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Dynamical monodromy

C. Chen, M. Ivory, S. Aubin, and J. B. Delos*

Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA
(Received 5 July 2013; published 28 January 2014)

Integrable Hamiltonian systems are said to display nontrivial monodromy if fundamental action-angle loops
defined on phase-space tori change their topological structure when the system is carried around a circuit. In
an earlier paper it was shown that this topological change can occur as a result of time evolution under certain
rather abstract flows in phase space. In the present paper, we show that the same topological change can occur
as a result of application of ordinary forces. We also show how this dynamical phenomenon could be observed
experimentally in classical or in quantum systems.

DOI: 10.1103/PhysRevE.89.012919 PACS number(s): 05.45.−a, 37.10.Vz, 45.20.Jj

I. INTRODUCTION

The general goal of this type of research is to understand
and control quantum systems by understanding and controlling
the corresponding classical systems. In recent years there have
been major advances in classical mechanics: nonlinear dynam-
ics, chaos theory, the “butterfly effect,” new understanding of
periodic orbits and their bifurcations and proliferation and
their organization into families, chaotic transport and fractals,
and some recently uncovered phenomena called “Hamiltonian
monodromy.” In each case, new understanding of classical
systems has led to new understanding of their quantum
counterparts.

This paper deals with the last-mentioned topic. We display
new aspects of Hamiltonian monodromy in classical systems,
and we show how these phenomena might be observed in a
macroscopic system and in a system of ultracold atoms.

The proper name of our topic is “dynamical manifestations
of nontrivial monodromy of action and angle variables in
Hamiltonian systems.” Let us just call it “dynamical mon-
odromy.” Monodromy means “once around a closed path”; a
system exhibits “nontrivial monodromy” if when we go around
a closed path in some space, the system does not come back to
its original state. The simplest example of functions that have
nontrivial monodromy are f (z) = z1/2 or g(z) = log(z) for
complex z: On one circuit around the branch point, z = 0, these
functions change their values. A function of two real variables
(l,h) with the same property is α(l,h) = l tan−1(h/l). If l

represents angular momentum and h represents energy, and
we multiply by constants to get the units consistent, then this
function gives an approximate formula for an action variable
of the system we will study: It is a multivalued function of
(l,h), and on one circuit around the origin of (l,h) space, it
changes its value.

A Hamiltonian system is said to exhibit nontrivial mon-
odromy if the system is integrable and action and angle
variables can be constructed, but they are found to be
multivalued. Angle variables are defined in such a way that
they trace out fundamental loops on tori. For the systems we
are considering, the angle variables change smoothly as (l,h)
change, but when (l,h) undergo a circuit around the origin,
the loops change their topological structure. Specifically, a
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loop that begins entirely on one side of a classically forbidden
region ends by encircling that forbidden region. This is called
a “static” manifestation of monodromy because it involves
smooth connections among coordinates defined on “static”
tori.

In Refs. [1,2] it was pointed out that this static manifestation
of monodromy must have dynamical consequences: If a
collection of particles is given initial conditions corresponding
to an initial angle loop on a torus, and those particles are driven
continuously around a monodromy circuit, then the loop of
particles must undergo the same topological change that is
seen in the angle loop.

The purpose of this paper is to answer two questions. (1)
Can this phenomenon be seen using ordinary particles that
obey Newton’s laws of motion? (2) Can it be seen under less-
than-ideal conditions, with particles having a distribution of
energies and angular momenta? We show in this paper by
computation that the answer to both of these questions is “Yes.”
We also present a design for an experimental measurement
that would answer another question. (3) What happens in a
quantum system? To what extent will these phenomena show
up in an ultracold gas or a Bose-Einstein condensate?

In the next section we give a general introduction to
Hamiltonian monodromy, so that we can pose questions (1)
and (2) with more mathematical precision. Then in Sec. III
we establish by computation affirmative answers to questions
(1) and (2). Finally in Sec. IV and Appendix C we present
designs for two experimental implementations of the theory.
One is purely classical, involving pucks on a tilting air table,
while the other, an ultracold gas or a BEC, brings forth
quantum-mechanical issues that are not addressed by the
computations presented in this paper.

II. STATIC AND DYNAMICAL MANIFESTATIONS
OF MONODROMY

A. Tori and torus quantization

Let us begin with the primary theorem on bound integrable
systems [3]. Given a phase space of dimension 2N with coor-
dinates z = (z1, . . . ,z2N ) = (q1, . . . ,qN ,p1, . . . ,pN ) = (q,p),
suppose there are N independent functions {Fα(q,p)|α =
1,2, . . . ,N} “in involution” with each other, i.e., their mutual
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Poisson brackets all vanish,

[Fα(z),Fβ(z)] =
∑

i

(∂Fα/∂qi)(∂Fβ/∂pi)

− (∂Fα/∂pi)(∂Fβ/∂qi) = 0. (1)

We use lowercase letters fα to represent the values of these
functions, and we call the space of values {fα|α = 1, . . . ,N}
of these functions “spectrum space.”

We examine the level sets �f of these functions—the set
of phase-space points z such that all Fα(z) are constants, fα:

�f = {z|Fα(z) = fα, α = 1,...,N}. (2)

The “Liouville-Arnold” theorem asserts that any such level
set that is compact and connected is topologically equivalent
to a torus [3]. Furthermore there exists a set of action and
angle variables which make good coordinates for the tori. Each
angle variable φi(z) varies from 0 to 2π when the phase-space
point z goes around one of the fundamental loops of a torus,
while the action variables Ii(z) are constant on each torus
because they depend on z only through their dependence
on the set of functions F(z): Ik(z) = Ik(F1(z), . . . ,FN (z)).
It is presumed that the Hamiltonian function for the physical
system depends only on the functions Fα(z); there is presumed
to be an invertible relationship between values f of these
conserved quantities and values i of the action functions, so
the Hamiltonian can also be expressed as a function of the
action variables, H (z) = H [I (z)]. It follows that the motion
of any phase-space function g(z) is quasiperiodic (i.e., a
Fourier transform of g[z(t)] shows N fundamental frequencies
and all harmonics and combinations), and the fundamental
frequencies ωi are simply obtained from the Hamiltonian by
differentiation, ωj = ∂H (I )/∂Ij . Also, good approximations
to quantum eigenvalues and eigenfunctions are obtained by
examining a discrete set of tori having appropriately quantized
values of action variables.

These concepts, first formulated by Liouville, carried into
the old quantum theory by Einstein in 1918, and revived
starting in the 1970s by Percival [4–6], Marcus and Noid
[7–16], and Berry [17], are a standard part of the repertoire
of semiclassical physics and chemistry [18]. They have been
used to study an immense variety of systems, such as simple
nonlinear oscillators (e.g., the Henon-Heiles system) [19–22],
molecular vibrations and rotations [23], excited states of
hydrogen in electric and magnetic fields [24,25], doubly
excited states of helium [26–28], spin-orbit coupling [29],
and excited states of nuclei [30]. (Googling the phrase “torus
quantization” gives over 3000 hits.) Torus quantization also
arises in problems far afield from atomic, molecular, and
optical (AMO) physics: In a study of a Buffon probability
problem (when a needle is dropped in random positions on
a tiled floor, what is the probability that the needle intersects
n of the lines between the tiles?), it was found that torus
quantization gives a step on the path to the solution [31].
Analysis and quantization of tori have been widely studied
for so many years that it might come as a surprise that
reexamination of the theory would lead to new and interesting
phenomena.

