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1 INTRODUCTION

Ernesto Jardim

Under the scope of the ada Initiative, the JRC is promoting cooperative activities between
fisheries scientists with the aim to test, disseminate and promote a4a methods. These
Small Research Projects (SRP) are focus on comparing the results of assessments from
other models to assessments obtained from the ada statistical catch-at-age model, and
explore research questions using case studies.

The Workshop dedicated to the Mediterranean took place in Ispra, Italy, the 23th to
the 27th of June. The main objectives were to compare assessment models and develop
multi-fleet forecasts methodologies. These can be applied in the context of ex-ante/ex-
post evaluations of multi-annual plans, performed by STECF in order to provide scientific
advice to the European Commission.

1.1 ToR and Agenda

The terms of reference of the workshop were:

e Assess the stocks of hake in GSA 7 and sole in GSA 17 with ada and compare results
with other models.

e Develop fleet forecasting algorithms considering requirements of multi-annual man-
agement plans.

e Test the methods above in other stocks.

e Report to STECFE and other relevant management bodies.

The first three days of the workshop were dedicated to fit the ada statistical catch-at-age
method to the stocks of sardine, anchovy and sole in the North Adriatic (GSA17), Hake
in the Gulf of Lions (GSA08) and in the South Adriatic (GSA18). The fourth and fifth
days were dedicated to compute partial fishing mortalities for the fleets targeting Sole
in the North Adriatic and runing forecasts under distinct scenarios. The scenarios were
designed to test possible management of the fleets by constraining their effort in different
management objectives.



1.2 The a4da Initiative

(This section is based on Jardim, et.al, 2014)

The volume and availability of data useful for fisheries stock assessment is continually
increasing. Time series of traditional sources of information, such as surveys and landings
data are not only getting longer, but also cover an increasing number of species.

For example, in Europe the 2009 revision of the Data Collection Regulation (EU, 2008a)
has changed the focus of fisheries sampling programmes away from providing data for
individual assessments of key stocks (i.e. those that are economically important) to doc-
umenting fishing trips, thereby shifting the perspective to a large coastal monitoring
programme. The result has been that data on growth and reproduction of fish stocks are
being collected for more than 300 stocks in waters where the European fleets operate.

Recognizing that the context above required new methodological developments, the Eu-
ropean Commission Joint Research Centre (JRC) started its Assessment for All Initiative
(a4a), with the aim to develop, test, and distribute methods to assess a large numbers
of stocks in an operational time frame, and to build the necessary capacity/expertise on
stock assessment and advice provision.

The long-term strategy of ada is to increase the number of stock assessments while simul-
taneously promoting the inclusion of the major sources of uncertainty in scientific advice.
Our aim is to reduce the required workload by developing a software framework with the
methods required to run the analysis a stock assessment needs, including methods to deal
with recognized bottlenecks, e.g. model averaging to deal with model selection (Millar,
et.al, 2014). Moreover, we aim to make the analysis more intuitive, thereby attracting
more experts to join stock assessment teams. Having more scientists/analysts working in
fisheries management advice will increase the human resource basis, which is currently
recognized to be limited. Regarding the former, a4a promotes a risk analysis approach
to scientific advice through a wider usage of Operating Model/MSE approaches. We're
focused on developing methods that can deal with the most common settings these type
of analysis require, and creating the conditions for scientists to develop their own meth-
ods. Our expectation is that having a common framework, with clear data structures and
workflows, will promote research in this area and make it simpler to implement and share
methods.

To achieve these objectives, the Initiative identified a series of tasks, which were or are
being carried out, namely:

e define a moderate data stock;
e develop a stock assessment framework;
e develop a forecasting algorithm based on MSE;

e organize training courses for marine scientists.


http://icesjms.oxfordjournals.org/content/early/2014/04/03/icesjms.fsu050.abstract
http://icesjms.oxfordjournals.org/content/early/2014/03/31/icesjms.fsu043.abstract
http://icesjms.oxfordjournals.org/content/early/2014/03/31/icesjms.fsu043.abstract

1.3 The a4a approach to stock assessment and manage-
ment advice

As stated before, one of the main objectives of ada is to promote a risk type of analysis, so
that scientific advice provides policy and decision makers a perspective of the uncertainty
existing on stock assessments and its propagation into the scenarios being analyzed.

The sources of uncertainty implemented so far are related with the processes of growth,
natural mortality and reproduction (stock-recruitment); and with the estimation of pop-
ulation abundance and fishing mortality by the stock assessment model. In all cases the
framework can include sampling error.

The approach is split into 4 steps: (i) converting length data to age data using a growth
model, (i) modeling natural mortality, (iii) assessing the stock, and (iv) MSE.

These steps may be followed in sequence or independently, depending on the user’s pref-
erences. All that is needed is to use the objects provided by the previous step and provide
the objects required by the next, so that data flows between steps smoothly. One can
make the analogy with building with Lego, where for each layer the builder may use the
pieces provided by a particular boxset, or make use of pieces from other boxsets. Figure
1.1 shows the process, including the class of the objects that carry the data (in black).

A In }—{ Read data from disk or external source |

(Stepo K | I - ;|| e
——out f—_———
’ ’ B— FLIndexLen

A fisheries length data —— ([ fICR LD
. |£I—| survey length data |—m
A step1 } “{ growth model and parameters —{EEEI0S

FLIndex

* “Mogt e -_- -_ B
':_ ada | FLStock

~In }—{ M model and parameters |

| “step2 K —
L S 1 out — — FLQuant
J— ) = FLindex
) ~ In — assessment data and models =
[ Step3 k — Bl FlLStock

“(ow)—

Figure 1.1: In/out process of the a4a approach. The boxes in black represent the classes
of the objects that carry the information in and out of each step.

Analysis related to projections and biological reference points are dealt with by the FLR
packages FLash and FLBRP.

In Steps 1 and 2 there is no fitting of growth models or natural mortality models. The
rationale is to provide tools that allow the uncertainty associated with these processes



to be carried on into the stock assessment, e.g. through parameter uncertainty. This
approach allows the users to pick up the required information from other sources of
information such as papers, PhDs, Fishbase, other stocks, etc. If the stock under analysis
does not have specific information on the growth or natural mortality processes, generic
information about life history invariants may be used such as the generic priors suggested
by Bentley, (2014).

Note that an environment like the one distributed by a4a promotes the exploration of
different models for each process, giving the analyst a lot of flexibility. It also opens
the possibility to efficiently include distinct models in the analysis. For example, a stock
assessment using two growth, or several models for natural mortality could be performed.
Our suggestion to streamline the assessment process is to combine the final outcomes using
model averaging (Miller, et. al, 2014). Other solutions may be implemented, like scenario
analysis, etc. What is important is to keep the data flowing smoothly and the models
clear. R (R Core Team, 2014) and FLR (Kell, et.al, 200) provide powerful platforms for
this approach.

1.4 How to read this document

The target audience for this document are stock assessment experts. It presents a mixture
of text and code that shows how the analysis can be run with R/FLR/FLada. Moreover,
having the code allows the reader to copy/paste and replicate the analysis presented here.

The chapters are as independent as possible, so they can be extracted and runed individ-
ually.

1.5 Software packages - FLR & FLa4a

To run the FLa4a methods the reader will need to install the package and its dependencies
and load them, together with a couple of other packages. The data sets can be made
available upon request.

# from CRAN

install.packages(c("copula", "triangle'"))

# from FLR

install.packages(c("FLCore", "FLa4a"), repos = "http://flr-project.org/R")

To replicate the analysis carried out in this document the user will need the following
additional packages:

# from CRAN

install.packages(c("plyr", "xtable'", "plot3D", "gridExtra", "ggplot2"))
# from FLR

pkgs <- c("FLXSA", "FLAssess", "FLSAM", "FLash", "FLBRP")
install.packages(pkgs, repos = "http://flr-project.org/R")

Loading !


http://icesjms.oxfordjournals.org/content/early/2014/03/04/icesjms.fsu023.abstract
http://icesjms.oxfordjournals.org/content/early/2014/03/31/icesjms.fsu043.abstract
http://www.R-project.org/
http://icesjms.oxfordjournals.org/content/64/4/640.abstract

library(FLa4a)
library (FLBRP)
library (FLXSA)
library(xtable)
library(plyr)
library(plot3D)
library (FLSAM)
library(gridExtra)



2 ANCHOVY IN THE NORTH ADRIATIC SEA
Chato Osio

2.1 Explore Anchovy stock in GSA 17

Bring in the ANCHOVY data from GSA 17, from the assessment performed during
STECF EWG 13-19 and stored on github

load("data/Anchovy GSA 17.RData')

Explore the raw data, catch matrix and index, plus index internal consistency
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Figure 2.1: Anchovy stock
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Figure 2.2: Anchovy tuning index

The internal consistency in the West+FEast survey is not good for almost all age classes
indicating problems with this merged index.
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Figure 2.4: anchovy bubble plot catch numbers
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Figure 2.5: bubble plots of anchovy tuning index

2.2 Replicate SAM assessment

The latest accepted assessment performed in STECF working group was performed with
FLSAM. Here the objective is to compare the SAM with ada fit (e.g. achieve the same
results) and see if the fit can be better. The assessment results from SAM model are in
figure below for the Fishing mortality at age. It clearly appears that there are some very
high Fs in the last ages and years. From the EWG 13-12 report it is clear that there
were some problems with residual fits of the tuning index, for full details see the original
report.
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Figure 2.6: 3D Fishing mortality surface from the SAM assessment performed in STECF
EWG 13-19

To rerun the assessment in ada, once the data is loaded we reset the plus group at age
class 4+ as in the SAM assessment.

ANC17 <- setPlusGroup(ANC17, 4)

Start simple and fit an ada base model with the default settings for fmod, qmod and
srmod.

fmod <- “factor(year) + factor(age)

gmod <- list("factor(age))

srmod <- “factor(year)

fit0 <- a4aSCA(stock = ANC17, indices = ANC17.tun, fmodel = fmod,
gmodel = gmod, fit = "MP")

14



The assessment with the default settings does not converge, and returns the following
warning: " Hessian was not positive definite". To get results the fit must be done without
computing the hessian, with the argument fit’ set to "MP’. The main diagnostics for the
assessment fit are the residual patterns by age for survey and catches. The survey displays
bad yearly trends while the catches present a level problem in Age 0.

log residuals of catch and abundance indices
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Figure 2.7: Residual patterns for tuning survey and year classes in catch numbers for fit0Q

We can plot fitted against observed numbers at age for survey, where model fitted numbers
are lines in blue and observed is pink line. The prediction is quite far off the observed
and will need more flexibility in either the fmod or qmod.
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Figure 2.8: Predicted vs observed numbers at age in tuning index

Similarly we can plot fitted catch at age against observed where fitted is blue line, observed
is pink line. In this case also there are large discrepancies in the early part of the series
and in the 1990’s.
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Figure 2.9: Predicted vs observed catch numbers at age for fit0

Try now to model with greater flexibility and add a smoother in the fmod on age and
year with K set differently to account for the available numbers of ages and years.

fmod <- “s(age, k = 4) + s(year, k = 20)

fitl <- a4aSCA(stock = ANC17, indices = ANC17.tun, fmodel = fmod,
gmodel = gqmod)

By running the same set of diagnostic plots, the fit of age 0 in the catches improves but
there are still strong residual year trends in the survey for all ages.
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log residuals of catch and abundance indices
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Figure 2.10: Diagnostics for fitl

Survey diagnostics are again not very good, while the predicted vs observed catch numbers
are better than in fit1.

18



numbers

Oe+00 2e+07 4e+07 Ge+07

Oe+00 2e+07 4e+07

Be+07

4e+07

] 1 2 3 4

| | | | |
Echo West TrGi SepNov

| 1 | | |
Echo West TrGi SepNov

2011

2012

\ 34
\ &
1"-.,. % i
\ &
- \ =
—_— \ E i
x; g8 _
Echo West TrGi SepNov = Echo West TrGi SepNov Echo West TrGi SepMNov.
2008 - 2009 2010
=~ \\ $
T - \ -
T | — B
. \ 2
S . \ &
& \\g -
— - g _
Echo West TrGi SepNov & Echo West TrGi SepNov S Echo West TrGi SepMNov
2005 % 2006 % 2007
21 A\ g |
i \\ = |
\\ g
S \ ¥
g 5 \
41— 'x\\ & \
g —__ |§ ]
| | | | I g I T I I I g | | | | |

Figure 2.11: Diagnostics for fitl

19




01234
L1111 L1110
2011 2012
- 1lIII | /:,
§7f\L‘§_f
o - S -
2004 2005 2006 2007 2008 2009 | 2010

]
=

1o

1000000
—
—
7
1
SN

|

0 1000000
| | | |
0 1000000
L1 |
-
0 1000000
I I I |
\'\;‘““"-\-\__
01000000
I I |
__{,-c..__}
1000000
| 1 |

0
l

0
|

1000000 O 1000000
|

1997 1998 1999 . 2000 2001 2002 2003
g A |84/ g7~ aE 1A 15
w7 \ o | \ 8 \ ] g . g 7 4/ \\
%:/\: \é' aER g g ] o -
‘é 19390 1991 1992 | & | 1993 1994 |, [ 1995 0 1996
2 87\ g1y |80\ é' Ao1gdA 154N (2T
- —+ - =1 N eal =1~ \ \
s 181/ |41 S $—f\\ S/ ifA
y o | Af ] h w w ]
g1 \J%- \g\\é \”5 -‘E—A\E- \.
+ — - @ Bl -
§ 1983 1984 |~ [ 1985 |~ | 1986 |~ | 1987 A 1988 A 1989
eI 18T o4~ |24 §Z\ o\ T
g1\ |87/ I ESEEE _ A RN -
0 - &1 aPANP :\x 10N |ed
=] w ] N - 4T SERNY 1
AN EIRN I ANEEN RN AN E
-1 1977 % 1978 |~ | 1979 1980 |& [ 1981 | & | 1982
% ’ % __I= i : AN A 2 ] ﬁm ] I
3 21N ﬂ/\ '\ g7/ 2\ |5V
2 g §3 ‘\é‘ §- 1 gi
E T 1T T1TT ,g'] T TT1 I'TTTT T T T1TT1 rT7TT1TmTd _.I T T 8 I'TTTT
01234 o 01234 01234 01234

Figure 2.12: Diagnostics for fitl

By keeping the same F model, we model catchability (qmod) as a smooth of age plus
year.

fmod <- “s(age, k = 4) + s(year, k = 20)
gmod <- list(“s(age, k = 4) + year)

fit2 <- a4aSCA(stock = ANC17, indices = ANC17.tun, fmodel = fmod,
gmodel = qmod)

By rerunning diagnostics plots on fit2 there is an improvement in the survey yearly trends
in residuals. Also the predicted vs observed in survey numbers improves. The same is
true in the early part of the catch numbers.
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Figure 2.14: Diagnostics for fit2
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Figure 2.15: Diagnostics for fit2

Looks like there are problems with the survey catchability, while the catch residuals are
more or less ok. The 3D F surface shows very high mortality in the terminal year and age
and this is closest result to the SAM fit.
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Figure 2.16: 3D surface of F at age for fit2

2.3 Improving the stock assessment fit

To try to improve the residual patterns, the overall model fit and get more realistic F’s at
age in terminal year we can work on survey catchability. We thus try to model catchability
with a smoother on age and introduce breakpoints in 2006 and 2011. The choice of these
years aims at allowing more flexibility in these years to account for changes in catchability.

fmod <- “s(age, k = 4) + s(year, k = 20)

gmod <- list(“s(age, k = 4, by = breakpts(year, c(2006, 2011))))

fit3 <- sca(stock = ANC17, indices = ANC17.tun, fmodel = fmod,
gmodel = gmod, srmodel = srmod, fit = "assessment")
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Upon inspection of residual patterns, survey residuals still present some trend. Survey
predicted vs observed numbers at age are better but with some discrepancies in 200-2006
and 2009-2011.

log residuals of catch and abundance indices
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Figure 2.17: Diagnostics for fit3
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Figure 2.18: Diagnostics fit3

However in the predicted vs observed numbers in the catch there is a large discrepancy
starting from 1985 to 1987, then 1990-1992, 1995-1998
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Figure 2.19: Diagnostics for fit3

