DCEP -Digital Corpus of the European Parliament

Najeh Hajlaoui ${ }^{1}$, David Kolovratnik ${ }^{1}$, Jaakko Väyrynen ${ }^{2}$, Ralf Steinberger ${ }^{2}$, Daniel Varga ${ }^{3}$
European Parliament ${ }^{1}$, European Commission ${ }^{2}$, Budapest University of Technology ${ }^{3}$ DGTRAD Luxembourg ${ }^{1}$, JRC Ispra Italy ${ }^{2}$, MRC Budapest Hungary ${ }^{3}$
E-mail: \{najeh.hajlaoui david.kolovratnik\} @ext.europarl.europa.eu ${ }^{1}$ \{jaakko.vaeyrynen ralf.steinberger\}@jrc.ec.europa.eu ${ }^{2}$ daniel@mokk.bme.hu ${ }^{3}$

Abstract

We are presenting a new highly multilingual document-aligned parallel corpus called DCEP - Digital Corpus of the European Parliament. It consists of various document types covering a wide range of subject domains. With a total of 1.37 billion words in 23 languages (253 language pairs), gathered in the course of ten years, this is the largest single release of documents by a European Union institution. DCEP contains most of the content of the European Parliament's official Website. It includes different document types produced between 2001 and 2012, excluding only the documents already exist in the Europarl corpus to avoid overlapping. We are presenting the typical acquisition steps of the DCEP corpus: data access, document alignment, sentence splitting, normalisation and tokenisation, and sentence alignment efforts. The sentence-level alignment is still in progress but based on some first experiments; we showed that DCEP is very useful for NLP applications, in particular for Statistical Machine Translation.

Keywords: European Parliament, corpus, European langages

1. Introduction

In 2003, the European Parliament and the Council formulated their insight ${ }^{1}$ that public sector information, including raw language data, are useful primary material for digital content products and services, but documents were not initially freely accessible. Since (Koehn, 2005) released his EuroParl sentence-aligned data in initially 11 languages and now available in 21 languages ${ }^{2}$, such European Union (EU) text material has been widely used to train Statistical Machine Translation (SMT) systems and more. When the European Commission's Joint Research Centre (JRC) released the 23-language JRC-Acquis sentence-aligned parallel corpus JRC-Acquis in 2006 (Steinberger, et al., 2006), an SMT system was trained for 462 language pair directions (Koehn, et al., 2009). Several other EU corpora have followed since (Steinberger, et al., 2013).
A limitation of most of these corpora is linked to the administrative text type: while they contain wide-coverage vocabulary - ranging from economy to social issues, science, education, sports, trade and more their register and text style is rather limited. DCEP which does not contain the verbatim reports of the EP's plenary sessions already released by Koehn - includes a wider variety of text types. Especially the approximately 12% of press releases should be useful due to their media language.
The corpus is currently aligned at document level and work is on-going to sentence-align it for all language pairs so that data ready to be used to train SMT systems will be ready for distribution as soon as they have been produced. The following sections describe the DCEP collection in

[^0]detail (Section 2) and they list some of the possible uses of this data (Section 3). We conclude with pointers to forthcoming work.

2. DCEP Collection

The Digital Corpus of the European Parliament (DCEP) contains most of the content of the European Parliament's official Website ${ }^{3}$. It includes the following different document types produced between 2001 and 2012:

- AGENDA: Agenda of the plenary session meetings;
- COMPARL: Draft Agenda of the part-session;
- IM-PRESS and PRESS: General texts and articles on parliamentary news seen from a national angle, specific to one or several Member States, presentation of events in the EP;
- IMP-CONTRIB: Various press documents including technical announcements, events (hearings, workshops) produced by the Parliamentary Committees;
- MOTION: Motions for resolutions put to the vote in plenary;
- PV: Minutes of plenary sittings;
- REPORT: Reports of the parliamentary committees;
- RULES-EP: The Rules of Procedure of the EP laying down the rules for the internal operation and organisation of EP;
- TA (Adopted Texts): The motions for resolutions and reports tabled by Members and by the parliamentary committees are put to the vote in plenary, with or without a debate. After the vote, the final texts as adopted are published and forwarded to the authorities concerned;
- WQ (Written Question), WQA (Written Question Answer), OQ (Oral Question) and QT

[^1](Questions for Question Time).
As explained in (Koehn, 2005), the acquisition of a parallel corpus typically takes the same steps: data access, document alignment, sentence splitting, normalisation and tokenisation, and sentence alignment.