B. Singular points and monodromy

In this beautiful and well-known theory, it is easy to fail to
notice the little assumption that the functions Fα(z) must be
independent, i.e., their phase-space gradient vectors ∇zFα(z)
must be linearly independent. However, in many systems there
are points zs at which the functions fail to be independent
(among other things, one or more of the gradients might
vanish). Phase-space points zs at which the rank of the N × 2N

matrix DF = ∂Fi/∂zj is less than N are called singular points,
and the corresponding values of the conserved quantities
F(zs) = fs are called singular values. A value f = F(z) is
“regular” only if no phase-space point z in its preimage under
F is singular, otherwise it is a singular value. A region of
spectrum space is called “regular” if and only if all values of f
in that domain are regular.

The importance of singular values is that near such singular
values, the structure of the embedding of tori in phase
space might change. A trivial example is a one-dimensional
pendulum, in which H = p2/2 − cos q. Phase-space points
z− = (q = 0,p = 0) and z+ = (q = π,p = 0) are singular
(the gradient of H vanishes there), and the singular values
are E− = H (z−) = −1, E+ = H (z+) = 1. For E < −1 there
are no tori, while for each energy in the interval −1 < E < 1,
a single torus corresponding to librational motion exists. For
E > 1, we find at each value of E two tori, corresponding to
rotation in a clockwise or counterclockwise sense. Thus at each
of the singular points E = ±1, there is a structural change.

More substantial examples are given in the book by
Cushman and Bates [32]. This book examines simple me-
chanical systems that appear in undergraduate textbooks (two-
dimensional harmonic oscillators, tops, spherical pendula,
etc.) and uses modern mathematical artillery to study them—
Poisson algebras, Lie theory, Ehresmann connections, Morse
theory, bifurcation theory, and especially global analysis.
Global analysis focuses on how tori foliate phase space
smoothly, or how the embedding of tori in phase space can
change abruptly near a singular value.

Duistermaat [33] (apparently following a suggestion of
Cushman) was the first to publish a paper discussing nontrivial
consequences of singular values. Consider a system with two
degrees of freedom having a Hamiltonian of the familiar
kinetic plus potential energy form, in which the potential
energy is cylindrically symmetric:

H ( p,q) = p2

2
+ V (ρ) = h, (3)

ρ =
√

x2 + y2, (4)

V (ρ) = −aρ2 + bρ4 (a,b > 0). (5)

The potential-energy function has a well to confine particles
within a certain region and a central potential-energy barrier.
Conserved quantities are the angular momentum L = xpy −
ypx , with numerical value L(p,q) = l and the Hamiltonian
H (p,q) = h. The derivatives of both H (p,q) and L(p,q)
vanish at the origin in phase space (x,y,px,py) = 0, and
therefore it is a singular point, and the corresponding origin in
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spectrum space (l,h) = 0 is a singular value, or monodromy
point.

A closed directed path [l(s),h(s)] in spectrum space
surrounding this singular value is called a monodromy circuit
(s is a continuous timelike variable representing points along
the path). If the canonical action functions Ik(l,h) are defined
so that they vary smoothly as the system is carried around
this circuit, then, when the system returns to the original (l,h),
one of the action functions is changed. One of the two action
functions is always

I1(l,h) = 1

2π

∮
L(z)dφ = l,

(6)
I1(z) = L(z) = xpy − ypx,

so it does not change when we carry the system around the
monodromy circuit,

I f

1 (l,h) = I i
1 (l,h) = li = lf (7)

(superscripts i and f mean initial and final). The other action
variable can initially be taken to be an integral around a
“ρ loop”:

I i
2 (li ,hi) = 1

2π

∮
pρ(ρ; l,h)dρ. (8)

However, at the end of the monodromy circuit, this action
function has changed to [33–35]

I f

2 (lf ,hf ) = I i
2 (li ,hi) − I1(lf ). (9)

I2 is therefore a multivalued function of (l,h). The conjugate
angle variables must also change on a passage around the
monodromy circuit:

φ
f

1 = φi
1 + φ2, (10)

φ
f

2 = φi
2 = φ2. (11)

It is easy to verify that the transformation from (φi
1,φ

i
2,I

i
1,I

i
2)

to (φf

1 ,φ
f

2 ,I
f

1 ,I
f

2 ) is canonical.
In Fig. 1, we show this static manifestation of monodromy.

The figure in the center is a monodromy circuit in (l,h)
space; in this case, any counterclockwise circuit surrounding
the origin gives the same result. The outer figures show
seven tori corresponding to seven different points in the (l,h)
spectrum space. The tori are represented in (x,y,pρ) space [it
is convenient to regard (x,y,pρ) as orthogonal axes]. When
the system is carried around such a circuit surrounding the
origin in (l,h) space and it returns to the original torus, the
coordinate system defined by canonical angle variables on the
tori changes smoothly into a different one. (The method used
to calculate angle loops is given in Appendix A.)

On each torus two families of fundamental loops [γ1] (green
curves online) and [γ2] (blue curves online) are shown, and
they provide a coordinate system for each torus. Each toroidal
loop γ1 (green online) has a constant value of canonical angle
variable φ2, while φ1 varies from zero to 2π . These loops are
spaced by fixed steps of φ2. Likewise each poloidal loop γ2

(blue online) has a constant φ1, while φ2 varies from zero to

2π . Those loops are spaced by fixed steps of φ1. One of the γ2

loops is stressed by a heavy curve (black online).
The fundamental loops and the associated coordinate

systems in the tori change smoothly as l and h change.
Starting at l = 0, h = −35, the stressed γ2 (heavy black
loop) is perpendicular to the toroidal (green online) loops,
and it is projected into the (x,y) plane as a line. Moving
counterclockwise in the (l,h) plane, that loop is widened and
tilted. For h > 0, as l decreases from (l,h) = (5,6) to (0,5),
the “doughnut hole” shrinks, and the innermost point of any
poloidal γ2 loop approaches the origin in (x,y,pρ) space. For
l = 0 this (x,y,pρ) projection of the torus is singular, and the
γ2 loops all rise vertically through the origin. When l continues
to decrease for h > 0, the formerly poloidal (blue online)
loops all go around the doughnut hole, and their projections
into the (x,y) plane enclose the origin. Continuing around
the monodromy circuit, the loops change smoothly; when
we get back to the original torus l = 0, h = −35 the loops
γ2, and the associated canonical angle coordinate system, are
topologically different from the original loops on that torus.
The originally poloidal loop now goes around the torus in both
poloidal and toroidal senses.

Also, examining the projections of the γ2 loops into the
(x,y) plane, wherein there is a classically forbidden region
surrounding the origin, the topology of the projected loop has
changed. Initially it is a “trivial” loop, which in configuration
space could be shrunk to a point without passing through the
forbidden region, while at the end it has winding number −1
about the forbidden region.

At the top of the monodromy circuit, at (l = 0,h = 5) the
(x,y,pρ) representation of the torus is singular. However,
the torus itself and its basic loops are not singular there.
To display this, we show in the top line of Fig. 1 a
representation of the tori in another space, (X = y + px, Y =
y − px, Py = x + py), where the tori and the poloidal loops
(blue and black online) evolve smoothly from (l = 5, h = 6)
to (l = −5, h = 4). This change of the topological structure of
the family of fundamental loops [γ2] is a static manifestation of
monodromy.

