOQ	202.7	20	1.7		1.4
0049_SWW_00214	Alcalà - Henares	< LOD	< LOD	178.6	8.6	0.6		0.27
0049_SWW_00215	E. Presa del Rey-Jarama	< Lod	< LOD	130.7	9.2	2.9		1.3
0049_SWW_00216	Rivas-Vaciamadrid- Manzanares	< LOD	< LOD	100.6	7.5	4		1.6
0049_SWW_00217	Aranjuez-Jarama	< LOD	< LOQ	178.8	8.2	1.2		0.62
0049_SWW_00218	Bargas-Guadarrama	< LOD	< LOD	120.2	1.7	1.8		1.2
0049_SWW_00219	Toledo1-Tajo	< Lod	< LOD	212.6	9.1	0.5		0.33
0049_SWW_00220	Arlanzon en Villavieja	< LOD	< LOQ	77.7	10	0.76		0.67
0049_SWW_00221	Pisuerga en Simancas	< Lod	< LOD	31.6	3.5	0.33		0.23
0049_SWW_00222	Duero en Zamora	< Lod	< Lod	38.3	ω	0.23		0.15

0049_SWW_00024	0049_SWW_00023	0049_SWW_00022	0049_SWW_00021	0049_SWW_00020	0049_SWW_00019	0049_SWW_00018	0049_SWW_00017	0049_SWW_00016	0049_SWW_00015	0049_SWW_00014	0049_SWW_00013	0049_SWW_00012	0049_SWW_00011	0049_SWW_00010	0049_SWW_00009	0049_SWW_00008	0049_SWW_00007	0049_SWW_00006	0049_SWW_00005	0049_SWW_00003	0049_SWW_00002	0049_SWW_00001	Location code
Trondheimsfjorden	Bømlo	Kristianand	Orlice Nepasice	Jizera Nový Vestec	Labe Valy	Labe Obříství	Vltava Zelčin	Odra Bohumin	Morava Lanžhot	Lužickà Nisa Hrádek nad Nisou	Berounka Lahovice	Kautenbach	Rodange pont à Athus	Wasserbillig	Ettelbruck	Salka	Kamenica nad Hronom	Komarno	Medvedov	Bratislava	Bratislava	Devin	Sampling Station
< LOD	< LOD	< LOD		< LOD	0.1	< LOD	< LOD	0.3	< LOD	< LOD	< LOD				0.16		< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	Glyphosate (CZ data in ng/L)
< rod	< rod	< rod	370	262	610	1010	310	11400	711	464	516	867	2240	721	1170	469	1460	485	122	132	144	853	Glyphosate (UK data in µg/L)
< LOD	< LOD	< LOD		0.21	0.41	0.68	0.18	6	0.69	0.36	0.35				0.76		0.96	0.35	0.11	< LOD	< LOD	0.52	AMPA (CZ data in ng/L)
< LOQ	0.156	0.124		< LOQ	0.101	0.219	0.734	< LOQ	< LOQ	< LOQ	< LOQ				< LOQ		< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	AMPA (UK data in µg/L)
< LOQ	0.508	0.0981	0.0252	< LOQ	0.0824	0.206	0.838	< LOQ	0.0439	< LOQ	< LOQ	< LOQ	0.0318	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< rod	< LOQ	< rod	< LOQ	MTBE (NL data in µg/L)
< LOD	< LOD	< LOD		< LOD	0.1	< LOD	< LOD	0.3	< LOD	< LOD	< LOD				0.16		< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	MTBE (UK data in µg/L)

Annex I: Table IB - Analytical results for glyphosate, AMPA and MTBE. Units of measurement are specified in the table

0049_SWW_00047	0049_SWW_00046	0049_SWW_00045	0049_SWW_00044	0049_SWW_00043	0049_SWW_00042	0049_SWW_00041	0049_SWW_00040	0049_SWW_00039	0049_SWW_00038	0049_SWW_00037	0049_SWW_00036	0049_SWW_00035	0049_SWW_00034	0049_SWW_00033	0049_SWW_00032	0049_SWW_00031	0049_SWW_00030	0049_SWW_00029	0049_SWW_00027	0049_SWW_00026	0049_SWW_00025	Location code
Escaut	Meuse	Meuse	Kulpe ties Kryziu kalnu	Venta zemiau Mazeikiu	Neris aukščiau Paneriu	Akmena-Dane ziotyse	Nemunas aukščiau Rusnes	Nemunas zemiau Kaun ties Kulautuva	Zagyva at Ujszast	Hortobagy-Berettyo at Mezotur	Sajo at Sajolad downstream	Babony-patak at Sajoecseg downstream	Mosoni-Duna at Vének downstream	Kenyérmezei-patak downstream	Budapest downstream	Budapest upstream	Vansjø	Femunden	Mjøsa	Skogsfjordevatnet	Oslofjorden	Sampling Station
1.08	0.12	< LOD			< LOD	< LOD	< LOD	< LOD					< LOD	0.44	< LOD	< LOD	< LOD		< LOD	< LOD	< LOD	Glyphosate (CZ data in ng/L)
3730	966	297	613	06	40	246	126	119	1800	1040	1840	722	543	5070	204	155	< rod		< rod	< rod	< rod	Glyphosate (UK data in µg/L)
2.4	0.73	0.23			< LOD	0.2	< LOD	< LOD					0.36	3.55	0.13	0.13	< LOD		< LOD	< LOD	< LOD	AMPA (CZ data in ng/L)
< LOQ	< rod	< rod			< LOQ	< LOQ	< rod	< LOQ					< LOQ	0.167	< LOQ	< rod	< rod		< rod	< rod	< LOQ	AMPA (UK data in µg/L)
0.0968	0.0379	0.0289	0.146	0.0231	0.0216	0.0934	0.012	0.015	< LOQ	< LOQ	< LOQ	< LOQ	0.0261	0.145	0.0326	0.0148	0.0413		0.0228	< rod	0.0266	MTBE (NL data in µg/L)
1.08	0.12	< LOD			< LOD	< LOD	< LOD	< LOD					< LOD	0.44	< LOD	< LOD	< LOD		< LOD	< LOD	< LOD	MTBE (UK data in µg/L)

0049_SWW_00123 River Humber < LOD	0049_SWW_00122 River Usk < LOD	0049_SWW_00121 River Dee < LOD	0049_SWW_00120 River Ugie	0049_SWW_00119 River Almond	0049_SWW_00118 River North Esk <	0049_SWW_00117 River Clyde at tidal weir	0049_SWW_00116 River Quoile	0049_SWW_00115 River Lagan	0049_SWW_00114 Br. at Killaloe	0049_SWW_00113 Ford 2 km u/s Gweestion < LOD < LOQ River	0049_SWW_00112 Leemount Br	0049_SWW_00111 Graiguenamanagh Br	0049_SWW_00110 Lucan Br < LOD	0049_SWW_00109 Slane Br	0049_SWW_00108 Red Burn Bridge <	0049_SWW_00107 Vääna	0049_SWW_00106 Oreküla HP < LOQ	0049_SWW_00105 Purtse < LOQ	0049_SWW_00104 Kavastu < LOD < LOQ	0049_SWW_00103 Narva < LOD < LOQ	0049_SWW_00102 Messara < LOQ	0049_SWW_00101 Ekvoles Spercheiou < LOD	0049_SWW_00100 S1 <pre></pre>	0049_SWW_00099 Ekvoles Loudia Aliakmona < LOD	Glyphosate Glyphosate Glyphosate Glyphosate Glyphosate uk data in (UK data in رابع)/L) للعار)
1.01 < LOQ	< LOD < LOQ	0.17 < LOQ								< LOD < LOQ			0.11 < LOQ						< LOD 1.24	< LOD < LOÓ		1.68 < LOQ	< LOD 0.186	0.12 < LOQ	AMPA AMPA (CZ data in (UK data in ng/L) µg/L)
0.0437	< LOQ	< LOQ	< LOQ	< LOQ	0.0352	< LOQ	< roð	< LOQ	< LOQ	< LOQ	< LOQ	0.0668	< LOQ	0.0178	0.0211	0.0262	< LOQ		1.329	0.0456	0.0737	0.0189	0.251	< LOQ	MTBE (NL data in µg/L) (UK data
< LOD	< LOD	< Lod								< LOD			< LOD						< LOD	< LOD		< Lod	< Lod	< Lod	MTBE (UK data in µg/L)

0049_SWW_00147 Bar	0049_SWW_00146 Per	0049_SWW_00145 Not	0049_SWW_00144 Ijss	0049_SWW_00143 Nie	0049_SWW_00142 Mai	0049_SWW_00141 Rijr Kar	0049_SWW_00140 Rer	0049_SWW_00139 Ord	0049_SWW_00138 Vra	0049_SWW_00137 dov RO	0049_SWW_00136 Cla	0049_SWW_00135 Isla	0049_SWW_00134 Baz	0049_SWW_00133 Ote	0049_SWW_00132 Ung	0049_SWW_00131 Che	0049_SWW_00130 Cic	0049_SWW_00129 Har	0049_SWW_00128 Riv	0049_SWW_00127 Riv	0049_SWW_00126 Riv	0049_SWW_00125 Tha	0049_SWW_00124 Mei	Location code
Barca d'Alva	Penide Areias de Vilar	Noordwijk NOORDWK	Ijsselmeer VROUWDZ	Nieuwe Waterweg MAASSS	Maas IJSDPTN	Rijn/Bovenrijn (Bijilands Kanaal) LOBPTN	Reni RO14390	Oroftiana RO130100	Vranceni RO12500	downstream Tandareni RO114220	Clatesti RO107600	Islaz RO87600	Bazias RO14011	Otelec locality RO50400	Ungheni RO40900	Cheresig RO33400	Cicarlau RO24300	Hampshire Avon	River Tame	River Wensum	River Ouse	Thames	Mersey Estuary	Sampling Station
< LOD	< LOD			< LOD		< LOD		< LOD						< LOD	< LOD	< LOD	< LOD	< Lod	0.4	0.14	0.14	< LOD	< LOD	Glyphosate (CZ data in ng/L)
239	280	118	< LOQ	734	1680	771	289	< LOQ	227	3140	1820	< LOQ	333	1180	771	210	53	144	0068	541	320	1120	1260	Glyphosate (UK data in µg/L)
0.26	0.26			0.48		0.47		< LOD						0.8	0.59	0.16	< LOD	0.11	6.75	0.33	0.17	0.78	0.77	AMPA (CZ data in ng/L)
< Fod	< LOQ			0.219		< LOQ		< LOQ						0.158	0.125	< LOQ	< LOQ	< LOQ	0.116	< LOQ	< LOQ	< LOQ	< LOQ	AMPA (UK data in µg/L)
0.0770	0.0918	< LOQ	< LOQ	0.218	0.151	< LOQ	0.0373	< rod	2.80	< LOQ	0.104	< LOQ		0.146	< LOQ	< LOQ	< rod	< rod	0.130	< rod	< rod	< LOQ	< LOQ	MTBE (NL data in µg/L)
< LOD	< Lod			< LOD		< LOD		< LOD						< Lod	< LOD	< LOD	< LOD	< Lod	0.4	0.14	0.14	< LOD	< LOD	MTBE (UK data in µg/L)

0049_SWW_00171	0049_SWW_00170	0049_SWW_00169	0049_SWW_00168	0049_SWW_00167	0049_SWW_00166	0049_SWW_00165	0049_SWW_00164	0049_SWW_00163	0049_SWW_00162	0049_SWW_00161	0049_SWW_00160	0049_SWW_00159	0049_SWW_00158	0049_SWW_00157	0049_SWW_00156	0049_SWW_00155	0049_SWW_00154	0049_SWW_00153	0049_SWW_00152	0049_SWW_00151	0049_SWW_00150	0049_SWW_00149	0049_SWW_00148	Location code
1 71 Les Évoissons à Bergicourt	L'Vser à Bambecque (CHANGE)	. 69 Guiers à Saint Genix sur Guiers	L 68 Azergues à Lucenay	. 67 Ardières à Saint Jean d'Ardières	L 66 Reyssouze à Viriat	L 65 Ouche à Crimolois	L 64 KUKKOLA	1 63 ISOHAARA	L 62 Oulujoki	1 61 Kojo 35 Pori-Tre	L 60 Nokiankoski 8200 ala	1 59 Aura 54 ohikulku	L 58 Vantaa	1 57 Porvoonjoki	1 56 Kalkkistenkoski	1 55 Huruksela	1 54 Vastuupuomi	1 53 Monte da Vinha	L 52 Alb. Roxo	1 51 Valada_Tejo	1 50 Perais	L49 Ponte Formoselha	L 48 Alb. Crestuma	ode Sampling Station
0.35	0.71						< LOD	< LOD	< LOD	< LOD	< LOD	0.18				< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	Glyphosate (CZ data in ng/L)
2030	1730	178	1710	1220	1880	1200	< rod	< rod	< rod	< rod	< rod	209	73	160	< rod	< rod	< rod	1830	< rod	620	442	1160	342	Glyphosate (UK data in µg/L)
1.87	1.52						0.13	< LOD	< LOD	< LOD	< LOD	0.13				< LOD	< LOD	1.1	< LOD	0.53	0.28	0.74	0.26	AMPA (CZ data in ng/L)
< FOÓ	< LOQ						< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ				< LOQ	< LOQ	< rod	< LOQ	< LOQ	< LOQ	< LOQ	0.817	AMPA (UK data in µg/L)
0.0153	0.0465	< LOQ	< LOQ	< LOQ	0.0364	< LOQ	< LOQ	0.0703	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< rod	< rod	< LOQ	< LOQ	< rod	< LOQ	0.542	MTBE (NL data in µg/L)
0.35	0.71						< LOD	< LOD	< LOD	< LOD	< LOD	0.18				< LOD	< LOD	< LOD	< Lod	< LOD	< Lod	< LOD	< LOD	MTBE (UK data in µg/L)

0049_SWW_00195	0049_SWW_00194	0049_SWW_00193	0049_SWW_00192	0049_SWW_00191	0049_SWW_00190	0049_SWW_00189	0049_SWW_00188	0049_SWW_00187	0049_SWW_00186	0049_SWW_00185	0049_SWW_00184	0049_SWW_00183	0049_SWW_00182	0049_SWW_00181	0049_SWW_00180	0049_SWW_00179	0049_SWW_00178	0049_SWW_00177	0049_SWW_00176	0049_SWW_00175	0049_SWW_00174	0049_SWW_00173	0049_SWW_00172		Location code
)195 Timok)194 Maritsa 2)193 Maritsa 1	192 Struma	191 Fyrisån Flottsund	190 Emsfors) 189 Älvkarleby	1188 Norrköping	187 Alelyckan	186 Åsbro	185 Stockholm Centralbron	184 IT18RC39	1 83 IT18Amato3	182 Piemonte Po	181 Piemonte Tanaro	180 Veneto Adige	179 Lombardia Lambro	1178 Bolzano Adige	177 Emilia Reno Ravenna 2	176 Emilia Reno Ravenna 1	175 Emilia Po Ferrara	174 Toscana Arno 2	173 Toscana Arno 1	172 Umbria Tiber	(CHANGE)	code Sampling Station
	< LOD												< LOD	< LOD									0.11		Glyphosate (CZ data in ng/L)
< LOQ	472	479	581	< rod	< rod	< rod	< LOQ	< rod	< LOQ	< rod	< rod	< rod	331	237	207	2270	< LOQ	2090	2540	703	2330	9530	1720		Glyphosate (UK data in µg/L)
	0.34												0.2	0.15									1.31		AMPA (CZ data in ng/L)
	< rod												< LOQ	< LOQ									< LOQ		AMPA (UK data in µg/L)
< LOQ	< LOQ	0.0213	0.0254	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	0.0392	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	0.0707	0.0142	< LOQ	< LOQ	0.0299	< LOQ	0.190	< LOQ		MTBE (NL data in µg/L)
	< LOD												< LOD	< LOD									0.11		MTBE (UK data in µg/L)

0049_SWW_00218	0049_SWW_00217	0049_SWW_00216	0049_SWW_00215	0049_SWW_00214	0049_SWW_00213	0049_SWW_00212	0049_SWW_00211	0049_SWW_00210	0049_SWW_00209	0049_SWW_00208	0049_SWW_00207	0049_SWW_00206	0049_SWW_00205	0049_SWW_00204	0049_SWW_00203	0049_SWW_00202	0049_SWW_00201	0049_SWW_00200	0049_SWW_00199	0049_SWW_00198	0049_SWW_00197	0049_SWW_00196	Location code
Bargas-Guadarrama	Aranjuez-Jarama	Rivas-Vaciamadrid- Manzanares	E. Presa del Rey-Jarama	Alcalà - Henares	Arga / Ororbia	Ebro / Presa Pina	Zadorra / Vitoria - Trespuentes	Ebro / Tortosa	E. Puente Navarro-Presa	Guadiana en Azud de Benavides	Captacion Bochanza	R. Guadiana-E.A. Balbuena	ARH 110114	STO 01.15.16	ARH 90293	RKB8290	RKB5010	Fyn6900017	ARH230902	Burgas	Devnenska	Iskar	Sampling Station
< LOD									< LOD				< LOD	0.15	< LOD				Glyphosate (CZ data in ng/L)				
4250	3950	8070	8300	5600	7150	1510	1460	< rod	34	1510	153	429	53	251	159	< rod	208	47	89	< rod	31	873	Glyphosate (UK data in µg/L)
2.95									< LOD				< Lod	0.19	0.11	< LOD	0.17	< LOD	< LOD				AMPA (CZ data in ng/L)
< LOQ									< LOQ				< rod	< LOQ	< LOQ	< LOQ	< rod	< LOQ	< LOQ				AMPA (UK data in µg/L)
< LOQ	< LOQ	0.0169	< rod	< rod	< rod	< LOQ	0.0165	< LOQ	< LOQ	< LOQ	< rod	0.0148	< rod	< rod	< roð	< rod	< rod	< rod	< LOQ	0.0633	0.0408	0.145	MTBE (NL data in µg/L)
< LOD									< LOD				< LOD	0.15	< LOD				MTBE (UK data in µg/L)				

Location code	Sampling Station	Glyphosate (CZ data in ng/L)	Glyphosate (UK data in µg/L)	AMPA (CZ data in ng/L)	AMPA (UK data in µg/L)	MTBE (NL data in µg/L)	МТВЕ (UK data in µg/L)
0049_SWW_00219	Toledo1-Tajo		4670			< rod	
0049_SWW_00220	Arlanzon en Villavieja		9450			< rod	
0049_SWW_00221 Pisuerga en Simancas	Pisuerga en Simancas		2060			< rod	
0049_SWW_00222 Duero en Zamora	Duero en Zamora		1600			< LOQ	