2.1 Data access

Contrary to the crawling method used to build the Europarl corpus (Koehn, 2005), the DCEP corpus is downloaded directly from the in-house database of the

European Parliament. The motivation behind the DCEP collection is to offer the NLP community a unique multilingual corpus different in terms of size and in terms of content variety from the previous published corpora (Steinberger, et al., 2013).
The CRE "Compte Rendu in Extenso" documents are not included in the DCEP corpus to avoid overlapping with the Europarl corpus. CRE are the verbatim reports of the speeches made in the European Parliament's plenary.

	BG	CS	DA	DE	EL	EN	ES	ET	FI	FR	GA
CS	14341										
DA	14626	19961									
DE	14825	19910	102581								
EL	14804	20114	101559	101737							
EN	15204	20597	104260	107760	109090						
ES	14823	20191	102833	103017	101868	107079					
ET	14213	19677	19632	19454	19748	20010	19793				
FI	14788	19499	101987	102554	101004	102830	102256	19065			
FR	14891	20048	102775	103688	102506	109845	103814	19613	102421		
GA	12	12	13	13	13	14	13	12	13	13	
HU	14557	19531	19802	20067	20018	20603	20141	19521	19712	20166	12
IT	14780	20158	102803	102999	101954	109411	103222	19746	102195	103964	13
LT	14457	19737	20164	20142	20322	20912	20424	19786	19708	20318	12
LV	14413	19748	19766	19626	19882	20179	19964	19857	19190	19769	12
MT	14033	17030	17506	17485	17660	18213	17672	17176	17229	17610	12
NL	14701	20026	102767	102901	101759	107115	103025	19687	102081	103439	13
PL	14387	19612	21068	21090	21227	22630	21302	19610	20779	21270	12
PT	14677	19767	102413	102686	101524	105566	102858	19418	102278	103181	13
RO	14562	14897	16035	15954	16221	17526	16286	14851	15380	16244	12
SK	14431	19597	19940	20022	20142	20946	20181	19605	19873	20096	12
SL	14319	19461	19419	19591	19628	19846	19663	19440	19332	19653	12
SV	14670	20086	102738	102709	101673	103831	102937	19791	102183	102836	13
	HU	IT	LT	LV	MT	NL	PL	PT	RO	SK	SL
IT	20058										
LT	19691	20356									
LV	19657	19895	19931								
MT	17007	17652	17134	17244							
NL	19904	103031	20197	19809	17575						
PL	19621	21251	19723	19733	17025	21157					
PT	19855	102728	19967	19515	17403	102574	20989				
RO	14857	16293	15016	15068	14462	16203	14846	15812			
SK	19612	20128	19701	19692	17123	20030	19623	19868	14768		
SL	19552	19599	19565	19544	16964	19548	19472	19377	14713	19503	
SV	19919	102925	20285	19910	17606	102876	21198	102523	16139	20071	19593

Table 1: Number of documents per language pair.
a space-separated list of file names ${ }^{4}$ of corresponding linguistic versions of documents. For instance, if there is only one file name, it means that the document is available only in one language. Because it happens that more than one linguistic version for the same document (and for the same language) exists, we excluded them for the case of multilingual corpora but we included them to

[^2]build a monolingual corpus or to present statistical details.

