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1 Introduction

Ernesto Jardim

Under the scope of the a4a Initiative, the JRC is promoting cooperative activities between
�sheries scientists with the aim to test, disseminate and promote a4a methods. These
Small Research Projects (SRP) are focus on comparing the results of assessments from
other models to assessments obtained from the a4a statistical catch-at-age model, and
explore research questions using case studies.

The Workshop dedicated to the Mediterranean took place in Ispra, Italy, the 23th to
the 27th of June. The main objectives were to compare assessment models and develop
multi-�eet forecasts methodologies. These can be applied in the context of ex-ante/ex-
post evaluations of multi-annual plans, performed by STECF in order to provide scienti�c
advice to the European Commission.

1.1 ToR and Agenda

The terms of reference of the workshop were:

� Assess the stocks of hake in GSA 7 and sole in GSA 17 with a4a and compare results
with other models.

� Develop �eet forecasting algorithms considering requirements of multi-annual man-
agement plans.

� Test the methods above in other stocks.

� Report to STECF and other relevant management bodies.

The �rst three days of the workshop were dedicated to �t the a4a statistical catch-at-age
method to the stocks of sardine, anchovy and sole in the North Adriatic (GSA17), Hake
in the Gulf of Lions (GSA08) and in the South Adriatic (GSA18). The fourth and �fth
days were dedicated to compute partial �shing mortalities for the �eets targeting Sole
in the North Adriatic and runing forecasts under distinct scenarios. The scenarios were
designed to test possible management of the �eets by constraining their e�ort in di�erent
management objectives.
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1.2 The a4a Initiative

(This section is based on Jardim, et.al, 2014)

The volume and availability of data useful for �sheries stock assessment is continually
increasing. Time series of traditional sources of information, such as surveys and landings
data are not only getting longer, but also cover an increasing number of species.

For example, in Europe the 2009 revision of the Data Collection Regulation (EU, 2008a)
has changed the focus of �sheries sampling programmes away from providing data for
individual assessments of key stocks (i.e. those that are economically important) to doc-
umenting �shing trips, thereby shifting the perspective to a large coastal monitoring
programme. The result has been that data on growth and reproduction of �sh stocks are
being collected for more than 300 stocks in waters where the European �eets operate.

Recognizing that the context above required new methodological developments, the Eu-
ropean Commission Joint Research Centre (JRC) started its Assessment for All Initiative
(a4a), with the aim to develop, test, and distribute methods to assess a large numbers
of stocks in an operational time frame, and to build the necessary capacity/expertise on
stock assessment and advice provision.

The long-term strategy of a4a is to increase the number of stock assessments while simul-
taneously promoting the inclusion of the major sources of uncertainty in scienti�c advice.
Our aim is to reduce the required workload by developing a software framework with the
methods required to run the analysis a stock assessment needs, including methods to deal
with recognized bottlenecks, e.g. model averaging to deal with model selection (Millar,
et.al, 2014). Moreover, we aim to make the analysis more intuitive, thereby attracting
more experts to join stock assessment teams. Having more scientists/analysts working in
�sheries management advice will increase the human resource basis, which is currently
recognized to be limited. Regarding the former, a4a promotes a risk analysis approach
to scienti�c advice through a wider usage of Operating Model/MSE approaches. We're
focused on developing methods that can deal with the most common settings these type
of analysis require, and creating the conditions for scientists to develop their own meth-
ods. Our expectation is that having a common framework, with clear data structures and
work�ows, will promote research in this area and make it simpler to implement and share
methods.

To achieve these objectives, the Initiative identi�ed a series of tasks, which were or are
being carried out, namely:

� de�ne a moderate data stock;

� develop a stock assessment framework;

� develop a forecasting algorithm based on MSE;

� organize training courses for marine scientists.
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1.3 The a4a approach to stock assessment and manage-

ment advice

As stated before, one of the main objectives of a4a is to promote a risk type of analysis, so
that scienti�c advice provides policy and decision makers a perspective of the uncertainty
existing on stock assessments and its propagation into the scenarios being analyzed.

The sources of uncertainty implemented so far are related with the processes of growth,
natural mortality and reproduction (stock-recruitment); and with the estimation of pop-
ulation abundance and �shing mortality by the stock assessment model. In all cases the
framework can include sampling error.

The approach is split into 4 steps: (i) converting length data to age data using a growth
model, (ii) modeling natural mortality, (iii) assessing the stock, and (iv) MSE.

These steps may be followed in sequence or independently, depending on the user's pref-
erences. All that is needed is to use the objects provided by the previous step and provide
the objects required by the next, so that data �ows between steps smoothly. One can
make the analogy with building with Lego, where for each layer the builder may use the
pieces provided by a particular boxset, or make use of pieces from other boxsets. Figure
1.1 shows the process, including the class of the objects that carry the data (in black).

Figure 1.1: In/out process of the a4a approach. The boxes in black represent the classes
of the objects that carry the information in and out of each step.

Analysis related to projections and biological reference points are dealt with by the FLR

packages FLash and FLBRP.

In Steps 1 and 2 there is no �tting of growth models or natural mortality models. The
rationale is to provide tools that allow the uncertainty associated with these processes
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to be carried on into the stock assessment, e.g. through parameter uncertainty. This
approach allows the users to pick up the required information from other sources of
information such as papers, PhDs, Fishbase, other stocks, etc. If the stock under analysis
does not have speci�c information on the growth or natural mortality processes, generic
information about life history invariants may be used such as the generic priors suggested
by Bentley, (2014).

Note that an environment like the one distributed by a4a promotes the exploration of
di�erent models for each process, giving the analyst a lot of �exibility. It also opens
the possibility to e�ciently include distinct models in the analysis. For example, a stock
assessment using two growth, or several models for natural mortality could be performed.
Our suggestion to streamline the assessment process is to combine the �nal outcomes using
model averaging (Miller, et. al, 2014). Other solutions may be implemented, like scenario
analysis, etc. What is important is to keep the data �owing smoothly and the models
clear. R (R Core Team, 2014) and FLR (Kell, et.al, 200) provide powerful platforms for
this approach.

1.4 How to read this document

The target audience for this document are stock assessment experts. It presents a mixture
of text and code that shows how the analysis can be run with R/FLR/FLa4a. Moreover,
having the code allows the reader to copy/paste and replicate the analysis presented here.

The chapters are as independent as possible, so they can be extracted and runed individ-
ually.

1.5 Software packages - FLR & FLa4a

To run the FLa4a methods the reader will need to install the package and its dependencies
and load them, together with a couple of other packages. The data sets can be made
available upon request.

# from CRAN

install.packages(c("copula", "triangle"))

# from FLR

install.packages(c("FLCore", "FLa4a"), repos = "http://flr-project.org/R")

To replicate the analysis carried out in this document the user will need the following
additional packages:

# from CRAN

install.packages(c("plyr", "xtable", "plot3D", "gridExtra", "ggplot2"))

# from FLR

pkgs <- c("FLXSA", "FLAssess", "FLSAM", "FLash", "FLBRP")

install.packages(pkgs, repos = "http://flr-project.org/R")

Loading !
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library(FLa4a)

library(FLBRP)

library(FLXSA)

library(xtable)

library(plyr)

library(plot3D)

library(FLSAM)

library(gridExtra)
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2 Anchovy in the North Adriatic Sea

Chato Osio

2.1 Explore Anchovy stock in GSA 17

Bring in the ANCHOVY data from GSA 17, from the assessment performed during
STECF EWG 13-19 and stored on github

load("data/Anchovy GSA 17.RData")

Explore the raw data, catch matrix and index, plus index internal consistency
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Figure 2.1: Anchovy stock
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Figure 2.2: Anchovy tuning index

The internal consistency in the West+East survey is not good for almost all age classes
indicating problems with this merged index.
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Figure 2.3: Anchovy tuning index internal consistency
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Figure 2.4: anchovy bubble plot catch numbers
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Figure 2.5: bubble plots of anchovy tuning index

2.2 Replicate SAM assessment

The latest accepted assessment performed in STECF working group was performed with
FLSAM. Here the objective is to compare the SAM with a4a �t (e.g. achieve the same
results) and see if the �t can be better. The assessment results from SAM model are in
�gure below for the Fishing mortality at age. It clearly appears that there are some very
high Fs in the last ages and years. From the EWG 13-12 report it is clear that there
were some problems with residual �ts of the tuning index, for full details see the original
report.
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Figure 2.6: 3D Fishing mortality surface from the SAM assessment performed in STECF
EWG 13-19

To rerun the assessment in a4a, once the data is loaded we reset the plus group at age
class 4+ as in the SAM assessment.

ANC17 <- setPlusGroup(ANC17, 4)

Start simple and �t an a4a base model with the default settings for fmod, qmod and
srmod.

fmod <- ~factor(year) + factor(age)

qmod <- list(~factor(age))

srmod <- ~factor(year)

fit0 <- a4aSCA(stock = ANC17, indices = ANC17.tun, fmodel = fmod,

qmodel = qmod, fit = "MP")
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The assessment with the default settings does not converge, and returns the following
warning: " Hessian was not positive de�nite". To get results the �t must be done without
computing the hessian, with the argument '�t' set to 'MP'. The main diagnostics for the
assessment �t are the residual patterns by age for survey and catches. The survey displays
bad yearly trends while the catches present a level problem in Age 0.

Figure 2.7: Residual patterns for tuning survey and year classes in catch numbers for �t0

We can plot �tted against observed numbers at age for survey, where model �tted numbers
are lines in blue and observed is pink line. The prediction is quite far o� the observed
and will need more �exibility in either the fmod or qmod.
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Figure 2.8: Predicted vs observed numbers at age in tuning index

Similarly we can plot �tted catch at age against observed where �tted is blue line, observed
is pink line. In this case also there are large discrepancies in the early part of the series
and in the 1990's.
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Figure 2.9: Predicted vs observed catch numbers at age for �t0

Try now to model with greater �exibility and add a smoother in the fmod on age and
year with K set di�erently to account for the available numbers of ages and years.

fmod <- ~s(age, k = 4) + s(year, k = 20)

fit1 <- a4aSCA(stock = ANC17, indices = ANC17.tun, fmodel = fmod,

qmodel = qmod)

By running the same set of diagnostic plots, the �t of age 0 in the catches improves but
there are still strong residual year trends in the survey for all ages.
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Figure 2.10: Diagnostics for �t1

Survey diagnostics are again not very good, while the predicted vs observed catch numbers
are better than in �t1.
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Figure 2.11: Diagnostics for �t1
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Figure 2.12: Diagnostics for �t1

By keeping the same F model, we model catchability (qmod) as a smooth of age plus
year.

fmod <- ~s(age, k = 4) + s(year, k = 20)

qmod <- list(~s(age, k = 4) + year)

fit2 <- a4aSCA(stock = ANC17, indices = ANC17.tun, fmodel = fmod,

qmodel = qmod)

By rerunning diagnostics plots on �t2 there is an improvement in the survey yearly trends
in residuals. Also the predicted vs observed in survey numbers improves. The same is
true in the early part of the catch numbers.
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Figure 2.13: Diagnostics for �t2
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Figure 2.14: Diagnostics for �t2
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Figure 2.15: Diagnostics for �t2

Looks like there are problems with the survey catchability, while the catch residuals are
more or less ok. The 3D F surface shows very high mortality in the terminal year and age
and this is closest result to the SAM �t.
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Figure 2.16: 3D surface of F at age for �t2

2.3 Improving the stock assessment �t

To try to improve the residual patterns, the overall model �t and get more realistic F's at
age in terminal year we can work on survey catchability. We thus try to model catchability
with a smoother on age and introduce breakpoints in 2006 and 2011. The choice of these
years aims at allowing more �exibility in these years to account for changes in catchability.

fmod <- ~s(age, k = 4) + s(year, k = 20)

qmod <- list(~s(age, k = 4, by = breakpts(year, c(2006, 2011))))

fit3 <- sca(stock = ANC17, indices = ANC17.tun, fmodel = fmod,

qmodel = qmod, srmodel = srmod, fit = "assessment")
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Upon inspection of residual patterns, survey residuals still present some trend. Survey
predicted vs observed numbers at age are better but with some discrepancies in 200-2006
and 2009-2011.

Figure 2.17: Diagnostics for �t3
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Figure 2.18: Diagnostics �t3

However in the predicted vs observed numbers in the catch there is a large discrepancy
starting from 1985 to 1987, then 1990-1992, 1995-1998
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Figure 2.19: Diagnostics for �t3

The next attempt to improve the model �ts is to model catchability as changing after
2006 and to insert breakpoints at ages in the fmod.

fmod <- ~s(age, k = 4) + s(year, k = 20, by = breakpts(age, c(1.5,

2.5)))

qmod <- list(~s(age, k = 4, by = breakpts(year, 2006)))

# fmod <- ~ s(age, k=4) + s(year, k = 20)

fit4 <- a4aSCA(stock = ANC17, indices = ANC17.tun, fmodel = fmod,

qmodel = qmod, srmodel = srmod, fit = "assessment")

The diagnostics for �t4 are better than �t3 for catch residuals but not for age 2 of the
survey.
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Figure 2.20: Anchovy diagnostics for �t4
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Figure 2.21: Diagnostics for �t4

This model with the exception of year 1986-1988 does a good job at predicting catch
numbers.
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Figure 2.22: Anchovy diagnostics for �t4

The F surface remains however particularly high in the last ages and years.
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Figure 2.23: 3D surface of F at age for model �t4

Another possibility to improve the model �t is have a fmodel where F is a function of a
smoother of year with breakpoints on year 1985 and 1998. The qmodel is kept as in �t4.

fmod <- ~s(age, k = 5, by = breakpts(year, c(1985, 1998)))

qmod <- list(~s(age, k = 4, by = breakpts(year, 2006)))

fit5 <- a4aSCA(stock = ANC17, indices = ANC17.tun, fmodel = fmod,

qmodel = qmod, fit = "assessment")

Overall �t5 has acceptable standardized residuals for both survey and catches.
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Figure 2.24: Anchovy diagnostics for �t5
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Figure 2.25: Anchovy diagnostics for �t5

Predicted vs observed catches still present problems in 1986:1988.
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Figure 2.26: Anchovy diagnostics for �t5
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Figure 2.27: 3D surface of F at age for model �t5

Try to change default of the variance model on the survey since there have been a number
of assumptions when combining the east and west surveys. Specify that variance can
change in both survey and catch by a smooth of age with k=3

fmod <- ~s(age, k = 5, by = breakpts(year, c(1987, 1995))) +

s(year, k = 20, by = breakpts(age, 4))

qmod <- list(~s(age, k = 4, by = breakpts(year, 2006)))

vmod <- list(~s(age, k = 3), ~s(age, k = 3))

fit6 <- a4aSCA(stock = ANC17, indices = ANC17.tun, fmodel = fmod,

qmodel = qmod, vmod = vmod, fit = "assessment")

Fit6 is the best model obtained, the residuals, predicted vs observed in catch and survey
are quite acceptable.
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Figure 2.28: Anchovy diagnostics for �t6
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Figure 2.29: Diagnostics for �t6
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Figure 2.30: Diagnostics for �t6

The F surface is very reasonable. This model returns a max of F=3, while the SAM model
in EWG 13-19 was around Fmax=12.
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Figure 2.31: 3D surface of F at age for model �t6

2.4 Inclusion of Index Error in model �t

A di�erent approach to improve model �t is to down weight the variance model of the
survey since it's problematic on the F's in the last couple years. One attempt was made
by down weighting the whole variance of the survey (code shown but no model results
presented here) and one by down weighting only the last two years (plus a range of
di�erent settings)

# make temporary stocks not to override the original stock

stk <- ANC17

idx <- ANC17.tun[1]

# variance of observed catches, keep fixed variance for all

39



# years

varslt <- catch.n(stk)

varslt[] <- 0.3

catch.n(stk) <- FLQuantDistr(catch.n(stk), varslt)

# variance of observed indices

varslt <- index(idx[[1]])

# downweight the var for all years of the survey equally

# varslt[] <- 0.6 index.var(idx[[1]]) <- varslt

# downweight the var for all years of the survey equally a

# lot of weight in the last part of the tuning and high in

# the last two years w <- c(0.6, 0.6, 0.6, 0.6, 0.6, 0.6,

# 0.3, 0.3) index.var(idx[[1]]) <-rep(v, each=5) a lot of

# weight in the initial part of the tuning and low in the

# last two years.

w <- c(0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.9, 0.9)

index.var(idx[[1]]) <- rep(w, each = 5)

# run

fmod <- ~s(age, k = 5, by = breakpts(year, c(1987, 1995))) +

s(year, k = 20, by = breakpts(age, 4))

qmod <- list(~s(age, k = 4, by = breakpts(year, 2006)))

fitvar <- a4aSCA(stk, idx, fmod = fmod, qmod = qmod)

Upon residual inspection, the patterns of the survey present problems.
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Figure 2.32: Anchovy diagnostics for �tvar
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Figure 2.33: Anchovy diagnostics for �tvar

The �shing mortality surface while better than other models still is very high on age 4+
in the last years.
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Figure 2.34: 3D surface of F at age for model �tvar

trim the survey index by removal of age = 4

The bubble plots of the cohort strengths show that the last year classes are very poorly
represented in the catch matrix and while in the models before we set the plus group at
4+, here we attempt to remove catches of age = 4, while keeping the some of the fmod
and qmod tested before.

fmod <- ~s(age, k = 5, by = breakpts(year, c(1987, 1995))) +

s(year, k = 20, by = breakpts(age, 4))

qmod <- list(~s(age, k = 4, by = breakpts(year, 2006)))

fit7 <- a4aSCA(stock = ANC17, indices = FLIndices(trim(ANC17.tun[[1]],

age = 0:3)), fmodel = fmod, qmodel = qmod, fit = "assessment")
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Model �t can be compared with the AIC and BIC. In this case however the best model
in terms of AIC is not �t6 which is indicated by the residuals but �t4 for AIC or �t2
according to BIC.