Quantum implications of multivalued action variables were
first described by Cushman and Duistermaat [36]: The lattice
of allowed semiclassical eigenvalues {En,m}, defined such that
I2(m,En,m) = (n + 1/2)�, I1(m) = m� has a defect. The
global perspective was brought into AMO physics especially
by Sadovskii, Zhilinskii, and their colleagues. They have used
the new methods to show the presence of monodromy and re-
lated phenomena in the hydrogen atom in perpendicular fields
[37–39], the CO2 molecule [40–42], HCN [43], LiCN [44],
systems with coupled angular momenta [45,46], and a number
of model oscillator systems [47–49]. Quasilinear molecules
are discussed at length in [50–52], diatomic molecules in
fields in [53], and the hydrogen atom in tilted fields in [54,55].
Experimental observations in a classical swing-spring system
were made in [56].

C. A dynamical manifestation of monodromy

The above discussion describes the properties of angle
coordinates on each (l,h) torus, and how those coordinate
systems change if we compare one torus with another. We call
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FIG. 1. (Color online) A static manifestation of Hamiltonian monodromy. Explanation is given in Sec. II B.

the phenomenon illustrated in Fig. 1 a static manifestation of
monodromy because it is a property of static coordinate sys-
tems on static tori. A time variable t never appears in Sec. II B
above; there is a path variable s for the monodromy circuit
(l(s),h(s)), but motion in real time is not considered. Therefore
it may seem that monodromy is an abstract geometrical
property of abstract variables, with no interesting dynamical
consequences. However, we now know that monodromy has
significant dynamical consequences [1,2].

What happens if in addition to the forces represented by the
Hamiltonian H (z), we subject the system to an additional
perturbing flow in phase space that changes the angular
momentum and energy of particles in the system? Such
additional forces and torques drive particles from one torus
to another.

Specifically, suppose we begin with a collection of nonin-
teracting particles on an initial torus having (l = 0, h < 0),
and suppose that the positions and momenta of these particles
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correspond to the initial γ2 loop. Suppose then that all particles
are made to change their angular momentum and their energy
simultaneously, so that at every instant all particles have equal
angular momentum and energy. Suppose furthermore that as
they are driven from one torus to another, the change of
torus leaves the value of the angle variables unchanged. (This
statement requires a definition of the origin of coordinates on
each torus, which we give in Appendix A.) Then the angle
variables evolve with time as

dφ

dt
= ω(l(t),h(t)). (12)

We may think of this evolution as occurring in incremental
steps. In the first half of each step, the particles move along
a static torus with dφ/dt = ω(l,h), and in the second half of
each step, each particle moves from a point on one torus to a
point on an adjacent torus in such a way that the numerical
values of the angle variables are unchanged φ(l,h) = φ(l +
dl,h + dh). We call this process “ideal” evolution. It is ideal
in two senses: (i) the particles all begin on a single loop
on a single torus, and that loop has a constant value of
the angle variable φi

1; (ii) the particles move synchronously
from one loop to another. This process is one type of ideal
evolution.

Now suppose that the perturbing flow carries the particles
in this way around a monodromy circuit in real time. In [2]
we gave a full description of such “ideal” evolution, and we
showed that a collection of particles distributed around a γ2

loop remains always distributed around a γ2 loop. At the end
of the monodromy circuit, when all particles have returned to
the original torus, they occupy the final γ2 loop; that is, they
have gone from a loop that is on one side of the potential-
energy barrier to a loop that surrounds the potential-energy
barrier. Thus the change in the angle coordinates on the tori is
manifested in the dynamical behavior in real time.

The work in those references [1,2] left two important
questions unanswered. (1) The ideal evolution defined therein
arises from application of a perturbing flow in phase space
which is (or can be) a Hamiltonian flow, but which cannot be
derived from a single-valued Hamiltonian function. Can we
implement a monodromy circuit by application of ordinary
forces? (2) In any real system, the initial conditions cannot
be a perfect γ2 (poloidal) loop defined on a single torus;
particles will have a distribution of initial angles, initial
angular momenta, and energies. Can a monodromy circuit be
implemented in a real system?

III. SIMULATIONS AND RESULTS

In this section, we show by computation that the answers
to the two questions given at the end of Sec. II are “yes”: (1)
a monodromy circuit can be achieved by the application of
ordinary forces, and (2) it can be achieved under reasonable
experimental conditions. We have carried out calculations on
a variety of two-dimensional circularly symmetric potential
energies having a well and a central barrier, comparable to
that given in Eq. (5). To change the angular momenta of the
particles, we apply a torque. Also, since raising and lowering
the energy of the particles would not be easy to implement in
an experiment, we instead lower and raise the central barrier

(or equivalently, raise and lower the potential well). To answer
the two questions separately, we carry out the calculations
under two sets of initial conditions.

Single loop initial conditions (case a). We suppose that
initially the particles all have the same energy and angular
momentum, so their phase points lie on a single torus; we
suppose that the particles are uniformly distributed on a single
initial γ2 loop on that torus, similar to the stressed (black
online) loop in Fig. 1. Note that whereas the particles initially
all have the same angular momentum and energy, as soon
as a transverse force is applied, with the same force on all
particles, each particle experiences a different torque, so their
angular momenta do not remain equal. Also as the potential
energy changes, they gain and lose different amounts of
energy. However, the particles always occupy a single loop
in phase space. That loop is close to a corresponding loop
on a single torus, provided that the perturbing forces are
applied slowly and gently, so that they do not change much
during a radial oscillation of the particles. This is a kind of
adiabatic implementation of the monodromy circuit. In our
calculations, the entire monodromy circuit is implemented
in approximately 30 cycles of radial oscillation. (Further
discussion of adiabaticity is in Appendix D).

Cold-gas initial conditions (case b). The Heisenberg
uncertainty principle tells us that we cannot fix both the
angle and the angular momentum of particles, and practical
experimental limitations tell us that we cannot fix the energy
exactly. We suppose that the initial conditions involve a range
of initial angles and angular momenta and energies, so that the
phase-space points of the particles lie on different tori, but all
are reasonably close to the initial γ2 loop of case (a). The spread
of angular momenta, angles, and energies is consistent with
what can be done experimentally for a cold gas described in
Sec. IV, so we call this case “cold-gas initial conditions.” Again
the applied forces change slowly compared to the period of
radial oscillation. (However, note that if the forces change too
slowly, so that the time required to go around the monodromy
circuit is too long, then the gas particles will spread because
of their thermal motion, and the change of character of
the loop will not be visible. Computational experience has
shown that the topological change is visible when the entire
monodromy circuit is implemented in about 30 cycles of radial
oscillation.)

To drive the particles around the monodromy circuit we use
the following five steps. Every step is done sufficiently slowly
that there are several radial oscillations of the particles in each
step. In computations, we can start a collection of particles
distributed around a single loop with zero angular momentum
and fixed energy, or distributed with a broader range of initial
angular momenta and energy comparable to the single-loop
initial conditions. However, in an actual experiment, it is easier
to start particles in a small packet near the inner turning point.
Then after they have moved to the desired position, the process
described below is begun.

