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ABSTRACT   

In modern techniques of building processors, manufactures using more than one processor in the integrated 

circuit (chip) and each processor called a core. The new chips of processors called a multi-core processor. 

This new design makes the processors to work simultaneously for more than one task or all the cores working 

in parallel for the same task. All cores are similar in their design, and each core has its own cache memory, 

while all cores share the same main memory. So, if one core requests a block of data from main memory to 

its cache, there should be a protocol to declare the situation of this block in the main memory and other 

cores. This is called the cache coherency or cache consistency of multi-core. In this paper a special circuit 

is designed using VHDL coding and implemented using ISE Xilinx software, one protocol was used in this 

design, the MESI (Modify, Exclusive, Shared and Invalid) protocol. Test results were taken by using test 

bench, and showed all the states of the protocols are working correctly. 
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1. Introduction 

In modern techniques of computers, the multi-core processor is used. All processors or cores will share the same 

main memory of the system for simple programming model. Hence all cores will share through single address 

space the shared memory. All cores will work for the same task, so if one core writes on some blocks from the 

shared memory it must be some rules must be existing to tell the other core not to use that blocks of data until 

an update must be done. The cache coherence protocol in the term used to confirm that all the used information 

is write [1]. 

Shared memory multi-core needs to be coherent and consistent with data [2]. In recent years multi-Core are 

gaining more importance as they have better performance and reliability than single-core system figure 1. Multi-

core with shared memory is being used in the today’s computers [3]. The current hardware world is dominated 

by the multi-cores or many-cores [4]. As the trend shifts from single-core to multi-core processors for tuning 

up the performance. 

Nowadays, chip multi-core is the main trend in designing the CPU for high performance devices. This originates 

from the fact that the single core chip reaches the limitation of execution speed because of the heat and power 

dissipation issues [5-8]. Moreover, modern technologies support millions of transistors to be integrated in one 

chip which eases the design of multi-core on chip in terms of area. In fact, several multi-cores have been 

commercialized in the market [9-10]. 

The caches in shared memory multiprocessors are used to improve performance by reducing the processor’s 

memory access time. Unfortunately, caching introduces the cache coherence problem. Early shared-memory 

machines left it to the programmer to deal with the cache coherence problem, and therefore these machines were 

considered difficult to program [11]. 

To solve the problem of cache coherence, designers used hardware circuit that implemented in the processor. 

This hardware will snoop all the activities of all the cores and uses a certain mechanism which called cache 

coherence protocol to put an appropriate sign for each action by waiting the bus [12]. 

In this thesis, a pre-designed MIPS (Microprocessor without Interlocked Pipeline Stages) type single core 

processor is used. This processor is used to build another processor similar to it so that to have two cores and a 
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cache was built for each processor. Then cache was chosen with capacity (32-bits) and direct mapped type for 

ease of design. Then building a circuit of coherence controller in order to control the reading and writing 

processes for processors when reading and writing from the shared memory of each of the processors. A link to 

all the designed parts, and several programs were written for the purpose of operating and examining the three 

types of coherency protocol MESI [13][14]. 

 

 

Figure 1. Dual multicore processor. 

 

2. Research method 

2.1. Differences of cache coherency protocols 

This section summarizes the differences between MSI, MESI, and MOESI cache coherency protocols. MSI is 

the basis of three other protocols. When using MSI, the cache line is in one of three modes: modified, shared, 

or invalid. The MESI protocol will add additional exclusive status the benefit of adding the Exclusive state is 

to reduce the number of broadcasts when writing to a line that is present in only one of the caches. Because an 

Exclusive rows reside in a single cache, so there is no need to broadcast an invalidation signal on write [15][16]. 

Conversely, if you write to a shared line, you need to broadcast the invalidation signal because the remote cache 

may contain a shared copy [17][18]. 

The MOESI protocol has the advantage of adding both exclusive and owner states, reducing both the number 

of broadcasts and the number of rewrites. Table 1 show the different between three protocols [19][20]. 

