

W&M ScholarWorks

Data

Virginia Institute of Marine Science

2021

A Data Repository for Extent and Causes of Chesapeake Bay Warming

Kyle E. Hinson Virginia Institute of Marine Science, kehinson@vims.edu

Marjorie A.M. Friedrichs Virginia Institute of Marine Science, marjy@vims.edu

Pierre St-Laurent Virginia Institute of Marine Science, pst-laurent@vims.edu

Follow this and additional works at: https://scholarworks.wm.edu/data

Part of the Oceanography Commons

Recommended Citation

Hinson, Kyle E.; Friedrichs, Marjorie A.M.; and St-Laurent, Pierre, "A Data Repository for Extent and Causes of Chesapeake Bay Warming" (2021). Data. William & Mary. https://doi.org/10.25773/c774-a366

This Data is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in Data by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

A Data Repository for Extent and Causes of Chesapeake Bay Warming

Kyle E. Hinson, Virginia Institute of Marine Science Marjorie A. M. Friedrichs, Virginia Institute of Marine Science Pierre St-Laurent, Virginia Institute of Marine Science

Document Type

Data

Department/Program Biological Sciences, Virginia Institute of Marine Science

Publication Date

2021

Spatial Information 36.7 to 39.7°N, -77.5 to -75.5°W; Chesapeake Bay, U.S.A.

Data Access DATA FILES accessible at <u>https://doi.org/10.25773/c774-a366</u>

Abstract:

This data repository is a permanent archive of the results presented in the associated publication (Hinson et al. 2021, Journal of the American Water Resources Association, *IN PRESS*).

Description:

This dataset includes the results from the model simulations described in the associated publication (Hinson et al. 2021, Journal of the American Water Resources Association, IN PRESS).

Data included in the present repository consist of a model atmospheric forcings input dataset, observations matched to the defined model long run used in skill assessment and trend comparisons, as well as model results from each of the six (6) simulations described in the paper. Data are in NetCDF format (extension .nc). All data that were used to create figures and perform calculations summarized in the tables are contained within this archive. More information on the long reference run temperature inputs is provided in the Methods section of the associated manuscript. For additional information on the open-source numerical model used in this study, please visit the ROMS website (www.myroms.org). Any questions regarding future implementations of the ChesROMS modeling system should be directed to Dr. Marjorie A. M. Friedrichs (marjy@vims.edu).

File Description Table:

File Name	Description
README.txt	Overall information and basic descriptions of
	files.
Atmospheric_Inputs.nc	NetCDF file containing ERA5 Reanalysis data used
	for ChesROMS forcings.
Model_Skill_Inputs.nc	NetCDF file containing observed data and model
	estimates of temperature and salinity matched to
	time and depth at 20 Chesapeake Bay stations
	over the period 1985-2019.
Temperature_Trend_Inputs.nc	NetCDF file containing observed and modeled
	temperatures used to calculate long-term
	temperature trends at particular Bay stations and
	defined Bay regions.
ChesROMS_Sensitivity_Outputs.nc	NetCDF file containing modeled Chesapeake Bay
	sensitivity scenario temperatures at both the
	surface and bottom.
ChesROMS_Scenario_Profiles.nc	NetCDF file containing Chesapeake Bay main
	stem modeled sensitivity scenario temperatures,
	extending from the bottom to the surface.

Keywords:

Climate change, temperature, water quality, estuaries, watershed, Chesapeake Bay, ChesROMS-ECB, ROMS

Associated Publication(s):

Hinson, Kyle E., Friedrichs, Marjorie A.M., St-Laurent, Pierre, Da, Fei, and Najjar, Ray G. (2021) Extent and causes of Chesapeake Bay warming. Journal of American Water Resources Association. *IN PRESS*

ORCID Numbers for Authors:

Kyle E. Hinson ORCID ID: 0000-0002-2737-2379 Marjorie A. M. Friedrichs ORCID ID: 0000-0003-2828-7595 Pierre St-Laurent ORCID ID: 0000-0002-1700-9509

Funding

Funding of this research was provided by the National Oceanic and Atmospheric Administration's National Centers for Coastal Ocean Science under award NA16NOS4780207 to the Virginia Institute of Marine Science. This work used High-Performance Computing facilities at William & Mary (<u>https://www.wm.edu/offices/it/services/researchcomputing/atwm/index.php</u>), which are supported by NSF, the Commonwealth of Virginia Equipment Trust Fund, and the Office of Naval Research. K.E. Hinson was further supported by the Commonwealth Coastal Research Fellowship from the Commonwealth of Virginia and the Virginia Institute of Marine Science (<u>https://www.vims.edu/</u>). The funders had no role in the project design, data collection, data analysis, decision to publish, preparation of the manuscript, or preparation of the data repository.

Recommended Citation

Hinson, Kyle E., Friedrichs, Marjorie A.M., and St-Laurent, Pierre. (2021) A Data Repository for Extent and causes of Chesapeake Bay Warming. Data. William & Mary. https://doi.org/10.25773/c774-a366