	BG	CS	DA	DE	EL	EN	ES	ET	FI	FR	GA
BG											
CS	32565										
DA	32380	41835									
DE	33945	43365	74238								
EL	35109	45123	77164	79230							
EN	35325	45333	77522	80929	84352						
ES	37144	48039	82198	84370	86941	88597					
ET	29790	38280	38395	39817	41580	41719	44436				
FI	29579	37704	64555	66869	69395	69555	74442	34039			
FR	36399	47053	80807	83050	85607	90312	91016	43462	73027		
GA	1123	1044	1086	1120	1151	1160	1212	991	980	1183	
HU	31968	40698	40946	42831	44184	44482	47078	37345	36969	46159	1053
IT	35564	46089	78496	80688	83432	85769	88721	42415	70960	87480	1157
LT	30990	39669	39978	41273	43019	43284	46074	36130	35570	45270	1022
LV	31196	39769	39840	41350	43114	43358	46057	36340	35592	45050	1028
MT	31734	36297	36227	37876	39222	39869	41928	33170	32628	41054	1065
NL	34776	44729	77544	79554	82182	83754	87532	41327	69687	86089	1173
PL	32660	41865	42066	43925	45339	45946	48393	38333	38120	47396	1061
PT	35564	45487	78475	80598	83359	84327	88373	41990	70989	87080	1167
RO	34766	33048	33042	34530	35833	36300	37945	30347	29936	37147	1137
SK	32374	41507	41771	43197	44829	45211	47967	38064	37564	47011	1051
SL	32201	41418	41386	43007	44722	44838	47639	37945	37359	46655	1045
SV	32812	42381	72724	74829	77572	77957	82834	38816	65157	81103	1089
	HU	IT	LT	LV	MT	NL	PL	PT	RO	SK	SL
IT	45009										
LT	38628	43964									
LV	38814	44074	37768								
MT	35473	40289	34382	34721							
NL	43870	83799	42917	42802	39018						
PL	41080	46338	39767	39921	36470	45088					
PT	44495	84966	43439	43578	39683	83553	45809				
RO	32314	36330	31501	31763	32165	35525	33124	36225			
SK	40610	45799	39539	39650	36203	44770	41709	45312	32787		
SL	40470	45555	39200	39481	35967	44339	41441	45095	32703	41239	
SV	41362	79166	40189	40381	36866	77983	42628	78929	33527	42174	42014

Table 2: Average number of words per language pair (in thousands)

Table 1, Table 2 and Table 3 respect ively present, number of documents, average of the number of words, and average of the number of unique words per language ${ }^{5}$ pair.
The French-Spanish language pair has the most words and the following pairs have at most 10% less: Greek, English, Spanish and French paired to Italian, Dutch and Portuguese; French and Spanish paired with German, Greek and English; also Spanish paired with Danish, French and Swedish; and finally English-Greek, Dutch-Italian, Portuguese-Italian and Portuguese-Dutch.

2.3 Sentence splitting and tokenisation

In order to split documents into sentences, we followed two steps: the first consists of replacing the structural mark-up by a new line rather than deleting it. Table 4 shows why respecting the document structure is important for segmentation. For each document type such tags were selected manually. Besides this, again just for selected document types, line breaks are promoted from within a
tag in order to act as a segment separator. Line breaks from the document are preserved as well. The second step consists of using the Moses script to separate sentences if they still appear on one line. The script was modified so that it never merges any segment spread across more lines.
General statistics on the documents, words and sentences are shown in Table 5: for each language. There are more than 100,000 documents for the languages of the member states prior to 1995 (DA, DE, EL, EN, ES, FI, FR, IT, NL, PT, and SV). There are about 20,000 documents for the languages of member states that joined in 2004 or after (BG, CS, ET, HU, LT, LV, MT, PL, RO, SK, and SL). The Turkish language (TR) has very few documents compared to the others. GA (Irish) has more than one million words, whereas there is basically no material for TR. The differences in language productivity are measured by the