10,11-dihydro- carbamazepineSulfamethoxazole (ng/L)PFPA (ng/L)Triclosan (ng/L)266 85.7 (ng/L) (ng/L) (ng/L) 266 85.7 $< LOQ$ $< LOQ$ 250 14.9 $< COQ$ 45 9.7 $< LOQ$ 45 9.7 $< LOQ$ 450 28.4 $< COQ$ 450 28.4 $< COQ$ 450 34.3 $< COQ$ 300 25.6 $< COQ$ 102 21.3 4.68 $< LOQ$ 306 25.6 $< COQ$ 372 187 $< COQ$ 115 39.7 2.45 $< LOQ$ 115 39.7 24.5 $< LOQ$ 115 49.4 $< COQ$ 129 49.4 $< COQ$ 56.7 24.2 $< COQ$ 7.75 0.5 $< COQ$	0049 SWW 00023 Bamlo	0049_SWW_00022 Kristianand n.a.	0049_SWW_00021 Orlice Nepasice 74.9	0049_SWW_00020 Jizera Nový Vestec 133	0049_SWW_00019 Labe Valy 195	0049_SWW_00018 Labe Obříství 466	0049_SWW_00017 Vitava Zelčin 199	0049_SWW_00016 Odra Bohumin 297	0049_SWW_00015 Morava Lanžhot 204	0049_SWW_00014 Lužickà Nisa Hrádek nad Nisou 521	0049_SWW_00013 Berounka Lahovice 481	0049_SWW_00012 Kautenbach 231	0049_SWW_00011 Rodange pont à Athus 548	0049_SWW_00010 Wasserbillig 158	0049_SWW_00009 Ettelbruck 1022	0049_SWW_00008 Salka 212	0049_SWW_00007 Kamenica nad Hronom 170	0049_SWW_00006 Komarno 145	0049_SWW_00005 Medvedov 59.1	0049_SWW_00003 Bratislava 25.5	0049_SWW_00002 Bratislava 69.1	0049_SWW_00001 Devin 373	Location code Sampling Station (ng/L)	Carban TCPP
Sulfamethoxazole PFPrA Triclosan (ng/L) (ng/L) (ng/L) (ng/L) (ng/L) (14.9) (213.3) $(210Q)$ (213.3) (187) (2.35) $(210Q)$ $(210Q)$ (187) $(2.0Q)$ $(2.0Q)$ $(2.0Q)$ (187) (24.5) $(2.0Q)$ $(2.0Q)$ (1.4) $(2.0Q)$ $(2.0Q)$ $(2.0Q)$ $(1.0Q)$ (24.2) $(2.0Q)$ $(2.0Q)$ $(1.0Q)$ $(2.0Q)$ $(2.0Q)$ $(2.0Q$	4.6	4.3	50.3	55.7	78.9	87.5	69.1	191	139	290	76.9	38.3	226	57.3	135	228	58.8	87.0	34.4	128	33.7	202		10
PFPrA Triclosan (ng/L) Cloq (ng/L) < LOQ		7.75		58.1						372		40.5							45					
	LOQ	0.5	24.2	1.4	40.8	49.4	42.3		59.0	187	27.3		25.6		51.2	34.3	13.5	28.4	9.7	14.9	LOQ	85.7		
	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< loq	< loq	10	< LOQ	< LOQ	< LOQ	< loq	< LOQ	< loq	< loq	(ng/L)	Triclosan Triclocarban

Annex I: Table 1C - Analytical results for TCPP, carbamazepine, 10,11-dihydroxy-10,11-dihydrocarbamazepine, sulfamethoxazole, PFPrA, triclosan and triclocarban Units of measurement are specified in the table

0049_SWW_00046	0049_SWW_00045	0049_SWW_00044	0049_SWW_00043	0049_SWW_00042	0049_SWW_00041	0049_SWW_00040	0049_SWW_00039	0049_SWW_00038	0049_SWW_00037	0049_SWW_00036	0049_SWW_00035	0049_SWW_00034	0049_SWW_00033	0049_SWW_00032	0049_SWW_00031	0049_SWW_00030	0049_SWW_00029	0049_SWW_00027	0049_SWW_00026	0049_SWW_00025	0049_SWW_00024	Location code
		0044		0042		0040	0039	0038	0037		0035		0033	0032	0031	0030	0029		0026	0025		code
Meuse	Meuse	Kulpe ties Kryziu kalnu	Venta zemiau Mazeikiu	Neris aukščiau Paneriu	Akmena-Dane ziotyse	Nemunas aukščiau Rusnes	Nemunas zemiau Kaun ties Kulautuva	Zagyva at Ujszast	Hortobagy-Berettyo at Mezotur	Sajo at Sajolad downstream	Babony-patak at Sajoecseg downstream	Mosoni-Duna at Vének downstream	Kenyérmezei-patak downstream	Budapest downstream	Budapest upstream	Vansjø	Femunden	Mjøsa	Skogsfjordevatnet	Oslofjorden	Trondheimsfjorden	Sampling Station
153	50.1	586	56.5	33.0	90.9	27.2	81.0	410	84.9	1199	465	142	873	73.5		17.3	< LOQ	6.50	< LOQ	24.7	< LOQ	TCPP (ng/L)
38.1	13.6	402	13.4	18.4	26.5	13.3	16.0	932	134	347	1340	110	1830	37.3		29.8	< LOQ	2.1	< LOQ	5.3	1.1	Carbamazepin e (ng/L)
56.9	26.1	844	37	43	70.7	24.9	28.3	834	176	459	1930	157	181	48.4		19.2	< LOQ	4.66	< LOQ	8.84	0.951	10,11-dihydroxy- 10, 11-dihydro- carbamazepine (ng/L)
10.7	4.4	152	5.9	8.6	12.3	6.1	6.9	91.4	65.7	74.1	49.9	9.6	241	8.6		< LOQ	< LOQ	0.3	0.0	1.1	< LOQ	Sulfamethoxazole (ng/L)
								44.2	5.62	1.46	45											PFPrA (ng/L)
< LOQ	< LOQ	л	< LOQ	< LOQ	< LOQ	< LOQ	19	< LOQ	< LOQ	5	< LOQ	< LOQ	14	< LOQ	< LOQ	< LOQ		< LOQ	< LOQ	< LOQ	< LOQ	Triclosan (ng/L)
< rod	< rod	< rod	< rod	< LOQ	< LOQ	< LOQ	< rod	< LOQ	< rod	< Fod	< roð	< rod	< rod	< LOQ	< LOQ	< LOQ		< LOQ	< LOQ	< LOQ	< Fog	Triclocarban (ng/L)

0049_SWW_00070 Autobahnbrücke Spielfeld	0049_SWW_00069 Krems Ansfelden	0049_SWW_00068 Jochenstein	0049_SWW_00067 Antiesen Antiesenhofen	0049_SWW_00066 Hainburg	0049_SWW_00065 Absdorf, uh ARA	0049_SWW_00064 Mannswörth	0049_SWW_00063 Poperinge	0049_SWW_00062 Zwalm	0049_SWW_00061 Antwerpen	0049_SWW_00060 Kinrooi	0049_SWW_00059 II Port ta' Marsaxlokk	0049_SWW_00058 IX Xghajra	0049_SWW_00057 II Port il Kbir	0049_SWW_00056 Kollafiörður	0049_SWW_00055 Lake Thingvallavatn	0049_SWW_00054 Ölfusá/ Ölfusárós	0049_SWW_00053 Eyjafjörður	0049_SWW_00052 Bolungarvik	0049_SWW_00051 Kargotis R.	0049_SWW_00050 Kouris R.	0049_SWW_00049 Garyllis R.	0049_SWW_00048 Amblève	0049_SWW_00047 Escaut	Location code Sampli
Spielfeld										_			۸	۸						۸				Sampling Station (
	67.7	68.3	46.4	59.0	227	137	355			149.5	4.12		< LOQ	< LOQ	< LOQ	< LOQ	8.79	5.53	10.9	< LOQ	815	23.2	2701	TCPP (ng/L)
	41.6	26.0	6.1	33.8	231	21.6	76.8			48.7	0.1	2.1	0.1	1.2	17.6	17.1	0.7	< Fog	1.4	< LOQ	3670	14.4	209	Carbamazepin e (ng/L)
	54	29.1	4.97	44.4	190	43.2	139			76.9	0.218	54.6	0.263	0.503	13.4	12.7	0.879	< rod	1.04	0.4	530	15.2	409	10,11-dihydroxy- 10, 11-dihydro- carbamazepine (ng/L)
	6.7	7.1	0.5	8.7	8.3	8.2	14.5			15.4	0.2	0.7	0.1	< LOQ	< LOQ	< LOQ	1.0	< LOQ	0.4	3.3	200	2.1	52.8	Sulfamethoxazole (ng/L)
	16.2							38.8	105	4.56							< LOQ							PFPrA (ng/L)
< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	6	15	л	< LOQ	29	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	л	11	< LOQ	18	Triclosan (ng/L)
< rod	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< rod	< log	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< rod	< LOQ	< LOQ	< LOQ	Triclocarban (ng/L)

Sulfamethoxazole (ng/L) 8.2 7.2 111 160 160	(ng/L)

0049_SWW_00119 River Almond 1420	0049_SWW_00118 River North Esk 66.3	0049_SWW_00117 River Clyde at tidal weir 897	0049_SWW_00116 River Quoile 331	0049_SWW_00115 River Lagan 768	0049_SWW_00114 Br. at Killaloe 47.7	0049_SWW_00113 Ford 2 km u/s Gweestion 43.4	0049_SWW_00112 Leemount Br 42.1	0049_SWW_00111 Graiguenamanagh Br 109	0049_SWW_00110 Lucan Br 199	0049_SWW_00109 Slane Br 110	0049_SWW_00108 Red Burn Bridge 12.6	0049_SWW_00107 Vääna 17.7	0049_SWW_00106 Oreküla HP 10.3	0049_SWW_00105 Purtse 43.3	0049_SWW_00104 Kavastu 52.1	0049_SWW_00103 Narva 7.45	0049_SWW_00102 Messara < LOQ	0049_SWW_00101 Ekvoles Spercheiou 349	0049_SWW_00100 S1 20.5	0049_SWW_00099 Ekvoles Loudia Aliakmona 31.6	0049_SWW_00098 Limni Pamvotida 37.3	0049_SWW_00097 EVROS_UP	0049_SWW_00096 PROMAXON	TCPP Location code Sampling Station (ng/L)
105	23.8	56.6	44.0	108	3.0	30.3	2.0	30.2	30.8	27.1	27.1	5.5	9.5	1.5	19.4	2.4	0.2	11.3	1.2	7.3	4.8			1 Carbamazepin e (ng/L)
115	14	101	71	65.7	6.66	18.4	4.59	24.7	36.6	22.2	15	3.61	10.3	3.05	25.3	5.43	0.761	331	3.56	24.4	9.73			10,11-dihydroxy- 10,11-dihydro- carbamazepine (ng/L)
8.5	< rod	1.6	0.4	4.1	0.3	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	4.5	4.2	2.8	3.1	0.3	1.1	7.2	16.8	4.6	0.4			Sulfamethoxazole (ng/L)
												1.79	1.83	1.85			3.8	2.02	0.716	5.26				PFPrA (ng/L)
< LOQ	< LOQ		< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	9	13	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	Triclosan (ng/L)
< rod	< loq		< rod	< LOQ	< LOQ	< rođ	< rod	< LOQ	< rod	< LOQ	< LOQ	< rod	< rod	< LOQ	< LOQ	< LOQ	< rod	< rod	< LOQ	< LOQ	< LOQ	< lod	< rod	Triclocarban (ng/L)

0049_SWW_00143	0049_SWW_00142	0049_SWW_00141	0049_SWW_00140	0049_SWW_00139	0049_SWW_00138	0049_SWW_00137	0049_SWW_00136	0049_SWW_00135	0049_SWW_00134	0049_SWW_00133	0049_SWW_00132	0049_SWW_00131	0049_SWW_00130	0049_SWW_00129	0049_SWW_00128	0049_SWW_00127	0049_SWW_00126	0049_SWW_00125	0049_SWW_00124	0049_SWW_00123	0049_SWW_00122	0049_SWW_00121	0049_SWW_00120	Locat	
V_00143	V_00142	V_00141	V_00140	V_00139	V_00138	V_00137	V_00136	V_00135	V_00134	V_00133	V_00132	V_00131	V_00130	V_00129	V_00128	V_00127	V_00126	V_00125	V_00124	V_00123	V_00122	V_00121	V_00120	Location code	
Nieuwe Waterweg MAASSS	Maas IJSDPTN	Rijn/Bovenrijn (Bijilands Kanaal) LOBPTN	Reni RO14390	Oroftiana RO130100	Vranceni RO12500	downstream Tandareni RO114220	Clatesti RO107600	Islaz RO87600	Bazias RO14011	Otelec locality RO50400	Ungheni RO40900	Cheresig RO33400	Cicarlau RO24300	Hampshire Avon	River Tame	River Wensum	River Ouse	Thames	Mersey Estuary	River Humber	River Usk	River Dee	River Ugie	Sampling Station	
200	605	411	74.1	35.4	29.6	135	768	117	63.5	203	110	150	247	619	2879	468	340	456	531	611	149	282	308	(ng/L)	ТСРР
105	79.7	158	29.8	32.5	63.6	34.8	295	9.1	46.0	156	218	82.9	168	26.0	650	71.5	11.9	118	19.3	58.4	9.6	23.3	25.9	(ng/L)	Carbamazepin e
161	120	233	38.5	47	86.4	163	460	21	76.1	285	441	181	436	63.9	260	125	9.1	166	23.2	126	30.8	59.9	18.7	(ng/L)	10,11-dihydroxy- 10,11-dihydro- carbamazepine
48.3	22.9	60.8	12.2	11.6	24.9	7.8	173	7.2	17.8	53.8	71.0	57.0	48.0	3.1	25.8	5.8	0.7	30.9	< LOQ	6.9	0.5	1.8	< LOQ	(ng/L)	Sulfamethoxazole
< LOQ	3.26	2.88							94.3	1.85	< LOQ	0.971	11.8											(ng/L)	PFPrA
< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	120	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	7	< LOQ	(ng/L)	Triclosan				
< loq	< rod	< rod	< LOQ	< LOQ	< rod	< rođ	81	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< rod	< rod	< rod	< LOQ	< LOQ	< Fog	< rod	< LOQ	< rod	< LOQ	< LOQ	(ng/L)	Triclocarban

0049_SWW_00167	0049_SWW_00166	0049_SWW_00165	0049_SWW_00164	0049_SWW_00163	0049_SWW_00162	0049_SWW_00161	0049_SWW_00160	0049_SWW_00159	0049_SWW_00158	0049_SWW_00157	0049_SWW_00156	0049_SWW_00155	0049_SWW_00154	0049_SWW_00153	0049_SWW_00152	0049_SWW_00151	0049_SWW_00150	0049_SWW_00149	0049_SWW_00148	0049_SWW_00147	0049_SWW_00146	0049_SWW_00145	0049_SWW_00144	Location code	
0167	0166	0165	0164	0163	0162	0161	0160	0159	0158	0157	0156	0155	0154	0153	0152	0151		0149	0148	0147	0146	0145	0144	1 code	
Ardières à Saint Jean d'Ardières	Reyssouze à Viriat	Ouche à Crimolois	KUKKOLA	ISOHAARA	Oulujoki	Kojo 35 Pori-Tre	Nokiankoski 8200 ala	Aura 54 ohikulku	Vantaa	Porvoonjoki	Kalkkistenkoski	Huruksela	Vastuupuomi	Monte da Vinha	Alb. Roxo	Valada_Tejo	Perais	Ponte Formoselha	Alb. Crestuma	Barca d'Alva	Penide Areias de Vilar	Noordwijk NOORDWK	Ijsselmeer VROUWDZ	Sampling Station	
80.2	1037	418	< LOQ	< LOQ	6.22	27.6	24.6	44.9	170	318	5.53	10.1	11.1	155	37.0	255	411	119	142	103	112	25.3	178	(ng/L)	ТСРР
88.3	432	189	0.4	0.8	21.9	31.8	7.3	39.9	75.1	185	1.4	4.5	26.1	24.2	39.5	21.4	45.2	86.9	28.4	26.4	48.4	11.7	77.6	(ng/L)	Carbamazepin e
145	597	346.7	0.9	3.8	13.1	35.7	31.6	41.8	325	621	14.4	16.4	19.2	178	33.9	92.1	124	245	54.7	47.6	69.8	17.2	155	(ng/L)	10,11-dihydroxy- 10,11-dihydro- carbamazepine
96.3	113	104	1.8	1.9	< LOQ	< LOQ	1.3	< LOQ	6.0	18.4	0.9	0.6	< LOQ	8.6	< LOQ	13.3	13.5	30.8	8.9	2.2	11.5	6.0	27.5	(ng/L)	Sulfamethoxazole
7.36	2.8	6.06	45.5	< LOQ			< LOQ			1.54	< LOQ											< LOQ	6.69	(ng/L)	PFPrA
< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	7	< LOQ	< LOQ	(ng/L)	Triclosan
< rod	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< Fog	< LOQ	< rod	(ng/L)	Triclocarban

