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ABSTRACT   

The current paper studies the performance efficiency of two uninformative priors, namely Bayes-Laplace 

(Uniform) prior and Jeffrey’s prior for Binomial model. Several performance measures, such as the Bayes 

estimators under different loss functions, the posterior distribution skewness coefficient, the Bayesian point 

estimates, and the posterior variance, are used for comparison. Using these two uninformative priors, we 

conducted numerical simulation which showed that they perform extreme similarly. 
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1. Introduction 

The great development in the technologies used in our daily life dependson the sciences of mathematics and 

statistics for being the basis in many different fields and applications [1]–[6]. Bayesian inference contains 

several key parts. The Prior distribution represents one of them. It stands for the information among the 

uncertain parameter p. Besides, the posterior distribution is generated by combining the probability 

distribution with the prior distribution. Thus, the prior distribution is employed for future inference and 

decision p[7], [8]. 

A prior may be informative or uninformative. If the minimum effect of the previous distribution has a  

minimum effect on the parameter's subsequent distribution, then it is uninformative. Ingeneral, flat prior, 

diffuse, and vagueare additional names for the uninformative prior. In the prior distribution, if the researcher 

have confirmed beliefs about the hyper-parameters, then using informative prior, which reflects these beliefs 

will be a wise choice. In contrast, the researcher may have just unclear information about the interesting 

distribution of parameters ahead of observing the data. Therefore, he has to choose uninformative priors 

instead. There may be more than uninformative prior for a given problem. However, for more details, [7], [9] 

a review of several methods was introduced for deriving uninformative prior. 

The posterior distributions of the Binomial model parameter, utilizing conjugate Beta prior, Jeffrey’s prior, 

and uniform prior, are given in Section 2. Section 3 contains some simulated data. Section 4 introduces some 

numerical comparisons under various performance measures, such as posterior variance, coefficient of 

skewness, etc. Finally, Section 5 presents some concluding remarks. 

2. The posterior distribution 

The correspondings subsections present the Binomial model of subsequent distribution under 

conjugate Beta prior, uniform prior, and Jeffrey's prior. 

2.1. Binomial distribution and conjugate Beta prior 

The distribution of the number of successes 𝑥 in 𝑚 Bernoulli trials follows the Binomial distribution. 

Therefore, the posterior mass function (pmf) of the Binomial distribution for a random variable 𝑥 with 

parameter 𝑝 is: 
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𝑝(𝑥) = (𝑚
𝑥

)(1 − 𝑝)𝑚−𝑥  , 𝑥 = 0, 1, 2, … . , 𝑚   

0 < 𝑝 < 1 

For a simple casual sample of size n; x1, x2,, xn, the likelihood function  is given by: 

𝐿(𝑥1, 𝑥2, … 𝑥𝑛|𝑝) =  ∏ (𝑚
𝑥𝑖

)𝑝𝑥𝑖(1 − 𝑝)𝑚−𝑥𝑖𝑛
𝑖=1 (2.1) 

∝ 𝑝𝑦(1 − 𝑝)𝑛𝑚−𝑦 with 𝑦 = ∑ 𝑥𝑖𝑛
𝑖=1 (2.2) 

The parameter  𝑝 is unknown.  

If the prior and posterior distributions are part of the same family, then the prior will be a conjugate prior for 

the distributions family, i.e., the posterior form has the same prior distributional form. The Binomial 

likelihood (2.2) has a conjugate Beta prior with probability density functions. 

𝜋(𝑝) =
Γ(𝛼+𝛽)

Γ(𝛼) 𝛾(𝛽)
𝑝𝛼−1(1 − 𝑝)𝛽−1(2.3) 

𝛼𝑝𝛼−1(1 − 𝑝)𝛽−1𝛼 > 0 , 𝛽 > 0 

 

Using Bayes rule, the posterior distribution becomes as 

𝜋(𝑝|𝑦) ∝  𝜋(𝑝). 𝐿(𝑥1, 𝑥2, … 𝑥𝑛|𝑝) 

 

So, 

𝜋(𝑝|𝑦) ∝ 𝑝𝛼+𝑦−1(1 − 𝑝)𝛽+𝑚𝑛−𝑦−1(2.4) 

This is the kernel of another Beta density  

𝜋(𝑝|𝑦) =
⌈(𝛼 + 𝛽 + 𝑚𝑛)

⌈(𝛼 + 𝑦)⌈(𝛽 + 𝑚𝑛) − 𝑦
𝑝𝛼+𝑦−1(1 − 𝑝)𝛽+𝑚𝑛−𝑦−1 

Or 

𝜋(𝑝|𝑦) = 𝐵𝑒𝑡𝑎(𝛼 + 𝑦, 𝛽 + 𝑚𝑛 − 𝑦)(2.5) 

For this posterior distribution, the posterior mean is  

𝐸(𝑝|𝑦) =
𝛼+𝑦

𝛼+𝛽+𝑚𝑛
(2.6)= 𝜆

𝛼

𝛼+𝛽
+ (1 − 𝜆)

𝑦

𝑚𝑛
  , with   𝜆 = 

𝛼+𝛽

𝛼+𝛽+𝑚𝑛
(2.7) 

When   
𝛼

𝛼+𝛽     
  is the prior mean of 𝑝 and   

𝑦

𝑚𝑛
  is the maximum likelihood estimates of 𝑝. 