# same as above and bring in variance model. Model not

# converging

fit8 <- a4aSCA(stock = ANC17, indices = FLIndices(trim(ANC17.tun[[1]],

age = 0:3)), fmodel = fmod, qmodel = qmod, vmodel = vmod,

fit = "assessment")

AIC(fit0, fit1, fit2, fit3, fit4, fit5, fit6, fitvar)

## df AIC

## fit0 91 355.6

## fit1 73 373.6

## fit2 73 318.2

## fit3 78 373.6

## fit4 113 302.9

## fit5 65 491.1

## fit6 86 318.0

## fitvar 84 1092.6

BIC(fit0, fit1, fit2, fit3, fit4, fit5, fit6, fitvar)

## df BIC

## fit0 91 666.5

## fit1 73 622.9

## fit2 73 567.6

## fit3 78 640.0

## fit4 113 688.9

## fit5 65 713.1

## fit6 86 611.8

## fitvar 84 1379.5

44



Figure 2.35: Diagnostics for model �t7
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Figure 2.36: Anchovy diagnostics for �t7
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Figure 2.37: Anchovy diagnostics for �tvar
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Figure 2.38: 3D surface of F at age for model �t7
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Figure 2.39: Diagnostics for model �t8
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Figure 2.40: Diagnostics for model �t8
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Figure 2.41: Diagnostics for model �t8
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Figure 2.42: 3D shape of F at age for model �t8

An alternative to truncating age classes in the tuning index is by replacing age=4 with
NAs, however the re�t is not shown here.

# replace age = 4 with NAs

ANC17.tunNA <- ANC17.tun[[1]][5, ]

2.5 Use of Biomass Index in Anchovy assessment

Two historical acoustic surveys exist in the West Adriatic and were performed by CNR
in ANCONA. The data from the surveys has been recovered from GFCM reports and is
available as an aggregated biomass index expressed as tons/nm2. We read in the data
and create and FLIndex �rst.

52

http://151.1.154.86/GfcmWebSite/SAC/SCSA/WG_Small_Pelagics/2010/SAF/2010_ANE_GSA17_CNR.pdf


ane_pil <- read.csv("data/ANE_PIL_acoustic.csv", sep = ";")

# Subset the stock and split the two surveys

ane <- ane_pil[ane_pil$specie == "ANE", ]

anenw <- ane[ane$survey == "nwacoustic_survey", ]

anecw <- ane[ane$survey == "midadr_acoustic", ]

anenw_ind <- anenw$tons_nm

anecw_ind <- anecw$tons_nm

# Define dimensions for the FLIndex

dnms <- list(age = "all", year = min(anenw$year):max(anenw$year))

nwidx <- FLIndexBiomass(index = FLQuant(anenw_ind, dimnames = dnms))

dnms2 <- list(age = "all", year = min(anecw$year):max(anecw$year))

cwidx <- FLIndexBiomass(index = FLQuant(anecw_ind, dimnames = dnms2))

# Assign the time of the year the survey is performed,

# uncertain here on how it is best to treat it given the

# split year

# range(nwidx)[c('startf', 'endf')] <- c(0.58, 0.66)

# range(cwidx)[c('startf', 'endf')] <- c(0.58, 0.66)

range(nwidx)[c("startf", "endf")] <- c(0, 0)

range(cwidx)[c("startf", "endf")] <- c(0, 0)

We then combine the 3 indexes, NW, CW and West+East in FLIndices that will be used
in the assessment

# merge FLindexes

flis <- FLIndices(northwest = nwidx, centralwest = cwidx, west_east = ANC17.tun[[1]])

Now the main adjustment is in the variance model (vmod) where we can allow a di�erent
variance for each survey through a list following the order of the surveys in the "�is"
FLindices. Two model �ts are compared via AIC for di�erent qmodels.

fmod <- ~s(age, k = 4, by = breakpts(year, c(1987, 1995))) +

s(year, k = 20, by = breakpts(age, 4))

qmod <- list(~s(year, k = 10), ~s(year, k = 7), ~s(age, k = 4,

by = breakpts(year, 2006)))

qmod1 <- list(~s(year, k = 20), ~s(year, k = 10), ~s(age, k = 4,

by = breakpts(year, 2006)))

vmod <- list(~s(age, k = 3), ~1, ~1, ~s(age, k = 3))

fit6ts1 <- a4aSCA(stock = ANC17, indices = flis, fmodel = fmod,

qmodel = qmod, vmodel = vmod)

fit6ts2 <- a4aSCA(stock = ANC17, indices = flis, fmodel = fmod,

qmodel = qmod1)

AIC(fit6ts1, fit6ts2)

## df AIC

## fit6ts1 102 440.5

## fit6ts2 113 456.0
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Figure 2.43: Residuals plots for �t6ts1
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Figure 2.44: Residuals plots for �t6ts1
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Figure 2.45: Residuals plots for �t6ts1

Fit6ts1 is the best model obtained, the residuals, predicted vs observed in catch and
survey are quite acceptable and the F surface is very reasonable. This model returns a
max of F=3, while the SAM model in EWG 13-19 was around Fmax=12.
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Figure 2.46: 3D shape of F at age for model �t6ts1

Another attempt with the biomass tuning indexes is with the following model

fmod <- ~s(age, k = 5, by = breakpts(year, c(1987, 1995))) +

s(year, k = 20, by = breakpts(age, 4))

qmod <- list(~s(year, k = 10), ~s(year, k = 7), ~s(age, k = 4,

by = breakpts(year, 2006)))

vmod <- list(~s(age, k = 3), ~1, ~1, ~s(age, k = 3))

fitk <- a4aSCA(stock = ANC17, indices = flis, fmodel = fmod,

qmodel = qmod, vmodel = vmod, n1model = ~s(age, k = 3))
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Figure 2.47: 3D surface of F at age for model �tk

## df BIC

## fit6ts1 102 808.6

## fit6ts2 113 863.9

To get con�dence intervals around the estimates of the a4a model it is possible to simulate
for a number of iteration, here 250.

# simulate Confidence intervals for the assessed

sim <- simulate(fit6ts1, 250)
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Figure 2.48: Simulated �ts with con�dence intervals

Estimate fbar out of the 250 iterations and for the last year.

fbar(ANC17 + sim)

## An object of class "FLQuant"

## iters: 250

##

## , , unit = unique, season = all, area = unique

##

## year

## age 1976 1977 1978 1979

## all 0.174209(0.0335) 0.247655(0.0332) 0.276716(0.0405) 0.286451(0.0324)

## year

## age 1980 1981 1982 1983
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## all 0.361396(0.0452) 0.503634(0.0536) 0.548786(0.0583) 0.440458(0.0489)

## year

## age 1984 1985 1986 1987

## all 0.400750(0.0470) 0.422264(0.0717) 0.302230(0.0993) 0.120168(0.0596)

## year

## age 1988 1989 1990 1991

## all 0.074308(0.0344) 0.058955(0.0223) 0.089294(0.0272) 0.127247(0.0344)

## year

## age 1992 1993 1994 1995

## all 0.119625(0.0308) 0.126139(0.0257) 0.186616(0.0329) 0.274683(0.0401)

## year

## age 1996 1997 1998 1999

## all 0.278258(0.0382) 0.340442(0.0473) 0.533574(0.0584) 0.818248(0.0720)

## year

## age 2000 2001 2002 2003

## all 0.925091(0.0670) 0.875941(0.0709) 0.839918(0.0647) 0.767396(0.0668)

## year

## age 2004 2005 2006 2007

## all 0.614161(0.0634) 0.528360(0.0567) 0.570474(0.0471) 0.660883(0.0573)

## year

## age 2008 2009 2010 2011

## all 0.744503(0.0642) 0.938043(0.0755) 1.309568(0.0861) 1.529942(0.1241)

## year

## age 2012

## all 1.322352(0.3310)

##

## units: f

summary(fbar(ANC17 + sim)[, "2012"])

## An object of class "FLQuant" with:

## dim : 1 1 1 1 1 250

## quant: age

## units: f

##

## Min : 0.6261

## 1st Qu.: 1.121

## Mean : 1.381

## Median : 1.322

## 3rd Qu.: 1.572

## Max : 2.792

## NAs : 0 %

2.6 Compare all a4a models with SAM results

We compare all the model �ts, irrespective to the quality of the �t, to the SAM assessment
model. In Recruitment and SSB there is a main di�erence in the models (�t6, �t6ts1 and
�tk_surv) picking up an increase in Rec and SSB in the mid eighties till early nighties.
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Catch does not change much across models, while Harvest estimates di�er mainly in the
peak in 1987.

res <- FLStocks(SAM = ANC17, FIT1 = ANC17 + fit1, FIT2 = ANC17 +

fit2, FIT3 = ANC17 + fit3, FIT4 = ANC17 + fit4, FIT5 = ANC17 +

fit5, FIT6 = ANC17 + fit6, FIT7 = ANC17 + fit7, FIT6ts1 = ANC17 +

fit6ts1, FITk_surv = ANC17 + fitk)

Figure 2.49: Comparison of model a4a �ts with SAM �t
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2.7 Way forward for the Anchovy assessment in GSA

17

There is a number of pending issues with the EWG 13-12 anchovy SAM assessment7 in
GSA 17 and with the a4a models �tted in the report:

� The tuning index West+East (2005-2012) has assumptions about ALK use, it was
combined and is short compared to the landing series.

� There are problems of internal consistency between the cohorts which might be
generated by the merging process.

� Additionally, the lack of survey data for the early part of the series tends to increase
the uncertainty in the �t for SSB and Rec in the period 1980-1990.

� Another potential problem is the catch data comes in as split year.

Possible solutions to the described problems are the following:

� The West+East merged survey should be kept as two separate indexes and modeled
accordingly so that separate catchabilities can be included, or variance models.

� The inclusion of the Biomass index from the North and West Central Adriatic
seems to stabilize this part of the assessment and highlights the need of including
these additional tuning indexes, possibly disaggregated by age, since the data exist
disaggregated.

� Since ALK readings from West are applied to East for the production of the com-
bined tuning index, introducing a growth model with some uncertainty could help
carry over the uncertainty associated with age slicing.
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3 Sardine in the North Adriatic Sea

Iago Mosqueira

3.1 Assessments with the statistical catch-at-age method

3.1.1 Data and input

Data on catch-at-age, mean-weights-at-age, maturity, natural mortality and other biolog-
ical parameters was extracted from the latest stock assessment conducted for this stock
(REF) and recently submitted data.

It is worth noting that the available index of abundance by age only covers the latest
part of the �shery (2005-2012), although catch-at-age data strats in 1975. This is likely
to complicate matters, as trends in population abundance and �shing mortality prior to
2005 will be estimated based almost entirely on trends in catch-at-age, which are likely
to be a�ected by changes in �shing e�ort, targeting and other factors not related to stock
status.

load("data/SardineGSA17.RData")

sar <- SARDINE

tun <- SARDINE.tun
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Figure 3.1: Time series of catches (in t) and relative abundance at age for Adriatic sardine

3.1.2 Initial model runs

A number of model runs were carried out to explore the in�uence of various model options
in the results, and with a view at approximating the current stock assessment.

R1

The �rst run (R1) accepted most of the default options in the a4a model to simply
explore what inferences could more directly be made form the data. The stock-recruitment
relationship is simply a year factor, similar to the random walk used by SAM.
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r1 <- sca(sar, tun, srmodel = ~factor(year), fit = "assessment")

show(r1)

## a4a model fit for: Sardine GSA 17

##

## Call:

## .local(stock = stock, indices = indices, fmodel = ..1, qmodel = ..2,

## srmodel = ..3, n1model = ..4, vmodel = ..5, fit = ..6)

##

## Time used:

## Pre-processing Running a4a Post-processing Total

## 0.4277 0.8402 0.4612 1.7291

##

## Submodels:

## fmodel: ~te(age, year, k = c(3, 19), bs = "tp")

## srmodel: ~factor(year)

## n1model: ~factor(age)

## qmodel:

## Echo West + East TrGi SepNov Commercial LFD: ~s(age, k = 4)

## vmodel:

## catch: ~s(age, k = 3)

## Echo West + East TrGi SepNov Commercial LFD: ~1

The results (Figure 3.2) appear to indicate a large decrease in abundance for this stock,
as the model resorts to a large biomass as the start of the series to explain the sustained
increase in catches in the period up to 1983.
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Figure 3.2: Estimated recruitment, SSB, catch and �shing mortality for Adriatic sardine,
using model run R1
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Figure 3.3: Residuals of �t to index of abundance and catch series for model run R1

R2

We now explore the in�uence of the assumed stock-recruitment relationship in the ability
of the stock to withstand the observed levels of catch, by attempting to �t a Beverton &
Holt stock recruitment relationship with a moderate level of variability (CV=0.3).

r2 <- sca(sar, tun, srmodel = ~bevholt(CV = 0.3), fit = "assessment")

Only the estimates over the last few years appear to change (Figure 3.4), while model �t
does not improve (AIC=553.942, vs. 517.424 for R1, Figure 3.5).
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Figure 3.4: Estimated recruitment, SSB, catch and �shing mortality for Adriatic sardine,
using model runs R1 and R2
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Figure 3.5: Residuals of �t to index of abundance and catch series for model run R2

R3

Given the history of changes in catch, we will now explore di�erent options for the
fmodel, away from the default in sca(), of a tensor spline. By using factor(age)

+ factor(year), we give more freedom for the �shing mortality to vary across years and
ages, thus re�ecting possible changes in targeting and selectivity.

srmod <- ~factor(year)

fmod <- ~factor(age) + factor(year)

r3 <- sca(sar, tun, srmodel = srmod, fmodel = fmod, fit = "assessment")

But as these changes are mostly informed by the catch data, the model is forced to
consider much higher values of biomass and recruitment in the historical period.
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Figure 3.6: Estimated recruitment, SSB, catch and �shing mortality for Adriatic sardine,
using model runs R1, R2 and R3

Fit appears to improve, according the the AIC value (AIC=482.694), but the increase in
estimated biomass is a reason for concern, as it is the di�culty at �tting the catch series.
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Figure 3.7: Residuals of �t to index of abundance and catch series for model run R3

R4

We now try to capture some possible trends in recruitment by using a spline for the
stock-recruitment model, as follows

srmod <- ~s(year, k = 20)

fmod <- ~factor(age) + factor(year)

r4 <- sca(sar, tun, srmodel = srmod, fmodel = fmod, fit = "assessment")

whoch gives a git that closely matches R2.
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Figure 3.8: Estimated recruitment, SSB, catch and �shing mortality for Adriatic sardine,
using model runs R1, R2, R3 and R4

R5

The catch series shows a series of sudden changes, for example a large a increase in the
1980-85 period, which could be related to change in targeting, as the main �eets exploiting
this stock do so in combination with anchovy, which tends to be regarded as their preferred
target. We introduce a series of breakpoints in the �shing mortality model, by allowing a
di�erent set of splines to be applied to that period.

srmod <- ~factor(year)

fmod <- ~s(age, k = 3, by = breakpts(year, c(1980, 1985))) +

s(year, k = 20, by = breakpts(age, c(1.5:4.5)))

r5 <- sca(sar, tun, srmodel = srmod, fmodel = fmod, fit = "assessment")
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This appears to help explaining that catch increase, for which no cohort e�ect was ob-
servable, without resorting to ever larger estimates of SSB.