[^3]| | BG | CS | DA | DE | EL | EN | ES | ET | FI | FR | GA | HU | IT | LT | LV | MT | NL | PL | PT | RO | SK | SL |
| :---: |
| BG | |
| CS | 138 | |
| DA | 172 | 177 | |
| DE | 180 | 184 | 343 | | | | | | | | | | | | | | | | | | | |
| EL | 171 | 172 | 314 | 323 | | | | | | | | | | | | | | | | | | |
| EN | 132 | 125 | 245 | 258 | 228 | | | | | | | | | | | | | | | | | |
| ES | 137 | 132 | 256 | 264 | 236 | 166 | | | | | | | | | | | | | | | | |
| ET | 208 | 228 | 260 | 267 | 255 | 208 | 215 | | | | | | | | | | | | | | | |
| FI | 235 | 252 | 448 | 459 | 428 | 359 | 369 | 335 | | | | | | | | | | | | | | |
| FR | 127 | 120 | 239 | 247 | 219 | 169 | 159 | 203 | 352 | | | | | | | | | | | | | |
| GA | 5 | 3 | 4 | 4 | 5 | 4 | 4 | 5 | 5 | 3 | | | | | | | | | | | | |
| HU | 132 | 137 | 170 | 178 | 165 | 118 | 125 | 220 | 245 | 113 | 2 | | | | | | | | | | | |
| IT | 146 | 142 | 268 | 277 | 248 | 180 | 188 | 225 | 383 | 171 | 4 | 134 | | | | | | | | | | |
| LT | 195 | 210 | 245 | 251 | 239 | 192 | 200 | 294 | 318 | 188 | 6 | 204 | 208 | | | | | | | | | |
| LV | 185 | 196 | 229 | 237 | 224 | 177 | 185 | 280 | 304 | 173 | 6 | 189 | 194 | 264 | | | | | | | | |
| MT | 155 | 143 | 176 | 183 | 173 | 129 | 136 | 221 | 245 | 124 | 4 | 136 | 145 | 205 | 194 | | | | | | | |
| NL | 174 | 178 | 334 | 342 | 313 | 246 | 255 | 261 | 447 | 238 | 4 | 172 | 267 | 246 | 231 | 178 | | | | | | |
| PL | 183 | 192 | 228 | 236 | 223 | 176 | 182 | 276 | 304 | 170 | 6 | 186 | 192 | 258 | 245 | 189 | 229 | | | | | |
| PT | 135 | 129 | 251 | 260 | 232 | 162 | 172 | 212 | 366 | 155 | 3 | 122 | 185 | 195 | 181 | 133 | 250 | 179 | | | | |
| RO | 162 | 126 | 160 | 168 | 160 | 120 | 125 | 197 | 224 | 115 | 5 | 120 | 134 | 184 | 174 | 143 | 163 | 171 | 123 | | | |
| SK | 142 | 147 | 181 | 187 | 175 | 128 | 135 | 231 | 255 | 123 | 3 | 140 | 145 | 214 | 200 | 147 | 182 | 195 | 132 | 130 | | |
| SL | 176 | 185 | 217 | 224 | 212 | 165 | 172 | 269 | 293 | 160 | 6 | 178 | 182 | 251 | 237 | 181 | 219 | 233 | 169 | 164 | 188 | |
| SV | 162 | 164 | 313 | 322 | 293 | 223 | 234 | 248 | 429 | 216 | 3 | 157 | 246 | 231 | 216 | 164 | 312 | 215 | 230 | 150 | 167 | 205 |

Table 3: Average number of unique words per language pair (in thousands)

Before splitting

<Infopress language="EN" xmlns:ns1="SipadeType" xmlns:xhtml="http://www.w3.org/1999/xhtml"><Title>EU should cooperate more with US in Mediterranean region</Title><Topic>Development and cooperation</Topic><PublicationDate>2005-09-07-18:26</PublicationDate><Photography href="20050822PHT01307" title=" " alt=" " ext="jpg" width="697" height="501"> </Photography>

After splitting: 3 sentences (Title, Topic and PublicationDate)
EU should cooperate more with US in Mediterranean region
Development and cooperation
2005-09-07-18:26
Table 4: Example of sentence splitting

Standardized Type/Token Ratio (STTR ${ }^{6}$), which enables comparison of corpora with different lengths. FI and ET are morphologically generative languages and have the highest values of STTR. The lower values are with ES and GA.
The best-represented language in terms of number of words is English. Comparatively, French and Spanish miss less than 10%. On the other hand, each language has at least 30% of the English number of words, only Bulgarian and Estonian are below 35\%.

2.4 DCEP Word Distributions

The numbers of words in documents for each language are summarized in Table 6, which shows selected percentiles ${ }^{7}$, the mean and the standard deviation (Std). A majority of the documents have less than 5,000 words, but there are some much longer documents. The more recent members of the EU have proportionally longer documents than the older member states. Compared to the other

[^4]languages, GA does not have very short documents at all, whereas there are only very short documents in TR.
For the purpose of statistical machine translation, sentences are the main translation units. The number of sentences in documents is relevant for efficient sentence alignment, and the total number of sentences and sentence lengths are relevant for word alignment and resource management. Table 7 shows statistics on the number of sentences in each language without cross-lingual alignments. The conclusions of the analysis are similar to those of Table 6. Table 8 shows statistics on the number of words in sentences. Half of the sentences are very short with at most $3-5$ words. There are some very long sentences, but nearly all are below the typical threshold of 80 or 100 words.

