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PHYSICAL REVIEW E 90, 052107 (2014)

Matter, energy, and heat transfer in a classical ballistic atom pump
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A ballistic atom pump is a system containing two reservoirs of neutral atoms or molecules and a junction
connecting them containing a localized time-varying potential. Atoms move through the pump as independent
particles. Under certain conditions, these pumps can create net transport of atoms from one reservoir to the other.
While such systems are sometimes called “quantum pumps,” they are also models of classical chaotic transport,
and their quantum behavior cannot be understood without study of the corresponding classical behavior. Here we
examine classically such a pump’s effect on energy and temperature in the reservoirs, in addition to net particle
transport. We show that the changes in particle number, of energy in each reservoir, and of temperature in each
reservoir vary in unexpected ways as the incident particle energy is varied.

DOI: 10.1103/PhysRevE.90.052107 PACS number(s): 03.75.Lm, 03.65.Sq, 05.60.Cd, 05.60.Gg

I. INTRODUCTION

Particle transport is an ongoing topic of interest in a variety
of systems, including solid-state electronics, microfluidic
devices, and atomtronics components. In electronic solid-state
systems, the transport of electrons through mesojunctions
having time-dependent potential barriers, a phenomenon often
called “quantum pumping,” has been theorized for decades
[1–7]. It has been shown that such a system can pump electrons
from one reservoir to another with no bias (such as a potential
difference). More recently, Das and Aubin have proposed
simulating such electron pumps using a system of neutral cold
atoms with optical potentials as the driving forces [8–10].
Neutral atom transport is becoming increasingly important in
its own right due to the ongoing development of atomtronics,
which seeks to replicate properties of electronics using neutral
atoms, and in the field of quantum computing [11]. Analogs of
batteries, diodes, transistors, and, recently, hysteresis [12–14]
have been explored in ultracold neutral atom systems.

Previous studies of these pumps have generally been within
the quantum regime and largely focus on charge or spin
transport associated with fermionic carriers. In this paper
we study the classical analogs of such pumps and focus on
the differential transfer of particles, energy, and heat. This
broadens the study of quantum pumps into a new and largely
unexplored regime. These classical analogs of quantum pumps
are also interesting because they provide models of chaotic
transport, which occurs in a great variety of systems on scales
from nuclei to galaxies [15–25].

The pumps we consider are effectively one-dimensional, so
the Hamiltonian is

H (p,x,t) = p2/2m + V (x,t). (1)

We choose V (x,t) to consist of two repulsive barriers, one or
both of which oscillate. When both barriers oscillate they have
the same frequency ω, but not the same phase. We examine
the classical scattering of equal numbers of particles which
approach such pumps from each reservoir with equal and fixed
incident energy.

It has been shown that flows may be zero or negligible
in pumps with idealized limits such as δ-function barriers or

uniform phase-space density [4,26]. Here we show that under
more realistic conditions, such pumps can generate significant
net transfer of both matter and energy. Understanding heat
flow is also essential for any transport mechanism and is
of fundamental importance for thermoelectric devices [27].
Studies that have been done in the context of mesoscopic
pumps [28,29] used a strictly quantum picture involving
exchange of quasiparticles, and heat flow was shown to
be outwards from the pump towards the reservoirs. The
classical model discussed here is more appropriate for higher
temperatures, and we show that the pump can heat or cool one
or both reservoirs.

II. SUMMARY OF RESULTS

In previous papers [26,30,31] we have shown that two-
barrier pumps have the following properties when at least
one barrier oscillates. (1) These so-called “quantum pumps”
provide nice models of classical chaotic scattering, and their
behavior is governed by a heteroclinic tangle. (2) Quan-
tum theory shows that monoenergetic particles incident on
periodically oscillating barriers have final energies equal to
En = Ei + n�ω, where Ei is their initial energy and ω is the
frequency of the pump; classical and semiclassical theories
are needed to understand the range of n and the heights of
the peaks. (3) Net pumping of particles from one reservoir
to another can occur if monoenergetic particles approach the
pump from both sides. (4) Pumping can go in either direction,
depending on the incident energy and the pump parameters. (5)
The amount of pumping is very sensitive to incident energy and
to pump parameters and cannot be predicted without detailed
calculation. (6) It is possible to design a “particle diode”
which only allows net particle transport in one direction for
low-energy incident particles and in the opposite direction for
high-energy incident particles.