2.2. Bayes-Laplace (Uniform) prior [10], [11] 

It is a particular situation of the Beta distribution, where U (0, 1) ≡ 𝐵𝑒𝑡𝑎(1, 1). Thus, on the parameter space, 

the uniform prior of 𝑝 is selected to be the constant 

π (𝑝)=1. The density kernel is: 

𝜋(𝑝) ∝ 1           , 0 < 𝑝 < 1(2.8) 

The posterior distribution produced with a uniform U (0, 1) prior and a Binomial likelihood is: 

𝜋(𝑝|𝑦) ∝  𝑝𝑦(1 − 𝑝)𝑚𝑛−𝑦(2.9) 

Which is the Beta distribution density kernel with parameters (𝑦 + 1) 𝑎𝑛𝑑  (𝑚𝑛 − 𝑦 + 1). 

Thus, the posterior distribution of 𝑝 given data is: 
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𝐵𝑒𝑡𝑎(𝑦 + 1, 𝑚𝑛 − 𝑦 + 1) 

2.3. Jeffrey’s prior [12], [13] 

Jeffrey’s prior is an extremely useful prior. It achieves the local uniformity property, which means that a prior 

doesn't too much vary throughout the region, as well, the likelihood is important and doesn't presume big 

values out of the range. Moreover, it is founded on the matrix of fisher information. The definition of Jeffrey 

prior is: 

𝜋(𝑝) ∝  │𝐼(𝑝)│1⁄2        (2.10)                                               

Where │ │ is the determinant, and 𝐼(𝑝) is the matrix of fisher knowledge based on the likelihood 

function𝑝(𝑦|𝑝): 

𝐼(𝑝) = −𝐸[
𝜕2 log 𝑝(𝑦|𝑝)

𝜕𝑝2               (2.11) 

From (2.2), we get  

log 𝐿 = 𝑦 log 𝑝 + (𝑚𝑛 − 𝑦) log(1 − 𝑝) + constant 

𝜕2 log 𝐿

𝜕𝑝2
=

−𝑦

𝑝2
−  

𝑚𝑛 − 𝑦

(1 − 𝑝)2
 

So 

𝐼(𝑝) =
𝑛𝑚𝑝

𝑝2 +
𝑚𝑛−𝑚𝑛𝑝

(1−𝑝)2 =  
𝑚𝑛

𝑝(1−𝑝)
Where 

𝐸(𝑦) = 𝑛𝑚𝑝     (2.12) 

Taking the square root and removing the constant𝑚𝑛, 

Gives 𝜋(𝑝) ∝ 𝑝− 
1

2(1 − 𝑝)− 
1

 2                (2.13) 

This is 𝐵𝑒𝑡𝑎(1/2, 1/2) which is a special case of 𝐵𝑒𝑡𝑎 (𝛼 , 𝛽) with 𝛼 =  1/2and𝛽 = 1/2. 

The posterior distribution produced with Jeffery's prior and a binomial likelihood is  

𝑃(𝑝ן 𝑦)  ∝  𝑝𝑦−1/2(1 −  𝑝)𝑚𝑛−𝑦−1/2      (2.14) 

That represents the density kernel of the Beta distribution with parameter  

 𝑦 +
1

2
, 𝑚𝑛 − 𝑦  +

1

2
. 

Thus, the posterior distribution of p given data is 

𝐵𝑒𝑡𝑎 (𝑦 +
1

2
, 𝑚𝑛 − 𝑦 +

1

2
  ) 

3. Simulated data  

The following data of size 𝑛 = 5 is generated from Binomial distribution with parameters = 20, 𝑝 =
1

2
 : 

14, 9,12,10,12 using a routine written in C++ language (i.e𝑛 = 5, ∑ 𝑥𝑖 = 575
𝑖=1 ) 

 

a. Under uniform prior  

The posterior distribution of the parameter 𝑝 for the given data⨱= (𝑥1, … , 𝑥5), using   (2.9) is a 

the distribution of Beta with parameters 𝛼 = 58 and 𝛽 = 44, i.e 𝐵𝑒𝑡𝑎(58,44). 
b. Under Jeffrey's 

The posterior distribution of the parameter 𝑝 for the given data, using (2.14) is the Beta 

distribution with parameters 𝛼 = 57.5and𝛽 = 43.5, i.e  𝐵𝑒𝑡𝑎(57.5,43.5). 
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4. Numerical comparisons 

This section contains some numerical comparisons of the efficiency of both priors, under the above data, 

using the following performance measures: 

4.1. Posterior variance 

The posterior variance of parameter 𝑝 with 𝐵𝑒𝑡𝑎 (𝛼, 𝛽) prior  

(𝑝)𝜋(𝑝|⨱)
𝑽𝒂𝒓 =

(𝛼 + 𝑦)(𝑚𝑛 − 𝑦 + 𝛽)

(𝑚𝑛 + 𝛼 + 𝛽)2(𝑚𝑛 + 𝛼 + 𝛽 + 1)
 

 

a. Using uniform prior, where 𝛼 = 1, 𝛽 = 1, the posterior variance is                

𝑉𝑎𝑟(𝑝) = 0.00238. 