2.5 Sentence Alignment

We are creating sentence alignments for all documents and all possible language pairs of the DCEP. A part of this work is already completed for some language pairs such as EN/FR. This meant a very large number of alignments, so we had to choose a fast alignment algorithm. We used the HunAlign sentence aligner (Varga, et al., 2007), a common choice among creators of large multilingual parallel corpora (Tiedemann, 2009) (Waldenfels, 2011) (Rosen, et al., 2012).

Language	\#documents	\# sentences	\# words	\# unique words	STTR
BG	15,881	$3,189,893$	$35,265,634$	533,756	47.22%
CS	21,211	$4,457,637$	$42,732,357$	707,055	54.35%
DA	105,138	$6,709,190$	$74,034,195$	$1,335,980$	47.50%
DE	109,644	$6,545,600$	$79,956,002$	$1,314,460$	47.99%
EL	110,931	$6,778,311$	$86,851,326$	$1,108,140$	48.28%
EN	162,608	$7,650,837$	$\mathbf{1 0 3 , 4 5 8 , 9 9 6}$	$1,049,826$	44.63%
ES	108,691	$6,590,119$	$95,457,198$	911,105	41.95%
ET	20,538	$4,072,770$	$35,319,468$	947,169	58.24%
FI	104,513	$6,348,983$	$58,274,608$	$1,802,139$	61.55%
FR	115,881	$6,914,801$	$98,630,448$	$1,004,068$	44.96%
GA	14	123,968	$1,222,234$	11,219	41.68%
HU	21,543	$4,196,424$	$41,277,563$	971,455	53.52%
IT	111,195	$6,737,167$	$89,099,402$	$1,010,644$	48.10%
LT	21,589	$4,265,335$	$38,703,299$	733,480	56.97%
LV	20,705	$4,212,867$	$38,587,221$	713,506	55.43%
MT	18,819	$3,804,307$	$36,593,231$	761,320	54.73%
NL	108,402	$6,527,499$	$85,787,172$	$1,187,851$	42.84%
PL	23,466	$4,152,915$	$43,647,099$	746,864	54.80%
PT	107,175	$6,442,722$	$88,065,967$	953,049	45.34%
RO	17,777	$3,083,763$	$36,270,771$	534,468	48.99%
SK	21,841	$4,281,697$	$42,536,235$	713,273	54.64%
SL	20,633	$4,193,239$	$41,844,125$	668,778	53.64%
SV	104,665	$6,548,318$	$74,501,242$	$1,255,700$	47.90%
TR	6		24		56

Table 5: The number of documents, sentences, words (tokens), unique words (types), and STTR for each language.

	Percentiles for the number of words in documents									
Language	0th	$\mathbf{1 0 t h}$	$\mathbf{2 5 t h}$	$\mathbf{5 0 t h}$	$\mathbf{7 5 t h}$	$\mathbf{9 0 t h}$		$\mathbf{1 0 0 t h}$	Mean	Std
BG	7	146	275	634	2,071	5,628	183,614	$2,220.6$	$5,493.6$	
CS	3	125	247	619	1,927	5,073	157,440	$2,014.6$	$4,850.4$	
DA	0	65	120	199	344	1,261	134,803	704.2	$2,560.9$	
DE	3	72	126	208	362	1,254	247,799	729.2	$2,811.6$	
EL	3	80	140	229	399	1,328	192,797	782.9	$2,889.5$	
EN	3	72	135	233	396	877	178,840	636.2	$2,424.5$	
ES	3	87	152	248	432	1,504	153,137	878.2	$3,224.4$	
ET	3	105	211	531	1,649	4,330	134,779	$1,719.7$	$4,185.5$	
FI	3	53	92	151	266	987	195,439	557.6	$2,183.1$	
FR	3	83	148	247	441	1,454	171,177	851.1	$3,100.1$	
GA	150	578	88,143	98,091	113,064	114,857	114,993	$87,302.4$	$38,185.7$	
HU	3	120	228	565	1,769	4,793	236,428	$1,916.1$	$4,989.5$	
IT	3	78	138	226	392	1,346	181,047	801.3	$3,019.1$	
LT	3	114	215	542	1,717	4,580	125,500	$1,792.7$	$4,306.2$	
LV	3	118	234	577	1,809	4,665	148,838	$1,863.7$	$4,550.4$	
MT	0	109	228	576	1,797	4,935	178,826	$1,944.5$	$4,889.9$	
NL	3	78	138	227	394	1,373	144,227	791.4	$2,908.0$	
PL	3	118	213	519	1,658	4,735	237,051	$1,860.0$	$4,969.9$	
PT	3	81	141	232	400	1,448	194,605	821.7	$3,021.6$	
RO	7	134	243	557	1,751	5,189	180,895	$2,040.3$	$5,335.4$	
SK	3	121	227	579	1,818	4,910	133,796	$1,947.5$	$4,748.7$	
SL	3	125	251	636	1,949	5,051	173,137	$2,028.0$	$4,921.8$	
SV	3	67	118	195	340	1,258	166,282	711.8	$2,669.6$	
TR	9	9	9	9	9	10	10		10	9.3