0049_SWW_00190	0049_SWW_00189	0049_SWW_00188	0049_SWW_00187	0049_SWW_00186	0049_SWW_00185	0049_SWW_00184	0049_SWW_00183	0049_SWW_00182	0049_SWW_00181	0049_SWW_00180	0049_SWW_00179	0049_SWW_00178	0049_SWW_00177	0049_SWW_00176	0049_SWW_00175	0049_SWW_00174	0049_SWW_00173	0049_SWW_00172	0049_SWW_00171	0049_SWW_00170	0049_SWW_00169	0049_SWW_00168	Location code	
90 Emsfors	89 Älvkarleby	88 Norrköping	87 Alelyckan	86 Åsbro	85 Stockholm Centralbron	84 IT18RC39	83 IT18Amato3	82 Piemonte Po	81 Piemonte Tanaro	80 Veneto Adige	79 Lombardia Lambro	78 Bolzano Adige	77 Emilia Reno Ravenna 2	76 Emilia Reno Ravenna 1	75 Emilia Po Ferrara	74 Toscana Arno 2	73 Toscana Arno 1	72 Umbria Tiber	71 Les Évoissons à Bergicourt (CHANGE)	70 L'Yser à Bambecque (CHANGE)	69 Guiers à Saint Genix sur Guiers	68 Azergues à Lucenay	ode Sampling Station	
24.9	< LOQ	39.6	< LOQ	43.4	68.6	< LOQ	< LOQ	59.9	29.5	92.2	484		403	327	89.4	n.a.	564		577	907	43.1	287	TCPP (ng/L)	
20.8	< rod	12.3	4.5	29.6	15.4	0.7	0.4	16.7	7.0	18.8	150.0		85.0	145	29.2	162.0	221		296	224	22.5	159	Carbamazepin e (ng/L)	
46	9.29	30.7	12	52.7	47.2	0.494	0.6	32.9	13	28.9	299		356	473	48.1	372	624		378	413	38.8	274	10, 11-dihydro- carbamazepine (ng/L)	10.11-dihvdroxv-
1.7	0.9	1.2	2.8	4.8	1.9	159	6.8	8.0	3.2	10.6	62.7		19.6	121	10.2	34.3	66.0		69.2	81.1	7.8	49.4	Sulfamethoxazole (ng/L)	
						< LOQ	4.58	< LOQ	9.27	1.59	9.66	< LOQ	0.784	46.1	104						2.65	8.49	PFPrA (ng/L)	
< rod	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	< LOQ	10	< LOQ	< LOQ	л	< LOQ	л	< LOQ	< LOQ	10	8	< LOQ	< LOQ	Triclosan (ng/L)	
< rod	< LOQ	< LOQ	< LOQ	< rod	< rod	< rod	< rod	< rod	< rod	< LOQ	< rod	< LOQ	< rod	< rod	< rod	< rod	< LOQ	< rod	< rod	< rod	< rod	< LOQ	Triclocarban (ng/L)	

Location code	Sampling Station	TCPP (ng/L)	Carbamazepin e (ng/L)	10,11-dihydroxy- 10, 11-dihydro- carbamazepine (ng/L)	Sulfamethoxazole (ng/L)	PFPrA (ng/L)	Triclosan (ng/L)	Triclocarban (ng/L)
0049_SWW_00191 Fy	Fyrisån Flottsund	162	53.0	112	7.6		^	< Loq
0049_SWW_00192 St	Struma	333	151	388	83.8	1.45	^	< LOQ
0049_SWW_00193 Ma	Maritsa 1	138	78.6	82.6	27.0	0.894	^	< LOQ
0049_SWW_00194 Ma	Maritsa 2	113	56.1	73.7	38.2		< LOQ	Q
0049_SWW_00195 Tir	Timok	86.6	80.4	188	48.2	< LOQ	< LOQ	ð
0049_SWW_00196 Iskar	(ar	1191	485	811	355	< LOQ		22
0049_SWW_00197 De	Devnenska	97.3	10.0	11.2	9.3	< LOQ	< LOQ	ð
0049_SWW_00198 Bu	Burgas	491	125	691	70.7	23	< LOQ	ð
0049_SWW_00199 AR	ARH230902	118	21.4	50.5	1.8		< LOQ	ð
0049_SWW_00200 Fy	Fyn6900017	63.3	13.4	36.5	2.7		< LOQ	ŏ
0049_SWW_00201 RK	RKB5010	188	36.5	94.3	1.9		< LOQ	ŏ
0049_SWW_00202 RK	RKB8290	23.8	0.7	1.59	< LOQ		< LOQ	õ
0049_SWW_00203 AR	ARH 90293						< LOQ	ŏ
0049_SWW_00204 ST	STO 01.15.16						< LOQ	ð
0049_SWW_00205 AR	ARH 110114	290	73.1	132	13.7	< LOQ	< LOQ	ă
0049_SWW_00206 R.	R. Guadiana-E.A. Balbuena						< LOQ	ŏ
0049_SWW_00207 Ca	Captacion Bochanza						< LOQ	õ
0049_SWW_00208 Gu Be	Guadiana en Azud de Benavides	92.0	23.0	172	9.6		< LOQ	Q
0049_SWW_00209 E.	E. Puente Navarro-Presa	20.2	6.7	40	0.3		< LOQ	ŏ
0049_SWW_00210 Eb	Ebro / Tortosa	186	10.3	49.2	11.9		< LOQ	õ
0049_SWW_00211 Za	Zadorra / Vitoria - Trespuentes	732	149	1010	87.7		< LOQ	ă
0049_SWW_00212 Eb	Ebro / Presa Pina	222	18.6	150	32.2		< L(LOQ
0049 SWW 00213 Arc	Arga / Ororbia	1146	222.	1600	148			7

		ТСРР	Carbamazepin e	10,11-dihydroxy- 10,11-dihydro- carbamazepine	Sulfamethoxazole	PFPrA	Triclosan	Triclocarban
Location code	Sampling Station	(ng/L)	(ng/L)	(ng/L)	(ng/L)	(ng/L)	(ng/L)	(ng/L)
0049_SWW_00214	Alcalà - Henares	757	68.3	627	185.0		12	< rod
0049_SWW_00215	E. Presa del Rey-Jarama	1691	346	2200	632.0		36	< LOQ
0049_SWW_00216	Rivas-Vaciamadrid- Manzanares	2888	4240	2320	656.0		91	< rod
0049_SWW_00217	Aranjuez-Jarama	1070	213	1170	212.0		11	< LOQ
0049_SWW_00218	Bargas-Guadarrama	734	231	145	182.0		6	< LOQ
0049_SWW_00219	Toledo1-Tajo	n.a.	118	596	79.3		< LOQ	< rod
0049_SWW_00220	Arlanzon en Villavieja	435	106	935	71.8		< LOQ	< LOQ
0049_SWW_00221	Pisuerga en Simancas	552	63.7	298	45.5		< LOQ	< LOQ
0049_SWW_00222	Duero en Zamora	273	39.1	237	19.6		< LOQ	< rod

10 Annex 2 – Sampling station location cards

STATION IDENT	IFICATION		
River/Station	Morava/Devín	CODE	0049_SWW_00001
City	Bratislava	Geographic coordinate system	UTM/UPS
Country	SLOVAKIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date:	Sample type	Sampling time	Water Depth:
1.6. 2012	River/Lake	11:00	Sampling 30 cm
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
7.87	Not reported	18.7	Not reported

Comments:

Sampling was performed using the provided bottles and a telescopic pole from the shore. Bottles were rinsed with river water. Sampling was performed by immersion of the bottles upside down to 30 cm depth below the surface and there the bottle was turned to fill with river water. Samples was transported cooled to the Water Research Institute in the provided polystyrene box with cooling elements. Until dispatch to JRC it was stored at 4°C.

STATION IDENT	IFICATION		
River/Station	Danube/ Bratislava left	CODE	0049_SWW_00002
City	Bratislava	Geographic coordinate system	UTM/UPS
Country	SLOVAKIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date:	Sample type	Sampling time	Water Depth:
11.6.2012	River	11:45	30 cm
Water pH	Water Conductivity (µS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
8.07	Not reported	15.5	Not reported

Comments:

Sampling was performed using the provided bottles and a telescopic pole from the shore. Bottles were rinsed with river water. Sampling was performed by immersion of the bottles upside down to 30 cm depth below the surface and there the bottle was turned to fill with river water. Samples was transported cooled to the Water Research Institute in the provided polystyrene box with cooling elements. Until dispatch to JRC it was stored at 4°C.

STATION IDENT	IFICATION		
River/Station	Danube/ Bratislava right	CODE	0049_SWW_00003
City	Bratislava	Geographic coordinate system	UTM/UPS
Country	SLOVAKIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date:	Sample type	Sampling time	Water Depth:
11.6.2012	River	10:00	30 cm
Water pH	Water Conductivity (µS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
8.07	Not reported	14.5	Not reported

Comments:

Sampling was performed using a bucket on a rope from a bridge. Bottles were rinsed with river water. Samples were transported cooled to the Water Research Institute in the provided polystyrene box with cooling elements. Until dispatch to JRC it was stored at 4°C.

IMPRESSIONS
Not available

STATION IDENTIFICATION				
River/Station	Danube/ Medvedov middle	CODE	0049_SWW_00005	
City	Bratislava	Geographic coordinate system	UTM/UPS	
Country	SLOVAKIA	Map Datum	WGS 84	
		Latitude		
		Longitude		

SAMPLING			
Sampling date:	Sample type	Sampling time	Water Depth:
12.6.2012	River/Lake	10:45	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
8.10	Not reported	15.3	Not reported

Comments:

Sampling was performed using a bucket on a rope from a bridge. Bottles were rinsed with river water. Samples were transported cooled to the Water Research Institute in the provided polystyrene box with cooling elements. Until dispatch to JRC it was stored at 4°C.

IMPRESSIONS

STATION IDENTIFICATION					
River/Station	Váh/Komárno	CODE	0049_SWW_00006		
City	Bratislava	Geographic coordinate system	UTM/UPS		
Country	SLOVAKIA	Map Datum	WGS 84		
		Latitude			
		Longitude			

SAMPLING			
Sampling date:	Sample type	Sampling time	Water Depth:
11.6.2012	River/Lake	9:30	Not reported
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
8.03	Not reported	19.7	Not reported
Commonter			

Comments:

Sampling was performed using a bucket on a rope from the shore. Bottles were rinsed with river water. Samples were transported cooled to the Water Research Institute in the provided polystyrene box with cooling elements. Until dispatch to JRC it was stored at 4°C.

IMPRESSIONS

STATION IDENTIFICATION				
River/Station	Hron/Kamenica nad Hronom	CODE	0049_SWW_00007	
City	Bratislava	Geographic coordinate system	UTM/UPS	
Country	SLOVAKIA	Map Datum	WGS 84	
		Latitude		
		Longitude		

SAMPLING			
Sampling date:	Sample type	Sampling time	Water Depth:
11.6.2012	River/Lake	10:50	30 cm
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
8.05	Not reported	19.9	Not reported

Comments:

Sampling was performed using a bucket on a rope from the shore. Bottles were rinsed with river water. Samples were transported cooled to the Water Research Institute in the provided polystyrene box with cooling elements. Until dispatch to JRC it was stored at 4°C.

STATION IDENTIFICATION River/Station Ipel/Salka CODE 0049_SWW_00008 City Bratislava Geographic coordinate system UTM/UPS Country SLOVAKIA Map Datum WGS 84 Latitude Longitude Longitude

SAMPLING			
Sampling date:	Sample type	Sampling time	Water Depth:
11.6.2012	River/Lake	11:30	30 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
8.1	Not reported	19.7	Not reported

Comments:

Sampling was performed using a bucket on a rope from the shore. Bottles were rinsed with river water. Samples were transported cooled to the Water Research Institute in the provided polystyrene box with cooling elements. Until dispatch to JRC it was stored at 4°C.

River/Station	Alzette	CODE	0049_SWW_00009
City	Ettelbrück	Geographic coordinate system	UTM/UPS
Country	LUXEMBOURG	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date:	Sample type	Sampling time	Water Depth:
26.6.2012	River/Lake	9:00	Not reported
Water pH 8.0	Water Conductivity (µS/cm) 559 @ 20 °C	Water temperature (°C) 15	Salinity Not reported
Comments:			
None.			

IMPRESSIONS		
Not available		

River/Station	Sûre	CODE	0049_SWW_00010
City	Wasserbillig amont	Geographic coordinate system	UTM/UPS
Country	LUXEMBOURG	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date:	Sample type	Sampling time	Water Depth:
26.6.2012	River/Lake	10:30	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
7.2	375 @ 20 °C	16.7	Not reported
Comments:			
None.			

IMPRESSIONS		
Not available		

River/Station	Chiers	CODE	0049_SWW_00011
City	Rodange Pont à Athus	Geographic coordinate system	UTM/UPS
Country	LUXEMBOURG	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date:	Sample type	Sampling time	Water Depth:
26.6.2012	River/Lake	11:30	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
7.2	600 @ 20 °C	21	Not reported
Comments:			
None.			

IMPRESSIONS		
Not available		

STATION IDENTIFICATION River/Station Wiltz CODE 0049_SWW_00012 City Kautenbach aval embouchure Clerf Geographic coordinate system UTM/UPS Country LUXEMBOURG Map Datum WGS 84 Latitude Latitude Longitude

Gample type River/Lake er Conductivity (μS/cm)	Sampling time 10:00 <i>Water</i>	Water Depth: Not reported
er Conductivity	Water	
,		
$(\mu S/cm)$	temperature (°C)	Salinity
13 @ 20 °C	13.6	Not reported
	13 @ 20 ºC	13 @ 20 °C 13.6

IMPRESSIONS		
Not available		

STATION IDENT	IFICATION		
River/Station	Berounka Lahovice	CODE	0049_SWW_00013
City	Hradec Králové	Geographic coordinate system	UTM/UPS
Country	CZECH REPUBLIC	Map Datum	WGS 84
		Latitude	
		Longitude	

Sampling date:	Sample type	Sampling time	Water Depth:
25.6.2012	River/Lake	12:00	Not reported
Water pH	Water Conductivity (μS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
7.65	Not reported	21.3	Not reported
Comments:			
None.			

STATION IDENT	IFICATION		
River/Station	Lužická Nisa Hrádek	CODE	0049_SWW_00014
City	Hradec Králové	Geographic coordinate system	UTM/UPS
Country	CZECH REPUBLIC	Map Datum	WGS 84
		Latitude	
		Longitude	

AMPLING			
Sampling date:	Sample type	Sampling time	Water Depth:
25.6.2012	River/Lake	11:45	Not reported
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.7	Not reported	16.9	Not reported
Comments:			
None.			

STATION IDENTIFICATION

River/Station	Morava Lanžhot	CODE	0049_SWW_00015
City	Hradec Králové	Geographic coordinate system	UTM/UPS
Country	CZECH REPUBLIC	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date:	Sample type	Sampling time	Water Depth:
26.6.2012	River/Lake	10:40	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
8.8	Not reported	23.1	Not reported
Comments:			
None.			

STATION IDENTIFICATION

River/Station	Odra Bohumín	CODE	0049_SWW_00016
City	Hradec Králové	Geographic coordinate system	UTM/UPS
Country	CZECH REPUBLIC	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date:	Sample type	Sampling time	Water Depth:
26.6.2012	River/Lake	14:15	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
8.0	Not reported	18.9	Not reported
Comments:			
None.			

STATION IDENTIFICATION

River/Station	Vltava Zelčín	CODE	0049_SWW_00017
City	Hradec Králové	Geographic coordinate system	UTM/UPS
Country	CZECH REPUBLIC	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date:	Sample type	Sampling time	Water Depth:
25.6.2012	River/Lake	10:15	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
7.45	Not reported	16.1	Not reported
Comments:			
None.			

STATION IDENTIFICATION

River/Station	Labe Obříství	CODE	0049_SWW_00018
City	Hradec Králové	Geographic coordinate system	UTM/UPS
Country	CZECH REPUBLIC	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
25.6.2012	River/Lake	09:15	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
7.80 Not reported		21.3	Not reported
Comments:			
None.			

STATION IDENTIFICATION

River/Station	Labe Valy	CODE	0049_SWW_00019
City	Hradec Králové	Geographic coordinate system	UTM/UPS
Country	CZECH REPUBLIC	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
26.6.2012	River/Lake	Not reported	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
7.66	Not reported	20.2	Not reported
Comments:			
None.			

River/Station	Jizera Nový Vestec	CODE	0049_SWW_00020
City	Hradec Králové	Geographic coordinate system	UTM/UPS
Country	CZECH REPUBLIC	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
25.6.2012	River/Lake	8:00	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
7.75	Not reported	19.0	Not reported
Comments:			
None.			

River/Station	Orlice Nepasice	CODE	0049_SWW_00021
City	Hradec Králové	Geographic coordinate system	UTM/UPS
Country	CZECH REPUBLIC	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
26.6.2012	River/Lake	12:15	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
7.75	Not reported	17.3	Not reported
Comments:			
None.			

STATION IDENTIFICATION River/Station Kristiansand

River/Station	Kristiansand	CODE	0049_SWW_00022
City	Oslo	Geographic coordinate system	UTM/UPS
Country	NORWAY	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
6.6.2012	Sea	8:50 CET (6:50 UTC)	75 cm to 125 cm
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			

Comments:

The water samples were taken with a 5 L Niskin water sampler bottle, with the center of the bottle at 1 m depth. The samples were then drained through the sampler drainplug into the bottle. The sample bottles were NOT conditioned with the sample water. The Niskin bottle does not contain Teflon.

IMPRESSIONS

STATION IDENTIFICATION River/Station Bømlo CODE 0049_SWW_00023 City Oslo Geographic coordinate system UTM/UPS Country NORWAY Map Datum WGS 84 Latitude Longitude Longitude

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
12.6.2012	Sea	10:00-10:30	20 cm
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
	ened above water and quic bottle the second time to lled.		

IMPRESSIONS

STATION IDENTIFICATION				
River/Station	Trondheimsfjorden	CODE	0049_SWW_00024	
City	Trondheim	Geographic coordinate system	UTM/UPS	
Country	NORWAY	Map Datum	WGS 84	
		Latitude		
		Longitude		

Commontes			
Not reported	Not reported	13	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
6.6.2012	Sea	Not reported	20 cm
Sampling date	Sample type	Sampling time	Water Depth
SAMPLING			

Comments:

Water collector may contain Teflon. The water samples were transferred from the water sampler to the bottles using a silicone tube attached to the water sampler. The water sampler is normally used for sea water sampling. The sampler was not pre cleaned. The cap was put upside down to avoid contamination. The bottles were not conditioned with the sample matrix. Gloves were not used. The samples were collected onboard a boat.

IMPRESSIONS

STATION IDENTIFICATION River/Station Oslofjorden CODE 0049_SWW_00025 City Oslo Geographic coordinate system NORWAY Country Map Datum WGS 84

omments:			
Not reported	Not reported	Not reported	Not reported
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
21.5.2012	Sea	11:00	50 cm
Sampling date	Sample type	Sampling time	Water Depth
AMPLING			

The water samples were taken with a 5L Niskin water sampler. The sample was taken at 25-75 cm depth (average 0.5 m). The water was drained through the sampler's plug. The bottles were conditioned twice with sample water. The bottles does not contain Teflon. There was no blank bottle provided in the shipment!!