 

b. Using Jeffery's prior, where 𝛼 = 1
2⁄ , 𝛽 = 1

2⁄   ,  the posterior variance is 

𝑉𝑎𝑟(𝑝) = 0.00240. 

We notice from (a) and (b) that 𝑉𝑎𝑟(𝑝) utilizing uniform and Jeffrey’s prior which are approximately equal. 

We conclude that the uniform and Jeffrey’s prior have approximately similar efficiency. However, the 

uniform prior is preferred for its simplicity. 

 

4.2. Coefficient of skewness 

The skewness coefficient of the posterior distribution is given by 

                                   Coefficient of skewness =
2(𝑚𝑛 − 2𝑦)

𝑚𝑛 + 𝛼 + 𝛽 + 2
√

𝑚𝑛 + 𝛼 + 𝛽 + 1

(𝑦 + 𝛼)(𝑚𝑛 − 𝑦 + 𝛽)
 

a. Coefficient of skewness for posterior distribution using a uniform prior 

𝐵𝑒𝑡𝑎(1,1)  is − 0.0538. 

b. Coefficient of skewness for posterior distribution utilizing Jeffrey’s prior 

𝐵𝑒𝑡𝑎( 
1

2
  ,

1

2
  )  is − 0.0546. 

From (a) and (b), we note that the coefficients of skewness are negative. They both are very slightly 

negatively and almost equally skewed. However, the uniform prior may be preferred to the Jeffrey’s prior for 

its simplicity. 

4.3. Bayesian point estimates 

If 𝐵𝑒𝑡𝑎(𝛼, 𝛽) is the prior, then the posterior mode is          
𝛼+𝑦−1

𝑚𝑛+𝛼+𝛽−2
and the posterior mean is 

𝛼+𝑦

𝑚𝑛+𝛼+𝛽
 

a. If the prior is uniform prior, Beta(1,1), then the posterior mode is 
𝑦

𝑚𝑛
 = 0.5700and the posterior mean is    

𝑦

𝑚𝑛+2
= 0.5686 . 

b. If the prior is Jeffrey’s prior, Beta(
1

  2  
,

 1

   2
) , then the posterior mode  

is
𝑦−

1

2

𝑚𝑛−1
= 0.5707 and the posterior mean     

𝑦+
1

2

𝑚𝑛+1
= 0.5693. 

From these values, we notice that the posterior mode and posterior mean using the two priors are nearly the 

same as the maximum likelihood estimate, which is equal
𝑦

𝑚𝑛
= 0.5700. 

4.4. Bayes estimator (using loss function) 

Using the loss function, the Bayes decision (the best decision), is the decision (𝑑 ∗) that reduces the posterior 

expected loss function. If we consider the decision is an estimator choice, then Bayes decision is the Bayes 
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estimator. In the following table, we present the  Baye's estimator based on the uniform and Jeffrey’s prior for 

different loss functions. 

From the table, it can be seen that the Bayes estimator for the two-loss functions, using the two priors is 

almost equal to the maximum likelihood estimate (MLE=0.5700). 

Table1. Bayes estimator for the two loss functions 

Loss function 

𝑳(𝒑, 𝒅) 

Quadratic (squared error) 

𝑳𝟏(𝒑, 𝒅) = (𝒅 − 𝒑)𝟐 

Relative quadratic squared 

error 

𝑳𝟐(𝒑, 𝒅) =
(𝒅 − 𝒑)𝟐

𝒑(𝟏 − 𝒑)
 

Bayes Estimator 

𝒑𝑩̂ = 𝒅∗ 

With 𝑩𝒆𝒕𝒂(𝜶, 𝜷) prior 

𝑑∗ =
∝ +𝑦

𝑚𝑛+∝ +𝛽
 𝑑∗ =

∝ +𝑦 − 1

∝ +𝛽 + 𝑚𝑛 − 2
 

Jeffrey's prior 

𝑩𝒆𝒕𝒂 ( 
𝟏

𝟐
 ,

𝟏

𝟐
 ) 

𝑑∗ = 0.693 𝑑∗ = 0.5707 

Uniform prior 

𝑩𝒆𝒕𝒂(𝟏, 𝟏) 

𝑑∗ = 0.5686 𝑑∗ = 0.5700 

 

5. Conclusion 

In this paper, we study the efficiency of two uninformative priors, namely Jeffrey’s prior and uniform prior 

using several performance measures. 

From previous sections, we note that 

I. The two priors have nearly the same efficiency under all performance measures. 

II. Uniform prior may be preferred because it is simpler than Jeffrey’s prior. However, Jeffrey’s prior has 

the invariant property. 

III. The Bayes estimators are almost equal to the maximum likelihood estimator. 
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