(1) Keeping the cylindrically symmetric potential un-
changed, add a rotating force F(t), the same force on all
particles, to increase their angular momenta. The force is
turned on and off gently and, in case (a), its direction is kept
perpendicular to the position vector of the center of mass of the
loop of particles. As a result, the force rotates counterclockwise
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with a frequency close to

f = �(l̄,h̄)

τ (l̄,h̄)
. (13)

τ (l,h) and �(l,h) are, respectively, the “radial period” or time
of first return, and the angle subtended in that time on the torus
having angular momentum and energy respectively equal to
(l,h). l̄ and h̄ are the mean values of angular momentum and
energy at the time t (see Appendix A).

(2) Turn off the rotating force and raise the potential well
so as to increase the energies of the particles to positive
values. Equivalently, we may lower the central barrier; particle
energies are defined relative to the value of the potential energy
at the origin ρ = 0.

(3) Keeping the cylindrically symmetric potential fixed at
the new values, apply the rotating force again the opposite way
to reduce the angular momenta until they are negative. Again
that force must rotate counterclockwise at a frequency close
to that given in Eq. (13). In the “single-loop” computations of
case (a) we keep the force perpendicular to the vector from the
origin to the center of mass of the family of particles.

(4) Turn off the rotating force and lower the well to its
original depth; this decreases the energy of each particle.
Equivalently, we may raise the central barrier to its original
height.

(5) Keeping the potential-energy function fixed at the new
values (equal to the original values), apply the rotating force,
still rotating counterclockwise with frequency (13), to increase
the angular momentum of the particles, until the average
angular momentum of those particles equals zero. Calculation
shows that the average energy is then close to the initial energy.

Additional details about the potential energy and the
perturbations are given in Sec. IV and Appendix B.

Figure 2 shows the resulting monodromy circuit for “single-
loop initial conditions” and for “cold-gas initial conditions.”

FIG. 2. (Color online) Spectrum-space paths, i.e., paths in angu-
lar momentum—energy space, (l,h). Each line represents the path
[l(t),h(t)] of one particle as it travels around the monodromy circuit
starting at point A and proceeding through A1, B–F, and back to the
final point A (called A′). Black lines represent particles with initial
conditions on a single loop, and gray lines (blue online) are paths
of particles having cold-gas initial conditions. Particles are driven
around the monodromy circuit by applying a common force acting as
a torque to change the angular momentum, and by raising or lowering
the potential-energy well.

We see that the particles gain different amounts of energy and
angular momentum as they traverse the monodromy circuit.
However, they stay adequately close in angular momentum
and energy.

Figure 3 shows the configuration space and velocity space
behavior for the single loop and for cold-gas initial conditions.
Two important things are shown by this simulation. First, it is
possible to drive a collection of particles around a monodromy
circuit using ordinary forces (rather than by using the ideal flow
defined in Ref. [2]). Second, while we already know that the
changed structure of the loop in configuration space provides
a definitive signature of monodromy, also the structure in
velocity space provides another clear signature.

Thus we have shown by computation that this dynamical
manifestation of monodromy can be implemented in a real
system by application of ordinary forces.

IV. EXPERIMENTAL REALIZATION

In this section and in Appendix C, we outline two
experimental schemes for observing dynamical monodromy.
The scheme described in the appendix uses motion of a
magnetic puck on an air table, so it is a purely classical
realization of the theory. The scheme described below uses
a gas of ultracold atoms to implement dynamical monodromy.
This experiment also offers the possibility of exploring the
phenomenon in the presence of interparticle interactions, as
well as quantum-mechanical effects such as interference and
tunneling, which are beyond the scope of the theory presented
in this paper. It is not an easy experiment, but it uses only
standard tools of atomic physics.

A conclusive observation of dynamical monodromy should
show experimentally that if one starts with a loop of initial
condition points in phase space and then varies their energy
and angular momentum along a closed path in spectrum space
(such as in Fig. 2), then the initial and final configuration-space
loops have a topologically different structure relative to the
forbidden region surrounding the origin—i.e., the final, but not
the initial loop encloses the energetically inaccessible region.
The experimental system requires two main ingredients: (1)
precision control for producing the initial phase-space loop,
and for applying the torque and central potential barrier
modulations to accurately implement the prescribed spectrum
space path; and (2) accurate measurements of energy, angular
momentum, position, and velocity to verify the phase-space
and spectrum-space coordinates of the system at the start, end,
and during the monodromy process.

The ultracold atoms scheme uses a ring-shaped optical
trapping potential for ultracold 39K atoms. Instead of running
the full loop of initial conditions simultaneously, the atoms are
placed in a short segment of the loop of initial conditions and
then driven around the ring potential by the application of a
uniform magnetic force, while the height of the central barrier
is appropriately modulated to follow the monodromy circuit.
The resulting energy and angular momentum of the atoms can
then be tracked by both in situ and time-of-flight imaging as
the system moves along the prescribed spectrum space path.
The monodromy process for the full loop of initial conditions
is reconstructed by combining the results of separate initial
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FIG. 3. (Color online) This is a collection of snapshots showing the evolution of the single loop and of the cold gas as the system traverses
the monodromy circuit. The topological structure of loops of particles in configuration space changes during the monodromy circuit. Single-loop
initial conditions are represented by the solid (black online) curve, while gas particles are represented by dots (color online). (A) and (A′) are
points marked in Fig. 2. (a) Position space. Each square is a region 400 × 400 μm (±200 μm about the origin). The inner and outer circles
are boundaries of the classically allowed region for any single-loop particle that has l = 〈l〉 and h = 〈h〉. The vectors from the origin (green
online) represent the applied rotating force. (A) Initially all single-loop particles have the same energy and angular momentum (l = 0,h = h0)
and they form a line in configuration space (x-y plane) while the “gas particles” have a spread in angle, angular momentum, and energy:
〈h〉 = h0, �h > 0, 〈l〉 = 0, and �l�φ = �/2. (A1) In the second snapshot, as angular momenta increase, the line evolves into a loop always
linking the inner and outer boundaries. (B and C) The well is lifted (equivalently, the central barrier is lowered), so the central forbidden region
is reduced to a size governed by the angular momentum. (C,D,E) With energy of the particles above the central barrier, the angular momentum
is decreased from positive to negative. At some instant a single-loop particle having zero angular momentum passes over the center point
x = y = 0; for that particle the central forbidden region has vanished for an instant. When it reappears, it is inside the loop. (E and F) The well
is lowered (equivalently, the barrier is raised) and the central forbidden region gets larger. (F and A′) The angular momentum is driven back up
to zero. Integration is stopped when 〈l〉 = 0, and we find that 〈h〉 is close to the initial energy, h0. Like the angle loop γ2, the loop of particles
has evolved into a topologically different loop. (b) Momentum space, (px,py). The units of momentum are 10−27 Kg m/s. Each square is a
region 20 × 20, extending from ±10 about p = 0. From points A1–C, the loop does not enclose the origin. At D it touches the origin, and from
E–A′, the winding number about the origin is 1. Initially particles are traveling equally to the left and right. At the end, they are dominantly
going in a beam like a rotating searchlight.

condition segments, so that the new topology of the resulting
phase-space distribution can be observed.

The experimental implementation requires a number of
lasers to produce a ring potential and several external magnetic
fields to produce a torque that changes the angular momentum
of the atoms. Figure 4 shows how lasers and magnetic coils
can be combined to produce the appropriate optical potential
and magnetic force for the atoms, which are then detected

by a high resolution imaging system. We summarize the main
suggested experimental parameters in Table I. In the following
paragraphs, we describe the details of the ring trap, the atomic
packet and its preparation in a segment of the ring of initial
conditions, the torque force, and how to measure the total
energy and angular momentum of the atomic packet.