Table 1. The difference between cache coherence protocols 
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2.2 FPGA (Field Programmable Gate Array) 

The FPGA is an integrated circuit consisting of a grid matrix that can be programmed by the user "in the field" 

without the use of expensive equipment [15]. An FPGA consists of a set of programmable logic gates and rich 

interconnect resources from which complex digital circuits can be implemented as shown in figure 2. 

It consists of three main parts: 

1. Configurable Logic Blocks — which implement logic functions. 

2. Programmable Interconnects — which implement routing. 

3. Programmable I/O Blocks — which connect with external components.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Internal component of FPGA 

 
2.3 Design and implementation of cache coherence protocols 

Design and implementation dual-core MIPS type processor in which each processor contains its cache memory 

and the two processors used the same main memory. Figure 3 shows a block diagram for the estimated design 

of dual-core MIPS processor [21]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Architecture of dual microprocessor  

Design and implementation a cache controller circuit and link it to the main processors and memory in order to 

perform the process of controlling and monitoring the required addresses [22].  
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2.4 Requirements for proper coherence protocol 

For any good coherence protocol there should be some important features need to be followed. 

1. Latency: the latency should be low for cache-to-cache transfer. 

2. Bandwidth: it must be avoided for bus-communication to provide efficient bandwidth. 

 Snoopy-based method transmits messages on buses, thus supporting low-delay, cache-to-cache 

transfers. In contrast, directory-based protocols send requests to destinations and wait for confessions that 

require an extra clock cycle. Second, it refuses to rely on bus-like architecture to limit the integration of more 

cores into the system. The directory-based protocol has the advantage of stabilizing a large number of cores that 

communicate point-to-point. Third, bandwidth performance can only be reduced to some extent. Should reduce 

the bandwidth to avoid interconnected conflicts as this affects the performance of the system. Figure 4 shows 

the need for coordination. The width of the triangle represents several desired functions. Each feature is 

associated with the same protocol. 

 
Figure 4. Several desire function   

 
2.5 Snoopy based coherence protocol 

Snoopy and directory methods are standard for maintaining catch coherence in multi-core systems. Both 

methods have their merits and demerits. In today's researchers, bandwidth performance, low-delay cache-to-

cache storage, and an integrated storage method that facilitates interconnection on a bus. 

Snoopy is not suitable for large, scalable multi-core systems. In addition, the directory method incurs directory 

storage overhead and increases the latency of transfers between caches. Therefore, the evolution of cache 

coherency protocols has been used to achieve high performance, regardless of design limitations. First Protocol 

MSI (Modified (M), Shared (S) and Invalid (I)) This protocol was developed to MESI exclusive (E). 

 

3. MESI Protocol 

The MESI protocol has one more state than the previous protocols and this state called Exclusive (E) state. The 

action of this state and other states are given in Table 2. This new state is added in order to reduce the number 

of bus message .Because the Exclusive state means that the block is valid only in this cache and main memory 

and not valid in any other caches. This given a flexibility to the processor to modify its cache without a need to 

snoop other caches. Figure 5 shows the state transition diagram for the MESI protocol. The left side of the figure 

represent the processor requests and actions of the cache controller circuit, while the right part of the figure 

represents the bus requests and corresponding action. Table 2 shows the MESI state transfer, and Figure 6 shows 

a simple MESI state diagram with state transfer. 
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Table 2. The action of MESI State 

 
 

 
Figure 5. State transition diagram for the MESI protocol 
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Figure 6. Simple MESI state diagram with state transfer 

 

 

❖ Advantage of MESI protocol: 

1. Differentiation between modified and shared state. 

 

2. There can be multiple copies of the block at the same time. 

 

3. The transition from Shared to Modify can be done without reading data from the cache. 

 

4. Exclusive (E) added to reduce the number of bus messages sent out for invalid to modified transition. 

 

❖ Disadvantage of MESI protocol: 

1. Additional hardware is required to decide on a block transfer when a read request is received. 

2. Whenever the "M" state changes to "S", the data needs to be written back to memory. 

3. Offsets, when transitioning from "M" to "S" or "I". If the data does not need to be reused, the data converted 

into shared will be reused and rendered inappropriate. 