The next attempt to improve the model fits is to model catchability as changing after
2006 and to insert breakpoints at ages in the fmod.

fmod <- “s(age, k = 4) + s(year, k = 20, by = breakpts(age, c(1.5,
2.5)))

gmod <- list("s(age, k = 4, by = breakpts(year, 2006)))

# fmod <- ~ s(age, k=4) + s(year, k = 20)

fitd <- ad4aSCA(stock = ANC17, indices = ANC17.tun, fmodel = fmod,
gmodel = gmod, srmodel = srmod, fit = "assessment")

The diagnostics for fit4 are better than fit3 for catch residuals but not for age 2 of the
survey.
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standardized residuals

log residuals of catch and abundance indices
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Figure 2.20: Anchovy diagnostics for fit4
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Figure 2.21: Diagnostics for fit4
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This model with the exception of year 1986-1988 does a good job at predicting catch
numbers.
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Figure 2.22: Anchovy diagnostics for fit4

The F surface remains however particularly high in the last ages and years.
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Figure 2.23: 3D surface of F at age for model fit4

Another possibility to improve the model fit is have a fmodel where F is a function of a
smoother of year with breakpoints on year 1985 and 1998. The gqmodel is kept as in fit4.

fmod <- “s(age, k = 5, by = breakpts(year, c(1985, 1998)))
gqmod <- list("s(age, k = 4, by = breakpts(year, 2006)))

fith <- a4aSCA(stock = ANC17, indices = ANC17.tun, fmodel = fmod,

gmodel = gmod, fit = "assessment")

Overall fit5 has acceptable standardized residuals for both survey and catches.
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standardized residuals

log residuals of catch and abundance indices
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Figure 2.24: Anchovy diagnostics for fith
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Figure 2.25: Anchovy diagnostics for fith

Predicted vs observed catches still present problems in 1986:1988.
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Figure 2.27: 3D surface of I at age for model fith

Try to change default of the variance model on the survey since there have been a number

of assumptions when combining the east and west surveys. Specify that variance can
change in both survey and catch by a smooth of age with k=3

fmod <- “s(age, k = 5, by = breakpts(year, c(1987, 1995))) +
s(year, k = 20, by = breakpts(age, 4))

gmod <- list(“s(age, k = 4, by = breakpts(year, 2006)))

vmod <- list("s(age, k = 3), “s(age, k = 3))

fit6 <- ad4aSCA(stock = ANC17, indices = ANC17.tun, fmodel = fmod,
gmodel = gmod, vmod = vmod, fit = "assessment")

Fit6 is the best model obtained, the residuals, predicted vs observed in catch and survey
are quite acceptable.
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standardized residuals

log residuals of catch and abundance indices
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Figure 2.28: Anchovy diagnostics for fit6
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Figure 2.29: Diagnostics for fit6
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Figure 2.30: Diagnostics for fit6

The F surface is very reasonable. This model returns a max of F=3, while the SAM model
in EWG 13-19 was around Fmax=12.
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Figure 2.31: 3D surface of I at age for model fit6

2.4 Inclusion of Index Error in model fit

A different approach to improve model fit is to down weight the variance model of the
survey since it’s problematic on the F’s in the last couple years. One attempt was made
by down weighting the whole variance of the survey (code shown but no model results
presented here) and one by down weighting only the last two years (plus a range of
different settings)

# make temporary stocks not to override the original stock
stk <- ANC17

idx <- ANC17.tun[1]

# variance of observed catches, keep fixed variance for all
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# years

varslt <- catch.n(stk)

varslt[] <- 0.3

catch.n(stk) <- FLQuantDistr(catch.n(stk), varslt)

# variance of observed indices

varslt <- index(idx[[1]11])

# downweight the var for all years of the survey equally
# varslt[] <- 0.6 index.var(idx[[1]]) <- varslt

downweight the var for all years of the survey equally a
lot of weight in the last part of the tuning and high in
the last two years w <- c(0.6, 0.6, 0.6, 0.6, 0.6, 0.6,
0.3, 0.3) index.var(idx[[1]]) <-rep(v, each=5) a lot of
weight in the initial part of the tuning and low in the
last two years.

<- ¢(0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.9, 0.9
index.var(idx[[1]]) <- rep(w, each = 5)

5 H H R HHH

# run

fmod <- “s(age, k = 5, by = breakpts(year, c(1987, 1995))) +
s(year, k = 20, by = breakpts(age, 4))

gmod <- list(“s(age, k = 4, by = breakpts(year, 2006)))

fitvar <- a4aSCA(stk, idx, fmod = fmod, gmod = gmod)

Upon residual inspection, the patterns of the survey present problems.
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Figure 2.32: Anchovy diagnostics for fitvar
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log residuals of catch and abundance indices
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Figure 2.33: Anchovy diagnostics for fitvar

The fishing mortality surface while better than other models still is very high on age 4+
in the last years.
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Figure 2.34: 3D surface of I at age for model fitvar

trim the survey index by removal of age = 4

The bubble plots of the cohort strengths show that the last year classes are very poorly
represented in the catch matrix and while in the models before we set the plus group at
4+, here we attempt to remove catches of age = 4, while keeping the some of the fmod
and gmod tested before.

fmod <- “s(age, k = 5, by = breakpts(year, c(1987, 1995))) +
s(year, k = 20, by = breakpts(age, 4))

gmod <- list(“s(age, k = 4, by = breakpts(year, 2006)))

fit7 <- a4aSCA(stock = ANC17, indices = FLIndices(trim(ANC17.tun[[1]],
age = 0:3)), fmodel = fmod, gmodel = gmod, fit = "assessment")
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Model fit can be compared with the AIC and BIC. In this case however the best model
in terms of AIC is not fit6 which is indicated by the residuals but fit4 for AIC or fit2
according to BIC.

# same as above and bring in variance model. Model not

# converging

fit8 <- a4aSCA(stock = ANC17, indices = FLIndices(trim(ANC17.tun[[1]],
age = 0:3)), fmodel = fmod, gmodel = gmod, vmodel = vmod,
fit = "assessment")

ATC(fit0, fitl, fit2, fit3, fit4, fith, fit6, fitvar)

#it df AIC
## £it0 91 355.
## fitl 73 373.
## fit2 73 318.
## £it3 78 373.
## fit4 113 302.
## £itb 65 491.
## £it6 86 318.
## fitvar 84 1092.

D O = W O N OO

BIC(fit0, fitl, fit2, fit3, fit4, fitb, fit6, fitvar)

## df BIC
## £it0 91 666.
## fitl 73 622.
## £it2 73 567.
## £it3 78 640.
## fitd 113 688.
## f£ith 65 713.
## fit6 86 611.
## fitvar 84 1379.

g1 00 = ©W O O © O
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Figure 2.35: Diagnostics for model fit7
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Figure 2.36: Anchovy diagnostics for fit7
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standardized residuals

log residuals of catch and abundance indices
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Figure 2.37:

Anchovy diagnostics for fitvar
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Figure 2.38: 3D surface of F at age for model fit7
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Figure 2.39: Diagnostics for model fit8
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standardized residuals

log residuals of catch and abundance indices
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Figure 2.41: Diagnostics for model fit8
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Figure 2.42: 3D shape of F at age for model fit8

An alternative to truncating age classes in the tuning index is by replacing age=4 with
NAs, however the refit is not shown here.

# replace age = 4 with NAs
ANC17.tunNA <- ANC17.tun[[1]][5, 1]

2.5 Use of Biomass Index in Anchovy assessment

Two historical acoustic surveys exist in the West Adriatic and were performed by CNR
in ANCONA. The data from the surveys has been recovered from GFCM reports and is
available as an aggregated biomass index expressed as tons/nm?. We read in the data
and create and FLIndex first.
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ane_pil <- read.csv("data/ANE_PIL_acoustic.csv", sep = ";")
# Subset the stock and split the two surveys

ane <- ane_pil[ane_pil$specie == "ANE", ]
anenw <- anelane$survey == "nwacoustic_survey", ]
anecw <- anelane$survey == "midadr_acoustic", ]

anenw_ind <- anenw$tons_nm
anecw_ind <- anecw$tons_nm

# Define dimensions for the FLIndex
dnms <- list(age = "all", year = min(anenw$year):max(anenw$year))
nwidx <- FLIndexBiomass(index = FLQuant(anenw_ind, dimnames = dnms))

dnms2 <- list(age = "all", year = min(anecw$year):max(anecw$year))
cwidx <- FLIndexBiomass(index = FLQuant(anecw_ind, dimnames = dnms2))

# Assign the time of the year the survey is performed,
uncertain here on how it is best to treat it given the
# split year

+H

# range(nwidx) [c('startf', 'endf')] <- c(0.58, 0.66)
# range(cwidx) [c('startf', 'endf')] <- c(0.58, 0.66)
range(nwidx) [c("startf", "endf")] <- c(0, 0)
range (cwidx) [c("startf", "endf")] <- c(0, 0)

We then combine the 3 indexes, NW, CW and West+East in FLIndices that will be used
in the assessment

# merge FLindexes
flis <- FLIndices(northwest = nwidx, centralwest = cwidx, west_east = ANC17.tun[[1]])

Now the main adjustment is in the variance model (vimod) where we can allow a different
variance for each survey through a list following the order of the surveys in the "flis"
FLindices. Two model fits are compared via AIC for different qmodels.

fmod <- “s(age, k = 4, by = breakpts(year, c(1987, 1995))) +
s(year, k = 20, by = breakpts(age, 4))

gmod <- list("s(year, k = 10), “s(year, k = 7), “s(age, k = 4,
by = breakpts(year, 2006)))

gmodl <- list("s(year, k = 20), “s(year, k = 10), “s(age, k = 4,
by = breakpts(year, 2006)))

vmod <- list("s(age, k¥ = 3), "1, "1, “s(age, k = 3))

fit6tsl <- ad4aSCA(stock = ANC17, indices = flis, fmodel = fmod,
gmodel = gmod, vmodel = wvmod)
fit6ts2 <- adaSCA(stock = ANC17, indices = flis, fmodel = fmod,

gmodel = gmod1)
AIC(fit6tsl, fit6ts2)

## df AIC
## fit6tsl 102 440.5
## fit6ts2 113 456.0
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Figure 2.43: Residuals plots for fit6tsl
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Figure 2.45: Residuals plots for fit6tsl

Fit6tsl is the best model obtained, the residuals, predicted vs observed in catch and
survey are quite acceptable and the F surface is very reasonable. This model returns a
max of F=3, while the SAM model in EWG 13-19 was around Fmax=12.
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Figure 2.46: 3D shape of F at age for model fit6tsl

Another attempt with the biomass tuning indexes is with the following model

fmod <- “s(age, k = 5, by = breakpts(year, c(1987, 1995))) +
s(year, k = 20, by = breakpts(age, 4))

gmod <- list("s(year, k = 10), “s(year, k = 7), “s(age, k = 4,
by = breakpts(year, 2006)))

vmod <- list("s(age, k = 3), "1, 71, "s(age, k = 3))

fitk <- a4aSCA(stock = ANC17, indices = flis, fmodel = fmod,
gmodel = gmod, vmodel = vmod, nimodel = “s(age, k = 3))
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Figure 2.47: 3D surface of F at age for model fitk

## df BIC
## fit6tsl 102 808.6
## fit6ts2 113 863.9

To get confidence intervals around the estimates of the ada model it is possible to simulate
for a number of iteration, here 250.

# simulate Confidence intervals for the assessed
sim <- simulate(fit6tsl, 250)
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Estimate fbar out of the 250 iterations and for the last year.

Figure 2.48: Simulated fits with confidence intervals

fbar (ANC17 + sim)

#it
##
#it
##
#it
##
#it
##
#it
##

An object of class "FLQuant"

iters: 250

, , unit =

age

all 0.174209(0.0335) 0.247655(0.0332) 0.276716(0.0405) 0.286451(0.0324)

age

year
1976

year
1980

unique, season =

1977

1981

all, area =

29

unique

1978

1982

1979

1983
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## all 0.361396(0.0452) 0.503634(0.0536) 0.548786(0.0583) 0.440458(0.0489)

#it year

## age 1984 1985 1986 1987

## all 0.400750(0.0470) 0.422264(0.0717) 0.302230(0.0993) 0.120168(0.0596)
## year

## age 1988 1989 1990 1991

## all 0.074308(0.0344) 0.058955(0.0223) 0.089294(0.0272) 0.127247(0.0344)
## year

## age 1992 1993 1994 1995

##  all 0.119625(0.0308) 0.126139(0.0257) 0.186616(0.0329) 0.274683(0.0401)
#it year

## age 1996 1997 1998 1999

## all 0.278258(0.0382) 0.340442(0.0473) 0.533574(0.0584) 0.818248(0.0720)
## year

## age 2000 2001 2002 2003

## all 0.925091(0.0670) 0.875941(0.0709) 0.839918(0.0647) 0.767396(0.0668)
#it year

## age 2004 2005 2006 2007

## all 0.614161(0.0634) 0.528360(0.0567) 0.570474(0.0471) 0.660883(0.0573)
#it year

## age 2008 2009 2010 2011

## all 0.744503(0.0642) 0.938043(0.0755) 1.309568(0.0861) 1.529942(0.1241)
## year

## age 2012

## all 1.322352(0.3310)
##

## units: f

summary (fbar (ANC17 + sim) [, "2012"])

## An object of class "FLQuant" with:
## dim : 11111 250

## quant: age

## units: f

#it

## Min : 0.6261
## 1st Qu.: 1.121
## Mean : 1.381
## Median : 1.322
## 3rd Qu.: 1.572
## Max 2.792
## NAs 0%

2.6 Compare all a4a models with SAM results

We compare all the model fits, irrespective to the quality of the fit, to the SAM assessment
model. In Recruitment and SSB there is a main difference in the models (fit6, fit6ts1 and
fitk surv) picking up an increase in Rec and SSB in the mid eighties till early nighties.
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Catch does not change much across models, while Harvest estimates differ mainly in the
peak in 1987.

res <- FLStocks(SAM = ANC17, FIT1 = ANC17 + fitl, FIT2 = ANC17 +
fit2, FIT3 = ANC17 + fit3, FIT4 = ANC17 + fit4, FIT5 = ANC17 +
fitb, FIT6 = ANC17 + fit6, FIT7 = ANC17 + fit7, FIT6tsl = ANC17 +

ANC17 + fitk)

fit6tsl, FITk_surv
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Figure 2.49: Comparison of model ada fits with SAM fit
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2.7 Way forward for the Anchovy assessment in GSA
17

There is a number of pending issues with the EWG 13-12 anchovy SAM assessment7 in
GSA 17 and with the ada models fitted in the report:

e The tuning index West+East (2005-2012) has assumptions about ALK use, it was
combined and is short compared to the landing series.

e There are problems of internal consistency between the cohorts which might be
generated by the merging process.

e Additionally, the lack of survey data for the early part of the series tends to increase
the uncertainty in the fit for SSB and Rec in the period 1980-1990.

e Another potential problem is the catch data comes in as split year.

Possible solutions to the described problems are the following:

e The West+East merged survey should be kept as two separate indexes and modeled
accordingly so that separate catchabilities can be included, or variance models.

e The inclusion of the Biomass index from the North and West Central Adriatic
seems to stabilize this part of the assessment and highlights the need of including
these additional tuning indexes, possibly disaggregated by age, since the data exist
disaggregated.

e Since ALK readings from West are applied to East for the production of the com-
bined tuning index, introducing a growth model with some uncertainty could help
carry over the uncertainty associated with age slicing.
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3 SARDINE IN THE NORTH ADRIATIC SEA

lago Mosqueira

3.1 Assessments with the statistical catch-at-age method

3.1.1 Data and input

Data on catch-at-age, mean-weights-at-age, maturity, natural mortality and other biolog-
ical parameters was extracted from the latest stock assessment conducted for this stock
(REF) and recently submitted data.

It is worth noting that the available index of abundance by age only covers the latest
part of the fishery (2005-2012), although catch-at-age data strats in 1975. This is likely
to complicate matters, as trends in population abundance and fishing mortality prior to
2005 will be estimated based almost entirely on trends in catch-at-age, which are likely
to be affected by changes in fishing effort, targeting and other factors not related to stock
status.

load("data/SardineGSA17 .RData")

sar <- SARDINE
tun <- SARDINE.tun
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Figure 3.1: Time series of catches (in t) and relative abundance at age for Adriatic sardine

3.1.2 Initial model runs

A number of model runs were carried out to explore the influence of various model options
in the results, and with a view at approximating the current stock assessment.