Figure 3.9: Estimated recruitment, SSB, catch and �shing mortality for Adriatic sardine,
using model runs R1, R2, R3 and R4

R6

Finally, we pay attention to both the variance and catchability models by, in the �rst case,
employing a simple spline for both catch and index, while for the second a breakpoint
is introduced in 2010 to try to understand the sudden increase in relative abundances
reported for ages 3 to 6 on that year, which could be an indication of changes in the
survey not fully accounted for.
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srmod <- ~factor(year)

fmod <- ~s(age, k = 3, by = breakpts(year, c(1980, 1985))) +

s(year, k = 20, by = breakpts(age, c(1.5:4.5)))

vmod <- list(~s(age, k = 3), ~s(age, k = 3))

qmod <- list(~s(age, k = 3, by = breakpts(year, c(2010))))

r6 <- a4aSCA(sar, tun, srmodel = srmod, fmodel = fmod, vmodel = vmod,

qmodel = qmod)

Figure 3.10:

These data points are having a large impact in the recent estimates of �shing mortality
(Figure 3.11), that although are matched by recent increases in catch, appear to be out
of scale given the history of the stock.
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Figure 3.11:

3.2 Comparison of all a4a models with SAM results
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Figure 3.12:

Of the six models presented above (R1 to R6), the last one appears to �t the existing data
better, as determined by the AIC value (Table ??). The comparison of all these runs with
the accepted assessment, carried out using SAM, highlights how the lack of abundance
indices in the earlier part of the series is dealt with by each model. SAM appears to be
able to explain existing catches, and the relatively high natural mortality assumed, with
a level of biomass lower than any a4a model run (Figure 3.12) and with correspondingly
low recruitments.
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Figure 3.13: Estimateds SSB at start of series (1975) by each model and method.

df AIC
r1 108.00 517.42
r2 110.00 553.94
r3 94.00 482.69
r4 76.00 473.51
r5 153.00 438.58
r6 156.00 371.38

Table 3.1: AIC and degrees of freedom (DF) values for the six model runs presented.

This feature will need to be further explored, as this is likely to have a strong impact
on the perceived ability of the stock to withstand �shing pressure and of the reference
points estimated for it. The recent trends in the main index of abundance also require
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investigation, as although there is no indication of a strong cohort appearing in the younger
ages, and only a sudden increase in reported abundance for four ages.

3.3 Incorporating longer indices of abundance

An attempt was made at �lling up the gap in �shery-independent information before 2005
by including in the analysis the relative biomass indices generated from acoustic surveys
(see above Section XX).

ane_pil <- read.csv("data/ANE_PIL_acoustic.csv", sep = ";")

pil <- ane_pil[ane_pil$specie == "PIL", ]

pilnw <- pil[pil$survey == "nwacoustic_survey", ]

pilcw <- pil[pil$survey == "midadr_acoustic", ]

pilnw_ind <- pilnw$tons_nm

pilcw_ind <- pilcw$tons_nm

dnms <- list(age = "all", year = min(pilnw$year):max(pilnw$year))

nwidx <- FLIndexBiomass(index = FLQuant(pilnw_ind, dimnames = dnms))

dnms2 <- list(age = "all", year = min(pilcw$year):max(pilcw$year))

cwidx <- FLIndexBiomass(index = FLQuant(pilcw_ind, dimnames = dnms2))

range(nwidx)[c("startf", "endf")] <- c(0, 0)

range(cwidx)[c("startf", "endf")] <- c(0, 0)

sar.tun <- FLIndices(northwest = nwidx, centralwest = cwidx,

west_east = tun[[1]])

The model run using thee indices (R7), is similarly speci�ed to the previous one (R6),
but with individual catchability models for each survey (see qmod below).

fmod <- ~s(age, k = 5, by = breakpts(year, c(1980, 1985))) +

s(year, k = 20, by = breakpts(age, c(1.5:4.5)))

qmod <- list(~s(year, k = 10), ~s(year, k = 10), ~s(age, k = 4,

by = breakpts(year, c(2009, 2010))))

vmod <- list(~s(age, k = 3), ~1, ~1, ~s(age, k = 3))

r7 <- a4aSCA(sar, sar.tun, srmodel = srmod, fmodel = fmod, vmodel = vmod,

qmodel = qmod, fit = "assessment")

Model results are not greatly dissimilar from those in R6, but the sudden jump in �shing
mortality that other models needed to explain the most recent survey trends are somehow
mitigated but the extra information.
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Figure 3.14:
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Figure 3.15: Residual plot for R7.

80



Figure 3.16: Trends in �shing mortality at age by year in model run R by year in model
run R7.
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4 Anchovy and Sardine interactions

Chato Osio & Iago Mosqueira

Since the anchovy stock is �shed with purse seiners and pelagic trawlers also targeting
sardine stocks, it is important to understand if over time there have been switches in
targeting between the two stocks. For example it could be hypothesized that there was
lower targeting in some periods like the early nineties. To check we import the assessment
results from Sardine stock and compare trends in F, SSB and Catches.

fmod <- ~s(age, k = 5, by = breakpts(year, c(1980, 1985))) +

s(year, k = 20, by = breakpts(age, c(1.5:4.5)))

qmod <- list(~s(year, k = 10), ~s(year, k = 10), ~s(age, k = 4,

by = breakpts(year, c(2009, 2010))))

vmod <- list(~s(age, k = 3), ~1, ~1, ~s(age, k = 3))

r7 <- a4aSCA(sar, sar.tun, srmodel = srmod, fmodel = fmod, vmodel = vmod,

qmodel = qmod, fit = "assessment")

res2 <- FLStocks(ANC = ANC17 + fit7, SAR = sar + r7)
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Figure 4.1: Comparative plots for Anchovy and Sardine

The plots show that there is an almost symmetrical trend for the two stocks: when
catches and SSB go down for Anchovy there is switching to Sardine and vice versa. This
is important to corroborate the results of �t6 and �t6ts1 that pick up an increase in SSB
in the latter part of the 1980's.
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5 Hake in Gulf of Lions

Tristan Rouyer

5.1 Replicating accepted assessments

We will try to replicate the XSA assessment using a4a. We start by reading the XSA
assessment and visualizing the object, which can be seen in �gure 5.1.
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Figure 5.1: Results of the XSA assessment

We will then use a4a to try to reproduce these results. We start by reading the data and
setting up a new stock object.

hkesca <- readFLStock("data/HakeIND.dat", no.discards = TRUE)

# Set the harvest units, fbar range and plus group age

units(harvest(hkesca)) <- "f"

range(hkesca)["minfbar"] <- 0

range(hkesca)["maxfbar"] <- 3

range(hkesca)["plusgroup"] <- 5

Then we read the abundance index data, which is here the MEDITS survey.
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## Read tuning data

hke.idx <- readFLIndices("data/HakeTUN.dat")

The a4a model is �tted with submodels as close as possible from the XSA assumptions.
As it can be seen on �gure 5.2, the results are quite close from XSA in terms of trend and
absolute value for the di�erent variables. Particularly, the �shing mortality estimated by
the a4a model is really close from the one obtained with XSA.

index <- hke.idx

qmod <- list(~factor(age))

fmod <- ~factor(replace(age, age > 5, 5)) + factor(year)

srmod <- ~factor(year)

fit <- sca(stock = hkesca, indices = index, fmodel = fmod, qmodel = qmod,

srmodel = srmod, fit = "MP")

stk <- hkesca + fit

## we make an FLStocks for display

z <- FLStocks(a4a = stk, XSA = hke)
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Figure 5.2: Replicating the XSA assessment

5.2 Assessments with the statistical catch-at-age method

We will now try to get an improved assessment using the statistical catch at age routine.
Then we read the tuning data for di�erent age groups:

## Read tuning data

hke.idx <- readFLIndices("data/HakeTUN.dat")

## Read tuning data: only ages 0 to 2

hke.idx2 <- hke.idx

hke.idx2[[1]] <- trim(hke.idx2[[1]], age = 0:2)

## Read tuning data: only ages 0 to 3

hke.idx3 <- hke.idx
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hke.idx3[[1]] <- trim(hke.idx3[[1]], age = 0:3)

We will now do some speci�cations for the submodels but keep it simple to start with.
However, we will only work with ages 0 to 2 as we are not very con�dent that the MEDITS
data for ages 3 and 4 are very reliable. MEDITS is indeed not believed to be a very good
sampler for bigger hake individuals.

index <- hke.idx2

qmod <- list(~s(age, k = 3))

fmod <- ~s(year, k = 10) + s(age, k = 3)

srmod <- ~s(year, k = 10)

fit <- sca(stock = hke, indices = index, fmodel = fmod, srmodel = srmod,

qmodel = qmod, fit = "MP")

stk <- hke + fit

The trends of the time series are consistent with what is known for the stock (Figure 5.3).
The residuals for the survey behave nicely (Figure 5.4) and the �shing mortality is not
taking o� as it was previously (Figure 5.5). However, it is also weird that the last year of
�shing mortality is changing so radically. It is probably due to the e�ect of smoothers.
The catch residuals do not look good, particularly for age 0.
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Figure 5.3: Stock plot for simple model speci�cations
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Figure 5.4: Residual plot for simple speci�cations

We look at the surface plot for �shing mortality:
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Figure 5.5: 3D plot of the �tted �shing mortality

Improving the assessment: more complex speci�cations

We go on with adding a bit of complexity using a logistic shape on age to constrain
the �shing mortality on the last ages, so that this behaviour is more consistent with the
trawler catchability.

index <- hke.idx2

qmod <- list(~s(age, k = 3))

fmod <- ~I(1/(1 + exp(age))) + as.factor(year) + s(age, k = 3)

srmod <- ~s(year, k = 10)

fit <- sca(stock = hke, indices = index, fmodel = fmod, srmodel = srmod,

qmodel = qmod, fit = "MP")

stk <- hke + fit
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As previously, the trends of the time series are in line with the previous results (Figure
5.6). The residuals for the survey behave nicely and residuals for �shing mortaly are
better (Figure 5.7, Figure 5.8). However, there are still some nasty trends.We can also
notice that the �shing mortality is taking o� the last year (Figure 5.9).

Figure 5.6: Stock plot for more complex speci�cations
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Figure 5.7: Residual plot for more complex speci�cations
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Figure 5.8: Residual plot for more complex speci�cations with qqplots
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Figure 5.9:

0 1 2 3 4 5 6
0.218 0.805 1.412 1.343 1.052 0.847 0.714
0.221 0.817 1.433 1.363 1.067 0.859 0.725
0.281 1.038 1.821 1.732 1.356 1.092 0.921
0.301 1.116 1.957 1.861 1.458 1.173 0.990
0.287 1.062 1.864 1.772 1.388 1.117 0.943
0.413 1.530 2.684 2.553 1.999 1.609 1.358
0.264 0.979 1.716 1.632 1.278 1.029 0.868
0.235 0.870 1.526 1.452 1.137 0.915 0.772
0.290 1.074 1.883 1.791 1.403 1.129 0.953
0.337 1.246 2.185 2.078 1.627 1.310 1.105
0.289 1.071 1.879 1.787 1.400 1.127 0.951
0.435 1.610 2.824 2.686 2.104 1.693 1.429
0.439 1.624 2.849 2.709 2.122 1.708 1.441
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0.410 1.517 2.661 2.530 1.982 1.595 1.346
0.570 2.110 3.702 3.521 2.757 2.219 1.873

Table 5.1: Fishing mortality

We obtain kind of similar trends in residuals for the catch, but the �shing mortality is
not in control for the last year. We will try to add a smoother to the year term in the
�shing mortality submodel for the year e�ect.

Improving the assessment: sensitivity

We will now add a logistic shape on age to constrain the �shing mortality and a smoother
to control the year e�ect on the f model. We will try to sort of test the sensitivity of the
results to the k. This is not a sensitivity test sensu stricto, but it will help to understand
the e�ect of this parameter.

## create a sequence of ks to test

kind <- seq(6, 14)

## create a list for the FLSTocks

STK <- vector(mode = "list")

FIT <- vector(mode = "list")

for (i in 1:length(kind)) {

index <- hke.idx2

qmod <- list(~s(age, k = 3))

fmod <- ~I(1/(1 + exp(age))) + s(year, k = kind[i]) + s(age,

k = 3)

srmod <- ~s(year, k = 10)

fit <- sca(stock = hke, indices = index, fmodel = fmod, srmodel = srmod,

qmodel = qmod, fit = "assessment")

STK[[i]] <- hke + fit

FIT[[i]] <- fit

}

stks <- FLStocks(STK)

names(stks) <- paste("k=", kind, sep = "")

names(FIT) <- paste("k=", kind, sep = "")

We see that the f estimates are de�nitely sensitive to the k we give for the year e�ect
(Figure 5.11). The �shing mortality �ying away is not necessarily realistic either. We
can choose a middle value, 9 or 10, but the best approach would certainly be to do some
model averaging, which will be shown a bit further in the document. For the moment we
go for a value of 9 for the k and we look at the residuals (Figure 5.11), which are much
better. The residuals for the survey behave nicely and residuals for �shing mortality are
not bad either, excepted a few nasty trends for ages 0 and 3. The �shing mortality seems
to be in control (Figure 5.12).

We look at the surface plot for �shing mortality: We feel much more comfortable with
these results. The last thing that is not completely on are the trends in the residuals of
the catches for ages 0 and 3.
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Figure 5.10: Stock plot with sensitivities to di�erent k
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Figure 5.11: Dirty �t
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Figure 5.12: Dirty �t

0 1 2 3 4 5 6
0.208 0.809 1.425 1.328 1.030 0.843 0.735
0.238 0.928 1.634 1.522 1.182 0.966 0.842
0.254 0.989 1.742 1.623 1.260 1.030 0.898
0.279 1.085 1.911 1.781 1.382 1.130 0.985
0.327 1.271 2.240 2.087 1.619 1.324 1.154
0.339 1.320 2.325 2.166 1.681 1.375 1.198
0.285 1.109 1.953 1.820 1.412 1.155 1.007
0.242 0.944 1.663 1.549 1.202 0.983 0.857
0.256 0.996 1.754 1.634 1.268 1.037 0.904
0.299 1.165 2.052 1.912 1.484 1.213 1.058
0.332 1.291 2.275 2.120 1.645 1.345 1.173
0.367 1.429 2.517 2.345 1.820 1.488 1.297
0.410 1.597 2.815 2.622 2.035 1.664 1.450
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0.379 1.473 2.596 2.418 1.877 1.535 1.338
0.267 1.040 1.832 1.706 1.324 1.083 0.944

Table 5.2: Fishing mortality

Improving the assessment: even more complex speci�cations

We will now add a bidimensional smoother for the f model. We will also test the e�ect of
the k on the results.