In this paper we show that for monoenergetic incident
particles (A) such pumps can transfer energy from one
reservoir to the other, and energy can be transferred from pump
to particles or vice versa. (B) A net change of energy in each
reservoir can occur even if there is no net particle transport.
The direction of energy change is distinct from the direction

1539-3755/2014/90(5)/052107(5) 052107-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.052107


BYRD, DAS, MITCHELL, AUBIN, AND DELOS PHYSICAL REVIEW E 90, 052107 (2014)

of particle transport. (C) Such pumps can heat or cool one or
both reservoirs, and the heating or cooling is distinct from the
existence or direction of net particle transport and distinct from
energy flow. (D) At some incident energies, such pumps can
generate net particle transport while at the same time particles
give energy to the pump.

III. SYSTEM

We will establish properties (A)–(D) by examining one
specific pump: a particle diode consisting of two Gaussian-
shaped potential barriers, only one of which oscillates. We
choose this pump as our example because the dynamics
of the system become much more complicated when both
barriers oscillate [26]. However, allowing the second barrier
to oscillate (or changing the barrier parameters) only affects
the conclusions discussed below quantitatively. Therefore
properties (A)–(D) apply to general ballistic atom pumps.

In the chosen diode, the distance between the barriers
is substantially larger than their widths, so their overlap is
negligible. The right-hand barrier has a fixed height, while the
left-hand barrier oscillates between zero and the height of the
right-hand barrier. The pump is described by

V (x,t) = ÛL[1 + αL cos(ωt)] exp

[−(x + x̂)2

2σ 2

]

+ ÛR exp

[−(x − x̂)2

2σ 2

]
, (2)

where ÛL,R is the average height of each barrier, αL is the
amplitude of oscillation of the left barrier, ω = 2π/T is the
frequency and T is the period, and σ is the standard deviation
of each Gaussian. The left and right barriers are centered at
x = −x̂ and x = x̂ = 4.5, respectively. In our calculations,
we set ÛL = 1, ÛR = 2ÛL = 2, αL = 1, ω = 1, σ = 1.5, and
m = 1. These are scaled units [31].

The effects of the pump can be understood qualitatively
as follows. For incident energies less than the height of the
static barrier, all particles from the right reflect from the
static barrier, but particles incident from the left may gain
enough energy from the oscillating barrier to scatter past
both barriers. Consequently, the only possible direction of net
particle transport is from left to right. For incident energies
greater than the height of the static barrier, computations show
that, in this case, all particles incident from the right transmit
past both barriers, but particles incident from the left may
lose energy to the oscillating barrier, reflect from the static
barrier, and ultimately scatter to the left reservoir. Thus the
only possible direction of net particle transport reverses to
right to left.

IV. METHOD

Our computational algorithm can be summarized as fol-
lows: (1) For each initial energy, launch particles toward the
barriers from the left and right. Particles begin with a range of
positions �x = |pi |2π/ω, where pi is the initial momentum,
which ensures that all barrier phases are encountered. (2)
Record the reservoir to which each particle is scattered, and
sum the results to obtain the net fractional transport (defined

below) of particles scattered to the right (which may be
negative if more particles are scattered to the left). (3) Compute
the total energy gain of the two reservoirs after scattering,
which may be negative if the system loses energy to the pump.
(4) Compute the net gain (or loss) in the total energy of each
reservoir. Energy being an extensive quantity, a reservoir gains
total energy by gain in the number of particles as well as by gain
of energy of individual particles passing though the pump. (5)
Compute the change of energy of each particle scattered into
each reservoir, and compute the average of these changes for all
particles scattered into each reservoir. The average change of
energy per scattered particle may be regarded as corresponding
to a change of temperature of the reservoir. Temperature being
an intensive property, the direction of temperature change need
not be the same as the direction of energy change in each
reservoir. Formulas for computation of these quantities are
given below.

The fractional transport of particles through the pump is
defined as

CP (|pi |) = R(|pi |) − L(|pi |)
R(|pi |) + L(|pi |) , (3)

where R(|pi |) is the number of particles scattered to the right
for each |pi |, and L(|pi |) is the number of particles scattered
to the left. The sum R(|pi |) + L(|pi |) represents all particles
incident on the pump for a given |pi |. CP (|pi |) is positive when
more particles are scattered to the right (net particle transport to
the right reservoir), negative when more particles are scattered
to the left (net particle transport to the left reservoir), and zero
when equal numbers of particles scatter to the right and left
reservoirs.