R1
The first run (R1) accepted most of the default options in the a4a model to simply

explore what inferences could more directly be made form the data. The stock-recruitment
relationship is simply a year factor, similar to the random walk used by SAM.
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rl <- sca(sar, tun, srmodel = “factor(year), fit = "assessment")
show(rl)

## ada model fit for: Sardine GSA 17

#it

## Call:

## .local(stock = stock, indices = indices, fmodel = ..1, gmodel = ..2,
#it srmodel = ..3, nlmodel = ..4, vmodel = ..5, fit = ..6)

#it

## Time used:

## Pre-processing Running ada Post-processing Total
#it 0.4277 0.8402 0.4612 1.7291
#it

## Submodels:

##  fmodel: “te(age, year, k = c(3, 19), bs = "tp")

## srmodel: “factor(year)

## nlmodel: “factor(age)

##  gmodel:

# Echo West + East TrGi SepNov Commercial LFD: “s(age, k = 4)
##  vmodel:

# catch: “s(age, k = 3)
## Echo West + East TrGi SepNov Commercial LFD: ~1

The results (Figure 3.2) appear to indicate a large decrease in abundance for this stock,
as the model resorts to a large biomass as the start of the series to explain the sustained
increase in catches in the period up to 1983.
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Figure 3.2: Estimated recruitment, SSB, catch and fishing mortality for Adriatic sardine,
using model run R1
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standardized residuals

log residuals of catch and abundance indices

1980 2000 1980 2000 1980 2000
| | | | | | | 1 | | | | 1 |
TrGi SepMNov TrGi SepN Gi SepN Gi SepN Gi SepN Gi SepNov
1 2 3 4 5 6
catch.n catch.n catch.n catch.n catch.n catch.n
1 2 3 4 5 B
2 - - -
.U - L
2 -

Figure 3.3: Residuals of fit to index of abundance and catch series for model run R1

R2

We now explore the influence of the assumed stock-recruitment relationship in the ability
of the stock to withstand the observed levels of catch, by attempting to fit a Beverton &
Holt stock recruitment relationship with a moderate level of variability (CV=0.3).

r2 <- sca(sar, tun, srmodel = “bevholt(CV = 0.3), fit = "assessment")

Only the estimates over the last few years appear to change (Figure 3.4), while model fit
does not improve (AIC=553.942, vs. 517.424 for R1, Figure 3.5).
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Figure 3.4: Estimated recruitment, SSB, catch and fishing mortality for Adriatic sardine,
using model runs R1 and R2
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log residuals of catch and abundance indices
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Figure 3.5: Residuals of fit to index of abundance and catch series for model run R2

R3

Given the history of changes in catch, we will now explore different options for the
fmodel, away from the default in sca(), of a tensor spline. By using factor(age)
+ factor(year), we give more freedom for the fishing mortality to vary across years and
ages, thus reflecting possible changes in targeting and selectivity.

srmod <- “factor(year)

fmod <- “factor(age) + factor(year)
r3 <- sca(sar, tun, srmodel = srmod, fmodel = fmod, fit = "assessment')

But as these changes are mostly informed by the catch data, the model is forced to
consider much higher values of biomass and recruitment in the historical period.

69



na
o
+
=]
&
[
/
|
8455

o
=)
=}
=}
=]

i

Laed

25000 -
D -
3- Ifr
2= II|III E
y 8
N M
=
_---_—_'-'__ - —
0- — —
1 I 1 i
1980 1990 2000 2010

— R1 — R2 — R3

Figure 3.6: Estimated recruitment, SSB, catch and fishing mortality for Adriatic sardine,
using model runs R1, R2 and R3

Fit appears to improve, according the the AIC value (AIC=482.694), but the increase in
estimated biomass is a reason for concern, as it is the difficulty at fitting the catch series.
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standardized residuals

log residuals of catch and abundance indices
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Figure 3.7: Residuals of fit to index of abundance and catch series for model run R3

R4

We now try to capture some possible trends in recruitment by using a spline for the

stock-recruitment model, as follows

srmod <- “s(year, k = 20)
fmod <- “factor(age) + factor(year)
rd <- sca(sar, tun, srmodel = srmod, fmodel = fmod, fit = "assessment')

whoch gives a git that closely matches R2.
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Figure 3.8: Estimated recruitment, SSB, catch and fishing mortality for Adriatic sardine,
using model runs R1, R2, R3 and R4

R5

The catch series shows a series of sudden changes, for example a large a increase in the
1980-85 period, which could be related to change in targeting, as the main fleets exploiting
this stock do so in combination with anchovy, which tends to be regarded as their preferred
target. We introduce a series of breakpoints in the fishing mortality model, by allowing a
different set of splines to be applied to that period.

srmod <- “factor(year)
fmod <- “s(age, k = 3, by = breakpts(year, c(1980, 1985))) +
s(year, k = 20, by = breakpts(age, c(1.5:4.5)))
r5 <- sca(sar, tun, srmodel = srmod, fmodel = fmod, fit = "assessment')
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This appears to help explaining that catch increase, for which no cohort effect was ob-
servable, without resorting to ever larger estimates of SSB.
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Figure 3.9: Estimated recruitment, SSB, catch and fishing mortality for Adriatic sardine,
using model runs R1, R2, R3 and R4

R6

Finally, we pay attention to both the variance and catchability models by, in the first case,
employing a simple spline for both catch and index, while for the second a breakpoint
is introduced in 2010 to try to understand the sudden increase in relative abundances
reported for ages 3 to 6 on that year, which could be an indication of changes in the
survey not fully accounted for.
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srmod <- “factor(year)
fmod <- “s(age, k = 3, by = breakpts(year, c(1980, 1985))) +
s(year, k = 20, by = breakpts(age, c(1.5:4.5)))

vmod <- list("s(age, k = 3), “s(age, k = 3))

gmod <- list(“s(age, k = 3, by = breakpts(year, c(2010))))

r6 <- a4aSCA(sar, tun, srmodel = srmod, fmodel = fmod, vmodel = wvmod,
gmodel = gqmod)
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Figure 3.10:

These data points are having a large impact in the recent estimates of fishing mortality
(Figure 3.11), that although are matched by recent increases in catch, appear to be out
of scale given the history of the stock.
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Figure 3.11:

3.2 Comparison of all a4da models with SAM results

75



g8S

— R1
— R2
— R3
— R4
— R5
—— RE
— SAM

yapen

JEETY=E

Figure 3.12:

Of the six models presented above (R1 to R6), the last one appears to fit the existing data
better, as determined by the AIC value (Table ??7). The comparison of all these runs with
the accepted assessment, carried out using SAM, highlights how the lack of abundance
indices in the earlier part of the series is dealt with by each model. SAM appears to be
able to explain existing catches, and the relatively high natural mortality assumed, with
a level of biomass lower than any a4a model run (Figure 3.12) and with correspondingly
low recruitments.
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Figure 3.13: Estimateds SSB at start of series (1975) by each model and method.

df AIC
rl  108.00 517.42
r2 110.00 553.94
r3  94.00 482.69
r4  76.00 473.51
ro 153.00 438.58
6 156.00 371.38

Table 3.1: AIC and degrees of freedom (DF) values for the six model runs presented.

This feature will need to be further explored, as this is likely to have a strong impact
on the perceived ability of the stock to withstand fishing pressure and of the reference
points estimated for it. The recent trends in the main index of abundance also require
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investigation, as although there is no indication of a strong cohort appearing in the younger
ages, and only a sudden increase in reported abundance for four ages.

3.3 Incorporating longer indices of abundance

An attempt was made at filling up the gap in fishery-independent information before 2005
by including in the analysis the relative biomass indices generated from acoustic surveys
(see above Section XX).

ane_pil <- read.csv("data/ANE_PIL_acoustic.csv", sep = ";")
pil <- ane_pil[ane_pil$specie == "PIL", ]

pilnw <- pil[pil$survey == "nwacoustic_survey", ]

pilcw <- pil[pil$survey == "midadr_acoustic", ]

pilnw_ind <- pilnw$tons_nm
pilcw_ind <- pilcw$tons_nm

dnms <- list(age = "all", year = min(pilnw$year):max(pilnw$year))
nwidx <- FLIndexBiomass(index = FLQuant(pilnw_ind, dimnames = dnms))

dnms2 <- list(age = "all", year = min(pilcw$year) :max(pilcw$year))
cwidx <- FLIndexBiomass(index = FLQuant(pilcw_ind, dimnames = dnms2))

range (nwidx) [c("startf", "endf")] <- c(0, 0)
range(cwidx) [c("startf", "endf")] <- c(0, 0)

sar.tun <- FLIndices(northwest = nwidx, centralwest = cwidx,
west_east = tunl[[1]])

The model run using thee indices (R7), is similarly specified to the previous one (R6),
but with individual catchability models for each survey (see qmod below).

+

fmod <- “s(age, k = 5, by = breakpts(year, c(1980, 1985)))
s(year, k = 20, by = breakpts(age, c(1.5:4.5)))

gmod <- list("s(year, k = 10), “s(year, k = 10), “s(age, k = 4,
by = breakpts(year, c(2009, 2010))))

vmod <- list("s(age, k = 3), 71, 71, "s(age, k = 3))

r7 <- a4aSCA(sar, sar.tun, srmodel = srmod, fmodel = fmod, vmodel = vmod,
gmodel = gmod, fit = "assessment")

Model results are not greatly dissimilar from those in R6, but the sudden jump in fishing
mortality that other models needed to explain the most recent survey trends are somehow
mitigated but the extra information.
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standardized residuals

P2 = O = M

P = O = P22

log residuals of catch and abundance indices

west east west east west east west east west east west east west east

1980 2000
I R

1980 2000
{ I R .

1980 2000
| I .

Figure 3.15: Residual plot for R7.
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Figure 3.16: Trends in fishing mortality at age by year in model run R by year in model
run R7.
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4 ANCHOVY AND SARDINE INTERACTIONS
Chato Osio & Iago Mosqueira

Since the anchovy stock is fished with purse seiners and pelagic trawlers also targeting
sardine stocks, it is important to understand if over time there have been switches in
targeting between the two stocks. For example it could be hypothesized that there was
lower targeting in some periods like the early nineties. To check we import the assessment
results from Sardine stock and compare trends in F, SSB and Catches.

+

fmod <- “s(age, k = 5, by = breakpts(year, c(1980, 1985)))
s(year, k = 20, by = breakpts(age, c(1.5:4.5)))

gmod <- list("s(year, k = 10), “s(year, k = 10), “s(age, k = 4,
by = breakpts(year, c(2009, 2010))))

vmod <- list("s(age, k = 3), "1, 71, "s(age, k = 3))

r7 <- a4aSCA(sar, sar.tun, srmodel = srmod, fmodel = fmod, vmodel = vmod,
gmodel = gmod, fit = "assessment")

res2 <- FLStocks(ANC = ANC17 + fit7, SAR = sar + r7)
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Figure 4.1: Comparative plots for Anchovy and Sardine

The plots show that there is an almost symmetrical trend for the two stocks: when
catches and SSB go down for Anchovy there is switching to Sardine and vice versa. This
is important to corroborate the results of fit6 and fit6ts1 that pick up an increase in SSB
in the latter part of the 1980’s.
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5 HAKE IN GULF OF LIONS

Tristan Rouyer

5.1 Replicating accepted assessments

We will try to replicate the XSA assessment using ada. We start by reading the XSA
assessment and visualizing the object, which can be seen in figure 5.1.
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Figure 5.1: Results of the XSA assessment

We will then use ada to try to reproduce these results. We start by reading the data and
setting up a new stock object.

hkesca <- readFLStock("data/HakeIND.dat", no.discards = TRUE)
# Set the harvest units, fbar range and plus group age
units(harvest(hkesca)) <- "f"

range (hkesca) ["minfbar"] <- 0

range (hkesca) ["maxfbar"] <- 3

range (hkesca) ["plusgroup"] <- 5

Then we read the abundance index data, which is here the MEDITS survey.
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## Read tuning data
hke.idx <- readFLIndices("data/HakeTUN.dat'")

The ada model is fitted with submodels as close as possible from the XSA assumptions.
As it can be seen on figure 5.2, the results are quite close from XSA in terms of trend and
absolute value for the different variables. Particularly, the fishing mortality estimated by
the ada model is really close from the one obtained with XSA.

index <- hke.idx

gmod <- list(“factor(age))

fmod <- “factor(replace(age, age > 5, 5)) + factor(year)

srmod <- “factor(year)

fit <- sca(stock = hkesca, indices = index, fmodel = fmod, gmodel = gmod,
srmodel = srmod, fit = "MP")

stk <- hkesca + fit

## we make an FLStocks for display

z <- FLStocks(a4a = stk, XSA = hke)
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Figure 5.2: Replicating the XSA assessment

5.2 Assessments with the statistical catch-at-age method

We will now try to get an improved assessment using the statistical catch at age routine.
Then we read the tuning data for different age groups:

## Read tuning data

hke.idx <- readFLIndices("data/HakeTUN.dat")

## Read tuning data: only ages O to 2

hke.idx2 <- hke.idx

hke.idx2[[1]] <- trim(hke.idx2[[1]], age = 0:2)
## Read tuning data: only ages O to 3

hke.idx3 <- hke.idx
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hke.idx3[[1]] <- trim(hke.idx3[[1]], age = 0:3)

We will now do some specifications for the submodels but keep it simple to start with.
However, we will only work with ages 0 to 2 as we are not very confident that the MEDITS
data for ages 3 and 4 are very reliable. MEDITS is indeed not believed to be a very good
sampler for bigger hake individuals.

index <- hke.idx2

gmod <- list("s(age, k = 3))

fmod <- “s(year, k = 10) + s(age, k = 3)

srmod <- “s(year, k = 10)

fit <- sca(stock = hke, indices = index, fmodel = fmod, srmodel = srmod,
gmodel = gmod, fit = "MP")

stk <- hke + fit

The trends of the time series are consistent with what is known for the stock (Figure 5.3).
The residuals for the survey behave nicely (Figure 5.4) and the fishing mortality is not
taking off as it was previously (Figure 5.5). However, it is also weird that the last year of
fishing mortality is changing so radically. It is probably due to the effect of smoothers.
The catch residuals do not look good, particularly for age 0.
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log residuals of catch and abundance indices
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Figure 5.4: Residual plot for simple specifications

We look at the surface plot for fishing mortality:
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Figure 5.5: 3D plot of the fitted fishing mortality

Improving the assessment: more complex specifications

We go on with adding a bit of complexity using a logistic shape on age to constrain
the fishing mortality on the last ages, so that this behaviour is more consistent with the
trawler catchability.

index <- hke.idx2

gmod <- list("s(age, k = 3))

fmod <- "I(1/(1 + exp(age))) + as.factor(year) + s(age, k = 3)

srmod <- “s(year, k = 10)

fit <- sca(stock = hke, indices = index, fmodel = fmod, srmodel = srmod,
gmodel = gmod, fit = "MP")

stk <- hke + fit
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As previously, the trends of the time series are in line with the previous results (Figure
5.6). The residuals for the survey behave nicely and residuals for fishing mortaly are
better (Figure 5.7, Figure 5.8). However, there are still some nasty trends.We can also
notice that the fishing mortality is taking off the last year (Figure 5.9).
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Figure 5.6: Stock plot for more complex specifications
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standardized residuals

log residuals of catch and abundance indices
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Figure 5.7: Residual plot for more complex specifications
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quantile-quantile plot of log residuals of catch and abundance indices

standardized residuals
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Figure 5.8: Residual plot for more complex specifications with qqplots
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data

Figure 5.9:
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0.410 1.517 2.661 2.530 1.982 1.595 1.346
0.570 2.110 3.702 3.521 2.757 2.219 1.873

Table 5.1: Fishing mortality

We obtain kind of similar trends in residuals for the catch, but the fishing mortality is
not in control for the last year. We will try to add a smoother to the year term in the
fishing mortality submodel for the year effect.