IMPRESSIONS

Not available

UTM/UPS

Latitude Longitude

STATION IDENT	IFICATION		
River/Station	Skogsfjordevatnet	CODE	0049_SWW_00026
City	Tromsö	Geographic coordinate system	UTM/UPS
Country	NORWAY	Map Datum	WGS 84
		Latitude	
		Longitude	

Sampling date	Sample type	Sampling time	Water Depth
24.7.2012	River/Lake	Not reported	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			

IMPRESSIONS		
Not available		

STATION IDENTIFICATIONRiver/StationMjøsaCityOslo

City	Oslo	Geographic coordinate system	UTM/UPS
Country	NORWAY	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING Sampling date Sample type Sampling time Water Depth 18.6.2012 **River/Lake** 12:00 20 cm Water Conductivity Water Water pH (µS/cm) *temperature (°C)* Salinity Not reported Not reported Not reported Not reported Comments: 20 cm by immersing bottles, no sampler was used.

IMPRESSIONS

Not available

CODE 0049_SWW_00027

STATION IDENT	FICATION		
River/Station	Femunden	CODE	0049_SWW_00029
City	Dreusjco	Geographic coordinate system	UTM/UPS
Country	NORWAY	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Dept
25.6.2012	Sea	10:00	20-30 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

STATION IDENTIFICATION River/Station Vansjø CODE 0049_SWW_00030 City Oslo Geographic coordinate system UTM/UPS Country NORWAY Map Datum WGS 84 Latitude Longitude Longitude

SAMPLING				
Sampling date:	Sample type	Sampling time	Water Depth:	
18.6.2012	River/Lake	14:00	20 cm	
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity	
Not reported	Not reported	Not reported	Not reported	
Comments:				
At 20 cm by immersing bottles no sampler was used.				

IMPRESSIONS

STATION IDENT	IFICATION		
River/Station	Danube Upsstream	CODE	0049_SWW_00031
City	Budapest	Geographic coordinate system	UTM/UPS
Country	HUNGARY	Map Datum	WGS 84
		Latitude	
		Longitude	

Sampling time 10:20 Water temperature (°C)	Water Depth 20 cm Salinity
Water	
	Salinity
	,
20	Not reported

IMPRESSIONS		
Not available		

STATION IDENTIFICATION				
River/Station	Danube downstream	CODE	0049_SWW_00032	
City	Budapest	Geographic coordinate system	UTM/UPS	
Country	HUNGARY	Map Datum	WGS 84	
		Latitude		
		Longitude		

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
27.06.2012	River	11:00	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
8.17	302	20.2	Not reported
Comments:			
None.			

IMPRESSIONS		
Not available		


STATION IDENTIFICATION

River/Station	Kenyérmezei-patak downstream	CODE	0049_SWW_00033
City	Györ	Geographic coordinate system	UTM/UPS
Country	HUNGARY	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
27.6.2012	River	12:30	14 cm
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
7.67	1097	18.5	Not reported

Comments:

Unfortunately the water level of Kenyérmezei-patak was too low. We show it on the enclosed photos. So we didn't know sampling from suitable depth. First we opened the bottle of fieldblank. Then we conditioned the bottles shipped to us by the JRC with the sample. Next we took the samples into each bottle (10 L). The sampling method was : we immersed the stainless steel sampler upside down, and turned below the surface of the river. We filled the bottles leaving a small air headspace. We didn't use Teflon during sampling. Afterwards we took the bottles in the cooling boxes shipped to us by JRC. Then we closed the bottle of fieldblank. We transported the cooled samples in the Laboratory. We stored the samples in the dark at 4°C until dispatch. We refreeze the cooling elements for the shipping

JRC EU wide monitoring – Watch List Pilot Exercise

Sampling Location card

STATION IDENTIFICATION				
River/Station	Mosoni-Duna at Vének downstream	CODE	0049_SWW_00034	
City	Györ	Geographic coordinate system	UTM/UPS	
Country	HUNGARY	Map Datum	WGS 84	
		Latitude		
		Longitude		

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
26.6.2012	River	13:15	50 cm
Water pH	Water Conductivity (µS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
7.13	361	22.2	Not reported

Comments:

First we opened the bottle of fieldblank. Then we conditioned the bottles shipped to us by the JRC with the sample. Next we took the samples into each bottle (10 L). The sampling method was: we immersed the stainless steel sampler upside down, and turned below the surface of the river. We filled the bottles leaving a small air headspace. We didn't use Teflon during sampling. Afterwards we took the bottles in the cooling boxes shipped to us by JRC. Then we closed the bottle of fieldblank. We transported the cooled samples in the Laboratory. We stored the samples in the dark at 4°C until dispatch. We refreeze the cooling elements for the shipping.

STATION IDENT	STATION IDENTIFICATION				
River/Station	Bábony-patak / Sajóecseg	CODE	0049_SWW_00035		
City	Miskolc	Geographic coordinate system	UTM/UPS		
Country	HUNGARY	Map Datum	WGS 84		
		Latitude			
		Longitude			

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
25.06.2012	River/Lake	9:00	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
8.24	Not reported	21	Not reported
Comments:			
Sampling procedure	MSZ EN ISO 5667-1:2007	, MSZ ISO 5667-6:1995	5

IMPRESSIONS

STATION IDENTIFICATION River/Station Sajó / Sajólád CODE 0049_SWW_00036 City Miskolc Geographic coordinate system UTM/UPS Country HUNGARY Map Datum WGS 84 Latitude Latitude Latitude

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
25.06.2012	River/Lake	10:00	Not reported
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
8.39	Not reported	23.3	Not reported
Comments:			
Sampling procedure	MSZ EN ISO 5667-1:2007	, MSZ ISO 5667-6:1995	5

IMPRESSIONS

STATION IDENTIFICATION				
River/Station	Hortobágy-Berettyó / Mezőtúr	CODE	0049_SWW_00037	
City	Miskolc	Geographic coordinate system	UTM/UPS	
Country	HUNGARY	Map Datum	WGS 84	
		Latitude		
		Longitude		

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
27.06.2012	River/Lake	9:20	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
7.9	Not reported	23.3	Not reported
Comments:			
Sampling procedure	MSZ EN ISO 5667-1:2007	, MSZ ISO 5667-6:1995	5

IMPRESSIONS

STATION IDENT	IFICATION		
River/Station	Zagyva / Újszász	CODE	0049_SWW_00038
City	Miskolc	Geographic coordinate system	UTM/UPS
Country	HUNGARY	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
27.6.2012	River/Lake	10:45	Not reported
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
8.0	Not reported	21.5	Not reported
Comments:			
Sampling procedure	MSZ EN ISO 5667-1:2007	, MSZ ISO 5667-6:1995	5

TIM		ECC		
	РК	ESS	го	

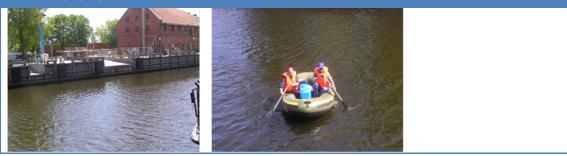
STATION IDENT	IFICATION		
River/Station	Nemunas žemiau Kauno ties Kulautuva	CODE	0049_SWW_00039
City	Kaunas	Geographic coordinate system	UTM/UPS
Country	LITHUANIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
28.5.2012	River/Lake	09.30	35 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
8.28	505	17.8	Not reported

Comments:

6 plastic bottles 1 L filled with water, 4 aluminium 1L bottles filled with water, and 1 plastic 1L bottle empty (blank). Sampling spot is aprx. 20 km from Kaunas city centre. Sampling procedure: ISO 5667-6:2005 Water quality. Sampling - Part 6: Guidance on sampling of rivers and streams.

STATION IDENT	IFICATION		
River/Station	Nemunas zemiau Rusnes, zemiau Leites	CODE	0049_SWW_00040
City	Klaipeda	Geographic coordinate system	UTM/UPS
Country	LITHUANIA	Map Datum	WGS 84
		Latitude	
		Longitude	


SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
28.5.2012	River/Lake	11.35	20 cm
<i>Water pH</i> 8.4	Water Conductivity (µS/cm) 439	Water temperature (°C) 18	Salinity Not reported
Comments:			
Sampling protocol: I sampling of rivers ar	SO 5667-6:2005. Water q nd streams	uality-Sampling- Part 6	: Guidance on

STATION IDENT	IFICATION		
River/Station	Akmena – Dane ziotyse	CODE	0049_SWW_00041
City	Klaipeda	Geographic coordinate system	UTM/UPS
Country	LITHUANIA	Map Datum	WGS 84
		Latitude	
		Longitude	

		Sampling time	Water Depth
28.5.2012	River/Lake	13.50	20 cm
Water pH	Water Conductivity (µS/cm)	Water temperature (°C)	Salinity
7.7	942	19	Not reported

sampling of rivers and streams

STATION IDENT	IFICATION		
River/Station	Neris aukščiau Paneriu žemiau Grigiškiu	CODE	0049_SWW_00042
City	Vilnius	Geographic coordinate system	UTM/UPS
Country	LITHUANIA	Map Datum	WGS 84
		Latitude	
		Longitude	

Sampling date	Sample type	Sampling time	Water Depth:
28.5.2012	River/Lake	12.30	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.82	419	17.5	Not reported
Comments:			
None.			

<image>

STATION IDENT	IFICATION		
River/Station	Venta zemiau Mazeikiu	CODE	0049_SWW_00043
City	Siauliai	Geographic coordinate system	UTM/UPS
Country	LITHUANIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
29.5.2012	River	8.15	Not reported
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
8.15	524	16.9	Not reported
Comments:			
ISO 5667-6:2005			

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Kulpe ties Kryziu kalnu	CODE	0049_SWW_00044
City	Siauliai	Geographic coordinate system	UTM/UPS
Country	LITHUANIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
30.5.2012	River/Lake	13.35	Not reported
	Water Conductivity	Water	o // //
Water pH	(µS/cm)	temperature (°C)	Salinity
8.15	1069	15.3	Not reported
Comments:			
None.			

IMPRESSIONS		
Not available		

STATION IDENTIFICATION River/Station Meuse CODE 0049_SWW_00045 City Liege Geographic coordinate system UTM/UPS Country BELGIUM (Wallonie) Map Datum WGS 84 Latitude Latitude Longitude

<i>Comments:</i> None.			
7.78	346	17.2	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
26.6.2012	River/Lake	8:45	20 cm
Sampling date	Sample type	Sampling time	Water Depth

IMPRESSIONS		
Not available		

STATION IDENTIFICATION River/Station Meuse CODE 0049_SWW_00046 City Liege Geographic coordinate system UTM/UPS Country BELGIUM (Wallonie) Map Datum WGS 84 Latitude Longitude Longitude

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
27.6.2012	River/Lake	9:50	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.89	396	19.4	Not reported
Comments:			
None.			

IMPRESSIONS		
Not available		

STATION IDENTIFICATION River/Station Escaut CODE 0049_SWW_00047 City Liege Geographic coordinate system UTM/UPS Country BELGIUM (Wallonie) Map Datum WGS 84 Latitude Latitude Latitude

Water Conductivity	vvalei	
	Water	
-		20 cm
19.6.2012 River/Lake	11:30	20 c

IMPRESSIONS		
Not available		

STATION IDENT	IFICATION		
River/Station	Amblève	CODE	0049_SWW_00048
City	Liege	Geographic coordinate system	UTM/UPS
Country	BELGIUM (Wallonie)	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
12.6.2012	River/Lake	11:30	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.88	151	15.7	Not reported
Comments:			
None.			

IMPRESSIONS		
Not available		

STATION IDENT	FICATION		
River/Station	Garyllis R	CODE	0049_SWW_00049
City	Limassol	Geographic coordinate system	UTM/UPS
Country	CYPRUS	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date:	Sample type	Sampling time	Water Depth:
Not reported	River/Lake	Not reported	Not reported
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
8.234	233	21.1	Not reported
Comments:			
None.			
None.			

IMPRESSIONS	
Not available	

STATION IDENT	FICATION		
River/Station	Kouris R	CODE	0049_SWW_00050
City	Limassol	Geographic coordinate system	UTM/UPS
Country	CYPRUS	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
Not reported	River/Lake	Not reported	Not reported
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
8.957	1144	19.3	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENTIFICATION

River/Station	Kargotis/Evrychou	CODE	0049_SWW_00051
City	Nicosia	Geographic coordinate system	UTM/UPS
Country	CYPRUS	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
3.6.2012	River/Lake	10:00	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
8.6	710	17.1	Not reported
Commenter			

Comments:

Sampling procedure as required in the watch list pilot exercise instructions was followed. -clothing of sampling personnel was according to point 4d of instructions

-bottles were conditioned with the sample (rinsed)

-bottles were immersed upside down, and turned below the surface

-samples were stored in the dark and @ 4 C until the courier pick up.

IMPRESSIONS

STATION IDENTIFICATION

River/Station	Hliðardalsá	CODE	0049_SWW_00052
City	Bolungarvik	Geographic coordinate system	UTM/UPS
Country	ICELAND	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
18.6.2012	River/Lake	Not reported	Not reported
<i>Water pH</i> 8.61	Water Conductivity (µS/cm) 78.3	Water temperature (°C) 4.9	Salinity Not reported
Comments:			
None.			

IMPRESSIONS		
Not available		

STATION IDENT	IFICATION		
River/Station	Eyjafjörður fjord	CODE	0049_SWW_00053
City	Akulreyri	Geographic coordinate system	UTM/UPS
Country	ICELAND	Map Datum	WGS 84
		Latitude	
		Longitude	

Sample type	Sampling time	Water Depth
Sea	11:30	20 cm
Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
31.9 mS/cm	8.5	Not reported
-	Sea Water Conductivity (µS/cm)	Sea11:30Water Conductivity (μS/cm)Water temperature (°C)

IMPRESSIONS		
Not available		

STATION IDENT	IFICATION		
River/Station	Ölfusá/ Ölfusárós	CODE	0049_SWW_00054
City	Reykjavik	Geographic coordinate system	UTM/UPS
Country	ICELAND	Map Datum	WGS 84
		Latitude	
		Longitude	

Comments:			
Not reported	Not reported	Not reported	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
25.6.2012	River/Lake	8:30	20 cm
SAMPLING Sampling date	Sample type	Sampling time	Water Depth

Sampling bottle mounted at a Nasco sampling pole. The sampling pole is about 2 m and extendable. Bottles immersed upside down from the shore and turned below the surface.

IMPRESSIONS

STATION IDENTIFICATION River/Station Lake Þingvallavatn CODE 0049_SWW_00055 City Reykjavik Geographic coordinate system UTM/UPS Country ICELAND Map Datum WGS 84 Latitude Latitude Latitude

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
25.6.2012	Lake	9:30	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.5-8.0	76	9.5	Not reported
Comments:			

Comments:

The sampling station is at the lake outlet. Sampling bottle mounted at a Nasco sampling pole. The sampling pole is about 2 m and extendable. Bottles immersed upside down from the shore and turned below the surface.

IMPRESSIONS

STATION IDENTIFICATION

River/Station	Kollafiörður	CODE	0049_SWW_00056
City	Reykjavik	Geographic coordinate system	UTM/UPS
Country	ICELAND	Map Datum	WGS 84
		Latitude	
		Longitude	

Not reported	Not reported	Not reported	Not reported	
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity	
25.6.2012	Sea	11:00	20 cm	
Sampling date	Sample type	Sampling time	Water Depth	
SAMPLING	Sample type	Sampling time	Water Depth	

The sampling station is within the Reykjavik metropolitan area. Sampling bottle mounted at a Nasco sampling pole. The sampling pole is about 2 m and extendable. Bottles immersed upside down from the shore and turned below the surface.

IMPRESSIONS

STATION IDENT	IFICATION		
River/Station	Il-Port il-Kbir	CODE	0049_SWW_00057
City	Il-Port il-Kbir	Geographic coordinate system	UTM/UPS
Country	MALTA	Map Datum	WGS 84
		Latitude	
		Longitude	

Sampling date	Sample type	Sampling time	Water Depth
6.6.2012	Sea	9:30	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
8.16	53.62	21.43	38.43
Comments:			
None.			

IMPRESSIONS			
Not available			

STATION IDENT	IFICATION		
River/Station	Ix-Xghajra	CODE	0049_SWW_00058
City	Ix-Xghajra	Geographic coordinate system	UTM/UPS
Country	MALTA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING Sampling date	Sample type	Sampling time	Water Depth
6.6.2012	Sea	11:10	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
8.11	53.87	21.51	38.54
Comments:			
None.			

IMPRESSIONS

STATION IDENT	IFICATION		
River/Station	Il-Port ta' Marsaxlokk	CODE	0049_SWW_00059
City	Il-Port ta' Marsaxlokk	Geographic coordinate system	UTM/UPS
Country	MALTA	Map Datum	WGS 84
		Latitude	
		Longitude	

Sampling date	Sample type	Sampling time	Water Depth
6.6.2012	Sea	11:35	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
8.15	53.64	21.32	38.51
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Maas, Kinrooi – Ophoven, T&T- meetpunt Maas	CODE	0049_SWW_00060
City	Ghent	Geographic coordinate system	UTM/UPS
Country	BELGIUM (Flemish Region)	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
2.7.2012	River/Lake	10:25	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.95 444		20.4	Not reported
Comments:			
None.			

STATION IDENT	IFICATION		
River/Station	Beneden Zeeschelde, Antwerpen, eindpunt Schelde	CODE	0049_SWW_00061
City	Ghent	Geographic coordinate system	UTM/UPS
Country	BELGIUM (Flemish Region)	Map Datum	WGS 84
		Latitude	
		Longitude	

Sampling date	Sample type	Sampling time	Water Depth
2.7.2012	River/Lake	9:35	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.88	11910	19.4	7.63
Comments:			
lone.			

IMP	RESSIONS		
Not a	available		

STATION IDENT	IFICATION		
River/Station	Bovenschelde, Zwalm, T&T-meetpunt op de Schelde	CODE	0049_SWW_00062
City	Ghent	Geographic coordinate system	UTM/UPS
Country	BELGIUM (Flemish Region)	Map Datum	WGS 84
		Latitude	
		Longitude	

Sampling date	Sample type	Sampling time	Water Depth
3.7.2012	River/Lake	8:40	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.69	Not reported	21.3	Not reported
Comments:			
lone.			