## create a sequence of ks to test

kind <- seq(5, 9)

## create a list for the FLSTocks

STK <- vector(mode = "list")

FIT <- vector(mode = "list")

RESC <- vector(mode = "list")

RESS <- vector(mode = "list")

for (i in 1:length(kind)) {

index <- hke.idx2

qmod <- list(~s(age, k = 3))

fmod <- ~I(1/(1 + exp(age))) + te(age, year, k = c(3, kind[i]))

srmod <- ~s(year, k = 10)

fit <- sca(stock = hke, indices = index, fmodel = fmod, srmodel = srmod,

qmodel = qmod, fit = "MP")

STK[[i]] <- hke + fit

FIT[[i]] <- fit

res <- residuals(fit, hke, index)

RESC[[i]] <- res[[1]]

RESS[[i]] <- res[[2]]

}

stks <- FLStocks(STK)

names(stks) <- paste("k=", kind, sep = "")

resc <- FLQuants(RESC)

ress <- FLQuants(RESS)

We plot the results:
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Figure 5.13: Dirty �t

Looking one by one we see that k set to 6 or 7 is the best. We choose 6. We look at the
residuals:
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Figure 5.14: Dirty �t

This is much better. The residuals for the survey behave nicely and residuals for �shing
mortality are better as well.

We look at the surface plot for �shing mortality:
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Figure 5.15: Dirty �t

We notice that we still have very high �shing mortalities.

0 1 2 3 4 5 6
0.490 1.282 1.505 1.022 0.721 0.622 0.606
0.362 1.188 1.683 1.274 0.903 0.722 0.628
0.293 1.142 1.867 1.543 1.109 0.849 0.689
0.285 1.180 2.039 1.765 1.311 1.028 0.850
0.334 1.303 2.164 1.872 1.464 1.258 1.161
0.385 1.390 2.183 1.862 1.520 1.422 1.461
0.349 1.283 2.044 1.762 1.445 1.352 1.386
0.246 1.033 1.827 1.649 1.308 1.117 1.014
0.174 0.854 1.710 1.635 1.258 0.975 0.777
0.160 0.853 1.832 1.833 1.426 1.089 0.845
0.192 1.018 2.192 2.234 1.810 1.464 1.212
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0.250 1.261 2.614 2.625 2.166 1.827 1.597
0.298 1.427 2.805 2.676 2.099 1.685 1.402
0.320 1.465 2.721 2.395 1.679 1.177 0.845
0.326 1.432 2.508 2.007 1.220 0.715 0.422

Table 5.3: Fishing mortality

We are kind of happy so far with this model speci�cation. We can now look at how the
model can predict the data.

Figure 5.16: Predicting the catch
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Figure 5.17: Predicting the survey

5.2.1 Model averaging

We start from a previous model and we will play with the di�erent k values for

## create a sequence of ks to test

kind <- seq(5, 9)

## create a list for the FLSTocks

STK <- vector(mode = "list")

FIT <- vector(mode = "list")

for (i in 1:length(kind)) {

index <- hke.idx2

qmod <- list(~s(age, k = 3))

fmod <- ~I(1/(1 + exp(age))) + te(age, year, k = c(3, kind[i]))
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srmod <- ~factor(year)

fit <- sca(stock = hke, indices = index, fmodel = fmod, srmodel = srmod,

qmodel = qmod, fit = "assessment")

STK[[i]] <- hke + fit

FIT[[i]] <- fit

}

names(STK) <- paste("k=", kind, sep = "")

names(FIT) <- paste("k=", kind, sep = "")

stks <- FLStocks(STK)

stock.sim <- ma(a4aFitSAs(FIT), hke, BIC, nsim = 1000)

stkss <- FLStocks(stks, stock.sim)

We plot the stock average:

Figure 5.18: Simulations for the average model
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We plot all the stocks together:

Figure 5.19: Results of all the stocks

Play with the variance model

We start from the best model we have. We will now use the function a4aSCA that allows
to adjust the variance of surveys and catch. We start by giving a shape for ages.

index <- hke.idx2

qmod <- list(~s(age, k = 3))

fmod <- ~I(1/(1 + exp(age))) + te(year, age, k = c(6, 4))

srmod <- ~factor(year)

vmod <- list(~s(year, k = 3) + s(age, k = 3), ~age)

fit <- a4aSCA(stock = hke, indices = index, fmodel = fmod, srmodel = srmod,
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qmodel = qmod, vmodel = vmod)

stk <- hke + fit

Figure 5.20: Stock plot for the model with variance submodel
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Figure 5.21: Residual plot for the model with variance submodel

We are quite happy with what we end up with. We can now look at the shapes of the
�tted submodels for variance and catchability:

## [1] "stkmodel" "qmodel" "vmodel"
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Figure 5.22: Submodels for variance and catchability
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Figure 5.23: Submodels for variance and catchability
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Figure 5.24: Submodels for variance and catchability
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Figure 5.25: Submodels for variance and catchability

Average across k values

Now we average the models across some assumptions for k:

## create a sequence of ks to test

kind <- seq(5, 9)

## create a second sequence

kfage <- seq(3, 5)

## create a list for the FLSTocks

STK <- vector(mode = "list")

FIT <- STK

SIM <- FIT

compt <- 1
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n <- NA

Nit <- 100

for (i in 1:length(kind)) {

for (j in 1:length(kfage)) {

index <- hke.idx2

qmod <- list(~s(age, k = 3))

fmod <- ~I(1/(1 + exp(age))) + te(year, age, k = c(kind[i],

kfage[j]))

srmod <- ~factor(year)

vmod <- list(~s(year, k = 3) + s(age, k = 3), ~age)

fit <- a4aSCA(stock = hke, indices = index, fmodel = fmod,

srmodel = srmod, qmodel = qmod, vmodel = vmod)

STK[[compt]] <- hke + fit

FIT[[compt]] <- fit

SIM[[compt]] <- hke + simulate(fit, Nit)

n <- c(n, paste("k.f.year=", kind[i], ",k.f.age=", kfage[j],

sep = ""))

compt <- compt + 1

}

}

names(STK) <- n[-1]

names(FIT) <- names(STK)

stks <- FLStocks(STK)

## We extract the BIC lapply(FIT,BIC) stock.sim <-

## ma(a4aFitSAs(FIT), hke, BIC, nsim = Nit) we manually put

## the simulations in an object to avoid the weights given by

## the BIC or AIC make an object with many iterations

hke.ma <- propagate(hke, (compt - 1) * Nit)

## fill the iterations with the simulations

for (i in 1:(compt - 1)) {

hke.ma[, , , , , (((i - 1) * Nit) + 1):(i * Nit)] <- SIM[[i]]

}

Using this technique gives equal weight to all the models, whereas the AIC or BIC often
gives a lot of weight to a few models.
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Figure 5.26: Stock averaging
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Figure 5.27: Di�erent models

5.3 Introducing uncertainty in growth and natural mor-

tality using length data

We will now read abundance at length and specify a growth model with uncertainty to
spread the uncertainty on age decomposition through the assessment. We start with
reading the number at length data and make and FLQuant with it:

## READ LENGTH DATA

d <- read.table("data/N_hke_lgth_1998_2012.txt", header = TRUE)

d2 <- as.matrix(d[, -1])/1000

## MAKE FLQUANT
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dnms <- dimnames(hke@catch.n)

names(dnms) <- names(dimnames(FLQuant()))

names(dnms)[1] <- "len"

dnms$len <- as.character(d$Size_cm)

cth.n <- FLQuant(d2, dimnames = dnms)

Then we create a growth object with it, using the data from Mellon et al 2010:

# Growth both sexes Mellon 2010

vbObj <- a4aGr(grMod = ~linf * (1 - exp(-k * (t - t0))), grInvMod = ~t0 -

1/k * log(1 - len/linf), params = FLPar(linf = 110, k = 0.178,

t0 = 0))

# trial: predict from the length

predict(vbObj, len = seq(5, 70, length = 10))

## iter

## 1

## 1 0.2613

## 2 0.6617

## 3 1.0928

## 4 1.5597

## 5 2.0690

## 6 2.6291

## 7 3.2513

## 8 3.9511

## 9 4.7507

## 10 5.6832

# trial: predict from the ages

predict(vbObj, t = seq(0, 10, length = 10))

## iter

## 1

## 1 0.00

## 2 19.74

## 3 35.94

## 4 49.23

## 5 60.13

## 6 69.08

## 7 76.42

## 8 82.45

## 9 87.39

## 10 91.45

We will now introduce uncertainty with a variance covariance matrix between the param-
eters:

# Make an empty cor matrix

cm <- diag(c(1, 1, 1))
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# k and linf are negatively correlated while t0 is

# independent

cm[1, 2] <- cm[2, 1] <- -0.5

# scale cor to var using CV=0.2

cv <- 0.1

p <- c(linf = 110, k = 0.178, t0 = 0.001)

vc <- matrix(1, ncol = 3, nrow = 3)

## For K it comes from Mellon 2010

cv1 <- 0.04

cv2 <- 0.005/0.178

cv3 <- 1e-08

l <- vc

l[1, ] <- l[, 1] <- p[1] * cv1

k <- vc

k[, 2] <- k[2, ] <- p[2] * cv2

t <- vc

t[3, ] <- t[, 3] <- p[3] * cv3

mm <- t * k * l

diag(mm) <- diag(mm)^2

mm <- mm * cm

We now create a new growth object with the uncertainty:

# new growth object

vbObj <- a4aGr(grMod = ~linf * (1 - exp(-k * (t - t0))), grInvMod = ~t0 -

1/k * log(1 - len/linf), params = FLPar(linf = p["linf"],

k = p["k"], t0 = p["t0"]), vcov = mm)

vbObj@params

## An object of class "FLPar"

## params

## linf k t0

## 110.000 0.178 0.001

## units: NA

dim(vbObj@params)

## [1] 3 1

We then generate simulations for the catch at age matrix. Actually the best might be to
do it for every single variable and to use l2a on the stock. But we just have the length
data for catch here, so we keep it to that:

Nit <- 10 ## only 10 because otherwise it is long

vbNorm <- mvrnorm(Nit, vbObj)

ages <- predict(vbNorm, len = as.vector(d[, 1]))

# catch at age

c.n1 <- l2a(cth.n, vbNorm)

# problem with older ages, so we trim
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c.n2 <- trim(c.n1, age = 0:6)

c.n2["6"] <- quantSums(trim(c.n1, age = 6:round(max(ages, na.rm = TRUE))))

dim(c.n2)

## [1] 7 15 1 1 1 10

hke2 <- hke

hke2@catch.n <- c.n2

We will use the last model �tted:

index <- hke.idx2

qmod <- list(~s(age, k = 3))

fmod <- ~I(1/(1 + exp(age))) + te(year, age, k = c(6, 4))

srmod <- ~factor(year)

vmod <- list(~s(year, k = 3) + s(age, k = 3), ~age)

fit <- a4aSCA(stock = hke2, indices = index, fmodel = fmod, srmodel = srmod,

qmodel = qmod, vmodel = vmod)

stk <- hke2 + fit

We plot the results:
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Figure 5.28: Dirty �t

Here we will try to use length-based data to set the natural mortality model, that will
afterwards be used to build the M matrix for stock assessment.

# Make an empty cor matrix

cm <- diag(c(1, 1))

# k and linf are negatively correlated while t0 is

# independent

cm[1, 2] <- cm[2, 1] <- -0.5

p <- c(linf = 110, k = 0.178)

vc <- matrix(1, ncol = 2, nrow = 2)

## For K it comes from Mellon 2010

cv1 <- 0.04

cv2 <- 0.005/0.178

l <- vc
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l[1, ] <- l[, 1] <- p[1] * cv1

k <- vc

k[, 2] <- k[2, ] <- p[2] * cv2

mm <- k * l

diag(mm) <- diag(mm)^2

mm <- mm * cm

all.equal(cm, cov2cor(mm))

## [1] TRUE

## we make the object with the variance covariance

shapeGis <- FLModelSim(model = ~k * (linf/len)^1.5, params = FLPar(linf = 110,

k = 0.178), vcov = mm)

m <- a4aM(shape = shapeGis)

# one needs to set the range for the object which will be

# used by the m method

range(m) <- c(0, 110, NA, 2000, 2003, 15, 30)

range(m)

## min max plusgroup minyear maxyear minmbar maxmbar

## 0 110 NA 2000 2003 15 30

# now simulate

Nit <- 100

msim <- mvrnorm(Nit, m)

rngyear(msim) <- c(2000, 2003)

# and compute natural mortality

m.sim <- m(msim)

# note that this one is by length, before adding to the stock

# object it must be transformed into ages

5.4 Short term forecast

# future recruitment

futureRec <- mean(rec(hke.ma)[, ac(2010:2012)])

hke.srr <- list(model = "mean", params = FLPar(futureRec))

hke.sr <- as.FLSR(hke.ma, model = geomean)

hke.sr <- fmle(hke.sr, control = list(trace = 0))

hke.stf <- stf(hke.ma, nyears = 3)

fwd.ctrl <- fwdControl(data.frame(year = 2013:2015, val = 1.16,

quantity = "f"))

hke.fwd <- fwd(hke.stf, ctrl = fwd.ctrl, sr = hke.sr, maxF = 10)

# CHOICE FOR Fstatusquo

Fstatusquo <- mean(fbar(hke.ma)[, ac(2010:2012)])
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# OTHER SCENARIOS

F01 <- 0.148 #as.numeric(refpts(hkebrp)['f0.1','harvest'])

Fsc <- cbind(rep(Fstatusquo, length(seq(0, 2, by = 0.1))), seq(0,

2, by = 0.1) * Fstatusquo, seq(0, 2, by = 0.1) * Fstatusquo)

Fsc <- rbind(c(Fstatusquo, F01, F01), Fsc)

Ffactor <- c(NA, seq(0, 2, by = 0.1))

Results.sc <- matrix(NA, length(Ffactor), 10)

hke.stf <- stf(hke.ma, nyears = 3)

for (i in 1:length(Ffactor)) {

fwd.ctrl <- fwdControl(data.frame(year = 2013:2015, val = Fsc[i,

], quantity = "f"))

hke.fwd <- fwd(hke.stf, ctrl = fwd.ctrl, sr = hke.srr, maxF = 10)

### BUILD TABLE

Results.sc[i, 1] <- Ffactor[i]

Results.sc[i, 2] <- median(fbar(hke.fwd)[, ac(2015)])

Results.sc[i, 3] <- median(catch(hke.fwd)[, ac(2012)])

Results.sc[i, 4] <- median(catch(hke.fwd)[, ac(2013)])

Results.sc[i, 5] <- median(catch(hke.fwd)[, ac(2014)])

Results.sc[i, 6] <- median(catch(hke.fwd)[, ac(2015)])

Results.sc[i, 7] <- median(ssb(hke.fwd)[, ac(2014)])

Results.sc[i, 8] <- median(ssb(hke.fwd)[, ac(2015)])

Results.sc[i, 9] <- (median(ssb(hke.fwd)[, ac(2015)]) - median(ssb(hke.fwd)[,

ac(2014)]))/median(ssb(hke.fwd)[, ac(2014)]) * 100

Results.sc[i, 10] <- (median(catch(hke.fwd)[, ac(2014)]) -

median(catch(hke.fwd)[, ac(2012)]))/median(catch(hke.fwd)[,

ac(2012)]) * 100

}

# GIVE NAMES TO COLUMNS

colnames(Results.sc) <- c("Ffactor", "Fbar", "Catch_2012", "Catch_2013",

"Catch_2014", "Catch_2015", "SSB_2014", "SSB_2015", "Change_SSB_2014-2015(%)",

"Change_Catch_2012-2014(%)")