Ring trap. The atoms are confined in a ring trap produced
by two blue-detuned optical dipole potentials produced by two
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FIG. 4. (Color online) Proposed apparatus and optical potentials for observing dynamical monodromy. (a) Sketch of apparatus for observing
dynamical monodromy: The atoms are confined in a ring trap formed by the vertical downward-directed blue-detuned laser beams and the
horizontal laser beam (green online). The ring trap is the light (yellow online) ring in the intersection of these beams. Coils (orange online)
generate magnetic fields for tuning the interactions to zero and producing the torque force. The camera is used for absorption imaging with an
upward-directed laser probe beam (up-pointing arrow, orange online). (b) Planar ring-trap potential for the ultracold 39K atoms. The potential
consists of a central Gaussian barrier with a waist radius of 73 μm and an outer Gaussian wall at a radius of 200 μm with a waist of 26 μm.
(c) Trap and release method for producing the atomic packet with total energy 53 μK.

vertically directed laser beams: a focused laser that serves as
the central barrier and a concentric hollow laser beam that
provides the outer wall of the trap. Hollow beams can be
generated with a variety of optical elements such as axicon
lenses [57], phase plates [58], and spatial light modulators
[59]. Time-averaged doughnut beams can be produced by rapid
rotation of a Gaussian beam using two crossed acousto-optic
modulators [60]. The Gaussian ring potential of Fig. 4(b) is
well suited for ultracold atom monodromy studies and can be
produced with central barrier and outer wall laser powers of 0.4
and 2.5 W, respectively, at 750 nm. An additional red-detuned
laser can be used to form a horizontal sheet of light that
provides vertical confinement, while leaving the horizontal
confinement potentials negligibly affected: For example, a
10 W laser beam at 1064 nm focused to horizontal and vertical

TABLE I. Summary of ultracold atom experiment parameters.

Parameter Value

Ring-trap laser power 2.9 W at 750 nm
Vertical trapping laser power 10 W at 1064 nm
Atomic state |F = 1, mF = +1〉

hyperfine state of 39K
Atomic packet population 4 × 104

Energy of initial atomic packet 53 μK
Peak torque force 0.36 mKg*

Magnetic Feshbach zero 350 G
Duration of monodromy round trip 100 ms

*I.e. 0.36 times the weight of a potassium atom.

waist radii of 5 mm and 30 μm, respectively, will provide
harmonic confinement of 360 Hz along the vertical axis with
a trap depth of roughly 4 μK, but with a negligible 2 Hz
confinement in the horizontal plane. Alternatively, vertical
confinement can be provided by a one-dimensional optical
lattice of horizontal “pancake traps” with the atoms spread
over multiple layers. Based on simulations of atomic motion
in the ring potential, the average scattering rate from all of the
far off-resonant trapping light is estimated to be about 1 Hz
per atom and so is negligible over the 100 ms duration of the
proposed experiment.

Atomic packets. The atomic packets consist initially of
a noninteracting Bose-Einstein condensate (BEC) of 39K
atoms designed to minimize the expansion of the atomic
packet as it follows the spectrum space path. The BEC
limits the expansion of the atomic packet to the Heisenberg-
limited spread required of all quantum-mechanical systems,
but must be carefully tailored by choosing an appropriate
initial packet size: In our case, a 39K BEC with radial and
tangential half-widths of 0.3 and 2.25 μm, respectively, will
expand with respective velocities of 2.7 and 0.4 μm/ms.
Repulsive atom-atom interactions can also lead to relatively
large expansion rates, but can be sufficiently suppressed by
using the |F = 1, mF = +1〉 hyperfine ground state of 39K at
a magnetic field of 350 G, which tunes the s-wave scattering
length to zero due to a nearby Feshbach resonance [61]. (A
slightly attractive interaction may be useful in reducing the
Heisenberg-limited spreading of the packet, though simulating
its precise effects on the atomic packet is beyond the scope
of this paper.) Experimentally, the interactions are difficult to
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FIG. 5. (Color online) Magnetic fields for producing the torque force. The top three panels sketch how the quadrupole magnetic field [panel
(a), thin arrows, blue online] generated by the anti-Helmholtz coil pair combines with the uniform horizontal magnetic field [panel (b), thin
arrows, red online] produced by the two Helmholtz coil pairs to produce a magnetic gradient in the direction of the magnetic field [panel (c),
thin arrows, purple online], whose orientation is determined by the relative currents in the two Helmholtz coil pairs. The magnetic field line
sketches in panels (a), (b), and (c) are all in the horizontal plane (view from above) and are not to scale: The thick arrows represent the current
in the coil, while the thick dashed arrows indicate the current in the hidden coil underneath. The two plots (d) and (e) show the magnetic field
magnitude and its associated effective potential. Along the field direction (d) it is nearly linear (red online) while in the transverse directions
(e) it is quadratic: Its horizontal variation is represented by the solid (green online) curve, and its vertical variation by the dashed (blue online)
curve. Note the reversed right axes for the potential energy, since the |F = 1, mF = +1〉 state is a strong field seeker.

eliminate altogether, but even if the scattering length is reduced
to as = 0.17a0, which for ∂as/∂B = 0.55a0 [61] corresponds
to a magnetic field tuning precision of �B = ±0.3 G, then
interaction-induced spreading is negligible for packets with
fewer than 8 × 104 atoms. However, the atom number must
also be sufficiently large to allow for high-quality imaging:
Simulations of time-of-flight experiments, such as in Fig. 7,
show that atom numbers of 4 × 104 or more produce final
atomic packets with optical depths of 0.5 or higher, which are
suitable for absorption imaging methods [62].

Initial conditions. The BEC is inserted into the ring trap
with a multistep process. As shown in Fig. 4(c), the BEC is
initially trapped by a single-beam optical dipole trap produced
by an additional laser that copropagates with the 1064 nm
laser sheet [not shown in Fig. 4(a)]. The BEC is located at a
radius of 25 μm, which corresponds to a potential energy of
53 μK. Upon turning off this single beam confining potential,
the BEC is free to oscillate in the ring potential. The specific
position-velocity combination of the ring of initial conditions
for the atomic packet is chosen by applying the torque force at
the appropriate time of the oscillation phase. Our simulations
show that a radial positioning error of ±1.25 μm can be
tolerated. Alternatively, if a higher precision method is needed,
a multiphoton Bragg pulse [63,64] can be used to impart a
momentum kick (corresponding to a kinetic energy of 53 μK)
to BEC atoms held at the minimum of the ring potential.