Improving the assessment: sensitivity

We will now add a logistic shape on age to constrain the fishing mortality and a smoother
to control the year effect on the f model. We will try to sort of test the sensitivity of the
results to the k. This is not a sensitivity test sensu stricto, but it will help to understand
the effect of this parameter.

## create a sequence of ks to test
kind <- seq(6, 14)
## create a list for the FLSTocks
STK <- vector(mode = "list")
FIT <- vector(mode = "list")
for (i in 1:length(kind)) {
index <- hke.idx2
gmod <- list(“s(age, k = 3))
fmod <- "I(1/(1 + exp(age))) + s(year, k = kind[i]) + s(age,
k = 3)
srmod <- “s(year, k = 10)
fit <- sca(stock = hke, indices = index, fmodel = fmod, srmodel = srmod,
gmodel = gmod, fit = "assessment")
STK[[i]] <- hke + fit
FIT[[i]] <- fit

+

stks <- FLStocks(STK)

names(stks) <- paste("k=", kind, sep = "")
names(FIT) <- paste("k=", kind, sep = "")

We see that the f estimates are definitely sensitive to the k we give for the year effect
(Figure 5.11). The fishing mortality flying away is not necessarily realistic either. We
can choose a middle value, 9 or 10, but the best approach would certainly be to do some
model averaging, which will be shown a bit further in the document. For the moment we
go for a value of 9 for the k and we look at the residuals (Figure 5.11), which are much
better. The residuals for the survey behave nicely and residuals for fishing mortality are
not bad either, excepted a few nasty trends for ages 0 and 3. The fishing mortality seems
to be in control (Figure 5.12).

We look at the surface plot for fishing mortality: We feel much more comfortable with
these results. The last thing that is not completely on are the trends in the residuals of
the catches for ages 0 and 3.
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Figure 5.10: Stock plot with sensitivities to different k
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standardized residuals

log residuals of catch and abundance indices

2000 2010

2000 2010

2000 2010

| | | | | I | ] 1 ] 1 | 1 | | | | | | | |
JURVEY (psURVEY (psURVEY (psURVEY (piURVEY (piURVEY (psURVEY (p:

0 1 2 3 4 5 6
- 2
=1
_\.—/ \/—\ ; -0
. g . »
catch.n  catch.n  catch.n  catch.n catch.n catch.n  calch.n
0 1 2 3 4 5 6

Figure 5.11: Dirty fit
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Figure 5.12: Dirty fit

0 1 2 3 4 ot 6

0.208 0.809 1.425 1.328 1.030 0.843 0.735
0.238 0.928 1.634 1.522 1.182 0.966 0.842
0.254 0.989 1.742 1.623 1.260 1.030 0.898
0.279 1.085 1.911 1.781 1.382 1.130 0.985
0.327 1.271 2.240 2.087 1.619 1.324 1.154
0.339 1.320 2.325 2.166 1.681 1.375 1.198
0.285 1.109 1.953 1.820 1.412 1.155 1.007
0.242 0.944 1.663 1.549 1.202 0.983 0.857
0.256 0996 1.754 1.634 1.268 1.037 0.904
0.299 1.165 2.052 1.912 1.484 1.213 1.058
0.332 1.291 2.275 2.120 1.645 1.345 1.173
0.367 1.429 2517 2.345 1.820 1.488 1.297
0.410 1.597 2.815 2.622 2.035 1.664 1.450
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0.379 1473 2596 2.418 1.877 1.535 1.338
0.267 1.040 1.832 1.706 1.324 1.083 0.944

Table 5.2: Fishing mortality

Improving the assessment: even more complex specifications

We will now add a bidimensional smoother for the f model. We will also test the effect of
the k on the results.

## create a sequence of ks to test
kind <- seq(5, 9)
## create a list for the FLSTocks
STK <- vector(mode = "list")
FIT <- vector(mode = "list")
RESC <- vector(mode = "list")
RESS <- vector(mode = "list")
for (i in 1:length(kind)) {
index <- hke.idx2
gmod <- list("s(age, k = 3))
fmod <- "I(1/(1 + exp(age))) + te(age, year, k = c(3, kind[i]))
srmod <- “s(year, k = 10)
fit <- sca(stock = hke, indices = index, fmodel = fmod, srmodel = srmod,
gmodel = gmod, fit = "MP")
STK[[i]] <- hke + fit
FITL[il]l <- fit
res <- residuals(fit, hke, index)
RESC[[i]] <- res[[1]]
RESS[[il] <- res[[2]]

+
stks <- FLStocks(STK)
names(stks) <- paste("k=", kind, sep = "")

resc <- FLQuants(RESC)
ress <- FLQuants(RESS)

We plot the results:
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Figure 5.13: Dirty fit

Looking one by one we see that k set to 6 or 7 is the best. We choose 6. We look at the
residuals:
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log residuals of catch and abundance indices
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Figure 5.14: Dirty fit

This is much better. The residuals for the survey behave nicely and residuals for fishing
mortality are better as well.

We look at the surface plot for fishing mortality:
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Figure 5.15: Dirty fit

We notice that we still have very high fishing mortalities.
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0.490
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1.161
1.461
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1.014
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1.212

- 0.0



0.250 1.261 2.614 2.625 2.166 1.827 1.597
0.298 1.427 2805 2.676 2.099 1.685 1.402
0.320 1465 2.721 2.395 1.679 1.177 0.845
0.326 1.432 2.508 2.007 1.220 0.715 0.422

Table 5.3: Fishing mortality

We are kind of happy so far with this model specification. We can now look at how the
model can predict the data.
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Figure 5.16: Predicting the catch
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Figure 5.17: Predicting the survey

5.2.1 Model averaging

We start from a previous model and we will play with the different k values for

## create a sequence of ks to test
kind <- seq(5, 9)
## create a list for the FLSTocks
STK <- vector(mode = "list")
FIT <- vector(mode = "list")
for (i in 1:length(kind)) {

index <- hke.idx2

gmod <- list("s(age, k = 3))

fmod <- "I(1/(1 + exp(age))) + te(age, year, k = c(3, kind[i]))
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srmod <- “factor(year)

fit <- sca(stock = hke, indices = index, fmodel = fmod, srmodel = srmod,

gmodel = gmod, fit = "assessment")
STK[[i]] <- hke + fit
FIT[[i]] <- fit

+
names (STK) <- paste("k=", kind, sep = "")
names(FIT) <- paste("k=", kind, sep = "")

stks <- FLStocks (STK)
stock.sim <- ma(a4aFitSAs(FIT), hke, BIC, nsim = 1000)
stkss <- FLStocks(stks, stock.sim)

We plot the stock average:
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Figure 5.18: Simulations for the average model
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We plot all the stocks together:
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Figure 5.19: Results of all the stocks

Play with the variance model

We start from the best model we have. We will now use the function a4aSCA that allows
to adjust the variance of surveys and catch. We start by giving a shape for ages.

index <- hke.idx2

gmod <- list("s(age, k = 3))

fmod <- "I(1/(1 + exp(age))) + te(year, age, k = c(6, 4))

srmod <- ~“factor(year)

vmod <- list("s(year, k = 3) + s(age, k = 3), Tage)

fit <- a4aSCA(stock = hke, indices = index, fmodel = fmod, srmodel = srmod,
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gmodel = gmod, vmodel = vmod)
stk <- hke + fit

Figure 5.20: Stock plot for the model with variance submodel
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log residuals of catch and abundance indices
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Figure 5.21: Residual plot for the model with variance submodel

We are quite happy with what we end up with. We can now look at the shapes of the
fitted submodels for variance and catchability:

## [1] "stkmodel" '"gmodel"  "vmodel"
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data

Figure 5.22: Submodels for variance and catchability
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Figure 5.24: Submodels for variance and catchability
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year
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Figure 5.25: Submodels for variance and catchability

Average across k values
Now we average the models across some assumptions for k:

## create a sequence of ks to test
kind <- seq(5, 9)

## create a second sequence

kfage <- seq(3, 5)

## create a list for the FLSTocks
STK <- vector(mode = "list")

FIT <- STK
SIM <- FIT
compt <- 1
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n <- NA
Nit <- 100
for (i in 1:length(kind)) {
for (j in 1:length(kfage)) {
index <- hke.idx2
gmod <- list("s(age, k = 3))
fmod <- "I(1/(1 + exp(age))) + te(year, age, k = c(kind[i],
kfage[j1))
srmod <- “factor(year)
vmod <- list("s(year, k = 3) + s(age, k = 3), Tage)
fit <- a4aSCA(stock = hke, indices = index, fmodel = fmod,
srmodel = srmod, gmodel = qmod, vmodel = vmod)
STK[[compt]] <- hke + fit
FIT[[compt]] <- fit
SIM[[compt]] <- hke + simulate(fit, Nit)
n <- c(n, paste("k.f.year=", kind[i], ",k.f.age=", kfagelj],
sep = ""))
compt <- compt + 1

+
names (STK) <- n[-1]
names(FIT) <- names(STK)
stks <- FLStocks(STK)
## We extract the BIC lapply(FIT,BIC) stock.sim <-
## ma(a4aFitSAs(FIT), hke, BIC, nsim = Nit) we manually put
## the simulations in an object to avoid the weights given by
## the BIC or AIC make an object with many iterations
hke.ma <- propagate(hke, (compt - 1) * Nit)
## f£ill the iterations with the simulations
for (1 in 1:(compt - 1)) {
hke.mal, , , , , (((i - 1) * Nit) + 1):(i * Nit)] <- SIM[[i]]
+

Using this technique gives equal weight to all the models, whereas the AIC or BIC often
gives a lot of weight to a few models.
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Figure 5.26: Stock averaging
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Figure 5.27: Different models

5.3 Introducing uncertainty in growth and natural mor-
tality using length data

We will now read abundance at length and specify a growth model with uncertainty to
spread the uncertainty on age decomposition through the assessment. We start with
reading the number at length data and make and FLQuant with it:

## READ LENGTH DATA

d <- read.table("data/N_hke_lgth_1998_2012.txt", header = TRUE)
d2 <- as.matrix(d[, -1]1)/1000

## MAKE FLQUANT
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dnms <- dimnames(hke@catch.n)

names (dnms) <- names(dimnames(FLQuant()))
names (dnms) [1] <- "len"

dnms$len <- as.character(d$Size_cm)

cth.n <- FLQuant(d2, dimnames = dnms)

Then we create a growth object with it, using the data from Mellon et al 2010:

# Growth both sexes Mellon 2010

vbObj <- adaGr(grMod = “linf * (1 - exp(-k * (t - t0))), grInvMod = "t0 -
1/k * log(l - len/linf), params = FLPar(linf = 110, k = 0.178,
t0 = 0))

# trial: predict from the length

predict(vbObj, len = seq(5, 70, length = 10))

## iter

#it 1
## 1 0.2613
#it 2 0.6617
#i 3 1.0928
#i 4 1.5597
# 5 2.0690
## 6 2.6291
# 7 3.2513
## 8 3.9511
# 9 4.7507
## 10 5.6832

# trial: predict from the ages
predict(vbObj, t = seq(0, 10, length = 10))

## iter

# 1
# 1 0.00
#i 2 19.74
## 3 35.94
#it 4 49.23
#i 5 60.13
H## 6 69.08
#i 7 T76.42
## 8 82.45
#i 9 87.39

## 10 91.45

We will now introduce uncertainty with a variance covariance matrix between the param-
eters:

# Make an empty cor matrix
cm <- diag(c(1l, 1, 1))
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# k and linf are negatively correlated while tO is
# independent

cm[1, 2] <- ecm[2, 1] <- -0.5

# scale cor to var using CV=0.2

cv <- 0.1

p <- c(linf = 110, k = 0.178, t0 = 0.001)

vc <- matrix(1l, ncol = 3, nrow = 3)

## For K it comes from Mellon 2010

cvl <- 0.04

cv2 <- 0.005/0.178

cv3 <- 1e-08

1 <- vc

1[1, 1 <- 1[, 1] <- p[1] * cvi
k <- vc

k[, 2] <- k[2, ] <- pl[2] * cv2
t <- vc

t[3, 1 <- t[, 3] <- p[3] * cv3
mm <- t * k x 1

diag(mm) <- diag(mm)~2

mm <- mm * cm

We now create a new growth object with the uncertainty:

# new growth object

vbObj <- a4aGr(grMod = ~linf * (1 - exp(-k * (t - t0))), grInvMod = "t0 -
1/k * log(l - len/linf), params = FLPar(linf = p["1linf"],
k = p["k"], t0 = p["t0"]), vcov = mm)

vbObj@params

## An object of class "FLPar"
## params

## linf k t0

## 110.000 0.178 0.001

## units: NA

dim(vbObj@params)
## [1] 3 1

We then generate simulations for the catch at age matrix. Actually the best might be to
do it for every single variable and to use 12a on the stock. But we just have the length
data for catch here, so we keep it to that:

Nit <- 10 ## only 10 because otherwise it is long
vbNorm <- mvrnorm(Nit, vbObj)

ages <- predict(vbNorm, len = as.vector(d[, 1]))

# catch at age

c.nl <- 12a(cth.n, vbNorm)

# problem with older ages, so we trim
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c.n2 <- trim(c.nl, age = 0:6)
c.n2["6"] <- quantSums(trim(c.nl, age = 6:round(max(ages, na.rm = TRUE))))
dim(c.n2)

## [1] 715 1 1 110

hke2 <- hke
hke2@catch.n <- c¢.n2

We will use the last model fitted:

index <- hke.idx2

gmod <- list(“s(age, k = 3))

fmod <- "I(1/(1 + exp(age))) + te(year, age, k = c(6, 4))

srmod <- “factor(year)

vmod <- list("s(year, k = 3) + s(age, k = 3), Tage)

fit <- a4aSCA(stock = hke2, indices = index, fmodel = fmod, srmodel = srmod,
gmodel = gmod, vmodel = vmod)

stk <- hke2 + fit

We plot the results:
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Figure 5.28: Dirty fit

Here we will try to use length-based data to set the natural mortality model, that will
afterwards be used to build the M matrix for stock assessment.