# VISUALIZE DATABASE

Results.sc

## Ffactor Fbar Catch_2012 Catch_2013 Catch_2014 Catch_2015 SSB_2014

## [1,] NA 0.1480 1197 947.2 162.1 483.4 348

## [2,] 0.0 0.0000 1197 947.2 0.0 0.0 348

## [3,] 0.1 0.1642 1197 947.2 178.6 524.4 348

## [4,] 0.2 0.3285 1197 947.2 330.5 841.9 348

## [5,] 0.3 0.4927 1197 947.2 460.1 1024.2 348

## [6,] 0.4 0.6570 1197 947.2 571.6 1121.2 348

## [7,] 0.5 0.8212 1197 947.2 668.0 1166.8 348

## [8,] 0.6 0.9854 1197 947.2 752.1 1179.4 348

## [9,] 0.7 1.1497 1197 947.2 825.7 1171.6 348

## [10,] 0.8 1.3139 1197 947.2 890.7 1152.6 348

## [11,] 0.9 1.4781 1197 947.2 946.2 1127.6 348

## [12,] 1.0 1.6424 1197 947.2 994.8 1100.3 348

## [13,] 1.1 1.8066 1197 947.2 1039.4 1072.5 348

## [14,] 1.2 1.9709 1197 947.2 1080.1 1045.4 348

## [15,] 1.3 2.1351 1197 947.2 1115.9 1019.9 348
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## [16,] 1.4 2.2993 1197 947.2 1148.7 995.4 348

## [17,] 1.5 2.4636 1197 947.2 1178.6 973.0 348

## [18,] 1.6 2.6278 1197 947.2 1205.7 951.4 348

## [19,] 1.7 2.7921 1197 947.2 1230.1 931.8 348

## [20,] 1.8 2.9563 1197 947.2 1252.9 913.8 348

## [21,] 1.9 3.1205 1197 947.2 1274.6 897.4 348

## [22,] 2.0 3.2848 1197 947.2 1294.7 882.6 348

## SSB_2015 Change_SSB_2014-2015(%) Change_Catch_2012-2014(%)

## [1,] 1551.5 345.810 -86.4518

## [2,] 1799.2 416.961 -100.0000

## [3,] 1525.7 338.384 -85.0807

## [4,] 1298.4 273.075 -72.3860

## [5,] 1109.3 218.744 -61.5536

## [6,] 951.1 173.290 -52.2373

## [7,] 817.9 134.999 -44.1834

## [8,] 706.3 102.943 -37.1544

## [9,] 613.3 76.212 -31.0074

## [10,] 534.5 53.571 -25.5790

## [11,] 466.9 34.144 -20.9409

## [12,] 410.1 17.823 -16.8741

## [13,] 360.1 3.471 -13.1522

## [14,] 319.0 -8.348 -9.7478

## [15,] 283.4 -18.574 -6.7585

## [16,] 252.8 -27.363 -4.0179

## [17,] 226.6 -34.878 -1.5237

## [18,] 203.8 -41.443 0.7436

## [19,] 184.7 -46.941 2.7799

## [20,] 167.7 -51.812 4.6847

## [21,] 153.4 -55.932 6.4990

## [22,] 140.7 -59.569 8.1833
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6 Hake in the Southern Adriatic

Dimitrios Damalas

Our goal was to attempt a replication of last years stock assessment results as conducted
during 15-19 July 2013 at the 13-09 EWG. Input data were identical to the ones used
therein.

6.1 Replicating accepted assessments

6.1.1 Load data from recent assessments

load("data/HKE18.RData")

# keep the stocks in temp objs to avoid possible overwriting

hketemp <- hke.stk

hketemp2 <- hke.stk_2

The �nal approach selected by the EWG 13-09 was an XSA named "shrinkage 2" (Fig-
ures 6.1 and 6.2). Data from o�cial Data Call 2013 - index from MEDITS survey. The
details of the �nal XSA approach below and on pages 284-292 of the STECF 13-22 Rep-
port.

FLXSA.control.hke_2 <- FLXSA.control(x = NULL, tol = 1e-09, maxit = 30,

min.nse = 0.3, fse = 2, rage = 0, qage = 4, shk.n = TRUE,

shk.f = TRUE, shk.yrs = 2, shk.ages = 2, window = 100, tsrange = 20,

tspower = 3, vpa = FALSE)

hke.xsa_2 <- FLXSA(hke.stk, hke.idx, FLXSA.control.hke_2)
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Figure 6.1: XSA results
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Figure 6.2: XSA estimates of �shing mortality

6.1.2 Building a4a models on the same data used in recent as-

sessessments

Default model

fit0 <- sca(stock = hke.stk, indices = hke.idx)

hke.stk.a4a <- hke.stk + fit0

plot(hke.stk.a4a)
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Figure 6.3: Assessment summary - default model
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Figure 6.4: Plot �tted against observed for survey

Plotting �tted against observed catch at age , as well as against the survey index, it is
obvious that the �ts deviate largely from the observations (�tted = blue, observed =
magenta).
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Figure 6.5: Plot �tted agains observed for catch at age

res <- residuals(fit0, hke.stk, hke.idx)
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Figure 6.6: Residuals by age and year

130



Figure 6.7: Quantile-quantile plot of residuals
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Figure 6.8: Fishing mortality

Due to the poor �t of the selected model, F values are unrealistically high. A better
approach should be investigated.

Separable model

Trying to improve the �t, we now investigate a quite simple model, treating 'age' and
'year' as categorical factors. If this fails then probably non-linearities are inherent in the
data set and the use of smoothers is required to deal with them through a more complex
model.

qmod1 <- list(~factor(age))

fmod1 <- ~factor(age) + factor(year)

srmod1 <- ~factor(year)
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hke.stk <- hketemp

fit1 <- sca(stock = hke.stk, indices = hke.idx, fmodel = fmod1,

qmodel = qmod1, srmodel = srmod1)

hke.stk.a4a.1 <- hke.stk + fit1

plot(hke.stk.a4a.1)

Figure 6.9: Assessment summary
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Figure 6.10: Plot �tted against observed for survey
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Figure 6.11: Plot �tted agains observed for catch at age

Fits are much closer to the observed (compared to the simple model), however the survey
data are still not �tted adequately (�tted = blue, observed = magenta).
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Figure 6.12: Residuals by age and year

Through the residuals plot above, obviously the predictions are quite far from the observed
for speci�c age classes (age 3) and will need more �exibility in either the harvest modelling
(fmod) or the catchability (qmod).
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Figure 6.13: Quantile-quantile plot of residuals

137



Figure 6.14: Fishing mortality

In this case now, F values are unrealistically low (at least for a Mediterranean stock). It
seems that the problem is mainly in the modelling of �shing mortality (fmod).

Separable model with smoothers

We now investigate a more complex approach, treating 'age' and 'year' through smoothers.
Since we already have some indications that the problem resides mainly in �shing mor-
tality, we model F through smoothers with a maximum of k=6 nodes, when we have 7
years of data in total.

qmod2 <- list(~s(age, k = 3))

fmod2 <- ~s(age, k = 6) + s(year, k = 6)

srmod2 <- ~s(year, k = 2)
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hke.stk <- hketemp

fit2 <- sca(stock = hke.stk, indices = hke.idx, fmodel = fmod2,

qmodel = qmod2, srmodel = srmod2)

hke.stk.a4a.2 <- hke.stk + fit2

plot(hke.stk.a4a.2)

Figure 6.15: Assessment summary
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Figure 6.16: Plot �tted against observed for survey
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Figure 6.17: Plot �tted agains observed for catch at age

Fits do net get any better than the previous simple separable model (�tted = blue,
observed = magenta).
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Figure 6.18: Residuals by age and year

Now the problem seems to be shifted to age 1, which is an age class facing the highest
pressure and consists a great part of the catches.

142



Figure 6.19: Quantile-quantile plot of residuals
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Figure 6.20: Fishing mortality

F values (and the age-year shape) are very similar to the ones from the last years XSA
assessment.

Separable model with smoothers 2

qmod3 <- list(~s(age, k = 6))

fmod3 <- ~s(age, k = 6) + s(year, k = 6)

srmod3 <- ~s(year, k = 6)

hke.stk <- hketemp

fit3 <- sca(stock = hke.stk, indices = hke.idx, fmodel = fmod3,

qmodel = qmod3, srmodel = srmod3)

hke.stk.a4a.3 <- hke.stk + fit3

plot(hke.stk.a4a.3)
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Figure 6.21: Assessment summary
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Figure 6.22: Plot �tted against observed for survey
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Figure 6.23: Plot �tted agains observed for catch at age
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Figure 6.24: Residuals by age and year

Although the model is not a good �t, the variability of �tted vs predicted is now scattered
more or less uniformly among years, and is not age speci�c anymore.
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Figure 6.25: Quantile-quantile plot of residuals
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Figure 6.26: Fishing mortality

Perhaps in our e�ort to �t an adequate model, we ended up with "over�tting" and it
would be better to use smoothers only for 'year' and model 'age' as a categorical factor.
We also assume a very variable, annually �uctuating, recruitment pattern.

Separable model with smoothers 3

qmod4 <- list(~factor(age))

fmod4 <- ~factor(age) + s(year, k = 6)

srmod4 <- ~s(year, k = 6)

hke.stk <- hketemp

fit4 <- sca(stock = hke.stk, indices = hke.idx, fmodel = fmod4,

qmodel = qmod4, srmodel = srmod4)

hke.stk.a4a.4 <- hke.stk + fit4
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plot(hke.stk.a4a.4)

Figure 6.27: Assessment summary
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Figure 6.28: Plot �tted against observed for survey

152



Figure 6.29: Plot �tted agains observed for catch at age
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Figure 6.30: Residuals by age and year
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Figure 6.31: Quantile-quantile plot of residuals
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Figure 6.32: Fishing mortality

Not any better than the previous model. However, so far, all evaluation of assessments
was done through visual inspection of residuals. Let's now assess the models we've built
through a statistically sound criterion like the AIC.

Compare models

AIC(fit0, fit1, fit2, fit3, fit4)

## df AIC

## fit0 28 163.8

## fit1 32 -334.5

## fit2 26 113.5

## fit3 32 -311.9

## fit4 32 -343.7
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Age treated as factor and year through a wiggly smoother gives the 'best' model from an
AIC point of view. However, non is convincing through residuals inspection.

Figure 6.33: Compare a4a �ts with XSA results
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Figure 6.34: Compare F's
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Figure 6.35: Compare abundance
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Figure 6.36: Compare Stock biomass

Final comments

None of the 5 investigated models could reproduce XSA's results. '�t3' with qmod3 <-
list( s(age, k = 6)), fmod3 <- s(age, k = 6)+s(year, k = 6) and srmod3 <- s(year, k = 6)
seems to give F's and stock values closer to last years' XSA assessments.

However model evaluation through AIC, ranks '�t3' as the third best out of all �ve. The
AIC selected 'best' model (�t4) gives extremely low F values. This might be an indication
that we failed to model �shing mortality adequately and e�orts should concentrate towards
�tting a better 'fmodel'.
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6.2 Assessments with the statistical catch-at-age method

6.2.1 Readind data

# READ THE LANDINGS AT LENGTH DATA

HKE18.lnd <- read.table("data/HKE GSA18 LND_LEN.csv", header = T,

sep = ",")

# we convert the object to a matrix

HKE18.lnd.matrix <- as.matrix(HKE18.lnd)

dim(HKE18.lnd.matrix)

## [1] 101 7

# We need to specify the dimnames

HKE18.lnd.flq <- FLQuant(HKE18.lnd.matrix[, -1], dimnames = list(len = 0:100,

year = 2007:2012), unit = "numbers")

# READ THE CATCH AT LENGTH DATA

HKE18.orig <- read.table("data/HKE GSA18 CA_LEN.csv", header = T,

sep = ",")

# HKE18.orig <- t(HKE18.orig)

class(HKE18.orig)

## [1] "data.frame"

# we convert the object to a matrix

HKE18.matrix <- as.matrix(HKE18.orig)

dim(HKE18.matrix)

## [1] 101 7

# We need to specify the dimnames

HKE18.flq <- FLQuant(HKE18.matrix[, -1], dimnames = list(length = 0:100,

year = 2007:2012), unit = "numbers")

# READ THE CATCH WEIGHT DATA

HKE18.cwt <- read.table("data/HKE GSA18 CA_WT.csv", header = T,

sep = ",")

class(HKE18.cwt)

## [1] "data.frame"

# we convert the object to a matrix

HKE18.cwt.matrix <- as.matrix(HKE18.cwt)

dim(HKE18.cwt.matrix)

## [1] 6 7
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# We need to specify the dimnames

HKE18.cwt.flq <- FLQuant(HKE18.cwt.matrix[, -1], dimnames = list(age = 0:5,

year = 2007:2012), unit = "kg")

HKE18.cwt.flq <- setPlusGroup(HKE18.cwt.flq, 5)

# READ THE MATURITY mat DATA

HKE18.mat <- read.table("data/HKE GSA18 mat.csv", header = T,

sep = ",")

class(HKE18.mat)

## [1] "data.frame"

# we convert the object to a matrix

HKE18.mat.matrix <- as.matrix(HKE18.mat)

dim(HKE18.mat.matrix)

## [1] 6 7

# We need to specify the dimnames

HKE18.mat.flq <- FLQuant(HKE18.mat.matrix[, -1], dimnames = list(age = 0:5,

year = 2007:2012), unit = "prop")

HKE18.mat.flq <- setPlusGroup(HKE18.mat.flq, 5)

# save.image(file='data/HKE.GSA18.raw.data2.RData')

# OR if all the above is useless just load the FLquants

# created from tha dumped file

# load('HKE.GSA18.raw.data2.RData')

Converting catches and landings from lengths o ages

# -------------------------------------------------------------------------

# Growth params are needed - use the ones suggested in the

# STECF EWG 13-09

# -------------------------------------------------------------------------

# von Bertalanffy equation params

vbObj <- a4aGr(grMod = ~linf * (1 - exp(-k * (t - t0))), grInvMod = ~t0 -

1/k * log(1 - len/linf), params = FLPar(linf = 104, k = 0.2,

t0 = -0.01))

# Check vonBer results

lc = 20

predict(vbObj, len = lc)

## iter

## 1

## 1 1.058
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# Lengths to Ages Slicing

# Catches data - length to age slicing

HKE18.CA <- l2a(HKE18.flq, vbObj)

HKE18.CA <- setPlusGroup(HKE18.CA, 5)

# Landings data - length to age slicing

HKE18.LAND <- l2a(HKE18.lnd.flq, vbObj)

HKE18.LAND <- setPlusGroup(HKE18.LAND, 5)

Model natural mortality

# Simple m=0.2

mod0 <- FLModelSim(model = ~a, params = FLPar(a = 0.2))

m0 <- a4aM(level = mod0)

rngquant(m0) <- c(0, 5) # set the quant range

rngyear(m0) <- c(2007, 2012) # set the year range

HKE18.m <- m(m0)

# We can do better...

# Try modelling m Jensen's estimator

shape1 <- FLModelSim(model = ~exp(-age - 0.2))

level1 <- FLModelSim(model = ~5 * k, params = FLPar(k = 0.2))

m1 <- a4aM(shape = shape1, level = level1)

rngquant(m1) <- c(0, 5) # set the quant range

rngyear(m1) <- c(2007, 2012) # set the year range

HKE18.m <- m(m1)

HKE18.m <- setPlusGroup(HKE18.m, 5)

HKE18.m

## An object of class "FLQuant"

## , , unit = unique, season = all, area = unique

##

## year

## age 2007 2008 2009 2010 2011 2012

## 0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

## 1 0.3678794 0.3678794 0.3678794 0.3678794 0.3678794 0.3678794

## 2 0.1353353 0.1353353 0.1353353 0.1353353 0.1353353 0.1353353

## 3 0.0497871 0.0497871 0.0497871 0.0497871 0.0497871 0.0497871

## 4 0.0183156 0.0183156 0.0183156 0.0183156 0.0183156 0.0183156

## 5 0.0067379 0.0067379 0.0067379 0.0067379 0.0067379 0.0067379

##

## units: NA

Create FLStock and FLIndex objects
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# Load MEDITS survey index

load("data/hke.medits.RData")

Hake18.S.Ind.new <- hke.idx

range(Hake18.S.Ind.new)

## min max minyear maxyear

## 0 5 2007 2012

validObject(Hake18.S.Ind.new)

## [1] TRUE

# Set when the survey is taking place in the year

range(Hake18.S.Ind.new[[1]], "startf") <- 0.5

range(Hake18.S.Ind.new[[1]], "endf") <- 0.75

# Pass stock related FLQuants in an FLStock

Hake18.stk <- FLStock(catch.wt = HKE18.cwt.flq, catch.n = HKE18.CA,

mat = HKE18.mat.flq, m = HKE18.m, landings.n = HKE18.LAND)

name(Hake18.stk) <- "GSA 18 HAKE"

desc(Hake18.stk) <- "Data from 2013 Data Call"

# when spawning takes place

m.spwn(Hake18.stk) <- 0

# harvest spawning

harvest.spwn(Hake18.stk) <- 0

# stock wt is catch.wt

Hake18.stk@stock.wt <- Hake18.stk@catch.wt

Hake18.stk@landings.wt <- Hake18.stk@catch.wt

# investigate object Hake18.stk

range(Hake18.stk)

## min max plusgroup minyear maxyear minfbar maxfbar

## 0 5 5 2007 2012 0 5

validObject(Hake18.stk)

## [1] TRUE

# keep the stock in temp obj to avoid possible overwriting

hketemp <- Hake18.stk

# save.image(file='HKE.GSA18.a4a.data2.RData')
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6.2.2 Run assessments with a4a

Model 0

Can't get any simpler than that. Horrible outputs...