Torque force. The torque force can be produced by the
magnetic gradient of a horizontally oriented quadrupole coil

pair with equal and opposite currents in its two coils, as shown
in Fig. 4(a). As illustrated in the top three panels of Fig. 5, the
central symmetry quadrupole field combines with the 350 G
horizontal magnetic field required for suppressing interactions.
At 350 G, the Zeeman shift of the |F = 1, mF = +1〉
hyperfine ground state is −1.33 MHz/G. Modulation of the
torque force as shown in Figs. 6(a) and 6(b) help to reduce
the width of the packet in spectrum space. A maximum force
of 2.3 × 10−25 N = 0.36 mg is required, which corresponds
to a magnetic gradient of 2.6 G/cm. The combination of the
uniform 350 G field with the weak quadrupole field results
in a magnetic gradient along the direction of the 350 G field,
while the gradients in the transverse horizontal and vertical
directions contribute negligibly to the potential over the size
of the ring trap. The orientation of the magnetic torque force
can be easily rotated in the horizontal plane by changing
the direction of the 350 G field, which is generated by two
orthogonal Helmholtz-style coil pairs: Sinusoidal modulation
of the coil pair currents (π/2 out of phase from each other)
rotates the 350 G field and the magnetic gradient in a manner
similar to the magnetic field modulations in a time-orbiting
potential (TOP) trap [65]. Figure 6(b) shows the orientation
of the torque force and 350 G field over the course of the
monodromy process: The field maintains an average angle
of roughly π/2 with respect to the angular position of the
atomic ensemble and is rotated at rates of up to 330 Hz,
which is substantially slower than in a TOP trap [65]. Finally,
the magnetic gradient produces a negligible variation of the
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FIG. 6. (Color online) Torque force and central barrier modula-
tion versus time required for completing the monodromy circuit.
Top: Torque force magnitude (curve with arrow toward left axis,
black online) and central barrier amplitude (curve with arrow toward
right axis, red online) as a function of time. Bottom: Absolute torque
angle with respect to starting position (arrow toward left axis, red
online) and torque angle relative to full atomic ensemble center of
mass (arrow toward right axis, black online). The letters on the top
axis denote the monodromy circuit transit points of Fig. 2.

scattering length of at most �as = 0.06a0 over the roughly
400 μm diameter of the ring trap.

Measuring the total energy E. The total energy E of the
atomic packet can be measured by turning off the outer laser
barrier of the ring trap while the atoms are climbing the inner
central barrier. The atoms convert all of their potential energy
to kinetic energy as they are pushed away from the central
barrier and leave the ring potential region, so that their average
velocity, kinetic energy, and thus total energy can be measured
by time-of-flight imaging.

Figure 7 shows the results of a simulation of this process.
The method relies on the compactness of the atomic packet to
guarantee that there are no atoms in the outer barrier region
when it is turned off, and to ensure that a measurement of
average velocity is representative for all the atoms in the
packet. Numerical simulations show that the method functions
well for all initial conditions and points along the spectrum
space path: To measure the total energy E at some point along
the spectrum space path, the monodromy process is stopped
at the desired point, and the outer barrier is turned off as
the atoms are climbing the central barrier. Furthermore, the
instantaneous kinetic energy of the atoms can be measured by
turning off the entire ring potential and then measuring the
velocity by time-of-flight imaging. In practice, the 1064 nm
optical dipole laser and the torque force magnetic gradient will
need to be turned off as well, since they provide very weak but

FIG. 7. (Color online) Time-of-flight method for measuring the
total energy E. The plot corresponds to a packet that has completed
the monodromy process and returned to point A (i.e., A′) on the
spectrum space path of Fig. 2.

sufficient horizontal confinement to affect the time-of-flight
measurements.

Measuring the angular momentum L. The angular momen-
tum of the atomic packet can be measured by in situ imaging
of the atoms as they travel around the ring potential. The inset
of Fig. 8 shows a simulated image of the atoms in the ring
potential, and the radially averaged atomic population as a
function of angle from which the angular center of gravity
of the packet can be determined from Gaussian fits of the
distribution. A series of such images for different holding
times shows the time evolution of the angular position of

FIG. 8. (Color online) Angular momentum measurement
method with in situ imaging. The main plot shows the average
angular position of an atomic packet versus time (wiggly curve, blue
online), along with a linear fit (straight line, red online) that gives the
average angular velocity. The simulation is for an atomic packet that
has returned to point A (i.e., A′) after completing the monodromy
circuit of Fig. 2. Inset: Angular density of the packet (wiggly curve,
blue online) and Gaussian fit (smooth curve, red online) versus
angular position. The fit is used to determine the packet’s average
angle; the inset also shows a simulated image of the atoms (dots,
blue online) in the ring potential along with the maxima and minima
of the radial oscillations (circles, red online).
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the packet. The main plot in Fig. 8 shows the results of a
numerical simulation of this process: The average angular
velocity 〈θ̇〉 is the overall slope of the angular time evolution,
but the plot also contains a periodic step feature that reflects
the radial oscillations of the atoms. The angular momentum
L can be extracted from the time evolution of a packet’s
angular position, such as shown in Fig. 8, by determining
the angle change �θT over the course of one radial oscillation
period �Tradial and then solving the following integral equation
numerically for L [66]:

�θT = 2
∫ Rmax

Rmin

Ldr

r2
√

2
m

[h − V (r)] − L2

m2r2

, (14)

where h refers to the total energy of the atoms, V (r) is the ring
potential, and Rmin and Rmax are the inner and outer turning
radii, respectively.

Extracting L requires knowledge of all the other quantities
in Eq. (14). While �θT can be determined from the step
size of the “staircase” plot of average angular position versus
time, it is more reliably obtained in our simulations from the
relation �θT = �T radial〈θ̇〉: The average angular velocity 〈θ̇〉
is the slope of a linear fit to the average angular position
plot in Fig. 8, and the radial period �Tradial of the atomic
packet in the ring potential can be obtained from a Fourier
transform of the average angular position time series in Fig. 8.
V (r) can be determined experimentally by in situ absorption
imaging of a cold thermal gas of temperature Tthermal in
the ring potential: The image provides the radial atomic
density n(r) which can then be used to extract the potential
through the relation n(r) ∼= exp[−V (r)/kTthermal]/�3, where
� = �/

√
2πmkTthermal is the thermal de Broglie wavelength

[67]. The determination of the average total energy E of
an atom in a packet was described in the previous section.
The inner and outer turning radii can be determined from
knowledge of the potential and the total energy or from in
situ imaging. We find through numerical simulations of the
above measurement method that L can be determined with an
accuracy of 5%–10% over the course of the entire spectrum
space path.

V. CONCLUSION

We have shown that a dynamical monodromy circuit can
be implemented by ordinary forces, and we have described
two ways to realize a dynamical monodromy circuit in a
physical system—a puck on an air table, and an ultracold gas.
All our calculations are classical, and presume no interaction
between the particles, so measurements on a cold gas would
raise questions about quantum behavior and about interactions
between particles that are not addressed in this paper.
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APPENDIX A: NUMERICAL COMPUTATION OF
CANONICAL ANGLE LOOPS

The method described here can be adapted for use in a
great variety of systems, but we describe it here in detail
for cylindrically symmetric systems. Given specified regular
values of angular momentum L(z) = l and energy H (z) = h

we presume that the corresponding torus is unique. For that
specified (l,h), we choose a circle ρ = ρ0 in the classically
allowed region, and we choose an arbitrary point (ρ0,φ0)
on that circle. At that point we set initial conditions on the
momenta: p0

φ = l by definition, and p0
ρ is chosen as any

value such that H (p0
ρ,p

0
ρ,ρ

0,φ0) = h. Starting at that point,
and time t = t0 we integrate Hamilton’s equations until the
coordinate ρ(t) passes again through the circle ρ = ρ0 in
the original sense (outward or inward, whichever way we
started the trajectory), and we record the time of first return
τ (l,h) = t − t0 and the subtended angle �(l,h) = φ − φ0,
defined below. Now we define an effective Hamiltonian,
which is a function of the four phase-space variables and two
parameters (l,h),

H (z; l,h) : R4 × R2 → R,
(A1)

H (z; l,h) ≡ [τ (l,h)H (z) − �(l,h)L(z)]

2π
.