For each initial particle energy, the total energy change of
the system and each reservoir are defined as

�Eα(|pi |) = Eα
f (|pi |) − Eα

i (|pi |), (4)

where α = {T ,L,R}. When α = T , ET
f (|pi |) and ET

i (|pi |)
represent the total final and initial energies, respectively, of
all particles incident upon one cycle of the pump. When
�ET > 0, the pump has added energy to the reservoirs; when
�ET < 0, the reservoirs have lost energy to the pump. When
α = L or R, Eα

f (|pi |) represents the total final energy of
all particles which scatter to the left or right reservoirs, and
Eα

i (|pi |) represents the corresponding total initial energy of all
particles beginning in the left or right reservoir.

The last quantities examined in this paper are the changes
in average energy per particle scattered into each reservoir.
These quantities are defined as

�Eβ(|pi |) = E
β

f (|pi |)
Mβ

− E
β

i (|pi |)
Nβ

= kB

2
�T β(|pi |), (5)

where β = {L,R} and corresponds to the left and right
reservoirs, respectively. Nβ is the number of particles incident
on the pump from the β reservoir in one cycle, and Mβ

is the number of particles scattered to the β reservoir. A
total of 2Nβ particles approach the pump for each incident
energy (Nβ from each reservoir); consequently, Mβ > Nβ

corresponds to an increase in particle number for the β

reservoir. This change of average energy per particle can
be regarded as a change of temperature of those scattered
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FIG. 1. (Color online) (a) Net particle transport, CP (|pi |) (thickest curve), and the change in average energy per particle in the left reservoir,
(kB/2)�T L(|pi |) [thin (green) curve] and right reservoir, (kB/2)�T R(|pi |) [medium (purple) curve]. When CP (|pi |) is positive (negative) there
is net particle transport from left to right (right to left). When (kB/2)�T L,R(|pi |) is positive (negative), the pump increases (decreases) the
average energy of particles scattered into the respective reservoir, and the temperature in that reservoir increases (decreases). (b) Total energy
change in both reservoirs, �ET (|pi |) (thickest curve), in the left reservoir, �EL(|pi |) [thin (green) curve], and in the right reservoir, �ER(|pi |)
[medium (purple) curve]. When �ET (|pi |) is positive, the pumps adds net energy to the reservoirs; when negative, the reservoirs lose net
energy to the pump. When �EL,R(|pi |) is positive (negative), the pump increases (decreases) the total energy in the respective reservoir. (c)
Summary of (a) and (b). Dark gray (red) indicates an increase, and light gray (blue) represents a decrease. No color is plotted if the quantity
does not change.

particles. Then a positive (negative) �T L,R produces an
increase (decrease) in the temperature of the corresponding
reservoir after thermalization.

V. RESULTS

In Fig. 1 we show the results of calculations for net particle
transport, energy changes in the total system, and temperature
and energy changes in each reservoir for the selected pump. We
discuss all properties in relation to the net particle transport,
which is the thick curve in Fig. 1(a). There are four distinct
regions of particle transport direction, and we discuss them in
order of increasing complexity. This complexity arises for two
reasons. (1) Depending on the initial energy and the frequency
of the barrier, a particle can ride repeatedly up and down
the oscillating barrier. (2) A particle can undergo multiple
reflections between the two barriers; this is the source of chaos
in the system.

A. Region I: No particle transport; left reservoir heated
(0 < | pi | � 1.176)

At these low energies, no particle gets past the static barrier,
so there is no net particle transport, and CP (|pi |) = 0 [thickest
curve in Fig. 1(a)]. Particles incident from the right reflect from
the static barrier into the right reservoir without a change in
energy. Therefore the number of particles, their average energy,
and the total energy in the right reservoir do not change, i.e.,
�T R(|pi |) = 0 [medium curve (purple online) in Fig. 1(a)] and
�ER(|pi |) = 0 [medium (purple online) curve in Fig. 1(b)].

All particles incident from the left are scattered into the
left reservoir, but the oscillating barrier changes their energy.
They may gain or lose energy to the pump, depending on their
time of arrival. On average, they gain energy. Accordingly,

the temperature (average energy per particle) and total energy
both rise in the left reservoir, i.e., �T L(|pi |) > 0 and > 0 [thin
(green online) curves in Fig. a) and 1(b)]. Considering both
reservoirs together, there has been net addition of energy from
the pump to the reservoirs [�ET (|pi |) > 0] [thickest curve in
Fig. 1(b)], and this energy is entirely added to the left reservoir.

These results are summarized in Fig. 1(c), in which the
light gray (blue online) represents a loss, dark gray (red online)
represents an increase, and white represents no change.