Hake18.stk <- hketemp

qmod <- list(~1)

fmod <- ~1

srmod <- ~1

fit0 <- sca(stock = Hake18.stk, indices = Hake18.S.Ind.new, fmodel = fmod,

qmodel = qmod, srmodel = srmod)

Hake18.stk.a4a.0 <- Hake18.stk + fit0

landings(Hake18.stk.a4a.0) <- computeLandings(Hake18.stk.a4a.0)

Figure 6.37: Stock summary
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Figure 6.38: The catch matrix

166



Figure 6.39: Residuals
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Figure 6.40: Residuals by age and year
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Figure 6.41: Quantile-quantile plot of residuals
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Figure 6.42: Assessment summary
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Figure 6.43: Plot �tted against observed for survey
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Figure 6.44: Plot �tted agains observed for catch at age

Model 1

Simple modelling with categorical factors. Gives very high F's...

Hake18.stk <- hketemp

qmod1 <- list(~factor(age))

fmod1 <- ~factor(age) + factor(year)

srmod1 <- ~factor(year)

fit1 <- sca(stock = Hake18.stk, indices = Hake18.S.Ind.new, fmodel = fmod1,

qmodel = qmod1, srmodel = srmod1)

Hake18.stk.a4a.1 <- Hake18.stk + fit1
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landings(Hake18.stk.a4a.1) <- computeLandings(Hake18.stk.a4a.1)

Figure 6.45: Stock summary

173



Figure 6.46: The catch matrix
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Figure 6.47: Residuals
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Figure 6.48: Residuals by age and year
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Figure 6.49: Quantile-quantile plot of residuals
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Figure 6.50: Assessment summary
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Figure 6.51: Plot �tted against observed for survey
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Figure 6.52: Plot �tted agains observed for catch at age

Model 2

Modelling with smoothers. Why not? (Reasonable trends & F values). Worst from
AIC-BIC point of view...

Hake18.stk <- hketemp

qmod2 <- list(~s(age, k = 3))

fmod2 <- ~s(age, k = 6) + s(year, k = 6)

srmod2 <- ~s(year, k = 2)

fit2 <- sca(stock = Hake18.stk, indices = Hake18.S.Ind.new, fmodel = fmod2,

qmodel = qmod2, srmodel = srmod2)

Hake18.stk.a4a.2 <- Hake18.stk + fit2
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landings(Hake18.stk.a4a.2) <- computeLandings(Hake18.stk.a4a.2)

Figure 6.53: Stock summary
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Figure 6.54: The catch matrix
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Figure 6.55: Residuals
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Figure 6.56: Residuals by age and year
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Figure 6.57: Quantile-quantile plot of residuals
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Figure 6.58: Assessment summary
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Figure 6.59: Plot �tted against observed for survey
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Figure 6.60: Plot �tted agains observed for catch at age

Model 3

Can't get more complex than this... te() is not running even with few knots, so use
additive e�ects with max k's. AIC-BIC looooooooves complexity...

Hake18.stk <- hketemp

qmod3 <- list(~s(age, k = 6))

fmod3 <- ~s(age, k = 6) + s(year, k = 6)

srmod3 <- ~s(year, k = 6)

fit3 <- sca(stock = Hake18.stk, indices = Hake18.S.Ind.new, fmodel = fmod3,

qmodel = qmod3, srmodel = srmod3)
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Hake18.stk.a4a.3 <- Hake18.stk + fit3

landings(Hake18.stk.a4a.3) <- computeLandings(Hake18.stk.a4a.3)

Figure 6.61: Stock summary
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Figure 6.62: The catch matrix
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Figure 6.63: Residuals
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Figure 6.64: Residuals by age and year
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Figure 6.65: Quantile-quantile plot of residuals

193



Figure 6.66: Assessment summary
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Figure 6.67: Plot �tted against observed for survey
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Figure 6.68: Plot �tted agains observed for catch at age

Model 4

Age as factor, year with max k. Best model (AIC-BIC)...

Hake18.stk <- hketemp

qmod4 <- list(~factor(age))

fmod4 <- ~factor(age) + s(year, k = 6)

srmod4 <- ~s(year, k = 6)

fit4 <- sca(stock = Hake18.stk, indices = Hake18.S.Ind.new, fmodel = fmod4,

qmodel = qmod4, srmodel = srmod4)

Hake18.stk.a4a.4 <- Hake18.stk + fit4
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landings(Hake18.stk.a4a.4) <- computeLandings(Hake18.stk.a4a.4)

Figure 6.69: Stock summary
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Figure 6.70: The catch matrix

Much better diagnostics with this model.
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Figure 6.71: Residuals by age and year
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Figure 6.72: Quantile-quantile plot of residuals
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Figure 6.73: Assessment summary
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Figure 6.74: Plot �tted against observed for survey
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Figure 6.75: Plot �tted against observed for catch at age

Still the survey is not �tted well...

Model 5

Reasonable F comes at a cost... "Fixing" the excess F of all other models, drives biomass
of 5+ group to explode.

Hake18.stk <- hketemp

qmod5 <- list(~s(age, k = 4))

fmod5 <- ~s(age, k = 3) + s(year, k = 5)

srmod5 <- ~s(year, k = 6)

fit5 <- sca(stock = Hake18.stk, indices = Hake18.S.Ind.new, fmodel = fmod5,
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qmodel = qmod5, srmodel = srmod5)

Hake18.stk.a4a.5 <- Hake18.stk + fit5

landings(Hake18.stk.a4a.5) <- computeLandings(Hake18.stk.a4a.5)

Figure 6.76: Stock summary
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Figure 6.77: The catch matrix
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Figure 6.78: Residuals by age and year
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Figure 6.79: Quantile-quantile plot of residuals
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Figure 6.80: Assessment summary
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Figure 6.81: Plot �tted against observed for survey
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Figure 6.82: Plot �tted against observed for catch at age

# Which model has the best fit

AIC.BIC <- rbind(t(AIC(fit0, fit1, fit2, fit3, fit4, fit5)[2]),

t(BIC(fit0, fit1, fit2, fit3, fit4, fit5)[2]))

AIC.BIC

## fit0 fit1 fit2 fit3 fit4 fit5

## AIC 173.9 65.39 122.0 -407.5 -441.1 123.2

## BIC 201.2 138.24 181.2 -334.7 -368.2 182.3

Compare �ts
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Figure 6.83: F-at-age estimates by each model
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Figure 6.84: F estimates by each model
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Figure 6.85: N-at-age estimates by each model
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Figure 6.86: SSB estimates by each model

Final comments

4 out of the 5 investigated models gave very high values of F (>1.0). Model 5 succeeded
to give reasonable F values, but stock biomass exploded... Model 4 trends, of all stock
features, are similar to the recent STECF EWG 13-09 outcomes however F's are 50%-75%
higher. This model was also suggested as the optimal from an information theoretic point
of view (AIC, BIC criteria).
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7 Sole in the North Adriatic Sea

Giuseppe Scarcella & Finlay Scott

7.1 Replicating accepted assessments

7.1.1 Reading in the data

We read the stock data.

sole_stk_xsa <- readFLStock("data/SOLE17IND.DAT", no.discards = TRUE)

summary(sole_stk_xsa)

## An object of class "FLStock"

##

## Name: NORTHERN ADRIATIC SEA (GSA 17) COMMON SOLE 2006-2012

## Description: Imported from a VPA file. ( data/SOLE17IND.DAT ). Wed Sep 24 17:41:28 2014

## Range: min max pgroup minyear maxyear minfbar maxfbar

## 0 5 NA 2006 2012 0 5

## Quant: age

##

## catch : [ 1 7 1 1 1 1 ], units = NA NA

## catch.n : [ 6 7 1 1 1 1 ], units = NA

## catch.wt : [ 6 7 1 1 1 1 ], units = NA

## discards : [ 1 7 1 1 1 1 ], units = NA

## discards.n : [ 6 7 1 1 1 1 ], units = NA

## discards.wt : [ 6 7 1 1 1 1 ], units = NA

## landings : [ 1 7 1 1 1 1 ], units = NA

## landings.n : [ 6 7 1 1 1 1 ], units = NA

## landings.wt : [ 6 7 1 1 1 1 ], units = NA

## stock : [ 1 7 1 1 1 1 ], units = NA * NA

## stock.n : [ 6 7 1 1 1 1 ], units = NA

## stock.wt : [ 6 7 1 1 1 1 ], units = NA

## m : [ 6 7 1 1 1 1 ], units = NA

## mat : [ 6 7 1 1 1 1 ], units = NA

## harvest : [ 6 7 1 1 1 1 ], units = f

## harvest.spwn : [ 6 7 1 1 1 1 ], units = NA

## m.spwn : [ 6 7 1 1 1 1 ], units = NA

There are 7 years of data (2006 to 2012) and 6 ages (0 to 5).

Set units, fbar range and plusgroup.
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units(harvest(sole_stk_xsa)) <- "f"

range(sole_stk_xsa)["minfbar"] <- 0

range(sole_stk_xsa)["maxfbar"] <- 4

sole_stk_xsa <- setPlusGroup(sole_stk_xsa, 5)

Then we read the index data. There is just a single tuning index.

sole_idxs_xsa <- readFLIndices("data/TUNEFF.DAT")

summary(sole_idxs_xsa[[1]])

## An object of class "FLIndex"

##

## Name: SoleMon Radipo-trawl survey

## Description: NORTHERN ADRIATIC SEA (GSA 17) COMMON SOLE 2006-2012 TUNING DATA . Imported from VPA file.

## Range: min max pgroup minyear maxyear startf endf

## 1 5 5 2006 2012 0.75 1

## Type : numbers

## Distribution :

## Quant: age

##

## index : [ 5 7 1 1 1 1 ], units = NA

## index.var : [ 5 7 1 1 1 1 ], units = NA

## catch.n : [ 5 7 1 1 1 1 ], units = NA

## catch.wt : [ 5 7 1 1 1 1 ], units = NA

## effort : [ 1 7 1 1 1 1 ], units = NA

## sel.pattern : [ 5 7 1 1 1 1 ], units = NA

## index.q : [ 5 7 1 1 1 1 ], units = NA

7.1.2 Running the XSA

Here we run the XSA using the same settings as used in SGMED.

FLXSA.control.sole1 <- FLXSA.control(x = NULL, tol = 1e-09, maxit = 30,

min.nse = 0.3, fse = 1, rage = 0, qage = 4, shk.n = TRUE,

shk.f = TRUE, shk.yrs = 5, shk.ages = 5, window = 100, tsrange = 20,

tspower = 3, vpa = FALSE)

sole_xsa1 <- FLXSA(sole_stk_xsa, sole_idxs_xsa, FLXSA.control.sole1)

sole_stk_xsa_res <- sole_stk_xsa + sole_xsa1

The results of the XSA analysis can be seen in Figure 7.1.
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Figure 7.1: Results from running XSA

7.2 Assessments with the statistical catch-at-age method

Here we set up a wide range of a4a model options and put them into a data.frame. The
fmodel options are a basic mix of factors and smoothers. The qmodel options only have
an age factor and are constant in time. The srmodel options are either a factor by year
or a Beverton-Holt shape with a low CV. Every combination of model options is used.

# fmodels age and year seperable

fmodel1 <- ~factor(age) + factor(year)

# age and year seperable but smooth

fmodel2 <- ~s(age, k = 3) + s(year, k = 3)

# age and year smooth interaction
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fmodel3 <- ~te(age, year, k = c(3, 3))

# age and year seperable, with age > 4 being the same as age

# 4

fmodel4 <- ~factor(replace(age, age > 4, 4)) + factor(year)

# qmodels

qmodel1 <- list(~factor(age))

qmodel2 <- list(~s(age, k = 3))

# Mimics the XSA settings of flat catchability after age 4

# (qage)

qmodel3 <- list(~factor(replace(age, age > 4, 4)))

# srmodels

rmodel1 <- ~factor(year)

rmodel2 <- ~bevholt(CV = 0.1)

# Build the data.frame

fmodels <- c("fmodel1", "fmodel2", "fmodel3", "fmodel4")

qmodels <- c("qmodel1", "qmodel2", "qmodel3")

rmodels <- c("rmodel1", "rmodel2")

model_data <- expand.grid(fmodel = fmodels, qmodel = qmodels,

rmodel = rmodels)

model_data <- cbind(model_id = 1:nrow(model_data), model_data)

For reference, the model combinations are:

model_data

## model_id fmodel qmodel rmodel

## 1 1 fmodel1 qmodel1 rmodel1

## 2 2 fmodel2 qmodel1 rmodel1

## 3 3 fmodel3 qmodel1 rmodel1

## 4 4 fmodel4 qmodel1 rmodel1

## 5 5 fmodel1 qmodel2 rmodel1

## 6 6 fmodel2 qmodel2 rmodel1

## 7 7 fmodel3 qmodel2 rmodel1

## 8 8 fmodel4 qmodel2 rmodel1

## 9 9 fmodel1 qmodel3 rmodel1

## 10 10 fmodel2 qmodel3 rmodel1

## 11 11 fmodel3 qmodel3 rmodel1

## 12 12 fmodel4 qmodel3 rmodel1

## 13 13 fmodel1 qmodel1 rmodel2

## 14 14 fmodel2 qmodel1 rmodel2

## 15 15 fmodel3 qmodel1 rmodel2

## 16 16 fmodel4 qmodel1 rmodel2

## 17 17 fmodel1 qmodel2 rmodel2

## 18 18 fmodel2 qmodel2 rmodel2

## 19 19 fmodel3 qmodel2 rmodel2

## 20 20 fmodel4 qmodel2 rmodel2

## 21 21 fmodel1 qmodel3 rmodel2

## 22 22 fmodel2 qmodel3 rmodel2

## 23 23 fmodel3 qmodel3 rmodel2

## 24 24 fmodel4 qmodel3 rmodel2
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7.2.1 Fitting the a4a models

We �t the models using a for loop and store the results (the new FLStock and the �tted
object) in lists. We also store the AIC and BIC as attributes.