This is regarded as a function of the phase-space variables
z, with l and h treated as fixed parameters. In other words,
we derive equations of motion by differentiating H with
respect to each zi , holding l and h fixed. Here it is essential
to distinguish between [L(z),H (z)], the functions of positions
and momenta, and their numerical values [l,h], which are
regarded as fixed parameters when Hamilton’s equations are
computed. In our case,

H (z; l,h) ≡ 1

2π

{
τ (l,h)

[
p2

ρ

2
+ p2

φ

2ρ2
+ V (ρ)

]
− �(l,h)pφ

}

(A2)

and, for example, denoting σ as the timelike variable,

dφ

dσ
= ∂H

∂pφ

= 1

2π

[
τ (l,h)pφ

ρ2
− �(l,h)

]
. (A3)

Equations of motion for other variables are obtained similarly.
(For h > 0 it is best to integrate in Cartesian coordinates to
avoid singular behavior near the origin.) Numerical integration
of this path z(σ ) from σ = 0 to 2π produces a γ2 loop.

As we change l and h, going from one torus to another,
we need to define a connection between angle variables on
the changing tori such that the transformation between phase-
space points and variables (φ1,φ2,l,h) is a differentiable and
invertible transformation. To do this, we must give a definition
of the origin of angle coordinates z0(0,0,l,h) such that the
angles are differentiable functions of z, and a definition of
�(l,h) such that it is a differentiable function of (l,h). In the
present case, we may choose the outermost point of each torus
on the x axis to be the origin of angle coordinates.

When we define � so that it changes smoothly, we find that
it is forced to be a multivalued function of (l,h). In our case,
starting with (l = 0,h < 0), �(l,h) = 0. Increasing l from
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FIG. 9. (Color online) The angle �(l,h) must be defined such
that it changes smoothly with l and h. As l decreases through zero
with h > 0, �(l,h) must be defined so that it increases smoothly
through π .

there makes �(l,h) small and positive. Proceeding around
the monodromy circuit, �(l,h) increases until at l = 0,h > 0,
�(l,h) = π . As l goes negative with h > 0, �(l,h) must be
defined so that it and all its derivatives with respect to l and
h are continuous. This is done by defining �(l,h) as shown
in Fig. 9. � is therefore a multivalued function of (l,h): The
monodromy point (l = 0,h = 0) is a branch point, and �(l,h)
changes from 0 to 2π on its journey around the monodromy
circuit.

The resulting γ2 loop also evolves smoothly, and displays
monodromy, as was shown in Fig. 1. This is the method we
used to create that figure.

The corresponding multivalued action variable I2(l,h) can
be computed by integration around that γ2 loop,

I2(l,h) = 1

2π

∮
γ2

p(s) · dq
ds

ds. (A4)

To show that this is all consistent with more familiar
definitions, let us examine

I ′
2(l1,h1) = 1

2π

∮
pρ(ρ; l,h)dρ,

(A5)

I ′
2(l2,h2) = 1

2π

∮
pρ(ρ; l,h)dρ − l,

where (l1,h1) are any values of (l,h) on the first half of the
monodromy circuit, (l2,h2) are any values on the second half,
and

pρ(ρ; l,h) =
{

2

[
h − l2

2ρ2
− V (ρ)

]}1/2

. (A6)

One easily shows that I ′
2 defined in Eq. (A5) is the same as

I2 defined in Eq. (A4), and

∂I ′
2

∂h
= τ (l,h)

2π
,

(A7)
∂I ′

2

∂l
= −�(l,h)

2π
.

Hence we can write this action variable as a function of phase-
space coordinates z with the notation

I2(z) = I ′
2(L(z),H (z)), (A8)

and its derivatives with respect to z are

∇zI2(z) =
(

∂I ′
2

∂l

)
∇zL(z) +

(
∂I ′

2

∂h

)
∇zH (z)

= 1

2π
[τ (l,h)∇zH (z) − �(l,h)∇zL(z)]. (A9)

The conjugate angle φ2 is obtained by using I2 as Hamiltonian,
and σ and φ2 range from 0 to 2π on the γ2 loop.

APPENDIX B: DETAILS OF THE APPLIED FORCES

The formulas for applied forces given below were obtained
as a result of numerical experiments. We did not use any sys-
tematic optimization method to obtain these results, but only a
modest number of trials. For single-loop initial conditions, we
begin with N particles, all having angular momenta equal to
0, and all having the same initial energy, uniformly distributed
around a γ2 loop on the initial torus [l(t0) = 0,h(t0) = h0]. At
each instant they have a center of mass located at 
r0(t), where


r0(t) =
∑N

i mi
ri(t)∑N
i mi

= r0(t)cos ϕ(t)
i + r0(t)sin ϕ(t) 
j . (B1)


ri(t) and mi are the instantaneous location vector and mass
of the ith particle, and r0(t) and ϕ(t) are the instantaneous
length and azimuthal angle of the instantaneous center-of-mass
vector 
r0(t). As mentioned in the main section of this paper, the
monodromy circuit is divided into five steps, with ti−1 � t � ti
on the ith step.

The driving torque that changes the angular momentum
is applied as follows. The same force 
F (t) is applied to all
particles, and this force is nearly perpendicular to the center-
of-mass vector 
r0(t). The direction of the force is such that
the angular momentum of the center of mass increases in
step 1 and in step 5, and such that it decreases in step 3. Thus,
in steps 1 and 5, 
F (t) is π/2 “ahead of” 
r0(t):


F (t) ≡ F (t)cos

[
ϕ(t) + π

2

]

i + F (t)sin

[
ϕ(t) + π

2

]

j, (B2)

F (t) ≡ �̇(t)√
r2(t)

, r2(t) ≡
∑N

i mi
r2
i (t)∑N

i mi

. (B3)

r2(t) is the mean square distance from the origin to the
instantaneous location of each particle, and �̇(t) is a chosen
average rate of increase of angular momentum. It is made to
increase and decrease smoothly, as below. In steps 2 and 4,
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�̇(t) = 0, while in steps 1 and 3,

�̇(t) = ci�̇0sech

[(
ti − ti−1

2

)(
1

ti−1 − t
+ 1

ti − t

)]
. (B4)

�̇0 is a constant value which we take to be 0.9, and ci =
1, − 2, and 3, respectively, in steps 1, 3, and 5. The negative
sign in step 3 makes the force rotate in the same sense as the
center of mass, but π/2 “behind,” so the angular momentum
is reduced in this step. Equation (B4) makes the torque change
as a C∞ function of time.

We found that a slightly different method worked best for
step 5. We took for t > t4,


F (t)≡F5cos

[
ϕ(t4) + ωt + π

2

]

i+F5sin

[
ϕ(t4) + ωt + π

2

]

j,

(B5)

where ϕ(t4) is the azimuthal angle of the center of mass at time
t4, and ω is a constant rotation rate chosen to be

ω ≡ �(l(t4),h(t4))
τ (l(t4),h(t4))

, (B6)

where (l(t4),h(t4)) are the average value of angular momentum
and energy when t = t4, and �(l,h) and τ (l,h) are defined in
Appendix A as subtended angle and time of first return as
functions of angular momentum and energy. F5 is a constant
and set to be 0.15.