IMPRESSIONS			
Not available			

STATION IDENT	IFICATION		
River/Station	IJzer, Poperinge, Roesbrugge, Bergenstraat	CODE	0049_SWW_00063
City	Ghent	Geographic coordinate system	UTM/UPS
Country	BELGIUM (Flemish Region)	Map Datum	WGS 84
		Latitude	
		Longitude	

AMPLING Sampling date	Sample type	Sampling time	Water Depth
			•
2.7.2012	River/Lake	9:40	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
8.33	1004	17.9	Not reported
Comments:			
None.			

IMPRESSIONS
Not available

STATION IDENTIFICATION River/Station Mannswörth CODE 0049_SWW_00064 City Vienna Geographic coordinate system UTM/UPS Country AUSTRIA Map Datum WGS 84 Latitude Longitude Longitude

Sampling date	Sample type	Sampling time	Water Depth
4.6.2012	River/Lake	6:05	Not reported
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
8.4	662	Not reported	Not reported
omments:			
one.			

IMPRESSIONS
Not available

STATION IDENT	STATION IDENTIFICATION				
River/Station	Schmida/Absdorf	CODE	0049_SWW_00065		
City	Vienna	Geographic coordinate system	UTM/UPS		
Country	AUSTRIA	Map Datum	WGS 84		
		Latitude			
		Longitude			

Sample type	Sampling time	
	Sampling time	Water Depth
River/Lake	6:40	15 cm
Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
753	Not reported	Not reported
	<i>Water Conductivity</i> (µS/cm)	Water Conductivity Water (µS/cm) temperature (°C)

IMPRESSIONS		
Not available		

STATION IDENT	STATION IDENTIFICATION				
River/Station	Hainburg/Donau	CODE	0049_SWW_00066		
City	Vienna	Geographic coordinate system	UTM/UPS		
Country	AUSTRIA	Map Datum	WGS 84		
		Latitude			
		Longitude			

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
4.6.2012	River	8:35	15 cm
Water pH	<i>Water Conductivity</i> (µS/cm)	<i>Water</i> temperature (°C)	Salinity
8.5	310	Not reported	Not reported
Comments:			
None.			
None.			

IMPRESSIONS		
Not available		

STATION IDENT	IFICATION		
River/Station	Antiesen Antiesenhofen	CODE	0049_SWW_00067
City	Vienna	Geographic coordinate system	UTM/UPS
Country	AUSTRIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
14.6.2012	River/Lake	7:55	Not reported
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS		
Not available		

STATION IDENTIFICATION River/Station Jochenstein CODE 0049_SWW_00068 City Vienna Geographic coordinate system UTM/UPS Country AUSTRIA Map Datum WGS 84 Latitude Longitude Longitude

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
14.6.2012	River/Lake	11:00	Not reported
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Krems Ansfelden	CODE	0049_SWW_00069
City	Vienna	Geographic coordinate system	UTM/UPS
Country	AUSTRIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
28.6.2012	River/Lake	12:20	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Mur – Straßenbrücke Spielfeld	CODE	0049_SWW_00070
City	Graz	Geographic coordinate system	UTM/UPS
Country	AUSTRIA	Map Datum	WGS 84
		Latitude	
		Longitude	

AMPLING	Completure	Compling time	Water Depth
Sampling date	Sample type	Sampling time	Water Depth
20.06.2012	River/Lake	12:00	Not reported
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
8.0	255	21	Not reported
Comments:			
lone.			

IMPRESSIONS		
Not available		

STATION IDENT	IFICATION		
River/Station	Dornbirner Ach; Lauterach	CODE	0049_SWW_00071
City	Feldkirch	Geographic coordinate system	UTM/UPS
Country	AUSTRIA	Map Datum	WGS 84
		Latitude	
		Longitude	

21.6.2012	River/Lake	8:45	15 cm
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
7.80	567	17.3	Not reported

STATION IDENT	IFICATION		
River/Station	Danube/jochenstein	CODE	0049_SWW_00072
City	Deggendorf	Geographic coordinate system	UTM/UPS
Country	GERMANY	Map Datum	WGS 84
		Latitude	
		Longitude	

Sample type	Sampling time	Water Depth
River	9:30	Not reported
Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
260	13.7	Not reported
	River Water Conductivity (µS/cm)	River9:30Water Conductivity (µS/cm)Water temperature (°C)

IMPRESSIONS	
AL CAL	
Contraction of the second seco	
4.000	

STATION IDENT	IFICATION		
River/Station	Main , Km 4	CODE	0049_SWW_00073
City	Hessen	Geographic coordinate system	UTM/UPS
Country	GERMANY	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
25.6.2012	River	7.10-7.26	150 cm
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
7.5	631	20.9	Not reported
Comments:			
None.			

IMPRESSIONS

STATION IDENT	IFICATION		
River/Station	Neckar/Mannheim	CODE	0049_SWW_00074
City	Karlsruhe	Geographic coordinate system	UTM/UPS
Country	GERMANY	Map Datum	WGS 84
		Latitude	
		Longitude	

AMPLING			
Sampling date	Sample type	Sampling time	Water Depth
25.06.2012	River	12:50	30-40 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.6	865	20.9	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Rhinel/Kleve-Bimmen	CODE	0049_SWW_00075
City	Recklinghausen	Geographic coordinate system	UTM/UPS
Country	GERMANY	Map Datum	WGS 84
		Latitude	
		Longitude	

AMPLING			
Sampling date	Sample type	Sampling time	Water Depth
13.6.2012	River/Lake	12:45-12:55	50 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.95	535	8.6	Not reported

IMPRESSIONS	
Not available	

STATION IDENTIFICATION River/Station Wupper /Opladen CODE 0049_SWW_00076 City Recklinghausen Geographic coordinate system UTM/UPS Country GERMANY Map Datum WGS 84 Latitude Longitude Longitude

one.			
omments:			
7.72	449	14.8	Not reported
Water pH	(µS/cm)	temperature (°C)	Salinity
	Water Conductivity	Water	
14.0.2012	RIVER/Lake	8:40	Not reported
14.6.2012	River/Lake	8:40	Not reported
Sampling date	Sample type	Sampling time	Water Depth

IMPRESSIONS		
Not available		

STATION IDENTIFICATION

River/Station	Niers	CODE	0049_SWW_00077
City	Recklinghausen	Geographic coordinate system	UTM/UPS
Country	GERMANY	Map Datum	WGS 84
		Latitude	
		Longitude	

AMPLING			
Sampling date	Sample type	Sampling time	Water Depth
14.6.2012	River/Lake	10:24	100 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.6	691	15.5	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENTIFICATION			
River/Station	Berkel/BS 26, Landesgrenze	CODE	0049_SWW_00078
City	Recklinghausen	Geographic coordinate system	UTM/UPS
Country	GERMANY	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING				
Sampling date	Sample type	Sampling time	Water Depth	
19.6.2012 River/Lake		8:25	50 cm	
	Water Conductivity	Water		
Water pH	(µS/cm)	temperature (°C)	Salinity	
7.92	60 ms/m	15.9	Not reported	
Comments:				
Entnahme von Brück	e mit Eimer.			

IMPRESSIONS		
Not available		

STATION IDENT	STATION IDENTIFICATION			
River/Station	Elbe/ Schmilka	CODE	0049_SWW_00079	
City	Nossen	Geographic coordinate system	UTM/UPS	
Country	GERMANY	Map Datum	WGS 84	
		Latitude		
		Longitude		

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
20.06.2012	River	15:45	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
7.9	421	20	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Moselle at Koblenz	CODE	0049_SWW_00080
City	Koblenz	Geographic coordinate system	UTM/UPS
Country	GERMANY	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
13.06.2012	River/Lake	10:30	100 cm
<i>Water pH</i> 7.7	Water Conductivity (μS/cm) 962 (at 25°C)	<i>Water</i> <i>temperature</i> (°C) 19	Salinity Not reported

Comments:

Only 3 aluminium bottles had been available. We filled our own additional aluminium bottle and gave it direct to our BfG-laboratory, which is involved in the watch list analysis programme with the two organic pollutants Triclosan and Bisphenol A. The code number is taken from the 7. (surplus) plastic bottle: 0049_SWW_00080_10_00 Koblenz, with barcode Nr. AA21295.

IMPRESSIONS

Not available

STATION IDENTIFICATION

River/Station	Ems / Herbrum	CODE	0049_SWW_00081
City	Meppen	Geographic coordinate system	UTM/UPS
Country	GERMANY	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
21.06.2012	River	12:30	20 cm
Water pH	Water Conductivity (µS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
7.6	1075	18.4	Not reported
Comments:			
Die Blank-Flasche wu	ırde in die Ems geweht un	d kann daher nicht gelie	efert werden

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Elbe Seemannshöft	CODE	0049_SWW_00082
City	Hamburg	Geographic coordinate system	UTM/UPS
Country	GERMANY	Map Datum	WGS 84
		Latitude	
		Longitude	

lone.			
Comments:			
7.8	945	19.7	Not reported
Water pH	(µS/cm)	temperature (°C)	Salinity
	Water Conductivity	Water	
3.7.2012	River/Lake	10:30	Not reported
Sampling date	Sample type	Sampling time	Water Depth
SAMPLING			

IMPRESSIONS

STATION IDENTIFICATION

River/Station	Oder/ Hohenwutzen	CODE	0049_SWW_00083
City	Frankfurt (Oder)	Geographic coordinate system	UTM/UPS
Country	GERMANY	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
27.08.2012	River	12:25	Not reported
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
8.72	985	20.7	Not reported
Comments:			
We took the water sa	amples corresponding to y	our instruction.	

STATION IDENT	IFICATION		
River/Station	Trave / Lübeck - Moisling	CODE	0049_SWW_00084
City	Flintbek	Geographic coordinate system	UTM/UPS
Country	GERMANY	Map Datum	WGS 84
		Latitude	
		Longitude	

AMPLING			
Sampling date	Sample type	Sampling time	Water Depth
18.06.2012	River	12:50	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
8.08	955	18.1	Not reported
Comments:			
None.			

STATION IDENTIFICATION River/Station Peene/Anklam CODE 0049_SWW_00085 City Güstrow Geographic coordinate system UTM/UPS Country GERMANY Map Datum WGS 84 Latitude Latitude Latitude

Sampling date 19.06.2012	Sample type River	Sampling time 9:54	Water Depth 20 cm
Water pH	<i>Water Conductivity</i> (µS/cm)	Water temperature (°C)	Salinity
7.78	738	20.1	0.3

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Weser, Bremen Hemelingen	CODE	0049_SWW_00086
City	Bremen	Geographic coordinate system	UTM/UPS
Country	GERMANY	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
11.06.2012	River/Lake	9:30	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
7.8	1325	17.7	Not reported

Comments:

Sampling procedure: I throw a 15 I stainless steel bucket with a rope approximately 5 meters over the water. The bucket immerse 1 m under the water and I haul in the bucket. I wash the bottle once and then I dive the bottle under the water (20 cm) and fill it. I use one bucket filling for two bottles, so throw the bucket 5 times over the water. The bottles stood over night in the refrigerator.

STATION IDENT	IFICATION		
River/Station	Treene / Friedrichstadt	CODE	0049_SWW_00087
City	Flintbek	Geographic coordinate system	UTM/UPS
Country	GERMANY	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
18.06.2012	River	9:40	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
8.51	523	17.3	Not reported

Comments:

Each sample bottle was conditioned with the sample. The bottles were filled leaving a small air headspace. The bottles were immersed upside down and turned below the surface.

STATION IDENT	IFICATION		
River/Station	Saale, Groß Rosenburg	CODE	0049_SWW_00088
City	Halle	Geographic coordinate system	UTM/UPS
Country	GERMANY	Map Datum	WGS 84
		Latitude	
		Longitude	

Sampling date	Sample type	Complianting	
	Sumple type	Sampling time	Water Depth
20.06.2012	River	09:38 - 09:55	20 – 50 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
8.0	1880	20.3	Not reported
Comments:			
None.			

IMPRESSIONS

STATION IDENT	IFICATION		
River/Station	Station 101A. Transitional waters in the Gulf of Riga	CODE	0049_SWW_00089
City	Riga	Geographic coordinate system	UTM/UPS
Country	LATVIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
19.5.2012	Sea	11:30	10 m
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
8.8 (at 6.0 °C)	8300	6.0	4.5 PSU
Comments:			

Air temperature 18.0 °C. Thermocline water level.

!!! Seems like that oily products cover insertion of the aluminium bottles.

Sampling was done with "Niskin" type PVC bathometer (KC Denmark) from the vessel. Before dispatch the samples were stored in the dark at 4°C

IMPRESSIONS


Not available

STATION IDENT	IFICATION		
River/Station	Daugava River on border of Belarus	CODE	0049_SWW_00090
City	Riga	Geographic coordinate system	UTM/UPS
Country	LATVIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
07.5.2012	River	14:00	50 cm
Water pH	<i>Water Conductivity (µS/cm)</i>	<i>Water</i> temperature (°C)	Salinity
7.58	168.8	14.3	Not reported

Comments:

Measurement of water depth is not possible due to strong currents 0.9 m/s. Foam on the water surface was observed; the origin or source was unknown. Air temperature 10.1 °C.!!! We discover that one insertion of the aluminium bottle was contaminated at receiving moment. Seems like oily product. Sampling was done with telescopic rod equipped with sampling bottle holder (contains plastic) from the riverside. Bottles were immersed with upside down and turned under water. Before dispatch the samples were stored in the dark at 4°C.

STATION IDENT	IFICATION		
River/Station	Musa River on border with Lithuania	CODE	0049_SWW_00091
City	Riga	Geographic coordinate system	UTM/UPS
Country	LATVIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
29.5.2012	River	12.20	30 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
8.03	840	18.4	Not reported
Comments:			

Air temperature 14.3 °C. Slow water current. Sampling was done from inflatable boat without engine. Bottles were immersed with upside down and turned under water by hands. Glows were used. Before dispatch the samples were stored in the dark at 4°C.

STATION IDENTIFICATION River/Station Kisezers Lake CODE 0049_SWW_00092 City Riga Geographic coordinate system UTM/UPS Country LATVIA Map Datum WGS 84 Latitude Longitude Longitude

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
08.5.2012	Lake	11.00	30 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
8.16	420	14.3	Not reported
Comments:			
Lake can be affected Air temperature 16.7			

IMPRE	SSIO	NS	
		-	
	2 30		
	A STATE	-	

STATION IDENTIFICATION

River/Station	Misa River downward to Olaine town	CODE	0049_SWW_00093
City	Riga	Geographic coordinate system	UTM/UPS
Country	LATVIA	Map Datum	WGS 84
		Latitude	
		Longitude	

Sampling date	Sample type	Sampling time	Water Depth
19.5.2012	River	11.40	50 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.43	579	13.5	Not reported
Comments:			
River width at sampli	ing site 7 m. Currents 0.5	m/s.	
Air temperature 23.0	-		

!!! Seems like that oily products cover insertion of the aluminium bottles.

IMPRESSIONS

Not available

STATION IDENT	IFICATION		
River/Station	Lielupe River above Jelgava town	CODE	0049_SWW_00094
City	Riga	Geographic coordinate system	UTM/UPS
Country	LATVIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
29.5.2012	River	14.30	30 cm
Water pH	<i>Water Conductivity</i> (µS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
7.93	546	7.93	Not reported
Comments:			

Comments:

Air temperature 13.8°C. Water current 0.3 m/s.Sampling was done from inflatable boat without engine. Bottles were immersed with upside down and turned under water by hands. Glows were used. Before dispatch the samples were stored in the dark at 4°C.

IMPRESSIONS

STATION IDENTIFICATION River/Station Pinios River

River/Station	Pinios River	CODE	0049_SWW_00095
City	Larissa	Geographic coordinate system	UTM/UPS
Country	GREECE	Map Datum	WGS 84
		Latitude	
		Longitude	

?			
Not reported	Not reported	Not reported	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
25.06.2012	River	10:00	20 cm
Sampling date	Sample type	Sampling time	Water Depth
SAMPLING			

Comments:

The samples have been collected with the shipped bottles. The bottles have been immersed in the water below the surface, around 20 cm, and turned upside down. Then, they have been opened, water sample has been collected and they have been finally closed beneath the water surface. The bottles were not conditioned.

IMPRESSIONS

JRC EU wide monitoring – Watch List Pilot Exercise

Sampling Location card

STATION IDENTIFICATION					
River/Station	Strymonas/Promaxon	CODE	0049_SWW_00096		
City	Sindon Thessaloniki	Geographic coordinate system	UTM/UPS		
Country	GREECE	Map Datum	WGS 84		
		Latitude			
		Longitude			

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
3.7.2012	River	11:00	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Commenter			

Comments:

Sampling took place without problem, approx. 300m downstream the default point. Shifting the actual sampling point was imperative to achieve appropriate access to the river and safe conditions for the field team. No confluence or potential pollutant discharge occurs between the default and the shifted sampling point. The actual coordinates of the shifted point are: Latitude: 41.2227767 Longitude: 23.716568. Air temperature during transportation varied from 25-35 °C, (approx. 32°C during sampling), whilst average temperature in the transportation vehicle was in the range of 22-24 °C. All procedures and sampling instructions provided by the JRC in the framework of the Watch List exercise were followed. The person conducting sampling woe single use latex gloves and a watertight uniform made of PVC. Sampling was initiated opening the blank sample bottle, which was tapped after the sampling procedure was terminated. During the sampling procedure the blank bottle and its lid were kept by one of the field team members to avoid accidental cross contamination. The field operator conducted the sampling from within the river, immersed the bottles upside down and then turned the bottle upside, below the surface at 20 cm depth. No contact of the sampling bottles to the watertight uniform occurred at any time. The same procedure was followed for 10 bottles, which were stored temporarily in the cooling boxes which contained freshly cooled cooling elements. Sampling bottles were kept in the cooling boxes containing cooling elements throughout the entire field operation and until samples were transported to the institute's headquarters (maximum transportation time under the defined conditions 12 hours). Collected samples were stored overnight at 4°C. Before shipment to the JRC all samples were placed again in the cooling boxes with new cooling elements, which were then placed in the carton boxes for shipment.