# Make an empty cor matrix

cm <- diag(c(1l, 1))

# k and linf are negatively correlated while tO is
# independent

cm[1, 2] <- cm[2, 1] <- -0.5

p <- c(linf = 110, k = 0.178)

vec <- matrix(l, ncol = 2, nrow = 2)

## For K it comes from Mellon 2010

cvl <- 0.04
cv2 <- 0.005/0.178
1 <- vc
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11, 1 <- 1[, 1] <- p[1] * cvl
k <- vc

k[, 2] <- k[2, 1 <- pl[2] * cv2
mm <- k *x 1

diag(mm) <- diag(mm)~2

mm <- mm * Cm

all.equal(cm, cov2cor (mm))

## [1] TRUE

## we make the object with the variance covariance

shapeGis <- FLModelSim(model = "k * (linf/len)~1.5, params = FLPar(linf = 110,

k = 0.178), vcov = mm)
m <- a4alM(shape = shapeGis)
# one needs to set the range for the object which will be
# used by the m method
range(m) <- c(0, 110, NA, 2000, 2003, 15, 30)
range (m)

## min max plusgroup minyear maxyear minmbar

## 0 110 NA 2000 2003

# now simulate

Nit <- 100

msim <- mvrnorm(Nit, m)

rngyear (msim) <- c(2000, 2003)
# and compute natural mortality
m.sim <- m(msim)

15

# note that this one is by length, before adding to the stock

# object it must be transformed into ages

5.4 Short term forecast

# future recruitment

futureRec <- mean(rec(hke.ma)[, ac(2010:2012)])

hke.srr <- list(model = "mean", params = FLPar(futureRec))
hke.sr <- as.FLSR(hke.ma, model = geomean)

hke.sr <- fmle(hke.sr, control = list(trace = 0))

hke.stf <- stf(hke.ma, nyears = 3)

fwd.ctrl <- fwdControl(data.frame(year = 2013:2015, val = 1.16,

quantity = "f"))

hke.fwd <- fwd(hke.stf, ctrl = fwd.ctrl, sr = hke.sr, maxF = 10)

# CHOICE FOR Fstatusquo
Fstatusquo <- mean(fbar(hke.ma)[, ac(2010:2012)])
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# OTHER SCENARIOS
FO1 <- 0.148 #as.numeric(refpts(hkebrp)['f0.1', 'harvest'])
Fsc <- cbind(rep(Fstatusquo, length(seq(0, 2, by = 0.1))), seq(O,
2, by = 0.1) * Fstatusquo, seq(0, 2, by = 0.1) * Fstatusquo)
Fsc <- rbind(c(Fstatusquo, FO1, FO1), Fsc)
Ffactor <- c(NA, seq(0, 2, by = 0.1))
Results.sc <- matrix(NA, length(Ffactor), 10)
hke.stf <- stf(hke.ma, nyears = 3)
for (i in 1:length(Ffactor)) {
fwd.ctrl <- fwdControl(data.frame(year = 2013:2015, val = Fscli,
1, quantity = "f"))
hke.fwd <- fwd(hke.stf, ctrl = fwd.ctrl, sr = hke.srr, maxF = 10)
### BUILD TABLE
Results.sc[i, 1] <- Ffactor[il
Results.sc[i, 2] <- median(fbar(hke.fwd)[, ac(2015)])
Results.sc[i, 3] <- median(catch(hke.fwd) [, ac(2012)]1)
Results.sc[i, 4] <- median(catch(hke.fwd) [, ac(2013)])
Results.sc[i, 5] <- median(catch(hke.fwd) [, ac(2014)]1)
Results.sc[i, 6] <- median(catch(hke.fwd)[, ac(2015)])
Results.sc[i, 7] <- median(ssb(hke.fwd) [, ac(2014)])
Results.sc[i, 8] <- median(ssb(hke.fwd)[, ac(2015)])
Results.sc[i, 9] <- (median(ssb(hke.fwd)[, ac(2015)]) - median(ssb(hke.fwd) [,
ac(2014)])) /median(ssb(hke.fwd) [, ac(2014)]) * 100
Results.sc[i, 10] <- (median(catch(hke.fwd)[, ac(2014)]) -
median(catch(hke.fwd) [, ac(2012)]))/median(catch(hke.fwd) [,
ac(2012)]) * 100
+
# GIVE NAMES TO COLUMNS
colnames(Results.sc) <- c("Ffactor", "Fbar", "Catch_2012", "Catch_2013",
"Catch_2014", "Catch_2015", "SSB_2014", "SSB_2015", "Change_SSB_2014-2015(%)",
"Change_Catch_2012-2014(%)")
# VISUALIZE DATABASE
Results.sc

## Ffactor Fbar Catch_2012 Catch_2013 Catch_2014 Catch_2015 SSB_2014
##  [1,] NA 0.1480 1197 947 .2 162.1 483.4 348
#  [2,] 0.0 0.0000 1197 947 .2 0.0 0.0 348
## [3,] 0.1 0.1642 1197 947 .2 178.6 524 .4 348
#  [4,] 0.2 0.3285 1197 947 .2 330.5 841.9 348
## [5,] 0.3 0.4927 1197 947.2 460.1 1024.2 348
# [6,] 0.4 0.6570 1197 947 .2 571.6 1121.2 348
## [7,] 0.5 0.8212 1197 947.2 668.0 1166.8 348
# [8,] 0.6 0.9854 1197 947 .2 752.1 1179.4 348
## [9,] 0.7 1.1497 1197 947 .2 825.7 1171.6 348
## [10,] 0.8 1.3139 1197 947 .2 890.7 1152.6 348
## [11,] 0.9 1.4781 1197 947 .2 946.2 1127.6 348
## [12,] 1.0 1.6424 1197 947 .2 994.8 1100.3 348
## [13,] 1.1 1.8066 1197 947.2 1039.4 1072.5 348
## [14,] 1.2 1.9709 1197 947 .2 1080.1 1045.4 348
## [15,] 1.3 2.1351 1197 947 .2 1115.9 1019.9 348
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6 HAKE IN THE SOUTHERN ADRIATIC

Dimatrios Damalas

Our goal was to attempt a replication of last years stock assessment results as conducted
during 15-19 July 2013 at the 13-09 EWG. Input data were identical to the ones used
therein.

6.1 Replicating accepted assessments

6.1.1 Load data from recent assessments

load("data/HKE18.RData")

# keep the stocks in temp objs to avoid possible overwriting
hketemp <- hke.stk
hketemp2 <- hke.stk_2

The final approach selected by the EWG 13-09 was an XSA named "shrinkage 2" (Fig-
ures 6.1 and 6.2). Data from official Data Call 2013 - index from MEDITS survey. The
details of the final XSA approach below and on pages 284-292 of the STECF 13-22 Rep-
port.

FLXSA.control .hke 2 <- FLXSA.control(x = NULL, tol = 1e-09, maxit = 30,
min.nse = 0.3, fse = 2, rage = 0, qage = 4, shk.n = TRUE,
shk.f = TRUE, shk.yrs = 2, shk.ages = 2, window = 100, tsrange = 20,
tspower = 3, vpa = FALSE)

hke.xsa_2 <- FLXSA(hke.stk, hke.idx, FLXSA.control.hke_2)
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Figure 6.1: XSA results
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Figure 6.2: XSA estimates of fishing mortality

6.1.2 Building a4a models on the same data used in recent as-
sessessments

Default model

fit0 <- sca(stock = hke.stk, indices = hke.idx)
hke.stk.a4a <- hke.stk + fitO
plot (hke.stk.a4a)
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Figure 6.3: Assessment summary - default model
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Figure 6.4: Plot fitted against observed for survey

Plotting fitted against observed catch at age , as well as against the survey index, it is
magenta).

obvious that the fits deviate largely from the observations (fitted = blue, observed =
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Figure 6.5: Plot fitted agains observed for catch at age

res <- residuals(fit0, hke.stk, hke.idx)
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log residuals of catch and abundance indices
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Figure 6.6: Residuals by age and year
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quantile-quantile plot of log residuals of catch and abundance indices

standardized residuals
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Figure 6.7: Quantile-quantile plot of residuals
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Figure 6.8: Fishing mortality

Due to the poor fit of the selected model, F values are unrealistically high. A better
approach should be investigated.

Separable model

Trying to improve the fit, we now investigate a quite simple model, treating ’age’ and
'year’ as categorical factors. If this fails then probably non-linearities are inherent in the
data set and the use of smoothers is required to deal with them through a more complex
model.

gmodl <- list(“factor(age))

fmodl <- “factor(age) + factor(year)
srmodl <- “factor(year)
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hke.stk <- hketemp

fitl <- sca(stock = hke.stk, indices = hke.idx, fmodel = fmodil,
gmodel = gmodl, srmodel = srmodl)

hke.stk.ad4a.l <- hke.stk + fitl

plot(hke.stk.ada.1)
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Figure 6.9: Assessment summary
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Figure 6.10: Plot fitted against observed for survey
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Figure 6.11: Plot fitted agains observed for catch at age

Fits are much closer to the observed (compared to the simple model), however the survey
data are still not fitted adequately (fitted = blue, observed = magenta).
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log residuals of catch and abundance indices
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Figure 6.12: Residuals by age and year

Through the residuals plot above, obviously the predictions are quite far from the observed
for specific age classes (age 3) and will need more flexibility in either the harvest modelling
(fmod) or the catchability (qmod).
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quantile-quantile plot of log residuals of catch and abundance indices

standardized residuals

Figure 6.13: Quantile-quantile plot of residuals
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Figure 6.14: Fishing mortality

In this case now, F values are unrealistically low (at least for a Mediterranean stock). It
seems that the problem is mainly in the modelling of fishing mortality (fmod).

Separable model with smoothers

We now investigate a more complex approach, treating 'age’ and 'year’ through smoothers.
Since we already have some indications that the problem resides mainly in fishing mor-
tality, we model F through smoothers with a maximum of k=6 nodes, when we have 7
years of data in total.

gmod2 <- list(“s(age, k = 3))

fmod2 <- “s(age, k = 6) + s(year, k = 6)
srmod2 <- “s(year, k = 2)
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hke.stk <- hketemp

fit2 <- sca(stock = hke.stk, indices = hke.idx, fmodel = fmod2,
gmodel = gmod2, srmodel = srmod2)

hke.stk.ada.2 <- hke.stk + fit2

plot(hke.stk.ada.2)
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I

Figure 6.15: Assessment summary
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Figure 6.16: Plot fitted against observed for survey
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Figure 6.17: Plot fitted agains observed for catch at age

Fits do net get any better than the previous simple separable model (fitted
observed = magenta).
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log residuals of catch and abundance indices
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Figure 6.18: Residuals by age and year

Now the problem seems to be shifted to age 1, which is an age class facing the highest
pressure and consists a great part of the catches.
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quantile-quantile plot of log residuals of catch and abundance indices

standardized residuals

Figure 6.19: Quantile-quantile plot of residuals
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Figure 6.20: Fishing mortality

F values (and the age-year shape) are very similar to the ones from the last years XSA
assessment.

Separable model with smoothers 2

gmod3 <- list(“s(age, k = 6))

fmod3 <- “s(age, k = 6) + s(year, k = 6)

srmod3 <- “s(year, k = 6)

hke.stk <- hketemp

fit3 <- sca(stock = hke.stk, indices = hke.idx, fmodel = fmod3,
gmodel = gmod3, srmodel = srmod3)

hke.stk.ad4a.3 <- hke.stk + fit3

plot (hke.stk.a4a.3)
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Figure 6.21: Assessment summary
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Figure 6.22: Plot fitted against observed for survey
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Figure 6.23: Plot fitted agains observed for catch at age
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log residuals of catch and abundance indices
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Figure 6.24: Residuals by age and year

Although the model is not a good fit, the variability of fitted vs predicted is now scattered
more or less uniformly among years, and is not age specific anymore.
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quantile-quantile plot of log residuals of catch and abundance indices

standardized residuals
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Figure 6.25: Quantile-quantile plot of residuals
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Figure 6.26: Fishing mortality

Perhaps in our effort to fit an adequate model, we ended up with "overfitting" and it
would be better to use smoothers only for ’year’ and model ’age’” as a categorical factor.
We also assume a very variable, annually fluctuating, recruitment pattern.

Separable model with smoothers 3

gmod4 <- list(“factor(age))

fmod4 <- “factor(age) + s(year, k = 6)

srmod4 <- “s(year, k = 6)

hke.stk <- hketemp

fit4d <- sca(stock = hke.stk, indices = hke.idx, fmodel = fmod4,
gmodel = gmod4, srmodel = srmod4)

hke.stk.ada.4 <- hke.stk + fit4

150



plot(hke.stk.ada.4)
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Figure 6.27: Assessment summary
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Figure 6.28: Plot fitted against observed for survey
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Figure 6.29: Plot fitted agains observed for catch at age

153

1 ;.
- .

2 -

1 3

8- &

2007 2008 g— 2009

:- 2

: ]

3- :-

: 4




age

log residuals of catch and abundance indices
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Figure 6.30: Residuals by age and year
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quantile-quantile plot of log residuals of catch and abundance indices

standardized residuals
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Figure 6.31: Quantile-quantile plot of residuals
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Figure 6.32: Fishing mortality

Not any better than the previous model. However, so far, all evaluation of assessments
was done through visual inspection of residuals. Let’s now assess the models we’ve built
through a statistically sound criterion like the AIC.

Compare models

ATC(£fit0, fitl, fit2, fit3, fit4)

#it
##
#it
##
#it
##

£it0
fitl
fit2
£fit3
fitd

df
28
32
26
32
32

AIC
163.8
-334.5
113.5
-311.9
-343.7
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Age treated as factor and year through a wiggly smoother gives the ’best’ model from an
AIC point of view. However, non is convincing through residuals inspection.

XSA fitd fit1

08
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[

fit2 fit3 fitd

08
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04
0z

Figure 6.33: Compare ada fits with XSA results
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Figure 6.34: Compare F’s
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Figure 6.35: Compare abundance
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Figure 6.36: Compare Stock biomass

Final comments

None of the 5 investigated models could reproduce XSA’s results. ’fit3’ with qmod3 <-
list( s(age, k = 6)), fmod3 <- s(age, k = 6)+s(year, k = 6) and srmod3 <- s(year, k = 6)

seems to give F’s and stock values closer to last years” XSA assessments.

However model evaluation through AIC, ranks 'fit3” as the third best out of all five. The
ATC selected "best’ model (fit4) gives extremely low F values. This might be an indication
that we failed to model fishing mortality adequately and efforts should concentrate towards

fitting a better 'fmodel’.
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6.2 Assessments with the statistical catch-at-age method

6.2.1 Readind data

# READ THE LANDINGS AT LENGTH DATA

HKE18.1nd <- read.table('"data/HKE GSA18 LND_LEN.csv", header = T,
sep = ",")

# we convert the object to a matrix

HKE18.1nd.matrix <- as.matrix(HKE18.1lnd)

dim(HKE18.1nd .matrix)

# [1] 101 7

# We need to specify the dimnames
HKE18.1nd.flq <- FLQuant(HKE18.lnd.matrix[, -1], dimnames = list(len = 0:100,
year = 2007:2012), unit = "numbers")

# READ THE CATCH AT LENGTH DATA

HKE18.orig <- read.table("data/HKE GSA18 CA_LEN.csv", header = T,
sep = ",")

# HKE18.orig <- t(HKE18.orig)

class(HKE18.orig)

## [1] "data.frame"

# we convert the object to a matrix
HKE18.matrix <- as.matrix(HKE18.orig)
dim(HKE18.matrix)

## [1] 101 7

# We need to specify the dimnames
HKE18.flq <- FLQuant(HKE18.matrix[, -1], dimnames = list(length = 0:100,
year = 2007:2012), unit = "numbers")

# READ THE CATCH WEIGHT DATA

HKE18.cwt <- read.table('data/HKE GSA18 CA_WT.csv", header = T,
sep = ",")

class(HKE18.cwt)

## [1] "data.frame"

# we convert the object to a matrix
HKE18.cwt.matrix <- as.matrix(HKE18.cwt)
dim(HKE18. cwt.matrix)

## [1]1 6 7
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# We need to specify the dimnames

HKE18.cwt.flq <- FLQuant(HKE18.cwt.matrix[, -1], dimnames = list(age = 0:5,
year = 2007:2012), unit = "kg")

HKE18.cwt.flq <- setPlusGroup(HKE18.cwt.flq, 5)

# READ THE MATURITY mat DATA

HKE18.mat <- read.table("data/HKE GSA18 mat.csv'", header = T,
sep = ||’||)

class(HKE18.mat)

## [1] "data.frame"

# we convert the object to a matrix
HKE18 .mat .matrix <- as.matrix(HKE18.mat)
dim(HKE18.mat .matrix)

## [11 6 7

# We need to specify the dimnames

HKE18.mat.flq <- FLQuant(HKE18.mat.matrix[, -1], dimnames = list(age = 0:5,
year = 2007:2012), unit = "prop")

HKE18.mat.flq <- setPlusGroup(HKE18.mat.flq, 5)

# save.image(file='data/HKE.GSA18.raw.data2.RData')
# OR if all the above is useless just load the FLquants

# created from tha dumped file
# load('HKE.GSA18.raw.data2.RData')

Converting catches and landings from lengths o ages

# Growth params are needed - use the ones suggested in the
# STECF EWG 13-09

# von Bertalanffy equation params
vb0bj <- adaGr(grMod = “linf * (1 - exp(-k * (t - t0))), grinvMod = "t0 -
1/k * log(l - len/linf), params = FLPar(linf = 104, k = 0.2,

t0 = -0.01))
# Check vonBer results
1lc = 20

predict(vbObj, len = 1c)

#it iter
## 1
it 1 1.058
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# Lengths to Ages Slicing

# Catches data - length to age slicing

HKE18.CA <- 12a(HKE18.flq, vb0Obj)

HKE18.CA <- setPlusGroup(HKE18.CA, 5)

# Landings data - length to age slicing
HKE18.LAND <- 12a(HKE18.1lnd.flq, vbObj)

HKE18.LAND <- setPlusGroup(HKE18.LAND, 5)

Model natural mortality

# Simple m=0.2

mod0 <- FLModelSim(model = ~a, params = FLPar(a

m0 <- adaM(level

mod0)
rngquant (m0) <- c(0, 5)

rngyear(m0) <- c(2007, 2012)
HKE18.m <- m(mO)
# We can do better...