# Stores

sole_stks_fit <- list()

fits <- list()

for (model_count in 1:nrow(model_data)){

stk_fit_name <- paste("model",model_count,sep="")

cat("model_count: ", model_count, "\n")

fit <- try(a4aSCA(stock=sole_stk_xsa,

indices = sole_idxs_xsa,

fmodel = eval(parse(text=as.character(model_data[model_count,"fmodel"]))),

qmodel = eval(parse(text=as.character(model_data[model_count,"qmodel"]))),

# variance of catches constant - better mimics XSA?

vmodel = list(~1,~1),

srmodel = eval(parse(text=as.character(model_data[model_count,"rmodel"])))))

if (!is(fit, "try-error")) {

fits[[stk_fit_name]] <- fit

sole_stks_fit[[stk_fit_name]] <- sole_stk_xsa + fit

attr(sole_stks_fit[[stk_fit_name]],"aic") <- AIC(fit)

attr(sole_stks_fit[[stk_fit_name]],"bic") <- BIC(fit)

attr(sole_stks_fit[[stk_fit_name]],"fitSumm") <- fit@fitSumm

}

}

## model_count: 1

## model_count: 2

## model_count: 3

## model_count: 4

## model_count: 5

## model_count: 6

## model_count: 7

## model_count: 8

## model_count: 9

## model_count: 10

## model_count: 11

## model_count: 12

## model_count: 13

## model_count: 14

## model_count: 15

## model_count: 16

## model_count: 17

## model_count: 18

## model_count: 19

## model_count: 20

## model_count: 21

## model_count: 22

## model_count: 23

## model_count: 24
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7.2.2 Exploring the a4a results

The model summary results, along with the XSA results, can be seen in Figure 7.2.

Figure 7.2: Comparing the results from all of the a4a assessments to the XSA assessment.
Some models are clearly unbelievable.

Some models have very high SSBs (Figure 7.3). We need to �lter these out.
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Figure 7.3: SSB estimates of all the model �ts and the XSA results to identify bad models.

The unwanted models are 2, 5, 6, 14, 17 and 18. Model 14 is particularly wrong. We only
want to include models that have believable SSB estimates.

good_models <- c(1, 3, 4, 7:13, 15, 16, 19:24)

Figure 7.4 shows the results from the selection of model �ts that have reasonable SSB
estimates.

221



Figure 7.4: Comparing the results from the a4a assessments that have reasonable SSB
estimates to the XSA assessment.

Some of the Fbar estimates are very linear looking (Figure 7.5). We need to identify and
remove them.
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Figure 7.5: Fbar estimates of the model �ts to identify the linear looking ones.

We want to remove models 3, 7, 11, 15, 19, 22 and 23 from the list of good models. These
all use fmodel3, the smooth interaction between age and year.

fmodel3 <- ~te(age, year, k = c(3, 3)) # age and year smooth interaction.

This may be because we don't have many years of data and ideally we would like more
degrees of freedom in the smoother.

This leaves 10 models that look reasonable (Figure 7.6).
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Figure 7.6: Comparing the good model �ts to the XSA results. The di�erence in recruit-
ment in the �nal year is driven by the two di�erent srmodels

The main di�erence between the models is the recruitment in the �nal year. The recruit-
ment in the models which have an srmodel of a factor on year (models 1, 4, 8, 9 and 12)
are less constrained than the models which have an srmodel of a Beverton-Holt (models
13, 16, 20, 21 and 24).

We can look at the AIC and BIC of the good models to see if they are good guides as to
which model is the best.

good_model_data <- model_data[good_models, ]

good_model_data$aic <- lapply(sole_stks_fit[paste("model", good_models,

sep = "")], function(x) x@aic)

good_model_data$bic <- lapply(sole_stks_fit[paste("model", good_models,

sep = "")], function(x) x@bic)

good_model_data
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## model_id fmodel qmodel rmodel aic bic

## 1 1 fmodel1 qmodel1 rmodel1 176 248.7

## 4 4 fmodel4 qmodel1 rmodel1 176.3 246.6

## 8 8 fmodel4 qmodel2 rmodel1 180.6 246.3

## 9 9 fmodel1 qmodel3 rmodel1 175.7 246

## 12 12 fmodel4 qmodel3 rmodel1 176.1 244.1

## 13 13 fmodel1 qmodel1 rmodel2 179.3 256.7

## 16 16 fmodel4 qmodel1 rmodel2 183.3 258.3

## 20 20 fmodel4 qmodel2 rmodel2 187.6 257.9

## 21 21 fmodel1 qmodel3 rmodel2 182.1 257.1

## 24 24 fmodel4 qmodel3 rmodel2 182 254.6

The models which have recruitment modelled as a factor on year have the lowest AIC
and BIC (probably because there are fewer parameters in the recruitment model). The
residuals from model 4 are show in Figure 7.7.
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Figure 7.7: Residuals plot of model 4

As the AICs and BICs are close to model average (if we want to).

names(sole_stks_fit)

## [1] "model1" "model2" "model3" "model4" "model5" "model6" "model7"

## [8] "model8" "model9" "model10" "model11" "model12" "model13" "model14"

## [15] "model15" "model16" "model17" "model18" "model19" "model20" "model21"

## [22] "model22" "model23" "model24"

# Check AIC and BICs of these guys Shrink model_data

fits[paste("model", good_models, sep = "")]

## $model1
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## a4a model fit for: NORTHERN ADRIATIC SEA (GSA 17) COMMON SOLE 2006-2012

##

## Call:

## .local(stock = stock, indices = indices, fmodel = ..1, qmodel = ..2,

## srmodel = ..4, vmodel = ..3)

##

## Time used:

## Pre-processing Running a4a Post-processing Total

## 0.31154 0.09765 0.07571 0.48491

##

## Submodels:

## fmodel: ~factor(age) + factor(year)

## srmodel: ~factor(year)

## n1model: ~factor(age)

## qmodel:

## SoleMon Radipo-trawl survey: ~factor(age)

## vmodel:

## catch: ~1

## SoleMon Radipo-trawl survey: ~1

##

## $model4

## a4a model fit for: NORTHERN ADRIATIC SEA (GSA 17) COMMON SOLE 2006-2012

##

## Call:

## .local(stock = stock, indices = indices, fmodel = ..1, qmodel = ..2,

## srmodel = ..4, vmodel = ..3)

##

## Time used:

## Pre-processing Running a4a Post-processing Total

## 0.25776 0.09510 0.05362 0.40647

##

## Submodels:

## fmodel: ~factor(replace(age, age > 4, 4)) + factor(year)

## srmodel: ~factor(year)

## n1model: ~factor(age)

## qmodel:

## SoleMon Radipo-trawl survey: ~factor(age)

## vmodel:

## catch: ~1

## SoleMon Radipo-trawl survey: ~1

##

## $model8

## a4a model fit for: NORTHERN ADRIATIC SEA (GSA 17) COMMON SOLE 2006-2012

##

## Call:

## .local(stock = stock, indices = indices, fmodel = ..1, qmodel = ..2,

## srmodel = ..4, vmodel = ..3)

##

## Time used:

## Pre-processing Running a4a Post-processing Total

## 0.27679 0.09268 0.05392 0.42339
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##

## Submodels:

## fmodel: ~factor(replace(age, age > 4, 4)) + factor(year)

## srmodel: ~factor(year)

## n1model: ~factor(age)

## qmodel:

## SoleMon Radipo-trawl survey: ~s(age, k = 3)

## vmodel:

## catch: ~1

## SoleMon Radipo-trawl survey: ~1

##

## $model9

## a4a model fit for: NORTHERN ADRIATIC SEA (GSA 17) COMMON SOLE 2006-2012

##

## Call:

## .local(stock = stock, indices = indices, fmodel = ..1, qmodel = ..2,

## srmodel = ..4, vmodel = ..3)

##

## Time used:

## Pre-processing Running a4a Post-processing Total

## 0.27057 0.09515 0.05109 0.41680

##

## Submodels:

## fmodel: ~factor(age) + factor(year)

## srmodel: ~factor(year)

## n1model: ~factor(age)

## qmodel:

## SoleMon Radipo-trawl survey: ~factor(replace(age, age > 4, 4))

## vmodel:

## catch: ~1

## SoleMon Radipo-trawl survey: ~1

##

## $model12

## a4a model fit for: NORTHERN ADRIATIC SEA (GSA 17) COMMON SOLE 2006-2012

##

## Call:

## .local(stock = stock, indices = indices, fmodel = ..1, qmodel = ..2,

## srmodel = ..4, vmodel = ..3)

##

## Time used:

## Pre-processing Running a4a Post-processing Total

## 0.26976 0.08821 0.05295 0.41092

##

## Submodels:

## fmodel: ~factor(replace(age, age > 4, 4)) + factor(year)

## srmodel: ~factor(year)

## n1model: ~factor(age)

## qmodel:

## SoleMon Radipo-trawl survey: ~factor(replace(age, age > 4, 4))

## vmodel:

## catch: ~1

228



## SoleMon Radipo-trawl survey: ~1

##

## $model13

## a4a model fit for: NORTHERN ADRIATIC SEA (GSA 17) COMMON SOLE 2006-2012

##

## Call:

## .local(stock = stock, indices = indices, fmodel = ..1, qmodel = ..2,

## srmodel = ..4, vmodel = ..3)

##

## Time used:

## Pre-processing Running a4a Post-processing Total

## 0.27201 0.10715 0.05176 0.43092

##

## Submodels:

## fmodel: ~factor(age) + factor(year)

## srmodel: ~bevholt(CV = 0.1)

## n1model: ~factor(age)

## qmodel:

## SoleMon Radipo-trawl survey: ~factor(age)

## vmodel:

## catch: ~1

## SoleMon Radipo-trawl survey: ~1

##

## $model16

## a4a model fit for: NORTHERN ADRIATIC SEA (GSA 17) COMMON SOLE 2006-2012

##

## Call:

## .local(stock = stock, indices = indices, fmodel = ..1, qmodel = ..2,

## srmodel = ..4, vmodel = ..3)

##

## Time used:

## Pre-processing Running a4a Post-processing Total

## 0.27044 0.10929 0.05316 0.43290

##

## Submodels:

## fmodel: ~factor(replace(age, age > 4, 4)) + factor(year)

## srmodel: ~bevholt(CV = 0.1)

## n1model: ~factor(age)

## qmodel:

## SoleMon Radipo-trawl survey: ~factor(age)

## vmodel:

## catch: ~1

## SoleMon Radipo-trawl survey: ~1

##

## $model20

## a4a model fit for: NORTHERN ADRIATIC SEA (GSA 17) COMMON SOLE 2006-2012

##

## Call:

## .local(stock = stock, indices = indices, fmodel = ..1, qmodel = ..2,

## srmodel = ..4, vmodel = ..3)

##
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## Time used:

## Pre-processing Running a4a Post-processing Total

## 0.27918 0.10762 0.05374 0.44054

##

## Submodels:

## fmodel: ~factor(replace(age, age > 4, 4)) + factor(year)

## srmodel: ~bevholt(CV = 0.1)

## n1model: ~factor(age)

## qmodel:

## SoleMon Radipo-trawl survey: ~s(age, k = 3)

## vmodel:

## catch: ~1

## SoleMon Radipo-trawl survey: ~1

##

## $model21

## a4a model fit for: NORTHERN ADRIATIC SEA (GSA 17) COMMON SOLE 2006-2012

##

## Call:

## .local(stock = stock, indices = indices, fmodel = ..1, qmodel = ..2,

## srmodel = ..4, vmodel = ..3)

##

## Time used:

## Pre-processing Running a4a Post-processing Total

## 0.27208 0.11029 0.05159 0.43396

##

## Submodels:

## fmodel: ~factor(age) + factor(year)

## srmodel: ~bevholt(CV = 0.1)

## n1model: ~factor(age)

## qmodel:

## SoleMon Radipo-trawl survey: ~factor(replace(age, age > 4, 4))

## vmodel:

## catch: ~1

## SoleMon Radipo-trawl survey: ~1

##

## $model24

## a4a model fit for: NORTHERN ADRIATIC SEA (GSA 17) COMMON SOLE 2006-2012

##

## Call:

## .local(stock = stock, indices = indices, fmodel = ..1, qmodel = ..2,

## srmodel = ..4, vmodel = ..3)

##

## Time used:

## Pre-processing Running a4a Post-processing Total

## 0.26059 0.11783 0.05441 0.43283

##

## Submodels:

## fmodel: ~factor(replace(age, age > 4, 4)) + factor(year)

## srmodel: ~bevholt(CV = 0.1)

## n1model: ~factor(age)

## qmodel:
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## SoleMon Radipo-trawl survey: ~factor(replace(age, age > 4, 4))

## vmodel:

## catch: ~1

## SoleMon Radipo-trawl survey: ~1

model_average <- ma(a4aFitSAs(fits[paste("model", good_models,

sep = "")]), sole_stk_xsa, AIC, nsim = 1000)
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8 Multi-fleet projections for Sole in the Adri-

atic Sea

Finlay Scott & Giuseppe Scarcella

Here we demonstrate how the single �eet projection tools in FLR can be used to approx-
imate multiple �eet projections using historical partial catches. Three �eets catch Sole in
GSA 17: trammel nets, set nets and a trawl. We are particularly interested in exploring
what happens if the trawl �eet stops operating. Therefore, in the following examples we
compare scenarios where all three �eets are in operation and when only the trammel and
set nets are in operation. The operation of multiple �eets is approximated by changing
the selectivity pattern in the projection model. The selection pattern of each �eet is
calculated through the partial catches and the total estimated �shing mortality.

8.1 Running the assessment

Read in the tuning indices and the stock object.

# FLIndices

idxs <- readFLIndices("data/TUNEFF.DAT")

# FLStock

load("data/stk.Rdata")

Run a stock assessment using FLa4a using the �nal settings from the sole assessment.

# Run chosen assessment - model 4 from previous section age

# and year seperable, with age > 4 being the same as age 4

fmodel <- ~factor(replace(age, age > 4, 4)) + factor(year)

qmodel <- list(~factor(age))

rmodel <- ~factor(year)

fit <- a4aSCA(stock = sole, indices = idxs, fmodel = fmodel,

qmodel = qmodel, srmodel = rmodel)

sole_det <- sole + fit

We simulate from the �tted object to generate a stock object with multiple iterations that
represent the uncertainty in the stock assessment (Figure 8.1).

niters <- 1000

sole_sim <- sole + simulate(fit, niters, seed = 0)

232



plot(sole_sim)

Figure 8.1: Results of the a4a assessment

8.2 Calculate the partial catches

The general approach to approximating multiple �eet projections is to estimate historical
partial �shing mortality at age using the the historical partial catches. There are three
main �eets �shing on Sole in GSA 17: set nets, trawlers and trammel nets.