PILOT STUDY ON THE FEASIBILITY OF "WATCH LIST" MONITORING

STATION IDENT	IFICATION		
River/Station	Evros	CODE	0049_SWW_00097
City	Sindos-Thessaloniki	Geographic coordinate system	UTM/UPS
Country	GREECE	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
3.7.2012	River/Lake	11:30	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported

Comments:

Sampling took place without problem, approx. 100m downstream the default point. Shifting the actual sampling point was imperative to achieve appropriate access to the river and safe conditions for the field team. No confluence or potential pollutant discharge occurs between the default and the shifted sampling point. The actual coordinates of the shifted point are: Latitude: 41.7087634 Longitude: 26.3044162. Air temperature during transportation varied from 25-35 °C, (approx. 32°C during sampling), whilst average temperature in the transportation vehicle was in the range of 22-24 °C. All procedures and sampling instructions provided by the JRC in the framework of the Watch List exercise were followed. The person conducting sampling woe single use latex gloves and a watertight uniform made of PVC. Sampling was initiated opening the blank sample bottle, which was tapped after the sampling procedure was terminated. During the sampling procedure the blank bottle and its lid were kept by one of the field team members to avoid accidental cross contamination. The field operator conducted the sampling from within the river, immersed the bottles upside down and then turned the bottle upside, below the surface at 20 cm depth. No contact of the sampling bottles to the watertight uniform occurred at any time. The same procedure was followed for 10 bottles, which were stored temporarily in the cooling boxes which contained freshly cooled cooling elements. Sampling bottles were kept in the cooling boxes containing cooling elements throughout the entire field operation and until samples were transported to the institute's headquarters (maximum transportation time under the defined conditions 12 hours). Collected samples were stored overnight at 4°C. Before shipment to the JRC all samples were placed again in the cooling boxes with new cooling elements, which were then placed in the carton boxes for shipment.

STATION IDENTIFICATION

River/Station	Limni Pamvotida	CODE	0049_SWW_00098
City	Thermi, Thessaloniki	Geographic coordinate system	UTM/UPS
Country	GREECE	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
19.06.2012	Lake	11:40	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			

Due to the bad weather conditions (wind), it was not possible to receive the samples from the predetermined sampling point (center of the lake).

IMPRESSIONS

STATION IDENTIFICATION

River/Station	Ekvoles Loudia Aliakmona	CODE	0049_SWW_00099
City	Athens	Geographic coordinate system	UTM/UPS
Country	GREECE	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
9.7.2012	River	12:00	Not reported
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	52.5	20	38.5
Comments:			

Comments:

Sampling with Niskin bottles with Teflon tap. After sampling the samples were kept in a cold room with 4^{0} C temperature.

IMPRESSIONS

STATION IDENTIFICATION River/Station Saronicus Gulf CODE 0049_SWW_00100 City Athens Geographic coordinate system UTM/UPS Country GREECE Map Datum WGS 84 Latitude Latitude Latitude

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
10.7.2012	Sea	12:00	60 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
Not reported	52.5	20	38.5
Comments:			
	AEGEO (HCMR ownership is were kept in a cold roon		ith Teflon tap. After

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Ekvoles Spercheiou	CODE	0049_SWW_00101
City	Athens	Geographic coordinate system	UTM/UPS
Country	GREECE	Map Datum	WGS 84
		Latitude	
		Longitude	

AMPLING		2 <i>H H</i>	
Sampling date	Sample type	Sampling time	Water Depth
7.9.2012	River	12:00	Not reported
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
Not reported	52.5	20	38.5

Sampling with Niskin bottles with Teflon tap. After sampling the samples were kept in a cold room with 4^{0} C temperature.

IMPRESSIONS		

STATION IDENTIFICATION

River/Station	Messara -Crete	CODE	0049_SWW_00102
City	Athens	Geographic coordinate system	UTM/UPS
Country	GREECE	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
12.7.2012	Sea	13:00	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	<mark>58.8 (mS/cm)</mark>	24.65	39.61

Water samples were collected using the Niskin 5 liter water sampler at a depth of 50 cm. Subsamples were drawn and immediately preserved in an ice box. Samples were transferred to the HCMR laboratory refrigerator (4°C) until the date shipped to Ispra.

IMPRESSIONS

Not available

STATION IDENTIFICATION				
River/Station	Narva station N32	CODE	0049_SWW_00103	
City	Not reported	Geographic coordinate system	UTM/UPS	
Country	ESTONIA	Map Datum	WGS 84	
		Latitude		
		Longitude		

AMPLING			
Sampling date	Sample type	Sampling time	Water Depth
28.8.2012	River/Lake	13:30	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
8.3	281	19.3	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENTIFICATION				
River/Station	Kavatsu Station n. 13	CODE	0049_SWW_00104	
City	Not reported	Geographic coordinate system	UTM/UPS	
Country	ESTONIA	Map Datum	WGS 84	
		Latitude		
		Longitude		

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
27.8.2012	River/Lake	14:30	20 cm
Water pH	<i>Water Conductivity (µS/cm)</i>	<i>Water</i> temperature (°C)	Salinity
7.9	393	17.9	Not reported
Comments:			
None.			

IMPRESSIONS		
Not available		

STATION IDENTIFICATION River/Station Purtse river CODE 0049_SWW_00105 City Tallinn Geographic coordinate system UTM/UPS Country ESTONIA Map Datum WGS 84 Latitude Longitude Longitude

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
28.8.2012	River	15:12	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
8.5	824	16.6	Not reported
Comments:			
None.			

IMPRESSIONS		
Not available		

STATION IDENTIFICATION				
River/Station	River Pärnu, Oore	CODE	0049_SWW_00106	
City	Tallinn	Geographic coordinate system	UTM/UPS	
Country	ESTONIA	Map Datum	WGS 84	
		Latitude		
		Longitude		

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
22.8.2012	River	11:50	30 cm
Water pH	Water Conductivity (µS/cm)	Water	Salinity
Water pH		temperature (°C)	,
7.87	379	15.7	Not reported
Comments:			
Weather + 16 °C, clo	oudy without rain.		

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	River Vääna, lower reach	CODE	0049_SWW_00107
City	Tallinn	Geographic coordinate system	UTM/UPS
Country	ESTONIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
22.8.2012	River/Lake	15:30	30 cm
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
7.98	499	14.5	Not reported
Comments:			
Weather + 16 °C, clo	oudy without rain.		

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Red Burn Bridge/ Mourne Beg	CODE	0049_SWW_00108
City	Not reported	Geographic coordinate system	UTM/UPS
Country	IRELAND	Map Datum	WGS 84
		Latitude	
		Longitude	

AMPLING			
Sampling date	Sample type	Sampling time	Water Depth
28.8.2012	River	13:45	Not reported
Water pH	<i>Water Conductivity</i> (µS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
Not reported	Not reported	15.7	Not reported
Comments:			
None.			

IMPRESSIONS		
Not available		

STATION IDENTIFICATION				
River/Station	Slane Bridge/ Boyne	CODE	0049_SWW_00109	
City	Not reported	Geographic coordinate system	UTM/UPS	
Country	IRELAND	Map Datum	WGS 84	
		Latitude		
		Longitude		

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
30.8.2012	River	12:15	Not reported
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS		
Not available		

STATION IDENTIFICATION			
River/Station	Lucan Bridge/ River Liffey	CODE	0049_SWW_00110
City	Not reported	Geographic coordinate system	UTM/UPS
Country	IRELAND	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
3.9.2012	River	8:50	22 cm
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
Clear sample. River s	shallow for time of year. F	ew suspended solids.	

IMPRESSIONS
Not available

JRC EU wide monitoring – Watch List Pilot Exercise

Sampling Location card

STATION IDENTIFICATION

River/Station	Graiguenamanagh Bridge/ River Barrow	CODE	0049_SWW_00111
City	Not reported	Geographic coordinate system	UTM/UPS
Country	IRELAND	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
3.9.2012	River	10:45	85 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
Yellow/brown tint. So	ome suspended solids. A lo	ot of boat activity in are	a.

IMPRESSIONS Not available

STATION IDENTIFICATION				
River/Station	Leemount Bridge/ River Lee	CODE	0049_SWW_00112	
City	Not reported	Geographic coordinate system	UTM/UPS	
Country	IRELAND	Map Datum	WGS 84	
		Latitude		
		Longitude		

Comments: Slight yellow tint. No odour. Few suspended solids.				
Not reported	Not reported	Not reported	Not reported	
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity	
Sampling date 3.9.2012	Sample type River	Sampling time 13:05	Water Depth 120 cm	

IMPRESSIONS	
Not available	

JRC EU wide monitoring – Watch List Pilot Exercise

Sampling Location card

STATION IDENTIFICATION			
River/Station	Ford 2 km u/s Gweestion River/River Moy	CODE	0049_SWW_00113
City	Not reported	Geographic coordinate system	UTM/UPS
Country	IRELAND	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
29.8.2012	River	15:00	Not reported
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS		
Not available		


Sampling Location card

STATION IDENTIFICATION

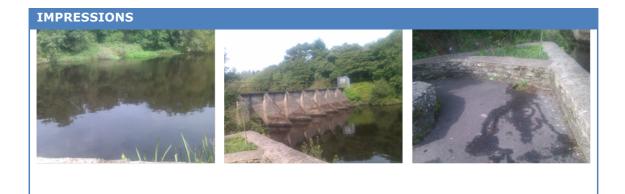
River/Station	Bridge at Killaloe/Derg Lake	CODE	0049_SWW_00114
City	Not reported	Geographic coordinate system	UTM/UPS
Country	IRELAND	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
29.8.2012	Lake	Not reported	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	17.9	Not reported

Sampling procedure: samples were taken 20 cm below the surface. Samples were kept at 4°C until shipment.

Sampling Location card

STATION IDENTIFICATION				
River/Station	River Lagan at Stranmills	CODE	0049_SWW_00115	
City	Not reported	Geographic coordinate system	UTM/UPS	
Country	NORTHERN IRELAND	Map Datum	WGS 84	
		Latitude		
		Longitude		


SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
03.09.2012	River	12:30	Not reported
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.88	404	16.1	Not reported
Comments:			
Low river Flow + Hei	ght		

IMPRESSIONS

STATION IDENT	IFICATION		
River/Station	River Quoile at Quoile Bridge	CODE	0049_SWW_00116
City	Not reported	Geographic coordinate system	UTM/UPS
Country	NORTHERN IRELAND	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
3.9.2012	River	11:15	Not reported
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.35	368	17.2	Not reported
Comments:			
None.			

STATION IDENT	IFICATION		
River/Station	River Clyde at Tidal Weir	CODE	0049_SWW_00117
City	East Kilbride (Glasgow)	Geographic coordinate system	UTM/UPS
Country	UNITED KINGDOM (Scotland)	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
3.9.2012	River	11:50	15 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS		
Not available		

STATION IDENT	IFICATION		
River/Station	River North Esk at Marykirk	CODE	0049_SWW_00118
City	East Kilbride	Geographic coordinate system	UTM/UPS
Country	UNITED KINGDOM (Scotland)	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
20.8.2012	River	14:20	15-20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS		
Not available		

STATION IDENT	IFICATION		
River/Station	East Kilbride (Glasgow)	CODE	0049_SWW_00119
City	River Almond at Craigiehall	Geographic coordinate system	UTM/UPS
Country	UNITED KINGDOM (Scotland)	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
28.8.2012	River	10:40	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS		
Not available		

STATION IDENT	STATION IDENTIFICATION				
River/Station	River Ugie at Inverugie	CODE	0049_SWW_00120		
City	East Kilbride (Glasgow)	Geographic coordinate system	UTM/UPS		
Country	UNITED KINGDOM (Scotland)	Map Datum	WGS 84		
		Latitude			
		Longitude			

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
20.8.2012	River	13:00	50 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS		
Not available		

Sampling Location card

STATION IDENTIFICATION

River/Station	River Dee	CODE	0049_SWW_00121
City	Chester	Geographic coordinate system	UTM/UPS
Country	UNITED KINGDOM (Wales)	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
7.9.2012	River	13:30	Not reported
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.27	221	17.05	0.10
Comments:			
Sample taken just of	f center of river-scaffoldin	a in place for bridge ref	urbishment work.

IMPRESSIONS	
Not available	

Sampling Location card

STATION IDENTIFICATION

River/Station	River Usk	CODE	0049_SWW_00122
City	Not reported	Geographic coordinate system	UTM/UPS
Country	UNITED KINGDOM (Wales)	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
7.9.2012	River	9:30	Not reported
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
Have filled blank both	tle; very sorry!		

IMPRESSIONS Not available

Sampling Location card

STATION IDENTIFICATION

River/Station	Humber	CODE	0049_SWW_00123
City	Not reported	Geographic coordinate system	UTM/UPS
Country	UNITED KINGDOM (England)	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
12.8.2012	Sea	9:41	50 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
7.88	21751	18.32	15.22
Comments:			

Samples collected at approx. depth of 50 cm (using Niskin bottle) from survey vessel MV Humber Guardian. After collection, the samples were refrigerated on board and stored in the provided cool boxes during transit.

IMPRESSIONS	
Not available	

Sampling Location card

STATION IDENTIFICATION River/Station Mersey@ Buoy C21 CODE 0049_SWW_00124 City Liverpool Geographic coordinate system UTM/UPS Country UNITED KINGDOM (England) Map Datum WGS 84 Latitude Latitude Latitude

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
7.8.2012	Sea	7:12	Not reported
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.92	36791	17.2	27.894

Comments:

The bottle 0049_SWW_00124_09_00 was lost while sampling. An Organics sample bottle was used. A corresponding field blank was taken too. The bottles were attached to a sampling pole and then submerged horizontally 20 cm under the sea. The bottle was then inverted to collect the sample.

IM	PRESSIONS

Not available

Sampling Location card

STATION IDENTIFICATION

River/Station	Thames at Mucking	CODE	0049_SWW_00125
City	Petersborough	Geographic coordinate system	UTM/UPS
Country	UNITED KINGDOM (England)	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
5.9.2012	Sea	8:51	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.776	31582	18.7	22.715
Comments:			

Comments:

Sample N. 0049-SWW-00125-06-00 lost part of the label, therefore has no barcode but the sample code is attached and visible. Sample N. 0049-SWW-00125-05-00 lost the inner lid. Sampling procedure followed as stated in "watchlist_instructionsEN2(2).pdf".

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	River Ouse at Scarbourough Rail Bridge	CODE	0049_SWW_00126
City	York	Geographic coordinate system	UTM/UPS
Country	UNITED KINGDOM (England)	Map Datum	WGS 84
		Latitude	
		Longitude	

Sampling date	Sample type	Sampling time	Water Depth
3.9.2012	River	10:50	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.95	447	15.07	Not reported
Comments:			
Sampled using pole -	+ bottle clamp. Bottles im	mersed upside down an	d turned at 20 cm
depth.	·		

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	River Wensum/Taverham Bridge	CODE	0049_SWW_00127
City	Norwich	Geographic coordinate system	UTM/UPS
Country	UNITED KINGDOM (England)	Map Datum	WGS 84
		Latitude	
		Longitude	

Sampling date	Sample type	Sampling time	Water Depth
6.9.2012	River	12:20	Not reported
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.99	757	15.06	0.37
Comments:			

Sampling Location card

STATION IDENT	IFICATION		
River/Station	River Tame D/S Minworth Stw	CODE	0049_SWW_00128
City	Fradley	Geographic coordinate system	UTM/UPS
Country	UNITED KINGDOM (England)	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
7.9.2012	River	10:00	20 cm
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
7.65	896	18.1	Not reported
Comments:			

Bottles conditioned with sample. All were opened and closed 20 cm below water surface. Fieldblank sample container opened for 15 minutes.

IMPRESSIONS	
Not available	

Sampling Location card

STATION IDENTIFICATION

River/Station	Avon	CODE	0049_SWW_00129
City	Blandford	Geographic coordinate system	UTM/UPS
Country	UNITED KINGDOM (England)	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING Sampling date Sample type Sampling time Water Depth 31.8.2012 **River/Lake** 11:32 20 cm Water Conductivity Water Water pH *temperature (°C)* Salinity (µS/cm) Not reported Not reported Not reported Not reported Comments: Samples taken at approx 20 cm depth using pole from left bank. Small amount of rust in stainless steel sampling can. Angler in water by right bank.

IMPRESSIONS	
Not available	

STATION IDENTIFICATION

River/Station	Somes / Cicarlau	CODE	0049_SWW_00130
City	Cluj-Napoca	Geographic coordinate system	UTM/UPS
Country	ROMANIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
10.9.2012	River/Lake	15:45	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.18	901	21	Not reported
Comments:			
Enclosed sampling p	rocedure.		

IMPRESSIONS
Not available

STATION IDENT	STATION IDENTIFICATION				
River/Station	Crisul Repede- Cheresig	CODE	0049_SWW_00131		
City	Oradea	Geographic coordinate system	UTM/UPS		
Country	ROMANIA	Map Datum	WGS 84		
		Latitude			
		Longitude			

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
1.9.2012	River/Lake	12:00	20 cm
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
7.75	330	20	Not reported
7.75 Comments:	330	20	Not report

IMPRESSIONS		
Not available		

STATION IDENTIFICATION

River/Station	Mures/Ungheni	CODE	0049_SWW_00132
City	Targu Mures	Geographic coordinate system	UTM/UPS
Country	ROMANIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING				
Sampling date	Sample type	Sampling time	Water Depth	
7.9.2012	River/Lake	10:20	20 cm	
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity	
7.48	377	20.5	Not reported	
Comments:				
Enclosed sampling procedure.				

IMPRESSIONS
Not available

STATION IDENTIFICATION

River/Station	Bega / Otelec	CODE	0049_SWW_00133
City	Timisoara	Geographic coordinate system	UTM/UPS
Country	ROMANIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING					
Sampling date	Sample type	Sampling time	Water Depth		
10.9.2012	River/Lake	11:43	20 cm		
Water pH	<i>Water Conductivity (µS/cm)</i>	<i>Water</i> temperature (°C)	Salinity		
7.91	359	20	Not reported		
Comments:					
Enclosed sampling procedure.					

IMPRESSIONS		
Not available		

STATION IDENTIFICATION

River/Station	Danube - Bazias	CODE	0049_SWW_00134
City	Dr.TrSeverin	Geographic coordinate system	UTM/UPS
Country	ROMANIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING					
Sampling date	Sample type	Sampling time	Water Depth		
27.8.2012	River/Lake	13:00	20 cm		
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity		
7.64	365	24.2	Not reported		
Comments:					
Blank sample has an aluminium container. Enclosed sampling procedure.					

IMPRESSIONS

Not available

STATION IDENTIFICATION

River/Station	R. Olt - Islaz	CODE	0049_SWW_00135
City	Slatina	Geographic coordinate system	UTM/UPS
Country	ROMANIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING				
Sampling date	Sample type	Sampling time	Water Depth	
3.9.2012	River/Lake	12:20	20 cm	
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity	
7.68	458	23.4	Not reported	
Comments:				
Enclosed sampling procedure.				