Table 6: Bowley's seven-number summary, the mean and standard deviation for the number of words in documents for each language.

Language	Percentiles for the number of sentences in documents							Mean	Std
	0th	10th	25th	50th	75th	90th	100th		
BG	1	12	24	61	168	412	11,115	200.9	565.3
CS	1	12	27	62	164	425	26,373	210.2	595.0
DA	0	7	10	14	23	104	26,660	63.8	315.8
DE	1	7	10	13	21	94	25,872	59.7	313.7
EL	1	7	9	13	22	99	26,750	61.1	295.5
EN	1	6	9	13	20	63	26,460	47.1	243.3
ES	1	7	9	13	22	97	26,415	60.6	297.8
ET	1	12	25	58	154	406	26,253	198.3	578.5
FI	1	7	10	14	23	98	26,243	60.7	298.1
FR	1	7	9	13	24	94	35,246	59.7	311.5
GA	11	19	9,809	10,261	11,231	11,396	11,481	8,854.9	3,917.7
HU	1	11	23	56	153	405	26,212	194.8	595.9
IT	1	7	9	13	22	95	26,264	60.6	316.4
LT	1	12	24	58	163	411	27,045	197.6	573.7
LV	1	12	25	60	163	415	26,324	203.5	594.9
MT	0	10	22	57	160	439	26,381	202.2	586.9
NL	1	7	10	14	22	96	26,373	60.2	301.0
PL	1	10	18	48	136	351	26,314	177.0	558.5
PT	1	7	9	13	21	97	26,310	60.1	296.8
RO	1	10	18	46	135	326	12,579	173.5	565.0
SK	1	11	22	56	157	400	26,399	196.0	577.3
SL	1	12	24	59	163	413	26,223	203.2	587.3
SV	1	7	9	13	21	105	26,300	62.6	298.0
TR	4	4	4	4	4	4	4	4.0	N/A

Table 7: Bowley's seven-number summary, the mean and standard deviation for the number of sentences in documents for each language.

In employing HunAlign for our corpus, we followed the approach of the JRC-Acquis corpus (Steinberger, et al., 2006). For a single language pair, this workflow consists of an initial alignment of all document pairs, a sampling of the identified sentence pairs, a dictionary-building phase based on the sentence pairs, and finally a second alignment that considers the automatic dictionary when calculating sentence similarity. We note that for calculating similarity, HunAlign employs heuristics that compare the sets of number tokens found in the source and target sentences, an especially relevant clue when aligning legal text such as DCEP, where a significant percentage of the sentences contain number tokens.

We altered the JRC-Acquis workflow slightly, because the DCEP contains some very long documents that could have slowed down the alignment process. For documents with more than 20,000 sentences we employed partialAlign, a companion tool for HunAlign that splits a document pair into smaller document pairs compatible with the alignment. This shrinks HunAlign's running time and memory consumption significantly, without affecting precision (Varga, 2012).
For the JRC-Acquis corpus the authors provided alignments both by the Vanilla (Gale, et al., 1991) and the hunalign aligner implementations. A manual evaluation of a small sample of this dataset (Kaalep, et al., 2007) found that HunAlign significantly outperforms Vanilla in precision, so we omitted the Vanilla alignments for DCEP.

3. What is DCEP useful for

DCEP is a multilingual corpus including documents in all official EU languages and it can be used for various language processing and research purposes such as:

- Machine Translation, mainly Statistical Machine Translation (SMT);
- Creation of monolingual or multilingual corpora;
- Translation studies, annotation projection for co-reference resolution, discourse analysis, comparative language studies;
- Improvement of sentence or word alignment algorithms;
- Cross-lingual information retrieval.