First we read in the catch histories of the three �eets and calculate the proportion they
contribute to the total catches (Figure 8.2). The trawl and set net �eet catches younger
�sh and the trammel net catches older �sh.
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# Read in catch numbers from the fleets

set_net <- read.csv("data/ITA_SET_NET.csv", header = TRUE, sep = ";")

set_net <- FLQuant(t(as.matrix(set_net)[, 2:8]), dimnames = list(age = 0:6,

year = 2000:2012))

trawl <- read.csv("data/ITA_TRAWL.csv", header = TRUE, sep = ";")

trawl <- FLQuant(t(as.matrix(trawl)[, 2:8]), dimnames = list(age = 0:6,

year = 2000:2012))

tram <- read.csv("data/SLO_CRO_TRAMMEL.csv", header = TRUE, sep = ";")

tram <- FLQuant(t(as.matrix(tram)[, 2:8]), dimnames = list(age = 0:6,

year = 2000:2012))

total_catch <- set_net + trawl + tram

prop_catch_set_net <- set_net/total_catch

prop_catch_trawl <- trawl/total_catch

prop_catch_tram <- tram/total_catch

prop_catches <- FLQuants(set_net = prop_catch_set_net, trawl = prop_catch_trawl,

tram = prop_catch_tram)

ggplot(as.data.frame(prop_catches), aes(x = year, y = data)) +

geom_line(aes(colour = qname)) + facet_wrap(~age)
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Figure 8.2: Catch proportions of the �eets by age over the years 2000 to 2012

We now calculate the partial �shing mortalities by multiplying the estimated �shing mor-
tality from the assessment by the catch proportions (Figure 8.3). The selection patterns
used in the projections are based on the mean of the partial �shing mortalities over the
years 2006 to 2012 (Figure 8.4).

pfs <- lapply(prop_catches, function(x) sweep(harvest(sole_sim),

1:5, x, "*"))

pfs_mean <- lapply(pfs, function(x) apply(x[, as.character(2006:2012)],

c(1, 3:6), mean))

pfs_df <- as.data.frame(pfs)

ggplot(pfs_df[pfs_df$year > 2003, ], aes(factor(year), data)) +

geom_boxplot(aes(colour = qname)) + facet_wrap(~age)
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Figure 8.3: Partial �shing mortalities of the three �eets by age from 2003 to 2012

ggplot(as.data.frame(pfs_mean), aes(factor(age), data)) + geom_boxplot(aes(colour = qname))
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Figure 8.4: Mean partial �shing mortality over the years 2006 to 2012. This is used for
the selection patterns in the projections.

8.3 Stock recruitment

For the projection we need some kind of stock recruitment relationship. First we attempt
to �t a Beverton-Holt relationship between SSB and recruitment using the stock assess-
ment results without uncertainty. However, the shortage of the data set (13 years) and
the poorness of the �t (Figure 8.5) means that we cannot justi�ably use this relationship
for the projections.

sole_srr <- fmle(as.FLSR(sole_det, model = "bevholt"), control = list(trace = 0))
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plot(sole_srr)

Figure 8.5: The �tted stock recruitment relationship using a Beverton-Holt function. This
relationship was not used in the projections.

Instead, we used the geometric mean recruitment of the last three years of the simu-
lated stock. The residuals are simply the historic estimated recruitment minus the mean
recruitment.

obj <- rec(sole_sim)[, as.character(2010:2012)]

mean_rec <- apply(obj, c(1, 3:6), function(x) exp(mean(log(x))))

mult_residuals_rec <- sweep(rec(sole_sim), c(1, 3:6), mean_rec,

"/")
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8.4 The projections

We need to set up the future extended stock that will be used for the projections. There
are several assumptions made about the future stock. For example, the future mean
weights, natural mortality and maturity at age are calculated as the mean of the last
three years. The future selection pattern is based on the mean partial �shing mortalities
from the three �eets of the years 2006 to 2012 (see Figure 8.4).

nyears <- 20

# Multiplicative residuals for the SRR

residual_array <- aperm(apply(mult_residuals_rec, c(1, 3:6),

sample, size = nyears, replace = TRUE), c(2, 1, 3, 4, 5,

6))

dimnames(residual_array) <- list(age = 0, year = 2013:(2013 +

nyears - 1), unit = "unique", season = "all", area = "unique",

iter = 1:niters)

sr_residuals <- FLQuant(residual_array)

8.4.1 Status quo with all �eets

The status quo scenario is that the total �shing mortality will be the same as the mean
of the last three years (Figure 8.6). The future selection pattern is based on the mean
partial �shing mortality from the years 2006 to 2012 (see Figure 8.7). The projections
are performed with multiplicative residuals on the mean recruitment

sole_stf <- stf(sole_sim, nyears = nyears)

# Set the future selection pattern using the partial fishing

# mortalities

obj <- pfs_mean[["tram"]] + pfs_mean[["set_net"]] + pfs_mean[["trawl"]]

harvest(sole_stf)[, as.character(2013:(2013 + nyears - 1))] <- obj

# get F status quo

fsq <- apply(fbar(sole_sim)[, as.character(c(2010, 2012))], c(1,

3:6), mean)

ctrl_target <- fwdControl(data.frame(year = 2013:(2013 + nyears -

1), quantity = "f", val = rep(c(iter(fsq, 1)), nyears)))

# Fix trgtArray

trgtArray <- array(NA, dim = c(nyears, 3, niters), dimnames = list(1:nyears,

c("min", "val", "max"), iter = 1:niters))

trgtArray[, "val", ] <- rep(c(fsq), each = nyears)

ctrl_target@trgtArray <- trgtArray

stf_sq <- fwd(sole_stf, ctrl_target, sr = list(model = "mean",

params = FLPar(a = c(mean_rec), iter = niters)), sr.residuals = sr_residuals,

sr.residuals.mult = TRUE)
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plot(stf_sq)

Figure 8.6: The results of the status quo projection.

8.4.2 Status quo projection without the trawl �eet

Here we project forward without the trawling �eet. The �shing mortalities of the other
two �eets (set net and trammel) are kept at their status quo levels. As we are only able to
perform a 'single �eet' projection, the selectivity in the projection will be the sum of the
selectivities of the two �eets. We use the mean partial �shing mortalities we calculated
earlier as the future selection pattern (this will be scaled accordingly in the projection).
The status quo �shing mortality is the mean of the last three years. As before, projections
are performed with multiplicative residuals on the mean recruitment (Figure 8.7).
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The di�erence between this scenario and the status quo scenario is that here the selection
pattern is based only the trammel and set net �eets, and the future �shing mortality level
is the mean of the last three years of the trammel and set net �eets only.

sole_notrawl <- stf(sole_sim, nyears = nyears)

# Overwrite harvest slot with sum of fleets set_net + trammel

# to set the future selectivity (2013 onwards)

obj <- pfs_mean[["tram"]] + pfs_mean[["set_net"]]

harvest(sole_notrawl)[, as.character(2013:(2013 + nyears - 1))] <- obj

# The status quo fishing mortality is the mean of the last

# three years (of the two fleets only)

fbar_range <- as.character(range(sole_sim)["minfbar"]:range(sole_sim)["maxfbar"])

fbar_set_net_and_tram <- apply((pfs[["set_net"]] + pfs[["tram"]])[fbar_range,

], 2:6, mean)

fsq_notrawl <- apply(fbar_set_net_and_tram[, as.character(c(2010,

2012))], c(1, 3:6), mean)

# Set the control object

ctrl_target_notrawl <- fwdControl(data.frame(year = 2013:(2013 +

nyears - 1), quantity = "f", val = rep(c(iter(fsq_notrawl,

1)), nyears)))

# Fix trgtArray

trgtArray <- array(NA, dim = c(nyears, 3, niters), dimnames = list(1:nyears,

c("min", "val", "max"), iter = 1:niters))

trgtArray[, "val", ] <- rep(c(fsq_notrawl), each = nyears)

ctrl_target_notrawl@trgtArray <- trgtArray

# With multiplicative residuals

stf_sq_notrawl <- fwd(sole_notrawl, ctrl_target_notrawl, sr = list(model = "mean",

params = FLPar(a = c(mean_rec), iter = niters)), sr.residuals = sr_residuals,

sr.residuals.mult = TRUE)
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Figure 8.7: Comparing the results of the status quo scenario to the status quo without
the trawl �eet scenario.

We can compare the total �shing mortality in the projection years with the status quo
scenario in Section 8.4.1 (Figure 8.8).
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Figure 8.8: The �shing mortality by age in 2020 for the status quo and status quo without
the trawl �eet scenarios.

8.4.3 Only set and trammel nets with catches at status quo level

In this scenario we take the catches from the status quo scenario with all of the �eets, and
use these in the projection using only the set and trammel nets. This can be considered
a 'compensation' scenario, i.e. if the trawl �eet is not operating the other two �eets will
take the extra catch (so the total catch is the same as the status quo scenario when the
trawl �eet is operating).

# Get the total catches from the status quo scenario

catch_trawl <- catch(stf_sq)[, ac(2013:(2013 + nyears - 1))]

ctrl_target_catch <- fwdControl(data.frame(year = 2013:(2013 +

nyears - 1), quantity = "catch", val = c(iter(catch_trawl,
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1))))

# Fix trgtArray

trgtArray <- array(NA, dim = c(nyears, 3, niters), dimnames = list(1:nyears,

c("min", "val", "max"), iter = 1:niters))

trgtArray[, "val", ] <- c(catch_trawl)

ctrl_target_catch@trgtArray <- trgtArray

# Use the notrawl fleet with the selection pattern based on

# set net and trammel net only

stf_trawlcatch_notrawl <- fwd(sole_notrawl, ctrl_target_catch,

sr = list(model = "mean", params = FLPar(a = c(mean_rec),

iter = niters)), sr.residuals = sr_residuals, sr.residuals.mult = TRUE)

Without the trawl �eet there is an initial increase in �shing mortality which slowly de-
creases below the status quo level. Additionally, without the trawl �eet the SSB level
starts to increase (Figure 8.9). It must be remembered that there is no stock recruitment
relationship in these projections, i.e. the recruitment is not a�ected by SSB. With a stock
recruitment relationship it would be expected that the increase in SSB would occur earlier
due to potential increases in recruitment.
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Figure 8.9: Comparing the status quo scenario with all three �eets to having only set and
trammel nets in operation but the same catches.

8.4.4 Projecting at F01 with all �eets and with only the set net

and trammel net �eets

In these scenarios we are interested in projecting at F0.1. The value of F0.1 will be
a�ected by whether or not the trawl �eet is operating due to changes in the combined
selectivity pattern. However, the values are similar (Figure 8.10).

# Now BRP these in batches of 200

f01_all <- c()

f01_all <- c(f01_all, c(refpts(brp(FLBRP(iter(stf_sq, 1:200))))["f0.1",

"harvest"]))
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f01_all <- c(f01_all, c(refpts(brp(FLBRP(iter(stf_sq, 201:400))))["f0.1",

"harvest"]))

f01_all <- c(f01_all, c(refpts(brp(FLBRP(iter(stf_sq, 401:600))))["f0.1",

"harvest"]))

f01_all <- c(f01_all, c(refpts(brp(FLBRP(iter(stf_sq, 601:800))))["f0.1",

"harvest"]))

f01_all <- c(f01_all, c(refpts(brp(FLBRP(iter(stf_sq, 801:1000))))["f0.1",

"harvest"]))

f01_notrawl <- c()

f01_notrawl <- c(f01_notrawl, c(refpts(brp(FLBRP(iter(sole_notrawl,

1:200))))["f0.1", "harvest"]))

f01_notrawl <- c(f01_notrawl, c(refpts(brp(FLBRP(iter(sole_notrawl,

201:400))))["f0.1", "harvest"]))

f01_notrawl <- c(f01_notrawl, c(refpts(brp(FLBRP(iter(sole_notrawl,

401:600))))["f0.1", "harvest"]))

f01_notrawl <- c(f01_notrawl, c(refpts(brp(FLBRP(iter(sole_notrawl,

601:800))))["f0.1", "harvest"]))

f01_notrawl <- c(f01_notrawl, c(refpts(brp(FLBRP(iter(sole_notrawl,

801:1000))))["f0.1", "harvest"]))
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Figure 8.10: Histograms of the F0.1 values when all �eets and when only the set and
trammel �eets are in operation

First we project with all �eets, but with the future �shing mortality being set at F0.1.

# Project all fleets at Fmsy

ctrl_target_f01_all <- fwdControl(data.frame(year = 2013:(2013 +

nyears - 1), quantity = "f", val = rep(f01_all[1], nyears)))

# Fix trgtArray

trgtArray <- array(NA, dim = c(nyears, 3, niters), dimnames = list(1:nyears,

c("min", "val", "max"), iter = 1:niters))

trgtArray[, "val", ] <- rep(f01_all, each = nyears)

ctrl_target_f01_all@trgtArray <- trgtArray

# Project

stf_f01_all <- fwd(sole_stf, ctrl_target_f01_all, sr = list(model = "mean",

params = FLPar(a = c(mean_rec), iter = niters)), sr.residuals = sr_residuals,

sr.residuals.mult = TRUE)
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Then we project using only the set and trammel nets (by using the stock object with the
adjusted selectivity pattern from above).

# Project notrawl fleets at Fmsy

ctrl_target_f01_notrawl <- fwdControl(data.frame(year = 2013:(2013 +

nyears - 1), quantity = "f", val = rep(f01_notrawl[1], nyears)))

# Fix trgtArray

trgtArray <- array(NA, dim = c(nyears, 3, niters), dimnames = list(1:nyears,

c("min", "val", "max"), iter = 1:niters))

trgtArray[, "val", ] <- rep(f01_notrawl, each = nyears)

ctrl_target_f01_notrawl@trgtArray <- trgtArray

# Project

stf_f01_notrawl <- fwd(sole_notrawl, ctrl_target_f01_notrawl,

sr = list(model = "mean", params = FLPar(a = c(mean_rec),

iter = niters)), sr.residuals = sr_residuals, sr.residuals.mult = TRUE)
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9 Discussion and conclusions

Ernesto Jardim

The exercises carried out during this workshop were extremely valuable to test the a4a
statistical catch-at-age model with real datasets. The stocks used as case studies, hake in
the Gulf of Lions, hake in the Southern Adriatic, and anchovy, sardine and sole from the
North Adriatic, encompass a diversity of life histories (small pelagics, demersals, round
and �at �sh) and �eets (purse seiners, trawlers, gillnetters) that cover a fair range of
�sheries in Europe.

All stocks could �t in our de�nition of moderate-data, although in some cases the time
series of the data are very short, which creates an additional problem to �t models. In
most cases it was possible to replicate last year's assessments. For all cases it was possible
to explore alternative models and get satisfactory �ts.

The �exibility that the a4a stock assessment framework provides was the major factor
fostering these results, but as expected �exibility has a downside. The most important
one being the di�culty in selecting a model using the traditional statistical information
criteria like AIC and BIC or visual analysis of diagnostics. The way forward proposed
and applied to hake in the Gulf of Lions and sole in the Northern Adriatic, is to select a
range of models that seem plausible for the problem and average across them. This is an
area of research that deserves attention. We're all aware that modelling natural resources
is hardly done by a single model, and most of the times a range of models is required to
pick up all (or most) of the relevant processes.

In addition to stock assessment we used the two hake stocks to test the methods to model
growth and natural mortality. Converting length to ages allows the user to use length
based datasets and introduce uncertainty on the growth model, or test distinct models.
With natural mortality the same principles apply, it allows the user to add uncertainty
to the parameters of the model as well as uncertainty about this parameters.

One of the most interesting research questions we had was to test if it was possible to run
projections in FLa4a/FLR using individual �eets. Such method allows testing manage-
ment options that deal with �eet's e�ort or capacity, technical measures that impact the
gear's characteristics, marine protect areas, etc. Any option that may change the overall
�shing mortality deployed in each age group can be tested with this method. The case
study used was sole in the Northern Adriatic. The methods presently implemented in
FLa4a and FLR do not estimate or project individual �eets. The alternative is to use
partial �shing mortality by �eet to set up distinct scenarios, which can be forecasted with
FLR. The results were very promising and it was possible to test distinct scenarios of �eet
management.

Finally, the a4a framework together with the existing tools in FLR, provided an e�cient
way of running stock assessments, including a fair amount of uncertainty sources, and
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forecasting. The methods implemented allow the user to run all the analysis in the same
framework, which is a major improvement in terms of e�ciency, allowing the analysts to
address more time to the structural con�guration of the processes they're modelling and
spend less time dealing with technical details.
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