IMPRESSIONS Not available

Sampling Location card

STATION IDENTIFICATION

River/Station	Argeş Clăteşti	CODE	0049_SWW_00136
City	Giurgiu	Geographic coordinate system	UTM/UPS
Country	ROMANIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING					
Sampling date	Sample type	Sampling time	Water Depth		
3.9.2012	River/Lake	10:22	20 cm		
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity		
7.00	Not reported	23	Not reported		
Comments:					
Enclosed sampling procedure.					

IMPRESSIONS Not available

STATION IDENT	STATION IDENTIFICATION				
River/Station	Ialomita River/downstream Tandarei	CODE	0049_SWW_00137		
City	Slobozia	Geographic coordinate system	UTM/UPS		
Country	ROMANIA	Map Datum	WGS 84		
		Latitude			
		Longitude			

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
3.9.2012	River	10:20	20 cm
Water pH	Water Conductivity (μS/cm)	Water temperature (°C)	Salinity
9.96	1385	23	Not reported

IMPRESSIONS		
Not available		

STATION IDENT	IFICATION		
River/Station	Trotus River - Vranceni	CODE	0049_SWW_00138
City	Bacau	Geographic coordinate system	UTM/UPS
Country	ROMANIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
4.9.2012	River/Lake	11:22	20 cm
	Water Conductivity	Water	
Water pH	(μS/cm)	temperature (°C)	Salinity
8.36	1247.6	19.91	Not reported
Comments:			
Enclosed sampling p	rocedure.		

IMPRESSIONS	
Not available	

Sampling Location card

STATION IDENTIFICATION

River/Station	Prut	CODE	0049_SWW_00139
City	Botoşani	Geographic coordinate system	UTM/UPS
Country	ROMANIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
3.9.2012	Not reported	10:45	20 cm
Water pH	<i>Water Conductivity (µS/cm)</i>	<i>Water</i> temperature (°C)	Salinity
8.05	553	20.6	356
Comments:			
Enclosed sampling pr	rocedure.		

IMPRESSIONS Not available

STATION IDENTIFICATION			
River/Station	Dunare River/Reni km 132	CODE	0049_SWW_00140
City	Tulcea	Geographic coordinate system	UTM/UPS
Country	ROMANIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
3.9.2012	River	11:15	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
8.09	347	24.9	Not reported
Comments:			
Enclosed sampling pi	rocedure.		

IMPRESSIONS	
Not available	

STATION IDENTIFICATION

River/Station	Lobptn	CODE	0049_SWW_00141
City	Lelystad	Geographic coordinate system	UTM/UPS
Country	THE NETHERLANDS	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
22.8.2012	River/Lake	8:00	100 cm
Water pH	<i>Water Conductivity (µS/cm)</i>	<i>Water</i> temperature (°C)	Salinity
8.01	60.05	24.96	0.3
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Eijsdptn	CODE	0049_SWW_00142
City	Lelystad	Geographic coordinate system	UTM/UPS
Country	THE NETHERLANDS	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
28.8.2012	River/Lake	8:00	100 cm
Water pH	<i>Water Conductivity (µS/cm)</i>	<i>Water</i> <i>temperature</i> (°C)	Salinity
7.62	53.8	21.8	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Maasss	CODE	0049_SWW_00143
City	Lelystad	Geographic coordinate system	UTM/UPS
Country	THE NETHERLANDS	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
29.8.2012	River/Lake	9:56	100 cm
Water pH	<i>Water Conductivity</i> (µS/cm)	<i>Water</i> temperature (°C)	Salinity
7.95	949	21.5	5.95
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Vrouwzd	CODE	0049_SWW_00144
City	Lelystad	Geographic coordinate system	UTM/UPS
Country	THE NETHERLANDS	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
15.8.2012	River/Lake	10:28	100 cm
Water pH	<i>Water Conductivity</i> (µS/cm)	<i>Water</i> temperature (°C)	Salinity
8.99	56	19.95	0.3
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Noordwk10	CODE	0049_SWW_00145
City	Lelystad	Geographic coordinate system	UTM/UPS
Country	THE NETHERLANDS	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
30.7.2012	Sea	10:28	350 cm
Water pH	<i>Water Conductivity (µS/cm)</i>	<i>Water</i> <i>temperature</i> (°C)	Salinity
8.14	4243	18.62	31.57
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENTIFICATION				
River/Station	Càvado/Penide-Areias de Vilar	CODE	0049_SWW_00146	
City	Lisboa	Geographic coordinate system	UTM/UPS	
Country	PORTUGAL	Map Datum	WGS 84	
		Latitude		
		Longitude		

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
29.8.2012	River	17:55 - 18:15	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
6.7	57	21.5	Not reported
Comments:			
Sampling according t	o ISO 5667 Part 3.		

STATION IDENTIFICATION			
River/Station	Douro/Barca D'Alva	CODE	0049_SWW_00147
City	Lisboa	Geographic coordinate system	UTM/UPS
Country	PORTUGAL	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
30.8.2012	River/Lake	13:20 - 13:30	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
9.3	245	23.4	Not reported
Comments:			
Sampling according t	o ISO 5667 Part 3.		

Sampling Location card

STATION IDENTIFICATION			
River/Station	Douro/ Alb. Crestuma	CODE	0049_SWW_00148
City	Lisboa	Geographic coordinate system	UTM/UPS
Country	PORTUGAL	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
29.8.2012	River/Lake	16:12 - 16:25	20 cm
Water pH	<i>Water Conductivity</i> (µS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
7.7	275	25.9	Not reported
Comments:			
Sampling according t	to ISO 5667 Part 3.		

IMPRESSIONS

STATION IDENTIFICATION			
River/Station	Mondego/Ponte de Formoselha	CODE	0049_SWW_00149
City	Lisboa	Geographic coordinate system	UTM/UPS
Country	PORTUGAL	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
29.8.2012	River/Lake	13:00 - 13:12	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.9	172	22.3	Not reported
Comments:			
Sampling according t	o ISO 5667 Part 3.		

STATION IDENT	IFICATION		
River/Station	Tejo/Perais	CODE	0049_SWW_00150
City	Lisboa	Geographic coordinate system	UTM/UPS
Country	PORTUGAL	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
30.8.2012	River/Lake	17:35 - 17:45	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
7.2	624	20	Not reported
Comments:			
Sampling according t	to ISO 5667 Part 3.		

STATION IDENT	IFICATION		
River/Station	TEJO / Valada	CODE	0049_SWW_00151
City	Lisboa	Geographic coordinate system	UTM/UPS
Country	PORTUGAL	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
29.8.2012	River/Lake	9:45 – 9:55	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
7.9	635	24.4	Not reported
Comments:			
Sampling according t	to ISO 5667 Part 3		

STATION IDENT	IFICATION		
River/Station	Sado/Alb.Roxo	CODE	0049_SWW_00152
City	Lisboa	Geographic coordinate system	UTM/UPS
Country	PORTUGAL	Map Datum	WGS 84
		Latitude	
		Longitude	

Sample type	Sampling time	Water Depth
River/Lake	14:40 - 14:50	20 cm
Water Conductivity	Water	
(µS/cm)	temperature (°C)	Salinity
928	24.2	Not reported
	River/Lake Water Conductivity (µS/cm)	River/Lake 14:40 - 14:50 Water Conductivity Water (μS/cm) temperature (°C)

Sampling Location card

STATION IDENT	IFICATION		
River/Station	Guadiana/Monte da Vinha	CODE	0049_SWW_00153
City	Lisboa	Geographic coordinate system	UTM/UPS
Country	PORTUGAL	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
31.8.2012	River/Lake	10:30 - 10:40	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
8.1	522	24.4	Not reported
Comments:			
Sampling according t	to ISO 5667		

<image>

STATION IDENT	IFICATION		
River/Station	VUOKSI/Vastuupuomi 061	CODE	0049_SWW_00154
City	Kouvola	Geographic coordinate system	UTM/UPS
Country	FINLAND	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
4.9.2012	River/Lake	9:20	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	KYMIJOKI/Huruksela 033 5600	CODE	0049_SWW_00155
City	Kouvola	Geographic coordinate system	UTM/UPS
Country	FINLAND	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
3.9.2012	River/Lake	11:30	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENT	STATION IDENTIFICATION				
River/Station	Kalkkistenkoski 4800	CODE	0049_SWW_00156		
City	Asikkala	Geographic coordinate system	UTM/UPS		
Country	FINLAND	Map Datum	WGS 84		
		Latitude			
		Longitude			

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
3.9.2012	River/Lake	10:30	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
Not reported	Not reported	15.8	Not reported
Comments:			
None.			

STATION IDENT	IFICATION		
River/Station	Porvoonjoki River 11.4 6022	CODE	0049_SWW_00157
City	Porvoo	Geographic coordinate system	UTM/UPS
Country	FINLAND	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
21.8.2012	River	10:20	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	17.6	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENT	STATION IDENTIFICATION			
River/Station	Vantaa River 4.2 6040	CODE	0049_SWW_00158	
City	Helsinki	Geographic coordinate system	UTM/UPS	
Country	FINLAND	Map Datum	WGS 84	
		Latitude		
		Longitude		

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
21.8.2012	River	11:40	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
Not reported	Not reported	17.4	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Aura 54 ohikulku va 6401	CODE	0049_SWW_00159
City	Turku	Geographic coordinate system	UTM/UPS
Country	FINLAND	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
3.9.2012	River/Lake	14:16	50 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
Not reported	Not reported	15.7	Not reported
Comments:			
None.			

IMPRESSIONS		
Not available		

STATION IDENT	IFICATION		
River/Station	Nokiankoski 8200 ALAvirt	CODE	0049_SWW_00160
City	Nokia	Geographic coordinate system	UTM/UPS
Country	FINLAND	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
4.9.2012	River/Lake	10:00	Not reported
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
Not reported	Not reported	16.6	Not reported
Comments:			
None.			

STATION IDENT	IFICATION		
River/Station	Kojo 35 Pori-Tre	CODE	0049_SWW_00161
City	Turku	Geographic coordinate system	UTM/UPS
Country	FINLAND	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
3.9.2012	River/Lake	11:20	50 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
Not reported	Not reported	16.9	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

Sampling Location card

STATION IDENT	IFICATION		
River/Station	Oulujoki	CODE	0049_SWW_00162
City	Oulu	Geographic coordinate system	UTM/UPS
Country	FINLAND	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
03.9.2012	River	10:00	20 cm
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
6.7 (7.8.2012)	<mark>3,1 mS/m (7.8.12</mark>)	14.3	Not reported
Commenter			

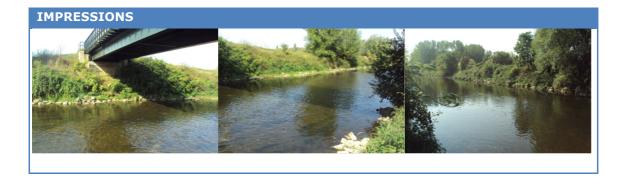
Comments:

Sampling point is located below the hydroelectric power plant. Water is very hard flowing and turbulent. Water conductivity ja pH values are from samples taken 07.08.2012 Samples were taken directly to the bottles by hand.

STATION IDENT	IFICATION		
River/Station	Kemijoki, Isohaara	CODE	0049_SWW_00163
City	Rovaniemi	Geographic coordinate system	UTM/UPS
Country	FINLAND	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
11.9.2012	River	11:55	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	13.0	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	


STATION IDENT	IFICATION		
River/Station	Tornionjoki, Kukkola	CODE	0049_SWW_00164
City	Rovaniemi	Geographic coordinate system	UTM/UPS
Country	FINLAND	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
11.9.2012	River	10:50	20 cm
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	10.6	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Ouche à Crimolois	CODE	0049_SWW_00165
City	Lyon	Geographic coordinate system	UTM/UPS
Country	FRANCE	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
10.9.2012	River/Lake	11:15	20 cm
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

Sampling Location card

STATION IDENT	IFICATION		
River/Station	Reyssouze à Viriat	CODE	0049_SWW_00166
City	Lyon	Geographic coordinate system	UTM/UPS
Country	FRANCE	Map Datum	WGS 84
		Latitude	
		Longitude	


SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
10.9.2012	River/Lake	9:45	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

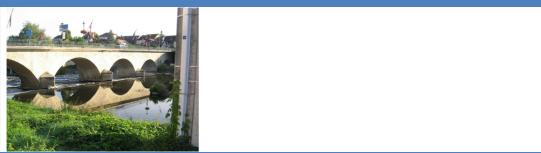
IMPRESSIONS

STATION IDENT	IFICATION		
River/Station	Ardières à Saint Jean d'Ardières	CODE	0049_SWW_00167
City	Lyon	Geographic coordinate system	UTM/UPS
Country	FRANCE	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
10.9.2012	River/Lake	14:45	20 cm
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

STATION IDENT	IFICATION		
River/Station	Zergues à Lucenay	CODE	0049_SWW_00168
City	Lyon	Geographic coordinate system	UTM/UPS
Country	FRANCE	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
10.9.2012	River/Lake	16:00	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			



Sampling Location card

STATION IDENT	IFICATION		
River/Station	Guiers à Saint Genix sur Guiers	CODE	0049_SWW_00169
City	Lyon	Geographic coordinate system	UTM/UPS
Country	FRANCE	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
10.9.2012	River/Lake	13:30	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS

STATION IDENTIFICATION					
River/Station	L'Escaut canalisé à Mortagne du Nord	CODE	0049_SWW_00170		
City	Doucu	Geographic coordinate system	UTM/UPS		
Country	FRANCE	Map Datum	WGS 84		
		Latitude			
		Longitude			

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
22.5.2012	River/Lake	9:45	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.04 921		16	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENTIFICATION					
River/Station	Scarpe canalise à Raches	CODE	0049_SWW_00171		
City	Doucu	Geographic coordinate system	UTM/UPS		
Country	FRANCE	Map Datum	WGS 84		
		Latitude			
		Longitude			

None.			
Comments:			
7.83 842		15	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
22.5.2012	River/Lake	11:10	20 cm
Sampling date	Sample type	Sampling time	Water Depth
SAMPLING			

IMPRESSIONS		
Not available		

Sampling Location card

STATION IDENTIFICATION						
River/Station	Tevere/Pontecuti Todi	CODE	0049_SWW_00172			
City	Perugia	Geographic coordinate system	UTM/UPS			
Country	ITALY	Map Datum	WGS 84			
		Latitude				
		Longitude				

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
30.05.2012	River	11:30	30 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.86	577	20.2	Not reported
Comments:			

Eseguito il campionamento dalla sponda sx del fiume ad una profondità di circa 20 cm come richiesto. E' stata utilizzata una pinza per ancorare le bottiglie. Il campione in attesa del corriere e' stato conservato a 4°C.

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Arno	CODE	0049_SWW_00173
City	Firenze	Geographic coordinate system	UTM/UPS
Country	ITALY	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
25.9.2012 River		11:30	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.8 8220		23	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Arno	CODE	0049_SWW_00174
City	Firenze	Geographic coordinate system	UTM/UPS
Country	ITALY	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
24.9.2012	River	11:20	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
8.3	506	20.6	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

Sampling Location card

STATION IDENT	IFICATION		
River/Station	Emilia Po Ferrara	CODE	0049_SWW_00175
City	Ferrara (Pontelagoscuro)	Geographic coordinate system	UTM/UPS
Country	ITALY	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMP	LING			
San	npling date	Sample type	Sampling time	Water Depth
28	3.8.2012	River	9:30	40 cm
		Water Conductivity	Water	
И	/ater pH	(µS/cm)	temperature (°C)	Salinity
Not	reported	Not reported	25.2	Not reported
Comn	ients:			
SAMPL	ING PROCEDURE			
1)	27/08/2012: I refrigerated cel	-	nents, received from	JRC, into a -15°C
2)		brought cooling box o river platform.	(that contains empty	bottles and cooling
3)	I think I didn' agents	t wear anything that	contains polymers, sta	in or water repelling
4)	I opened the co	poling box and I picked ing sample operation	l up fieldblank bottle. I	opened it and I put it
5)		e on platform; I think	someone used barbecu	e grill recently (I told
6)			: 40 cm under water su	rface
7)		ank bottle and I put it in		
8)	I hold every b boxes	ottle into a dark cold	room (3°C) for 1 day	into the opened cool
9)			the cooling box with	sample bottles and
10)	cooling element 29/08/2012: I		ox to the courier as eng	aged with Mr.Locoro.

IMPRESSIONS

JRC EU wide monitoring – Watch List Pilot Exercise Sampling Location card

STATION IDENTIFICATION			
River/Station	Reno/Ponte Bastia	CODE	0049_SWW_00
City	Ravenna	Geographic coordinate system	UTM/UPS
Country	ITALY	Map Datum	WGS 84
		Latitude	
		Longitude	

Sample type	Sampling time	Water Depth
River	12:00	20 cm
Water Conductivity (µS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
Not reported	Not reported	Not reported
bmerging the open bottle	s upside down, and ther	reversing them at
	River Water Conductivity (μS/cm) Not reported	River12:00Water ConductivityWater(μS/cm)temperature (°C)

IMPRESSIONS	
Not available	

Sampling Location card

STATION IDENT	IFICATION		
River/Station	Reno/Volta Scirocco	CODE	0049_SWW_00177
City	Ravenna	Geographic coordinate system	UTM/UPS
Country	ITALY	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
5.9.2012	River	10:30	20 cm
Water pH	<i>Water Conductivity</i> (µS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
Samples taken by subn depth.	nerging the open bottles upsi	de down, and then reversir	ng them at 20 cm

IMPRESSIONS Not available

16 December 2014

STATION IDENT	IFICATION		
River/Station	Adige- Ponte per Vadena	CODE	0049_SWW_00178
City	Bolzano	Geographic coordinate system	UTM/UPS
Country	ITALY	Map Datum	WGS 84
		Latitude	
		Longitude	

Sampling date	Sample type	Sampling time	Water Depth
30.8.2012	River	9:30	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
8.01	197	13.5	Not reported
Comments:			
At the river bank			
4 aluminium bottles+ 6	plastic bottles: for the samp	les	
1 aluminium bottle for			

STATION IDENT	IFICATION		
River/Station	Lambro-Orio Litta	CODE	0049_SWW_00179
City	Milano	Geographic coordinate system	UTM/UPS
Country	ITALY	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
28.8.2012	River	11:00	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
7.86	579 at 25°C	21.1	Not reported
Comments:			
Bottles were immers	ed upside down and turne	d below the surface.	