Table 9 shows as first experiments on using DCEP to train SMT have shown that, even for the well-resourced language pair English-French, the quality goes up significantly when adding DCEP to EuroParl for a DCEP test set (without overlap with the training set): BLEU jumps from 27.9 to 39.3 and METEOR from 46.1 to 54.6; The Translation Error Rate TER drops from 56.7 to 47.5 . These scores are still increasing for a shared test set (1000 from each corpus). The ACT "Accuracy of Connectives Translation" (Hajlaoui, et al., 2013) scores show also that discourse connectives are better translated with the (DCEP+Europarl) system.

Language	Percentiles for the number of words in sentences							Mean	Std
	0th	10th	25th	50th	75th	90th	100th		
BG	1	1	1	3	14	32	4,267	11.1	21.7
CS	1	1	1	3	12	28	3,312	9.6	17.7
DA	0	1	1	4	16	31	4,375	11.0	18.5
DE	1	1	1	4	18	34	5,358	12.2	20.4
EL	1	1	1	4	19	37	4,029	12.8	20.8
EN	1	1	1	5	21	37	9,522	13.5	22.0
ES	1	1	1	5	21	42	9,682	14.5	25.4
ET	1	1	1	3	11	25	5,474	8.7	17.0
FI	1	1	1	4	13	25	7,183	9.2	16.5
FR	1	1	1	5	21	40	10,669	14.3	24.1
GA	1	1	1	1	14	32	170	9.9	18.6
HU	1	1	1	3	12	28	4,866	9.8	18.8
IT	1	1	1	4	20	37	6,533	13.2	21.8
LT	1	1	1	3	11	26	1,864	9.1	15.8
LV	1	1	1	3	11	26	8,653	9.2	20.0
MT	0	1	1	3	12	28	8,715	9.6	22.4
NL	1	1	1	4	19	37	7,565	13.1	23.3
PL	1	1	1	3	14	30	2,898	10.5	19.5
PT	1	1	1	4	20	39	9,152	13.7	24.4
RO	1	1	1	3	15	35	4,239	11.8	22.9
SK	1	1	1	3	13	28	6,709	9.9	19.4
SL	1	1	1	3	13	29	4,287	10.0	18.9
SV	1	1	1	4	18	31	7,388	11.4	18.2
TR	1	1	1	3	4	4	4	2.3	1.8

Table 8: Bowley's seven-number summary, the mean and standard deviation for the number of words in sentences for each language.

SMT systems	Training set (Nb. sent)	$\begin{gathered} \text { Tuning set: } \\ \text { NC2008 (Nb. sent) } \end{gathered}$	BLEU	METEOR	TER	Length	ACT	
							ACTa	ACTa5+6
DCEP TEST SET: 1000 sentences								
Baseline (Europarl)	1964110	2051	27.9	46.1	56.7	86.3	58.3	84
System (Europarl+DCEP)	4514755	2051	39.3	54.6	47.5	85.1	58.3	84
(EUROPARL+DCEP) TEST SET: 2000 sentences								
Baseline (Europarl)	1964110	2051	32.1	50.1	54.6	97.7	56.9	72.7
System (Europarl+DCEP)	4514755	2051	33.8	51.2	52.4	95.4	57.3	73.2
EUROPARL TEST SET: 1000 sentences								
Baseline (Europarl)	1964110	2051	32.8	51.4	54	101.6	56.6	71.1
System (Europarl+DCEP)	4514755	2051	31.8	50	54.1	98.8	57.1	71.7

Table 9: EuroParl-based SMT baseline vs (EuroParl+DCEP)-based SMT system: Metric scores for all English-French systems: jBLEU V0.1.1 (an exact reimplementation of NIST's mteval-v13.pl without tokenization); Meteor V1.4 en on rank task with all default modules not ignoring punctuation; Translation Error Rate (TER) V0.8.0; Hypothesis length over reference length in percent; ACT (V1.7) scores to assess the discourse connectives translations.

SMT systems are implemented using the Moses decoder (Koehn, et al., 2007) with the phrase-based factored translation models (Koehn, et al., 2007). The language models for French were 3- gram ones over EuroParl v7 (Koehn, 2005) for the Baseline system and over a concatenation of it with the DCEP corpus for the system using the IRSTLM toolkit (Federico, et al., 2008). Minimum Error Rate Training (MERT) (Och, 2003) is used to optimize the systems.