B. Region IV: No particle transport; both reservoirs cooled
(| pi | � 2.63)

At high incident momentum, all particles incident from both
sides transmit past both barriers, and there is no net particle
transport [CP (|pi |) = 0]. Particles incident from both sides
lose energy (on average) to the pump, which causes a decrease
in the total energy of each reservoir [�EL,R(|pi |) < 0] and to-
tal energy of the system [�ET (|pi |) < 0]. The average energy
changes of particles scattered into each reservoir are equal
[�T L(|pi |) = �T R(|pi |) < 0] and each reservoir is cooled.
Figure 1(c) summarizes these results. Calculations show that
the loss of energy to the pump decreases exponentially with
|pi |, a result that calls for a general proof.

C. Region II: Net left-to-right particle transport
(1.176 � | pi | � 2)

This region is defined by the fact that all particles from
the right are reflected by the static barrier, but some particles
incident from the left gain enough energy from the pump to
scatter into the right reservoir. Accordingly, the right-hand
reservoir gains particles [CP (|pi |) > 0] and average evergy
per particle [�T R(|pi |) > 0], and the reservoir is heated. The
total energy of the reservoir increases [�ER(|pi |) > 0].
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Some particles which begin on the left scatter to the left,
and the pump can change their energy. Over most of region
II (1.176 � |pi | � 1.95), the left-to-left scatterers gain energy
from the pump (on average) [�T L(|pi |) > 0], and temperature
of the left reservoir increases. However, at the high end of
this region (1.95 � |pi | < 2), the left-to-left scatterers lose
energy (on average) to the pump [�T L(|pi |) < 0], and the left
reservoir is cooled.

The total energy change of this reservoir depends on the
average energy change of left-scattered particles and on the
loss of particles to the right-hand reservoir. Over most of
region II (1.243 � |pi | < 2), there is a net loss of energy
in the left-hand reservoir (< 0). However, at the lower end
of this region (1.176 � |pi | � 1.243), the gain of energy of
left-to-left scatterers exceeds the loss of energy associated
with particle transport to the right, and the total energy in the
left-hand reservoir rises (> 0),

Combining the energy changes of both reservoirs, the pump
has added energy to the reservoirs for the entirety of region II
[�ET (|pi |) > 0]. These results are summarized in Fig. c).

D. Region III: Net right-to-left particle transport
(2 < | pi | � 2.63)

This region is the most complex. For |pi | > 2, for this
pump, all particles incident from the right have enough energy
to transmit past both barriers. Particles incident from the left
initially have enough energy to get over the static barrier, but
they may lose energy to the oscillating barrier, be reflected
from the static barrier, and scatter into the left reservoir.
Therefore the only possible direction of net particle transport
is from right to left. Figure 1(a) shows right-to-left particle
transport [CP (|pi |) < 0] in the range 2 < |pi | � 2.63.

Particles which scatter to the right reservoir begin in the
left reservoir. In the majority of this region (2 < |pi | � 2.616)
they (on average) gain energy from the pump [�T R(|pi |) > 0],
and the temperature in the right reservoir rises. Combining the
gain of energy per particle with the loss of particles, the result
is a loss of total energy in the right reservoir [�ER(|pi |) <

0]. In the remainder of region III (2.616 < |pi | � 2.63), the
left-to-right scatterers lose energy to the pump (on average)
[�T R(|pi |) < 0], the right reservoir is cooled, and its total
energy decreases [�ER(|pi |) < 0] because of loss of particles
and loss of average particle energy.

Particles which scatter to the left reservoir can begin in
either reservoir. These particles on average lose energy to
the pump [�T L(|pi |) < 0], so the left reservoir is cooled.
However, its total energy rises (>0) because scattering
increases particle number in the reservoir. Examining both
reservoirs together, over most of the lower portion of region
III (2 < |pi | � 2.267), the pump adds energy to the reservoirs,
while over the remainder of the region (2.267 � |pi | � 2.63),
it removes energy from the reservoirs. Figure c) summarizes
these results.

E. Averaging over energies

Thermodynamics (and physical intuition) tells us that if
a pump is connected to a single reservoir (or two reservoirs
with the same temperature, pressure, and chemical potential),
then the net energy transfer can only go from the pump to
the reservoirs. Accordingly, if we average the energy input
�ET (|pi |) over a Maxwellian distribution at any temperature,
that result must be non-negative [

∫
�ET (|pi |)e−p2

i /2mkBT dp �
0]. Scrutiny of �ET (|pi |) in Fig. 1(b) shows that this is
satisfied in the example pump. Also the observation that at
low incident particle energies (Region I) the net energy flow
is from pump to particles must hold for any pump. This is
another point that calls for a dynamical proof.

VI. CONCLUSION

We have therefore by example established the properties
(A)–(D) stated under Summary of Results.
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