During steps 2 and 4, while there is no driving torque, the
parameters of the well are changed by changing the height of
the central barrier. In our calculations this is done by changing
the power in the strongly focused laser so that the height of the
central barrier V (t) varies continuously between V0 and V1 as
follows.

V (t) = V0 if 0 � t � t1

= V0 + (V1 − V0)

{
tanh

[(
t2 − t1

2

)(
1

t1 − t
+ 1

t2 − t

)]

+ 1

2

}
if t1 < t � t2

= V1 if t2 < t � t3

= V1 + (V0 − V1)

{
tanh

[(
t4 − t3

2

)(
1

t2 − t
+ 1

t4 − t

)]

+ 1

2

}
if t3 < t � t4

= V0 if t4 < t � t5. (B7)

Integration is stopped when the average value of the angular
momentum returns to zero, and that defines the time t5.

APPENDIX C: CLASSICAL DYNAMICAL MONODROMY
ON AN AIR TABLE

This scheme is considerably simpler than the proposed
ultracold atom implementation, but it is purely classical, and so
while it can illustrate dynamical monodromy, it cannot address
the interesting questions associated with quantum systems. In
this approach, a puck on an air cushion serves as a single test
mass which can move with negligible surface friction over a

FIG. 10. (Color online) Magnetic confinement potential of the
puck on the air table. Top: Plot of the magnetic field component
normal to the air table, Bz, versus a radial horizontal axis. The
horizontal confinement potential for the magnetic puck is proportional
to Bz. The three curves plot Bz for central coil currents of 0.5I0, I0,
and 1.5I0, where I0 is the current in the large outer coil. Both coils
have the same number of turns. Bottom: Side view sketch of the air
table (horizontal plane, gray online), large magnetic coil (red online),
and central barrier magnetic coil (blue online). The arrows represent
the direction of the current in the coils and the magnetic moment of
the puck. The puck moves in a plane just above the surface of the air
table.

horizontal planar surface. Magnetic forces are used to provide
a ringlike confining potential in the horizontal plane, while the
tilt of the air table away from horizontal provides an external
force that exerts a torque on the puck. The motion of the puck
can be recorded by a video camera placed directly above the air
table. Repeating the circuit with different initial conditions and
superposing the videos, one can watch the evolution of a loop.

Magnetic ring potential. A magnetic puck with a vertically
oriented magnetization axis with magnetic moment −→μ will
experience a conservative potential in an external magnetic
field,

−→
B . The magnetic interaction Hamiltonian is −−→μ · −→

B

and so it is proportional to the vertical component of
−→
B .

As shown in Fig. 10, a large diameter magnetic coil in the
horizontal plane of motion of the puck provides the outer
barrier of the ring potential, while a smaller concentric coil
located below the air table provides the central barrier of the
ring potential. The amplitude of the central barrier can be
dynamically adjusted by varying the current flowing through
it.

Torque force. The torque is provided by a uniform external
force derived from Earth’s gravity by tilting the air table by an
angle ϑ from horizontal, in the desired direction of the force.
The magnitude of the component of the force on the puck in
the plane of the air table is then mg sin ϑ , where m is the
mass of the puck. A directional and dynamically controlled
tilt can be implemented by supporting the air table from below
with a pivot point at its center and two electrically controlled
actuator legs at adjacent corners. The height of the two legs
can be modulated by independent computer controlled voltage
signals. For a typical puck mass of 0.2 kg and a magnetic ring
potential, such as in Fig. 10, with an outer radius on the order
of 0.3 m produced by coils with currents on the scale of 200
amp-turns, our simulations show that the proper torque force
can be produced with air table tilts on the order of 0.5° or less.
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In this case, the equivalent spectrum space monodromy circuit
can be completed on a time scale of 10–20 s.

Initial conditions. The puck is set in radial motion by
holding it against the outer magnetic coil ring and then
releasing it. The puck will travel radially, tracing out the
ring of initial conditions in phase space, and the specific
initial condition of interest is then selected by starting the
monodromy process (i.e., the application of the torque force)
when the puck has the required position and velocity.

Detection. The motion of the puck throughout the air table
ring potential can be recorded by a video camera placed
directly above the apparatus. The video provides the position
of the puck as a function of time, from which the velocity of
the puck can be derived. The position of the puck can be used
to determine its magnetic potential energy (in combination
with a magnetic field map), while the velocity gives its kinetic
energy, and thus the total energy. The angular momentum can
be derived from the velocity and radial position of the puck.
The spectrum space path can thus be reconstructed from the
energy and angular momentum of the puck.

Following a loop of initial conditions. The video would
show each path q(t) = [x(t),y(t)], and superposition of the
videos for different initial conditions would show the evolution
of the whole loop.

APPENDIX D: MONODROMY AND HANNAY ANGLES

We are often asked about the relationship between mon-
odromy and the phenomena associated with Hannay angles.
There are some similarities, but there are also some essential
differences.

Hannay [68] posed and answered the following question:
Given an integrable Hamiltonian system; given that the
trajectory begins on one torus; given that the Hamiltonian
depends on one or more parameters; given that we change those
parameters slowly so that they go around a cycle, returning to
their initial values; then the adiabatic proposition asserts that
the action variables will remain always constant, and therefore
the system will return to its original torus. However, what
happens to the angle variables?

Hannay showed that the angles evolve with time at
the frequencies on the instantaneous tori, but with also a
correction related to the integral of a certain 2-form. What

are the similarities and differences from our description of
monodromy? Both situations involve changes of canonical
angles. In both cases, one component of the change is the
frequency on instantaneous tori. However there are several
important differences.

Hannay’s theory applies to systems with one or more
degrees of freedom, while monodromy can only appear in
systems with two or more degrees of freedom. (2) The Hannay
angle describes the change of position of particles along a loop.
When one goes around a circuit in the parameter space, the
loop returns to its original form, but the particles are not in
the same location. In contrast, in a system with monodromy,
not only do particles change their positions around a loop,
but the whole loop changes its structure. (3) The correction in
Hannay’s case is a geometrical integral over an area subtended
by changing parameters, and it can have any value. However,
monodromy is a topological phenomenon. The change of
structure of the loop does not depend on an area. When the
system goes around any circuit enclosing a monodromy point
in a given sense we get a change which is independent of path.
(4) Hannay’s formulas apply only to adiabatic traversals of
a circuit. Monodromy is quite different. (a) In our case, we
drive the system so that the angular momentum changes—but
angular momentum is an action variable, so an action is
changing, so the system is not undergoing strictly adiabatic
evolution. (b) Nevertheless, one might argue that we are
imposing a kind of adiabatic evolution because we make the
particles undergo several radial oscillations while moving from
one torus to another—this helps keep the particles moving
together from torus to torus. That is a correct description—our
implementation is adiabatic in this sense. (c) However, we
claim that in principle, monodromy does not require any
adiabatic traversal of a circuit. The kind of ideal evolution
described in [2] will give the same result whether the system
goes rapidly or slowly. (d) On the other hand, in practice, the
only way we know how to implement a monodromy circuit in
a real classical system with real forces involves a separation
of time scales. In our case, we want all the particles to have
nearly equal angular momenta; however, when the same force
is applied to all particles, the ones at small radius experience
a smaller torque and therefore a smaller change of angular
momentum. Thus, in principle, monodromy does not require
adiabaticity, but in actual implementation, it probably does.
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