Sampling Location card

STATION IDENT	IFICATION		
River/Station	Adige/Cavarzere	CODE	0049_SWW_00180
City	Mestre	Geographic coordinate system	UTM/UPS
Country	ITALY	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
29.8.2012	River	12:40	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
7.86	228	19.6	Not reported
Comments:			

The bottle has been tied to a sample rod and the sample was taken from a catwalk to 1 meter from the same. The bottles were immersed upside down and turned 20 cm from the surface. By mistake it championship was also the fieldblank.

IMPRESSIONS
Not available

STATION IDENT	IFICATION		
River/Station	Tanaro – Bassignana (AL)	CODE	0049_SWW_00181
City	Asti	Geographic coordinate system	UTM/UPS
Country	ITALY	Map Datum	WGS 84
		Latitude	
		Longitude	

omments:			
7.80	225	17.5	Not reported
Water pH	(µS/cm)	temperature (°C)	Salinity
	Water Conductivity	Water	
6.9.2012	River	11:30	20 cm
Sampling date	Sample type	Sampling time	Water Depth

STATION IDENTIFICATION				
River/Station	Po – Isola Sant'Antonio (AL)	CODE	0049_SWW_00182	
City	Asti	Geographic coordinate system	UTM/UPS	
Country	ITALY	Map Datum	WGS 84	
		Latitude		
		Longitude		

Sampling date	Sample type	Sampling time	Water Depth
6.9.2012	River	10.15	30 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.7	292	19	Not reported
Comments:			

Sampling Location card

STATION IDENT	IFICATION		
River/Station	IT18Amato3	CODE	0049_SWW_00183
City	Soveria Mannelli	Geographic coordinate system	UTM/UPS
Country	ITALY	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
10.9.2012	River/Lake	13:00	0 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
Campionamento supe	erficiale per mancanza di	profondità del punto di p	orelievo prescelto.

IMPRESSIONS Not available

STATION IDENT	IFICATION		
River/Station	IT18RC39	CODE	0049_SWW_00184
City	Roccella Jonica	Geographic coordinate system	UTM/UPS
Country	ITALY	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
Not reported	Sea	Not reported	25 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENT			
River/Station	Norrström/Stockholm Centralbron	CODE	0049_SWW_00185
City	Uppsala	Geographic coordinate system	UTM/UPS
Country	SWEDEN	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
17.9.2012	River/Lake	10:00-10:30	20 cm
Water pH	<i>Water Conductivity (µS/cm)</i>	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
(comments in Swedis	sh, incomprehensible)		

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Viskan/Åsbro	CODE	0049_SWW_00186
City	Uppsala	Geographic coordinate system	UTM/UPS
Country	SWEDEN	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
17.9.2012	River/Lake	Not reported	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

Sampling Location card

STATION IDENT	IFICATION		
River/Station	Göta älv/Alelyckan	CODE	0049_SWW_00187
City	Uppsala	Geographic coordinate system	UTM/UPS
Country	SWEDEN	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING					
Sampling date	Sample type	Sampling time	Water Depth		
11.9.2012	River/Lake	8:30	3-4 m		
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity		
Not reported	Not reported	Not reported	Not reported		
Comments:					
Prova ar tagna i vår provtagnengsstation vis intaget i Göta Älv.					

IMPRESSIONS Not available

Sampling Location card

STATION IDENT	IFICATION		
River/Station	Motala ström/Norrköping	CODE	0049_SWW_00188
City	Uppsala	Geographic coordinate system	UTM/UPS
Country	SWEDEN	Map Datum	WGS 84
		Latitude	
		Longitude	

Not reported	Not reported	Not reported	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
17.9.2012	River/Lake	9:30	Not reported
Sampling date	Sample type	Sampling time	Water Depth

Provet är taget I provkran på vattenverket Borg provtagare: Gittan Svensson 011-153656

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Dalälven/Älvkarleby	CODE	0049_SWW_00189
City	Uppsala	Geographic coordinate system	UTM/UPS
Country	SWEDEN	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
12.9.2012	River/Lake	14:00	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Emån/Emsfors	CODE	0049_SWW_00190
City	Uppsala	Geographic coordinate system	UTM/UPS
Country	SWEDEN	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
17.9.2012	River/Lake	10:00-11:00	15 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
Ingen Teflon beklädn	ad		

IMPRESSIONS	
Not available	

Sampling Location card

STATION IDENTIFICATION				
River/Station	Fyrisån/ Fyrisån Flottsund	CODE	0049_SWW_00191	
City	Uppsala	Geographic coordinate system	UTM/UPS	
Country	SWEDEN	Map Datum	WGS 84	
		Latitude		
		Longitude		

Not reported	Not reported	Not reported
Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
River/Lake	18:00	20 cm
Sample type	Sampling time	Water Depth
	River/Lake Water Conductivity (µS/cm)	River/Lake18:00Water ConductivityWater(µS/cm)temperature (°C)

IMPRESSIONS

Not available

STATION IDENT	IFICATION		
River/Station	River Struma after discharge of river Arkata before dam Pchelina	CODE	0049_SWW_00192
City	Sofia	Geographic coordinate system	UTM/UPS
Country	BULGARIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
27.08.2012	River	11:40	20 cm
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
7.65	859	18.9	Not reported
Comments:			
Sampling procedure	ISO 5667-6		

STATION IDENTIFICATION				
River/Station	Maritsa- dam Manole village	CODE	0049_SWW_00193	
City	Plovdiv	Geographic coordinate system	UTM/UPS	
Country	BULGARIA	Map Datum	WGS 84	
		Latitude		
		Longitude		

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
27.8.2012	River	12:40	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
8.01	461	21	Not reported
Comments:			
Sampling procedure:	ISO 5667-6		

IMPRESSIONS	
Not available	

JRC EU wide monitoring – Watch List Pilot Exercise Sampling Location card

STATION IDENTIFICATION				
River/Station	Maritsa / Svilengrad	CODE	0049_SWW_00194	
City	Haskovo	Geographic coordinate system	UTM/UPS	
Country	BULGARIA	Map Datum	WGS 84	
		Latitude		
		Longitude		

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
03.9.2012	River	13:05	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
8.44	582	24.1	Not reported
Comments:			
Sampling procedure:	ISO 5667-6		

IMPRESSIONS

Sampling Location card

STATION IDENT	IFICATION		
River/Station	Timok	CODE	0049_SWW_00195
City	Montana	Geographic coordinate system	UTM/UPS
Country	BULGARIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
27.8.2012	River	11:30	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.12	1027	23.7	Not reported
Comments:			

Sampling procedure: ISO 5667-6; the river Timok is a border between Bulgaria and Serbia that's why we can't take pictures at this place.

IMPRESSIONS	
Not available	

Sampling Location card

STATION IDENT	IFICATION		
River/Station	River Iskar – after Novi Iskar	CODE	0049_SWW_00196
City	Sofia	Geographic coordinate system	UTM/UPS
Country	BULGARIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
27.8.2012	River	10:00	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
6.87	465	19.1	Not reported
Comments:			
Sampling procedure:	ISO 5667-6		

<image>

Sampling Location card

STATION IDENT	IFICATION		
River/Station	Devnenska river - estuary	CODE	0049_SWW_00197
City	Varna	Geographic coordinate system	UTM/UPS
Country	BULGARIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
27.08.2012	River	11:00	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
8.19	839	19.1	Not reported
Comments:			
None.			

<image>

STATION IDENT	IFICATION		
River/Station	Burgas Lake - East	CODE	0049_SWW_00198
City	Burgas	Geographic coordinate system	UTM/UPS
Country	BULGARIA	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
27.8.2012	Lake	13:40	20 cm
<i>Water pH</i> 10.08	Water Conductivity (µS/cm) 1502	<i>Water</i> temperature (°C) 28.6	Salinity 0.6
<i>Comments:</i> Sampling procedure:	ISO 5667-4		

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Randers Fjord	CODE	0049_SWW_00199
City	Hojbjerg	Geographic coordinate system	UTM/UPS
Country	DENMARK	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
26.6.2012	Sea	10:26	20 cm
Water pH	<i>Water Conductivity (µS/cm)</i>	<i>Water</i> temperature (°C)	Salinity
Not reported	9420	15.71	6.67 ‰
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENTIFICATION				
River/Station	Odense Fjord	CODE	0049_SWW_00200	
City	Odense	Geographic coordinate system	UTM/UPS	
Country	DENMARK	Map Datum	WGS 84	
		Latitude		
		Longitude		

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
18.6.2012	Sea	8:30	Not reported
Water pH	<i>Water Conductivity (µS/cm)</i>	<i>Water</i> temperature (°C)	Salinity
Not reported	26050	14.84	20.14 ‰
Comments:			
None.			

IMPRESSIONS	
Not available	

JRC EU wide monitoring – Watch List Pilot Exercise Sampling Location card

STATION IDENT	IFICATION		
River/Station	Vandkraftsøen	CODE	0049_SWW_00201
City	Ringkøbing	Geographic coordinate system	UTM/UPS
Country	DENMARK	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
25.6.2012	River/Lake	12:30	20 cm
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
7.32	307	13.9	<0.1‰
Comments:			
None.			

IMPRESSIONS		
Not available		

STATION IDENT	IFICATION		
River/Station	Horn Sø	CODE	0049_SWW_00202
City	Ringkøbing	Geographic coordinate system	UTM/UPS
Country	DENMARK	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
Not reported	River/Lake	Not reported	20 cm
Water pH	<i>Water Conductivity</i> (µS/cm)	<i>Water</i> temperature (°C)	Salinity
9.12	5710	14.5	3.10‰
Comments:			
None.			

IMPRESSIONS	
Not available	

Sampling Location card

STATION IDENT	IFICATION		
River/Station	Knud å Sofiendal	CODE	0049_SWW_00203
City	Naturstyrelsen	Geographic coordinate system	UTM/UPS
Country	DENMARK	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
13.9.2012	River/Lake	10:00	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
7.6	576	10.2	Not reported
Comments:			
Sampling according t	o procedure described in	Watch list pilot exercise	e".

IMPRESSIONS Not available

STATION IDENT	IFICATION		
River/Station	Højvads Rende	CODE	0049_SWW_00204
City	Nykøbing	Geographic coordinate system	UTM/UPS
Country	DENMARK	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
26.6.2012	River/Lake	12:00	5-20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
Total depth of lake is	approx. 20 cm.		

IMPRESSIONS	
Not available	

Sampling Location card

STATION IDENT	IFICATION		
River/Station	Lyngbygård å	CODE	0049_SWW_00205
City	Aarhus	Geographic coordinate system	UTM/UPS
Country	DENMARK	Map Datum	WGS 84
		Latitude	
		Longitude	

Comments:	to procedure described in	NA7	"
7.4	554	12.6	Not reported
Water pH	Water Conductivity (µS/cm)	<i>Water</i> temperature (°C)	Salinity
13.9.2012	River/Lake	14:00	20 cm
Sampling date	Sample type	Sampling time	Water Depth
SAMPLING			

IMPRESSIONS Not available

STATION IDENT	IFICATION		
River/Station	Guadiana Luciana	CODE	0049_SWW_00206
City	Balbuena	Geographic coordinate system	UTM/UPS
Country	SPAIN	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
14.9.2012	River	Not reported	20 cm
Water pH	<i>Water Conductivity</i> (µS/cm)	<i>Water</i> temperature (°C)	Salinity
7.9	457	21	Not reported
Comments:			
None.			

STATION IDENT	IFICATION		
River/Station	Guadiana- Capt. Bocachanza	CODE	0049_SWW_00207
City	Puerto de la Loja	Geographic coordinate system	UTM/UPS
Country	SPAIN	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
7.9.2012	River	12:30	20 cm
	Water Conductivity	Water	
Water pH	(µS/cm)	temperature (°C)	Salinity
7.9	1484	25.9	Not reported
Comments:			
None.			

A CARLER AND A CARLER	

STATION IDENTIFICATION				
River/Station	Guadiana VIII – Azud Benavides	CODE	0049_SWW_00208	
City	Benavides	Geographic coordinate system	UTM/UPS	
Country	SPAIN	Map Datum	WGS 84	
		Latitude		
		Longitude		

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
6.9.2012	River	Not reported	20 cm
Water pH	<i>Water Conductivity (µS/cm)</i>	<i>Water</i> temperature (°C)	Salinity
7.9	582	26.5	Not reported
Comments:			
None.			

Sampling Location card

STATION IDENTIFICATION				
River/Station	Guadiana-Tablas Daimiel (Presa Puente Navarro)	CODE	0049_SWW_00209	
City	Daimiel	Geographic coordinate system	UTM/UPS	
Country	SPAIN	Map Datum	WGS 84	
		Latitude		
		Longitude		

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
10.9.2012	River	Not reported	20 cm
Water pH	<i>Water Conductivity (µS/cm)</i>	<i>Water</i> <i>temperature</i> (°C)	Salinity
7.9	4200	21.5	Not reported
Comments:			
None.			

IMPRESSIONS

STATION IDENT	IFICATION		
River/Station	Ebro-Tortosa	CODE	0049_SWW_00210
City	Tortosa	Geographic coordinate system	UTM/UPS
Country	SPAIN	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
5.9.2012	River	Not reported	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS		
Not available		

STATION IDENT	IFICATION		
River/Station	Zadorra/Vitoria	CODE	0049_SWW_00211
City	Vitoria	Geographic coordinate system	UTM/UPS
Country	SPAIN	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
10.9.2012	River/Lake	Not reported	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Ebro/Presa Pina	CODE	0049_SWW_00212
City	Presa Pina	Geographic coordinate system	UTM/UPS
Country	SPAIN	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
4.9.2012	River/Lake	Not reported	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Arga/Ororbia	CODE	0049_SWW_00213
City	Ororbia	Geographic coordinate system	UTM/UPS
Country	SPAIN	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
6.9.2012	River/Lake	Not reported	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Henares/ Alcalá	CODE	0049_SWW_00214
City	Alcalá de Henares (Espinillos)	Geographic coordinate system	UTM/UPS
Country	SPAIN	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
10.9.2012	River/Lake	Not reported	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS		
Not available		

STATION IDENT	IFICATION		
River/Station	Jarama/E. Presa del Rey	CODE	0049_SWW_00215
City	Madrid	Geographic coordinate system	UTM/UPS
Country	SPAIN	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
10.9.2012	River/Lake	Not reported	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Manzanares/Rivas	CODE	0049_SWW_00216
City	Madrid	Geographic coordinate system	UTM/UPS
Country	SPAIN	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
10.9.2012	River/Lake	Not reported	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Jarama/Aranjuez (P. Largo)	CODE	0049_SWW_00217
City	Aranjuez	Geographic coordinate system	UTM/UPS
Country	SPAIN	Map Datum	WGS 84
		Latitude	
		Longitude	

AMPLING			
Sampling date	Sample type	Sampling time	Water Depth
10.9.2012	Not reported	River/Lake	20 cm
Water pH	<i>Water Conductivity (µS/cm)</i>	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENTIFICATION				
River/Station	Guadarrama/Bargas	CODE	0049_SWW_00218	
City	Bargas	Geographic coordinate system	UTM/UPS	
Country	SPAIN	Map Datum	WGS 84	
		Latitude		
		Longitude		

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
10.9.2012	River/Lake	Not reported	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENTIFICATION				
River/Station	Tajo/Toledo (Safont)	CODE	0049_SWW_00219	
City	Toledo	Geographic coordinate system	UTM/UPS	
Country	SPAIN	Map Datum	WGS 84	
		Latitude		
		Longitude		

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
10.9.2012	River	Not reported	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENTIFICATION				
River/Station	Arga/Ororbia	CODE	0049_SWW_00220	
City	Ororbia	Geographic coordinate system	UTM/UPS	
Country	SPAIN	Map Datum	WGS 84	
		Latitude		
		Longitude		

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
10.9.2012	River/Lake	Not reported	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENTIFICATION				
River/Station	Pisuerga/Simancas	CODE	0049_SWW_00221	
City	Simancas	Geographic coordinate system	UTM/UPS	
Country	SPAIN	Map Datum	WGS 84	
		Latitude		
		Longitude		

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
10.9.2012	River/Lake	Not reported	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> <i>temperature</i> (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

STATION IDENT	IFICATION		
River/Station	Duero/Zamora	CODE	0049_SWW_00222
City	Zamora	Geographic coordinate system	UTM/UPS
Country	SPAIN	Map Datum	WGS 84
		Latitude	
		Longitude	

SAMPLING			
Sampling date	Sample type	Sampling time	Water Depth
10.9.2012	River/Lake	Not reported	20 cm
Water pH	Water Conductivity (μS/cm)	<i>Water</i> temperature (°C)	Salinity
Not reported	Not reported	Not reported	Not reported
Comments:			
None.			

IMPRESSIONS	
Not available	

Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu.

How to obtain EU publications

Our publications are available from EU Bookshop (http://bookshop.europa.eu), where you can place an order with the sales agent of your choice.

The Publications Office has a worldwide network of sales agents. You can obtain their contact details by sending a fax to (352) 29 29-42758.

European Commission EUR 27002 EN – Joint Research Centre – Institute for Environment and Sustainability

Title: Feasibility of a Monitoring Mechanism Supporting a Watch List under the Water Framework Directive

Author(s): Michela Ghiani, Simona Tavazzi, Giulio Mariani, Giovanni Locoro, Robert Loos, Bruno Parachini, Fabrizio Sena, Gert Surkuusk, Oliver Gans, Stefan Weiß, Eric De Wulf, Martin Ferenčík, Michael Schluesener, Thomas Ternes, Arne Wick, Jan Koschorreck Maria Belli, Gerard Stroomberg, Robert Rand, James Thomas, Ray Thomas, Richard Walmsley, Caroline Whalley, Sara Comero and Bernd Manfred Gawlik

Luxembourg: Publications Office of the European Union

2014 - 325 pp. - 21.0 x 29.7 cm

EUR - Scientific and Technical Research series - ISSN 1831-9424 (online)

ISBN 978-92-79-44665-8 (PDF)

JRC Mission

As the Commission's in-house science service, the Joint Research Centre's mission is to provide EU policies with independent, evidence-based scientific and technical support throughout the whole policy cycle.

Working in close cooperation with policy Directorates-General, the JRC addresses key societal challenges while stimulating innovation through developing new methods, tools and standards, and sharing its know-how with the Member States, the scientific community and international partners.

Serving society Stimulating innovation Supporting legislation

doi:10.2788/950480

ISBN 978-92-79-44665-**8**