# set the quant range

0.2))

# set the year range

# Try modelling m Jensen's estimator
shapel <- FLModelSim(model
levell <- FLModelSim(model = 5 * k, params = FLPar(k = 0.2))

ml <- adaM(shape

rngquant (m1) <- c(0, 5)

“exp(-age - 0.2))

shapel, level = levell)

rngyear{(ml) <- c(2007, 2012)
HKE18.m <- m(ml)
HKE18.m <- setPlusGroup(HKE18.m, 5)

HKE18.m

# set the quant range

# set the year range

## An object of class "FLQuant"

= all, area = unique

## , , unit = unique, season

##

## year

## age 2007 2008 2009

#it 0 1.0000000 1.0000000 1.0000000
# 1 0.3678794 0.3678794 0.3678794
#i 2 0.1353353 0.1353353 0.1353353
# 3 0.0497871 0.0497871 0.0497871
#* 4 0.0183156 0.0183156 0.0183156
# 5 0.0067379 0.0067379 0.0067379
#

## units: NA

Create FLStock and FLIndex objects

2010

O O O O O -

.0000000
.3678794
.13533563
.0497871
.0183156
.0067379
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2011

1.0000000
0.3678794
0.13533563
0.
0
0

0497871

.0183156
.0067379

2012

1.0000000
0.3678794
0.1353353
0.
0
0

0497871

.0183156
.0067379



# Load MEDITS survey index
load("data/hke.medits.RData")
Hakel8.S.Ind.new <- hke.idx
range (Hake18.S.Ind.new)

## min max minyear maxyear
## 0 5 2007 2012

validObject(Hakel8.S.Ind.new)

## [1] TRUE

# Set when the survey is taking place in the year
range (Hake18.3.Ind.new[[1]], "startf") <- 0.5
range (Hake18.S.Ind.new[[1]], "endf") <- 0.75

# Pass stock related FLQuants in an FLStock
Hakel18.stk <- FLStock(catch.wt = HKE18.cwt.flq, catch.n = HKE18.CA,
mat = HKE18.mat.flq, m = HKE18.m, landings.n = HKE18.LAND)

name (Hakel8.stk) <- "GSA 18 HAKE"
desc(Hakel18.stk) <- "Data from 2013 Data Call"

# when spawning takes place
m.spwn(Hakel8.stk) <- O

# harvest spawning

harvest.spwn(Hakel8.stk) <- O

# stock wt is catch.wt

Hakel18.stk@stock.wt <- Hakel8.stk@catch.wt
Hakel8.stkQ@landings.wt <- Hakel8.stkQcatch.wt

# investigate object Hakel8.stk
range (Hakel8.stk)

## min max plusgroup minyear maxyear minfbar maxfbar

## 0 5 5 2007 2012 0

validObject (Hakel8.stk)

## [1] TRUE

# keep the stock in temp obj to avoid possible overwriting
hketemp <- Hakel8.stk
# save.image(file='HKE.GSA18.a4a.data2.RData')
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6.2.2 Run assessments with a4a

Model 0

Can’t get any simpler than that. Horrible outputs...

Hakel8.stk <- hketemp
gmod <- list(~1)

fmod <- 71

srmod <- "1

fit0 <- sca(stock = Hakel8.stk, indices = Hakel18.S.Ind.new, fmodel = fmod,

gmodel = gmod, srmodel = srmod)

Hakel8.stk.a4a.0 <- Hakel18.stk + f£it0
landings(Hakel8.stk.a4a.0) <- computelLandings(Hakel8.stk.a4a.0)

Figure 6.37: Stock summary
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Figure 6.38: The catch matrix
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standardized residuals
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log residuals of catch and abundance indices
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Figure 6.39: Residuals
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Figure 6.40: Residuals by age and year
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quantile-quantile plot of log residuals of catch and abundance indices
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Figure 6.41: Quantile-quantile plot of residuals
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Figure 6.42: Assessment summary
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Figure 6.43: Plot fitted against observed for survey
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Figure 6.44: Plot fitted agains observed for catch at age
Model 1

Simple modelling with categorical factors. Gives very high F’s...
Hakel8.stk <- hketemp

gmodl <- list(“factor(age))

fmodl <- ~“factor(age) + factor(year)
srmodl <- “factor(year)

fitl <- sca(stock = Hakel8.stk, indices = Hakel8.S.Ind.new, fmodel = fmodil,
gmodel = gmodl, srmodel = srmodl)

Hakel8.stk.ada.l <- Hakel8.stk + fitl
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landings (Hakel8.stk.a4a.1) <- computelLandings(Hakel8.stk.a4a.l)
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Figure 6.46: The catch matrix
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standardized residuals
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Figure 6.47: Residuals
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quantile-quantile plot of log residuals of catch and abundance indices

standardized residuals
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Figure 6.49: Quantile-quantile plot of residuals
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Figure 6.50: Assessment summary
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Figure 6.51: Plot fitted against observed for survey
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Figure 6.52: Plot fitted agains observed for catch at age
Model 2

Modelling with smoothers. Why not? (Reasonable trends & F values). Worst from

AIC-BIC point of view...

Hakel8.stk <- hketemp

gmod2 <- list(“s(age, k = 3))

fmod2 <- “s(age, k = 6) + s(year, k = 6)

srmod2 <- “s(year, k = 2)

fit2 <- sca(stock = Hakel8.stk, indices = Hakel8.S.Ind.new, fmodel = fmod2,
gmodel = gmod2, srmodel = srmod2)

Hakel8.stk.ad4a.2 <- Hakel8.stk + fit2
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landings (Hakel8.stk.a4a.2) <- computelLandings(Hakel8.stk.a4a.2)
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Figure 6.53: Stock summary
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standardized residuals
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Figure 6.55: Residuals
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Figure 6.56: Residuals by age and year
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quantile-quantile plot of log residuals of catch and abundance indices
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Figure 6.57: Quantile-quantile plot of residuals
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Figure 6.58: Assessment summary
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Figure 6.59: Plot fitted against observed for survey
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Figure 6.60: Plot fitted agains observed for catch at age
Model 3

Can’t get more complex than this... te() is not running even with few knots, so use
additive effects with max k’s. AIC-BIC looooooooves complexity...

Hakel8.stk <- hketemp

gmod3 <- list(“s(age, k = 6))

fmod3 <- “s(age, k = 6) + s(year, k = 6)
srmod3 <- “s(year, k = 6)

fit3 <- sca(stock = Hakel8.stk, indices = Hakel8.S.Ind.new, fmodel = fmod3,
gmodel = gmod3, srmodel = srmod3)
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Hakel8.stk.a4a.3 <- Hakel8.stk + fit3
landings(Hakel8.stk.a4a.3) <- computelLandings(Hakel8.stk.a4a.3)
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Figure 6.61: Stock summary
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standardized residuals

log residuals of catch and abundance indices
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Figure 6.63: Residuals
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Figure 6.64: Residuals by age and year
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quantile-quantile plot of log residuals of catch and abundance indices

standardized residuals
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Figure 6.65: Quantile-quantile plot of residuals
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Figure 6.66: Assessment summary
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Figure 6.67: Plot fitted against observed for survey
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Figure 6.68: Plot fitted agains observed for catch at age
Model 4

Age as factor, year with max k. Best model (AIC-BIC)...
Hakel8.stk <- hketemp

gmod4 <- list(“factor(age))

fmod4 <- “factor(age) + s(year, k = 6)

srmod4 <- “s(year, k = 6)

fitd <- sca(stock = Hakel8.stk, indices = Hakel8.S.Ind.new, fmodel = fmod4,
gmodel = gmod4, srmodel = srmod4)

Hakel8.stk.ada.4 <- Hakel8.stk + fit4d
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landings (Hakel8.stk.a4a.4) <- computelLandings(Hakel8.stk.ada.4)
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Figure 6.69: Stock summary

197

M
=

M2

284

888

Lareo

JsaneH



4 — (o] (o] Q O ] (o]
3 (0] Q 8] 8] 0] [0]
>
1]
24 0O O O @] O O

1O O O O O o
() 0 OO O

2010 2011 2012

=]
1

year

Figure 6.70: The catch matrix

Much better diagnostics with this model.
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Figure 6.71: Residuals by age and year
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quantile-quantile plot of log residuals of catch and abundance indices

standardized residuals

Figure 6.72: Quantile-quantile plot of residuals
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Figure 6.73: Assessment summary
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Figure 6.74: Plot fitted against observed for survey
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Figure 6.75: Plot fitted against observed for catch at age

Still the survey is not fitted well...

Model 5

Reasonable F comes at a cost... "Fixing" the excess F of all other models, drives biomass
of 5+ group to explode.

Hakel8.stk <- hketemp
gmod5 <- list("s(age, k = 4))
fmod5 <- "s(age, k = 3) + s(year, k = 5)

srmodb <- “s(year, k = 6)
fith <- sca(stock = Hakel8.stk, indices = Hakel8.S.Ind.new, fmodel = fmodb,
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gmodel = gmod5, srmodel = srmod5)

Hakel8.stk.ada.5 <- Hakel8.stk + fitb
landings(Hakel8.stk.ada.5) <- computeLandings(Hakel8.stk.a4a.5)
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Figure 6.76: Stock summary
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Figure 6.77: The catch matrix
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Figure 6.78: Residuals by age and year
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quantile-quantile plot of log residuals of catch and abundance indices

standardized residuals
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Figure 6.79: Quantile-quantile plot of residuals
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Figure 6.80: Assessment summary
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Figure 6.81: Plot fitted against observed for survey
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Figure 6.82: Plot fitted against observed for catch at age

# Which model has the best fit

AIC.BIC <- rbind(t(AIC(fit0O, fitl, fit2, fit3, fit4, fitb)[2]),
t(BIC(fit0, fitl, fit2, fit3, fit4, fitb5)[2]))

AIC.BIC

## fit0  fitl fit2 fit3 fit4 £fith
## AIC 173.9 65.39 122.0 -407.5 -441.1 123.2
## BIC 201.2 138.24 181.2 -334.7 -368.2 182.3

Compare fits
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Figure 6.83: F-at-age estimates by each model
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Figure 6.84: F estimates by each model
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Figure 6.85: N-at-age estimates by each model
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Figure 6.86: SSB estimates by each model

Final comments

4 out of the 5 investigated models gave very high values of F (>1.0). Model 5 succeeded
to give reasonable F values, but stock biomass exploded... Model 4 trends, of all stock
features, are similar to the recent STECF EWG 13-09 outcomes however F’s are 50%-75%
higher. This model was also suggested as the optimal from an information theoretic point
of view (AIC, BIC criteria).
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7 SOLE IN THE NORTH ADRIATIC SEA
Giuseppe Scarcella € Finlay Scott

7.1 Replicating accepted assessments

7.1.1 Reading in the data
We read the stock data.

sole_stk_xsa <- readFLStock('data/SOLE17IND.DAT", no.discards = TRUE)
summary (sole_stk_xsa)

## An object of class "FLStock"

##

## Name: NORTHERN ADRIATIC SEA (GSA 17) COMMON SOLE 2006-2012

## Description: Imported from a VPA file. ( data/SOLE17IND.DAT ). Wed Sep 24 17:41:28 2014
## Range: min max pgroup minyear maxyear minfbar maxfbar

## 0 5 NA 2006 2012 0 5

## Quant: age

#i#

## catch [1711111], units = NA NA
## catch.n [6711117], units = NA

## catch.wt [67 11111, units = NA

## discards [1711117], units = NA

## discards.n [67 111171, units = NA

## discards.wt [6711117], units = NA

## landings [1711117], units = NA

## landings.n [67 111117, units = NA

## landings.wt [67 11117, units = NA

## stock [1711111], units = NA * NA
## stock.n [6711117], units = NA

## stock.wt [67 111171, units = NA

## m [67 111117, units = NA

## mat [67 11111, units = NA

#i# harvest [67 11117, units = f

## harvest.spwn [67 11117, units = NA

## m.spwn [67 11117, units = NA

There are 7 years of data (2006 to 2012) and 6 ages (0 to b).

Set units, fbar range and plusgroup.
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units(harvest(sole_stk_xsa)) <- "f"
range(sole_stk_xsa) ["minfbar"] <- 0
range(sole_stk_xsa) ["maxfbar"] <- 4
sole_stk_xsa <- setPlusGroup(sole_stk_xsa, 5)

Then we read the index data. There is just a single tuning index.

sole_idxs_xsa <- readFLIndices("data/TUNEFF.DAT")

summary(sole_idxs_xsal[[1]])

## An object of class "FLIndex"
##

## Name: SoleMon Radipo-trawl survey
## Description: NORTHERN ADRIATIC SEA (GSA 17) COMMON SOLE 2006-2012 TUNING DATA .
## Range: min max pgroup minyear maxyear startf endf

## 1 5 5 2006 2012 0.75 1
## Type : numbers

## Distribution :

## Quant: age

#i

## index [67111
## index.var [57111
## catch.n [67111
## catch.wt [57111
## effort [1 7111
## sel.pattern [67111
## index.q [57111

7.1.2 Running the XSA

Here we run the XSA using the same settings as used in SGMED.

FLXSA.control.solel <- FLXSA.control(x = NULL, tol = 1e-09, maxit
min.nse = 0.3, fse = 1, rage = 0, qage = 4, shk.n
shk.f = TRUE, shk.yrs = 5, shk.ages = 5, window

tspower = 3, vpa = FALSE)

sole_xsal <- FLXSA(sole_stk_xsa, sole_idxs_xsa, FLXSA.control.solel)
sole_stk_xsa_res <- sole_stk_xsa + sole_xsal

The results of the XSA analysis can be seen in Figure 7.1.
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Figure 7.1: Results from running XSA

7.2 Assessments with the statistical catch-at-age method

Here we set up a wide range of ada model options and put them into a data.frame. The
fmodel options are a basic mix of factors and smoothers. The qmodel options only have
an age factor and are constant in time. The srmodel options are either a factor by year
or a Beverton-Holt shape with a low CV. Every combination of model options is used.

# fmodels age and year seperable

fmodell <- “factor(age) + factor(year)

# age and year seperable but smooth
fmodel2 <- “s(age, k = 3) + s(year, k = 3)
# age and year smooth interaction
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fmodel3 <- “te(age, year, k = c(3, 3))

# age and year seperable, with age > 4 being the same as age

# 4

fmodel4 <- ~“factor(replace(age, age > 4, 4)) + factor(year)

# gmodels

gmodell <- list(“factor(age))

gmodel2 <- list(“s(age, k = 3))

# Mimics the XSA settings of flat catchability after age 4

# (qage)

gmodel3 <- list(“factor(replace(age, age > 4, 4)))

# srmodels

rmodell <- “factor(year)

rmodel2 <- “bevholt(CV = 0.1)

# Build the data.frame

fmodels <- c("fmodell", "fmodel2", "fmodel3", "fmodeld")

gmodels <- c("gmodell", "gmodel2", "gmodel3")

rmodels <- c("rmodell", '"rmodel2")

model_data <- expand.grid(fmodel = fmodels, gmodel = gmodels,
rmodel = rmodels)

model_data <- cbind(model_id = 1:nrow(model_data), model_data)

For reference, the model combinations are:

model_data

## model_id fmodel gmodel rmodel

## 1 1 fmodell gmodell rmodell
## 2 2 fmodel2 gmodell rmodell
## 3 3 fmodel3 gmodell rmodell
## 4 4 fmodel4 gmodell rmodell
## 5 5 fmodell gmodel2 rmodell
## 6 6 fmodel2 gmodel2 rmodell
## 7 7 fmodel3 gmodel2 rmodell
## 8 8 fmodel4 gmodel2 rmodell
## 9 9 fmodell gmodel3 rmodell
## 10 10 fmodel2 qmodel3 rmodell
## 11 11 fmodel3 gmodel3 rmodell
## 12 12 fmodel4 qmodel3 rmodell
## 13 13 fmodell gmodell rmodel2
## 14 14 fmodel2 gmodell rmodel2
## 15 15 fmodel3 gmodell rmodel2
## 16 16 fmodel4 gmodell rmodel2
## 17 17 fmodell qmodel2 rmodel2
## 18 18 fmodel2 gmodel2 rmodel?2
## 19 19 fmodel3 qmodel2 rmodel2
## 20 20 fmodel4 gmodel2 rmodel2
## 21 21 fmodell gmodel3 rmodel2
## 22 22 fmodel2 gmodel3 rmodel2
## 23 23 fmodel3 gmodel3 rmodel2
## 24 24 fmodel4 gmodel3 rmodel2
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7.2.1 Fitting the a4a models

We fit the models using a for loop and store the results (the new FLStock and the fitted
object) in lists. We also store the AIC and BIC as attributes.