4. Cache coherency controller design 

In this work two multi-core MIPS1 and MPIS2 were designed and each with separate cache and both sharing 

the same main memory. A cache coherency controller is designed which consist of two parts, the coherency tag 

and coherence controller by using FSM (Finite State Machine). All these components are connected together 

on chips and have the main memory off chip. Figure 7 shows a block diagram for the cache coherency controller 

when connected to on chip with the two processors. The design has two caches, cache A and cache B. The 

caches is a directly mapped set association. Each cache contains eight sets, each containing four 32-bit data, a 

26-bit tag, and a valid bit, update, dirty, and valid bit. Two processor components, MIPS1 and MIPS2, are used 

to perform write and read functions in the cache. Shared memory used in the design contains 32 entries. Bus 

controller is used to synchronize between different modules accessing the shared bus at the same time. 
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Figure 7. Block diagram for the cache coherency controller 

 

Cache controller which decides this address exists in tag cache or not. If it exists then no memory access is 

needed, cache controller provides this data to processor from cache memory; if it does not exist then the cache 

controller fetches the data from main memory. 

 

5. Cache coherence controller for MESI protocol 

For the second type of protocol MESI, a 7- bit were used to indicate different states for MESI protocol, two bits 

for M (Modify), two bits for E (Exclusive), one bit for S (Shared) and two bits for I (Invalid). Figure 8 shows 

the coherency tag with 7-bits for MESI states. Table 3 shows MESI states. But a new state has been added called 

Exclusive state and the rest of states are as in MSI controller. 

When Exclusive (01); this means that Cache line is the same as in main memory and in the cache of first 

microprocessor (MIPS1). 

Table 3-4 shows the different sates of MESI Protocol. Only two states will be explained in this section: 

1. For (St3) if (M=10, E=00, S=0, I=00) the OutMESI1 will be Exclusive in MIPS1 Hit read (Direct read). 

2. For (St9) if (M=01, E=00, S=0, I=00) the OutMESI1 will be Not Exclusive in MIPS1 Hit write (Direct write). 

 

Table 3. MESI states 
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Figure 8. Coherency tag with 7-bits for MESI states 

6. Simulation results of MESI protocol 

For the second type of protocol MESI, a 7- bit were used to indicate different states for MESI protocol, two 

bits for M (Modify), two bits for E (Exclusive), one bit for S (Shared) and two bits for I (Invalid). But a new 

state has been added called Exclusive state and the rest of states are as in MSI controller. 

When Exclusive (01); this means that Cache line is the same as in main memory and in the cache of first 

microprocessor (MIPS1). 

Only two states will be explained in this section: 

1. For (St3) if (M=10, E=00, S=0, I=00) the Out MESI1 will be Exclusive in MIPS1 Hit read (Direct 

read). Figure 9 shows the test bench of MESI protocol-MP1 Hit Read (Direct Read). 

 

 
Figure 9. Test bench of MESI protocol-MP1 Hit Read (Direct Read) 

 

2. For (St9) if (M=01, E=00, S=0, I=00) the OutMESI1 will be Not Exclusive in MIPS1 Hit write 

(Direct write). Figure 10 shows the test bench of MESI protocol-MP1 Hit Write (Direct Write). 
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Figure 10. Test bench of MESI protocol-MP1 Hit Write (Direct Write). 

 

7. FPGA device utilization 

After all designs are synthesized successfully, Xilinx ISE Design Suite 14.1 software provides estimated values 

of the hardware amount that is needed to build each design. Table 4 shows the hardware amount of MESI design 

using Xilinx virtex 7. 

 

Table 4. The hardware amount of MESI design using Xilinx virtex 7 

 
 

 
8. Conclusion 

The Cache Coherency Controller was built for MESI protocols. In this paper a special circuit is designed 

using VHDL coding and implemented using ISE Xilinx software. Test results were taken by using test 

bench, and showed all the states of the protocol are working correctly. 

Several suggestions could be stated, these suggestions could be considered as the basis for further work. It 

is possible to improve compatibility protocols because each existing protocol has some limitations. Lower 

bandwidth usage, less network traffic, require major training. Off-chip communication must be reduced to 

reduce long latency for off-chip memory access. 
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