# Stores
sole_stks_fit <- list()
fits <- list()

for (model_count in 1:nrow(model_data)){

##
#it
##
#it
##
#it
##
#it
##
#it
#it
##
#it
##
#it
##
#it
##
it
##
it
#it
##
#it

stk_fit_name <- paste("model",model_count,sep="")
cat("model_count: ", model_count, "\n")
fit <- try(adaSCA(stock=sole_stk_xsa,
indices = sole_idxs_xsa,
fmodel = eval(parse(text=as.character(model_datal[model_count,'"fmodel"]))),
gmodel = eval(parse(text=as.character (model_data[model_count,"qmodel"]))),
# variance of catches constant - better mimics XSA?
vmodel = 1list(~1,71),
srmodel = eval(parse(text=as.character(model_data[model_count,"rmodel"])))))
if (tis(fit, "try-error")) {
fits[[stk_fit_name]] <- fit
sole_stks_fit[[stk_fit_namel] <- sole_stk_xsa + fit
attr(sole_stks_fit[[stk_fit_name]],"aic") <- AIC(fit)
attr(sole_stks_fit[[stk_fit_name]],"bic") <- BIC(fit)
attr(sole_stks_fit[[stk_fit_name]],"fitSumm") <- fit@fitSumm

+
model_count: 1
model_count: 2
model_count: 3
model_count: 4
model_count: 5
model_count: 6
model_count: 7
model_count: 8
model_count: 9
model_count: 10
model_count: 11
model_count: 12
model_count: 13
model_count: 14
model_count: 15
model_count: 16
model_count: 17
model_count: 18
model_count: 19
model_count: 20
model_count: 21
model_count: 22
model_count: 23
model_count: 24
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7.2.2 Exploring the a4a results

The model summary results, along with the XSA results, can be seen in Figure 7.2.
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Figure 7.2: Comparing the results from all of the ada assessments to the XSA assessment.
Some models are clearly unbelievable.

Some models have very high SSBs (Figure 7.3). We need to filter these out.
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Figure 7.3: SSB estimates of all the model fits and the XSA results to identify bad models.

The unwanted models are 2, 5, 6, 14, 17 and 18. Model 14 is particularly wrong. We only
want to include models that have believable SSB estimates.

good_models <- c(1, 3, 4, 7:13, 15, 16, 19:24)

Figure 7.4 shows the results from the selection of model fits that have reasonable SSB

estimates.
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Figure 7.4: Comparing the results from the ada assessments that have reasonable SSB
estimates to the XSA assessment.

Some of the Fbar estimates are very linear looking (Figure 7.5). We need to identify and
remove them.
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Figure 7.5: Fbar estimates of the model fits to identify the linear looking ones.

We want to remove models 3, 7, 11, 15, 19, 22 and 23 from the list of good models. These
all use fmodel3, the smooth interaction between age and year.

fmodel3 <- “te(age, year, k = c(3, 3)) # age and year smooth interaction.
This may be because we don’t have many years of data and ideally we would like more

degrees of freedom in the smoother.

This leaves 10 models that look reasonable (Figure 7.6).
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Figure 7.6: Comparing the good model fits to the XSA results. The difference in recruit-
ment in the final year is driven by the two different srmodels

The main difference between the models is the recruitment in the final year. The recruit-
ment in the models which have an srmodel of a factor on year (models 1, 4, 8, 9 and 12)

are less constrained than the models which have an srmodel of a Beverton-Holt (models
13, 16, 20, 21 and 24).

We can look at the AIC and BIC of the good models to see if they are good guides as to
which model is the best.

good_model_data <- model_data[good_models, ]
good_model_data$aic <- lapply(sole_stks_fit[paste('"model", good_models,

sep = "")], function(x) x@aic)
good_model_data$bic <- lapply(sole_stks_fit[paste('"model", good_models,
sep = "")], function(x) x@bic)

good_model_data
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## model_id fmodel gmodel rmodel aic  bic

## 1 1 fmodell gmodell rmodell 176 248.7
## 4 4 fmodel4 gmodell rmodell 176.3 246.6
## 8 8 fmodel4d gmodel2 rmodell 180.6 246.3
## 9 9 fmodell gmodel3 rmodell 175.7 246
## 12 12 fmodel4 gmodel3 rmodell 176.1 244.1
## 13 13 fmodell gmodell rmodel2 179.3 256.7
## 16 16 fmodel4 gmodell rmodel2 183.3 258.3
## 20 20 fmodel4 gmodel2 rmodel2 187.6 257.9
## 21 21 fmodell gmodel3 rmodel2 182.1 257.1
## 24 24 fmodel4 gmodel3 rmodel2 182 254.6

The models which have recruitment modelled as a factor on year have the lowest AIC
and BIC (probably because there are fewer parameters in the recruitment model). The
residuals from model 4 are show in Figure 7.7.
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log residuals of catch and abundance indices
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Figure 7.7: Residuals plot of model 4

As the AICs and BICs are close to model average (if we want to).

names(sole_stks_fit)

## [1] "modell" "model2" "model3" "model4" "model5" '"model6" "model7"
## [8] "model8" '"model9" '"modellO'" "modelll" "modell2" '"modell3" '"modell4"
## [15] "modell5" "modell6" '"modell7" "modell8" "modell9" "model20" "model21l"
## [22] "model22" "model23" '"model24"

# Check AIC and BICs of these guys Shrink model_data
fits[paste('"model", good_models, sep = "")]

#i# $modell
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##
#it
##
#it
##
#it
#it
##
#it
##
#it
##
#it
##
#it
##
#it
#it
##
#it
##
#it
##
#it
##
#it
##
#it
#it
##
#it
##
#it
##
#it
##
#it
##
it
#it
##
#it
##
#it
##
#it
##
#it
##
it
#it

a4a model fit for: NORTHERN ADRIATIC SEA (GSA 17) COMMON SOLE 2006-2012

Call:
.local(stock = stock, indices = indices, fmodel = ..1, gmodel = ..2,
srmodel = ..4, vmodel = ..3)

Time used:
Pre-processing Running a4a Post-processing Total
0.31154 0.09765 0.07571 0.48491

Submodels:
fmodel: “factor(age) + factor(year)
srmodel: ~“factor(year)
nlmodel: “factor(age)
gmodel:
SoleMon Radipo-trawl survey: ~“factor(age)
vmodel:
catch: "1
SoleMon Radipo-trawl survey: "1

$modelsd
ada model fit for: NORTHERN ADRIATIC SEA (GSA 17) COMMON SOLE 2006-2012

Call:
.local(stock = stock, indices = indices, fmodel = ..1, gmodel = ..2,
srmodel = ..4, vmodel = ..3)

Time used:
Pre-processing Running ada Post-processing Total
0.25776 0.09510 0.05362 0.40647

Submodels:
fmodel: ~“factor(replace(age, age > 4, 4)) + factor(year)
srmodel: ~“factor(year)
nlmodel: “factor(age)
gmodel:
SoleMon Radipo-trawl survey: ~factor(age)
vmodel:
catch: "1
SoleMon Radipo-trawl survey: "1

$model8
ada model fit for: NORTHERN ADRIATIC SEA (GSA 17) COMMON SOLE 2006-2012

Call:
.local(stock = stock, indices = indices, fmodel = ..1, gmodel = ..2,
srmodel = ..4, vmodel = ..3)

Time used:

Pre-processing Running a4a Post-processing Total
0.27679 0.09268 0.05392 0.42339
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##
#it
##
#it
##
#it
##
#it
##
#it
#it
##
#it
##
#it
##
#it
##
#it
##
#it
#it
##
#it
##
#it
##
#it
##
#it
##
it
#i#
##
#it
##
#it
##
#it
##
#it
##
#it
#i#t
##
#it
##
#it
##
#it
##

Submodels:
fmodel: “factor(replace(age, age > 4, 4)) + factor(year)
srmodel: ~“factor(year)
nlmodel: “factor(age)
gmodel:
SoleMon Radipo-trawl survey: ~“s(age, k = 3)
vmodel:
catch: "1
SoleMon Radipo-trawl survey: "1
$model9
ada model fit for: NORTHERN ADRIATIC SEA (GSA 17) COMMON SOLE 2006-2012
Call:
.local(stock = stock, indices = indices, fmodel = ..1, gmodel = ..2,
srmodel = ..4, vmodel = ..3)
Time used:
Pre-processing Running ada Post-processing Total
0.27057 0.09515 0.05109 0.41680
Submodels:
fmodel: ~“factor(age) + factor(year)
srmodel: ~“factor(year)
nlmodel: “factor(age)
gmodel:
SoleMon Radipo-trawl survey: ~factor(replace(age, age > 4, 4))
vmodel:
catch: "1
SoleMon Radipo-trawl survey: "1
$modell2
ada model fit for: NORTHERN ADRIATIC SEA (GSA 17) COMMON SOLE 2006-2012
Call:
.local(stock = stock, indices = indices, fmodel = ..1, gmodel = ..2,
srmodel = ..4, vmodel = ..3)
Time used:
Pre-processing Running a4a Post-processing Total
0.26976 0.08821 0.05295 0.41092
Submodels:
fmodel: “factor(replace(age, age > 4, 4)) + factor(year)
srmodel: ~factor(year)
nlmodel: “factor(age)
gmodel:
SoleMon Radipo-trawl survey: ~“factor(replace(age, age > 4, 4))
vmodel:
catch: "1
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##
#it
##
#it
##
#it
##
#it
##
#it
#it
##
#it
##
#it
##
#it
##
#it
##
#it
#it
##
#it
##
#it
##
#it
##
#it
##
it
#i#
##
#it
##
#it
##
#it
##
#it
##
#it
#i#t
##
#it
##
#it
##
#it
##

SoleMon Radipo-trawl survey: "1

$modell3
ada model fit for: NORTHERN ADRIATIC SEA (GSA 17) COMMON SOLE 2006-2012

Call:
.local(stock = stock, indices = indices, fmodel = ..1, gmodel = ..2,
srmodel = ..4, vmodel = ..3)

Time used:
Pre-processing Running ada Post-processing Total
0.27201 0.10715 0.05176 0.43092

Submodels:
fmodel: ~“factor(age) + factor(year)
srmodel: “bevholt(CV = 0.1)
nlmodel: “factor(age)
gmodel:
SoleMon Radipo-trawl survey: ~factor(age)
vmodel:
catch: "1
SoleMon Radipo-trawl survey: "1

$modell6
ada model fit for: NORTHERN ADRIATIC SEA (GSA 17) COMMON SOLE 2006-2012

Call:
.local(stock = stock, indices = indices, fmodel = ..1, gmodel = ..2,
srmodel = ..4, vmodel = ..3)

Time used:
Pre-processing Running a4a Post-processing Total
0.27044 0.10929 0.05316 0.43290

Submodels:
fmodel: “factor(replace(age, age > 4, 4)) + factor(year)
srmodel: ~“bevholt(CV = 0.1)
nlmodel: “factor(age)
gmodel:
SoleMon Radipo-trawl survey: ~“factor(age)
vmodel:
catch: "1
SoleMon Radipo-trawl survey: "1

$model20
ada model fit for: NORTHERN ADRIATIC SEA (GSA 17) COMMON SOLE 2006-2012

Call:

.local(stock = stock, indices = indices, fmodel = ..1, gmodel = ..2,
srmodel = ..4, vmodel = ..3)
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##
#it
##
#it
##
#it
##
#it
##
#it
#it
##
#it
##
#it
##
#it
##
#it
##
#it
#it
##
#it
##
#it
##
#it
##
#it
##
it
#i#
##
#it
##
#it
##
#it
##
#it
##
#it
#i#t
##
#it
##
#it
##
#it
##

Time used:
Pre-processing Running a4a Post-processing Total
0.27918 0.10762 0.05374 0.44054
Submodels:
fmodel: “factor(replace(age, age > 4, 4)) + factor(year)
srmodel: “bevholt(CV = 0.1)
nlmodel: “factor(age)
gmodel:
SoleMon Radipo-trawl survey: “s(age, k = 3)
vmodel:
catch: "1
SoleMon Radipo-trawl survey: 1
$model21
a4a model fit for: NORTHERN ADRIATIC SEA (GSA 17) COMMON SOLE 2006-2012
Call:
.local(stock = stock, indices = indices, fmodel = ..1, gmodel = ..2,
srmodel = ..4, vmodel = ..3)
Time used:
Pre-processing Running a4a Post-processing Total
0.27208 0.11029 0.05159 0.43396
Submodels:
fmodel: “factor(age) + factor(year)
srmodel: ~“bevholt(CV = 0.1)
nlmodel: “factor(age)
gmodel:
SoleMon Radipo-trawl survey: ~“factor(replace(age, age > 4, 4))
vmodel:
catch: "1
SoleMon Radipo-trawl survey: "1
$model24
a4a model fit for: NORTHERN ADRIATIC SEA (GSA 17) COMMON SOLE 2006-2012
Call:
.local(stock = stock, indices = indices, fmodel = ..1, gmodel = ..2,
srmodel = ..4, vmodel = ..3)
Time used:
Pre-processing Running ada Post-processing Total
0.26059 0.11783 0.05441 0.43283
Submodels:
fmodel: ~“factor(replace(age, age > 4, 4)) + factor(year)
srmodel: “bevholt(CV = 0.1)
nlmodel: “factor(age)
gmodel:
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#H SoleMon Radipo-trawl survey: ~“factor(replace(age, age > 4, 4))
##  vmodel:

## catch: ~1

## SoleMon Radipo-trawl survey: "1

model_average <- ma(a4aFitSAs(fits[paste("model", good_models,
sep = "")]), sole_stk_xsa, AIC, nsim = 1000)
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& MULTI-FLEET PROJECTIONS FOR SOLE IN THE ADRI-
ATIC SEA

Finlay Scott €& Giuseppe Scarcella

Here we demonstrate how the single fleet projection tools in FLR can be used to approx-
imate multiple fleet projections using historical partial catches. Three fleets catch Sole in
GSA 17: trammel nets, set nets and a trawl. We are particularly interested in exploring
what happens if the trawl fleet stops operating. Therefore, in the following examples we
compare scenarios where all three fleets are in operation and when only the trammel and
set nets are in operation. The operation of multiple fleets is approximated by changing
the selectivity pattern in the projection model. The selection pattern of each fleet is
calculated through the partial catches and the total estimated fishing mortality.

8.1 Running the assessment

Read in the tuning indices and the stock object.

# FLIndices

idxs <- readFLIndices("data/TUNEFF.DAT")
# FLStock

load("data/stk.Rdata")

Run a stock assessment using FLa4a using the final settings from the sole assessment.

# Run chosen assessment - model 4 from previous section age

# and year seperable, with age > 4 being the same as age 4

fmodel <- “factor(replace(age, age > 4, 4)) + factor(year)

gmodel <- list(“factor(age))

rmodel <- “factor(year)

fit <- a4aSCA(stock = sole, indices = idxs, fmodel = fmodel,
gmodel = gmodel, srmodel = rmodel)

sole_det <- sole + fit

We simulate from the fitted object to generate a stock object with multiple iterations that
represent the uncertainty in the stock assessment (Figure 8.1).

niters <- 1000
sole_sim <- sole + simulate(fit, niters, seed = 0)
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plot(sole_sim)
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Figure 8.1: Results of the ada assessment

8.2 Calculate the partial catches

The general approach to approximating multiple fleet projections is to estimate historical
partial fishing mortality at age using the the historical partial catches. There are three
main fleets fishing on Sole in GSA 17: set nets, trawlers and trammel nets.

First we read in the catch histories of the three fleets and calculate the proportion they
contribute to the total catches (Figure 8.2). The trawl and set net fleet catches younger
fish and the trammel net catches older fish.
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# Read in catch numbers from the fleets

set_net <- read.csv("data/ITA_SET_NET.csv", header = TRUE, sep = ";")

set_net <- FLQuant(t(as.matrix(set_net)[, 2:8]), dimnames = list(age = 0:6,
year = 2000:2012))

trawl <- read.csv("data/ITA_TRAWL.csv", header = TRUE, sep = ";")

trawl <- FLQuant(t(as.matrix(trawl)[, 2:8]), dimnames = list(age = 0:6,
year = 2000:2012))

tram <- read.csv("data/SLO_CRO_TRAMMEL.csv", header = TRUE, sep = ";"

tram <- FLQuant(t(as.matrix(tram)[, 2:8]), dimnames = list(age = 0:6,
year = 2000:2012))

total_catch <- set_net + trawl + tram

prop_catch_set_net <- set_net/total_catch

prop_catch_trawl <- trawl/total_catch

prop_catch_tram <- tram/total_catch

prop_catches <- FLQuants(set_net = prop_catch_set_net, trawl = prop_catch_trawl,
tram = prop_catch_tram)

ggplot (as.data.frame(prop_catches), aes(x = year, y = data)) +
geom_line(aes(colour = gname)) + facet_wrap(~age)
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Figure 8.2: Catch proportions of the fleets by age over the years 2000 to 2012

We now calculate the partial fishing mortalities by multiplying the estimated fishing mor-
tality from the assessment by the catch proportions (Figure 8.3). The selection patterns
used in the projections are based on the mean of the partial fishing mortalities over the
years 2006 to 2012 (Figure 8.4).

pfs <- lapply(prop_catches, function(x) sweep(harvest(sole_sim),
1:5, x, "*"))

pfs_mean <- lapply(pfs, function(x) apply(x[, as.character(2006:2012)],
c(1, 3:6), mean))

pfs_df <- as.data.frame(pfs)
ggplot (pfs_df [pfs_df$year > 2003, ], aes(factor(year), data)) +
geom_boxplot (aes(colour = gname)) + facet_wrap(~age)
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Figure 8.3: Partial fishing mortalities of the three fleets by age from 2003 to 2012

ggplot(as.data.frame(pfs_mean), aes(factor(age), data)) + geom_boxplot(aes(colour = gname))
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Figure 8.4: Mean partial fishing mortality over the years 2006 to 2012. This is used for
the selection patterns in the projections.

8.3 Stock recruitment

For the projection we need some kind of stock recruitment relationship. First we attempt
to fit a Beverton-Holt relationship between SSB and recruitment using the stock assess-
ment results without uncertainty. However, the shortage of the data set (13 years) and
the poorness of the fit (Figure 8.5) means that we cannot justifiably use this relationship
for the projections.

sole_srr <- fmle(as.FLSR(sole_det, model = "bevholt"), control = list(trace = 0))
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plot (sole_srr)
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Figure 8.5: The fitted stock recruitment relationship using a Beverton-Holt function. This
relationship was not used in the projections.

Instead, we used the geometric mean recruitment of the last three years of the simu-
lated stock. The residuals are simply the historic estimated recruitment minus the mean

recruitment.

obj <- rec(sole_sim)[, as.character(2010:2012)]
mean_rec <- apply(obj, c(1, 3:86), function(x) exp(mean(log(x))))
mult_residuals_rec <- sweep(rec(sole_sim), c(1, 3:6), mean_rec,

||/||)
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8.4 The projections

We need to set up the future extended stock that will be used for the projections. There
are several assumptions made about the future stock. For example, the future mean
weights, natural mortality and maturity at age are calculated as the mean of the last
three years. The future selection pattern is based on the mean partial fishing mortalities
from the three fleets of the years 2006 to 2012 (see Figure 8.4).

nyears <- 20

# Multiplicative residuals for the SRR

residual_array <- aperm(apply(mult_residuals_rec, c(1, 3:6),
sample, size = nyears, replace = TRUE), c(2, 1, 3, 4, 5,

6))
dimnames(residual_array) <- list(age = 0, year = 2013:(2013 +
nyears - 1), unit = "unique", season = "all", area = "unique",

iter = 1l:niters)
sr_residuals <- FLQuant(residual_array)

8.4.1 Status quo with all fleets

The status quo scenario is that the total fishing mortality will be the same as the mean
of the last three years (Figure 8.6). The future selection pattern is based on the mean
partial fishing mortality from the years 2006 to 2012 (see Figure 8.7). The projections
are performed with multiplicative residuals on the mean recruitment

sole_stf <- stf(sole_sim, nyears = nyears)

# Set the future selection pattern using the partial fishing

# mortalities

obj <- pfs_mean[["tram"]] + pfs_mean[["set_net"]] + pfs_mean[["trawl"]]
harvest(sole_stf) [, as.character(2013:(2013 + nyears - 1))] <- obj

# get F status quo

fsq <- apply(fbar(sole_sim) [, as.character(c(2010, 2012))], c(1,
3:6), mean)

ctrl_target <- fwdControl(data.frame(year = 2013:(2013 + nyears -
1), quantity = "f", val = rep(c(iter(fsq, 1)), nyears)))

# Fix trgtArray

trgtArray <- array(NA, dim = c(nyears, 3, niters), dimnames = list(l:nyears,
c("min", "val", "max"), iter = l:niters))

trgtArray[, "val", ] <- rep(c(fsq), each = nyears)

ctrl_target@trgtArray <- trgtArray

stf_sq <- fwd(sole_stf, ctrl_target, sr = list(model = "mean",
params = FLPar(a = c(mean_rec), iter = niters)), sr.residuals = sr_residuals,
sr.residuals.mult = TRUE)
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Figure 8.6: The results of the status quo projection.

8.4.2 Status quo projection without the trawl fleet

Here we project forward without the trawling fleet. The fishing mortalities of the other
two fleets (set net and trammel) are kept at their status quo levels. As we are only able to
perform a ’single fleet” projection, the selectivity in the projection will be the sum of the
selectivities of the two fleets. We use the mean partial fishing mortalities we calculated
earlier as the future selection pattern (this will be scaled accordingly in the projection).
The status quo fishing mortality is the mean of the last three years. As before, projections
are performed with multiplicative residuals on the mean recruitment (Figure 8.7).
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The difference between this scenario and the status quo scenario is that here the selection
pattern is based only the trammel and set net fleets, and the future fishing mortality level
is the mean of the last three years of the trammel and set net fleets only.

sole_notrawl <- stf(sole_sim, nyears = nyears)

# Overwrite harvest slot with sum of fleets set_net + trammel

# to set the future selectivity (2013 onwards)

obj <- pfs_mean[["tram"]] + pfs_mean[["set_net"]]
harvest(sole_notrawl) [, as.character(2013:(2013 + nyears - 1))] <- obj

# The status quo fishing mortality is the mean of the last
# three years (of the two fleets only)
fbar_range <- as.character(range(sole_sim) ["minfbar"]:range(sole_sim) ["maxfbar"])
fbar_set_net_and_tram <- apply((pfs[["set_net"]] + pfs[["tram"]]) [fbar_range,
], 2:6, mean)
fsqg_notrawl <- apply(fbar_set_net_and_tram[, as.character(c(2010,
2012))], c(1, 3:6), mean)
# Set the control object
ctrl_target_notrawl <- fwdControl(data.frame(year = 2013:(2013 +
nyears - 1), quantity = "f", val = rep(c(iter(fsq_notrawl,
1)), nyears)))
# Fix trgtArray
trgtArray <- array(NA, dim = c(nyears, 3, niters), dimnames = list(l:nyears,
c("min", "val", "max"), iter = l:niters))
trgtArray[, "val", ] <- rep(c(fsq_notrawl), each = nyears)
ctrl_target_notrawl@trgtArray <- trgtArray
# With multiplicative residuals
stf_sq_notrawl <- fwd(sole_notrawl, ctrl_target_notrawl, sr = list(model = "mean",
params = FLPar(a = c(mean_rec), iter = niters)), sr.residuals = sr_residuals,
sr.residuals.mult = TRUE)
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Figure 8.7: Comparing the results of the status quo scenario to the status quo without
the trawl fleet scenario.

We can compare the total fishing mortality in the projection years with the status quo
scenario in Section 8.4.1 (Figure 8.8).
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Figure 8.8: The fishing mortality by age in 2020 for the status quo and status quo without
the trawl fleet scenarios.

8.4.3 Only set and trammel nets with catches at status quo level

In this scenario we take the catches from the status quo scenario with all of the fleets, and
use these in the projection using only the set and trammel nets. This can be considered
a ‘compensation’ scenario, i.e. if the trawl fleet is not operating the other two fleets will
take the extra catch (so the total catch is the same as the status quo scenario when the
trawl fleet is operating).

# Get the total catches from the status quo scenario

catch_trawl <- catch(stf_sq)[, ac(2013:(2013 + nyears - 1))]

ctrl_target_catch <- fwdControl(data.frame(year = 2013:(2013 +
nyears - 1), quantity = "catch", val = c(iter(catch_trawl,
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1))

# Fix trgtArray

trgtArray <- array(NA, dim = c(nyears, 3, niters), dimnames =
c("min", "val", "max"), iter = l:niters))

trgtArray[, "val", ] <- c(catch_trawl)

ctrl_target_catch@trgtArray <- trgtArray

# Use the notrawl fleet with the selection pattern based on

# set net and trammel net only

stf_trawlcatch_notrawl <- fwd(sole_notrawl, ctrl_target_catch,
sr = list(model = "mean", params = FLPar(a = c(mean_rec),

iter = niters)), sr.residuals = sr_residuals, sr.residuals.mult = TRUE)

Without the trawl fleet there is an initial increase in fishing mortality which slowly de-
creases below the status quo level. Additionally, without the trawl fleet the SSB level
starts to increase (Figure 8.9). It must be remembered that there is no stock recruitment
relationship in these projections, i.e. the recruitment is not affected by SSB. With a stock
recruitment relationship it would be expected that the increase in SSB would occur earlier

due to potential increases in recruitment.
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Figure 8.9: Comparing the status quo scenario with all three fleets to having only set and
trammel nets in operation but the same catches.

8.4.4 Projecting at FO1 with all fleets and with only the set net
and trammel net fleets

In these scenarios we are interested in projecting at F0.1. The value of F0.1 will be
affected by whether or not the trawl fleet is operating due to changes in the combined
selectivity pattern. However, the values are similar (Figure 8.10).

# Now BRP these in batches of 200

f01_all <- c()

f01_all <- c(£f01_all, c(refpts(brp(FLBRP(iter(stf_sq, 1:200))))["f0.1",
"harvest"]))
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f01_all <- c(£f01_all, c(refpts(brp(FLBRP(iter(stf_sq, 201:400))))["f0.1",
"harvest"]))

f01_all <- c(£f01_all, c(refpts(brp(FLBRP(iter(stf_sq, 401:600))))["f0.1",
"harvest"]))

f01_all <- c(f01_all, c(refpts(brp(FLBRP(iter(stf_sq, 601:800))))["f0.1",
"harvest"]))

f01_all <- c(£f01_all, c(refpts(brp(FLBRP(iter(stf_sq, 801:1000)))) ["f0.1",
"harvest"]))

f01_notrawl <- c()

f01_notrawl <- c(£01_notrawl, c(refpts(brp(FLBRP(iter(sole_notrawl,
1:200)))) ["£0.1", "harvest"]))

f01_notrawl <- c(£01_notrawl, c(refpte(brp(FLBRP(iter(sole_notrawl,
201:400)))) ["f0.1", "harvest"]))

f01_notrawl <- c(£f01_notrawl, c(refpts(brp(FLBRP(iter(sole_notrawl,
401:600)))) ["£f0.1", "harvest"]))

f01_notrawl <- c(£f01_notrawl, c(refpts(brp(FLBRP(iter(sole_notrawl,
601:800)))) ["£f0.1", "harvest"]))

f01_notrawl <- c(f01l_notrawl, c(refpts(brp(FLBRP(iter(sole_notrawl,
801:1000)))) ["f0.1", "harvest"]))
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Figure 8.10: Histograms of the F0.1 values when all fleets and when only the set and
trammel fleets are in operation

First we project with all fleets, but with the future fishing mortality being set at FO0.1.

# Project all fleets at Fmsy

ctrl_target_f01_all <- fwdControl(data.frame(year = 2013:(2013 +
nyears - 1), quantity = "f", val = rep(f01_all[1l], nyears)))

# Fix trgtArray

trgtArray <- array(NA, dim = c(nyears, 3, niters), dimnames = list(l:nyears,
c("min", "val", "max"), iter = l:niters))

trgtArray[, "val", ] <- rep(f01_all, each = nyears)

ctrl_target_£f01_all@trgtArray <- trgtArray

# Project

stf_f01_all <- fwd(sole_stf, ctrl_target_f01_all, sr = list(model
params = FLPar(a = c(mean_rec), iter = niters)), sr.residuals
sr.residuals.mult = TRUE)

"mean" s
sr_residuals,
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Then we project using only the set and trammel nets (by using the stock object with the
adjusted selectivity pattern from above).

# Project notrawl fleets at Fmsy

ctrl_target_fOl_notrawl <- fwdControl(data.frame(year = 2013:(2013 +
nyears - 1), quantity = "f", val = rep(f0l_notrawl[1], nyears)))

# Fix trgtArray

trgtArray <- array(NA, dim = c(nyears, 3, niters), dimnames = list(l:nyears,
c("min", "val'", "max"), iter = l:niters))

trgtArray[, "val", ] <- rep(fOl_notrawl, each = nyears)

ctrl_target_fO0l1_notrawl@trgtArray <- trgtArray

# Project
stf_fO0l_notrawl <- fwd(sole_notrawl, ctrl_target_fOl_notrawl,
sr = list(model = "mean", params = FLPar(a = c(mean_rec),

iter = niters)), sr.residuals = sr_residuals, sr.residuals.mult = TRUE)
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9 DISCUSSION AND CONCLUSIONS

Ernesto Jardim

The exercises carried out during this workshop were extremely valuable to test the ada
statistical catch-at-age model with real datasets. The stocks used as case studies, hake in
the Gulf of Lions, hake in the Southern Adriatic, and anchovy, sardine and sole from the
North Adriatic, encompass a diversity of life histories (small pelagics, demersals, round
and flat fish) and fleets (purse seiners, trawlers, gillnetters) that cover a fair range of
fisheries in Europe.

All stocks could fit in our definition of moderate-data, although in some cases the time
series of the data are very short, which creates an additional problem to fit models. In
most cases it was possible to replicate last year’s assessments. For all cases it was possible
to explore alternative models and get satisfactory fits.

The flexibility that the ada stock assessment framework provides was the major factor
fostering these results, but as expected flexibility has a downside. The most important
one being the difficulty in selecting a model using the traditional statistical information
criteria like AIC and BIC or visual analysis of diagnostics. The way forward proposed
and applied to hake in the Gulf of Lions and sole in the Northern Adriatic, is to select a
range of models that seem plausible for the problem and average across them. This is an
area of research that deserves attention. We're all aware that modelling natural resources
is hardly done by a single model, and most of the times a range of models is required to
pick up all (or most) of the relevant processes.

In addition to stock assessment we used the two hake stocks to test the methods to model
growth and natural mortality. Converting length to ages allows the user to use length
based datasets and introduce uncertainty on the growth model, or test distinct models.
With natural mortality the same principles apply, it allows the user to add uncertainty
to the parameters of the model as well as uncertainty about this parameters.

One of the most interesting research questions we had was to test if it was possible to run
projections in FLa4a/FLR using individual fleets. Such method allows testing manage-
ment options that deal with fleet’s effort or capacity, technical measures that impact the
gear’s characteristics, marine protect areas, etc. Any option that may change the overall
fishing mortality deployed in each age group can be tested with this method. The case
study used was sole in the Northern Adriatic. The methods presently implemented in
FLa4a and FLR do not estimate or project individual fleets. The alternative is to use
partial fishing mortality by fleet to set up distinct scenarios, which can be forecasted with
FLR. The results were very promising and it was possible to test distinct scenarios of fleet
management.

Finally, the ada framework together with the existing tools in FLR, provided an efficient
way of running stock assessments, including a fair amount of uncertainty sources, and
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forecasting. The methods implemented allow the user to run all the analysis in the same
framework, which is a major improvement in terms of efficiency, allowing the analysts to
address more time to the structural configuration of the processes they’re modelling and
spend less time dealing with technical details.
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