4. Conclusion

We presented a new highly multilingual parallel corpus called DCEP. It is four times bigger than the Europarl
corpus and larger in terms of variety (thirteen different document types) and number of languages (23 languages). DCEP thus constitutes the largest release of documents by a European Union institution.
Based on some experiments, we showed that DCEP is very useful for NLP applications, in particular for Statistical Machine Translation.

5. Bibliography

Clark, J., Dyer, C., Lavie, A., \& Smith, N. (2011). Better hypothesis testing for statistical machine translation: Controlling for optimizer instability. In Proceedings of ACL-HLT 2011 (46th Annual Meeting of the ACL: Human Language Technologies. Portland, OR.
Federico, M., Bertoldi, N., \& Cettolo, M. (2008). IRSTLM: an open source toolkit for handling large scale language models. In Proceedings of Interspeech. Brisbane, Australia.
Gale, W. A., \& Church, K. W. (1991). A program for aligning sentences in bilingual corpora. in 'Meeting of the Association for Computational Linguistics', (pp. 177-184).
Hajlaoui, N., \& Popescu-Belis, A. (2013). Assessing the accuracy of discourse connective translations: Validation of an automatic metric. In Proceedings of the 14th International Conference on Intelligent Text Processing and Computational Linguistics. Samos, Greece.
Kaalep, H.-J., \& Veskis, K. (2007). Comparing parallel corpora and evaluating their quality. in Proceedings of MT Summit XI, (pp. 275-279).
Koehn, P. (2005). A Parallel Corpus for Statistical Machine Translation. Machine Translation Summit.
Koehn, P., \& Hieu, H. (2007). Factored Translation Models. In Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing (EMNLP) and Computational Natural Language Learning (CONLL), (pp. 868-876). Prague, Czech Republic.
Koehn, P., Birch, A., \& Steinberger, R. (2009). 462 Machine Translation Systems for Europe. In: Laurie Gerber, Pierre Isabelle, Roland Kuhn, Nick Bemish, Mike Dillinger, Marie-Josée Goulet (eds.): Proceedings of the Twelfth Machine Translation Summit, (pp. pages 65-72). Ottawa, Canada.
Koehn, P., Hieu, H., Birch, A., Chris, C.-B., Marcello, F., Bertoldi, N., et al. (2007). Moses: Open Source Toolkit for Statistical Machine Translation. In Proceedings of 45th Annual Meeting of the Association for Computational Linguistics (ACL), Demonstration Session, (pp. 177-180). Prague, Czech Republic.
Och, F. J. (2003). Minimum Error Rate Training in Statistical Machine Translation. In Proceedings
of the 41st Annual Meeting of the Association for Computational Linguistics (ACL), (pp. 160-167). Sapporo, Japan.
Rosen, A., \& Vavřín, M. (2012). Building a multilingual parallel corpus for human users, in N. C. C. Chair), K. Choukri, T. Declerck, M. U. Dogan, B. Maegaard, J. Mariani, J. Odijk \& S. Piperidis, eds,. Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC'12)' European Language Resources Association (ELRA). Istanbul, Turkey.
Steinberger, R., Ebrahim, M., Poulis, A., Carrasco-Benitez, M., Schlüter, P., Przybyszewski, M., et al. (2013). An overview of the European Union's highly multilingual parallel corpora. Journal Language Resources and Evaluation.
Steinberger, R., Pouliquen, B., Widiger, A., Ignat, C., Erjavec, T., Tufiş, D., et al. (2006). The JRC-Acquis: A multilingual aligned parallel corpus with 20+ languages. Proceedings of the 5th International Conference on Language Resources.
Tiedemann, J. (2009). News from OPUS - A Collection of Multilingual Parallel Corpora with Tools and Interfaces. in N. Nicolov, G. Angelova \& R. Mitkov, eds, 'Recent Advances in Natural Language Processing, Vol. 309 of Current Issues in Linguistic Theory, John Benjamins, Amsterdam \& Philadelphia, 227-248.
Varga, D. (2012). Natural Language Processing of Large Parallel Corpora. Budapest, Hungary: PhD Thesis. Eötvös Loránd University.
Varga, D., Péter, H., András, K., Viktor, N., László, N., \& Viktor, T. (2007). Parallel corpora for medium density languages. In Recent Advances in Natural Language Processing IV: Selected papers from RANLP 2005, Nicolov, Nicolas, Kalina Bontcheva, Galia Angelova and Ruslan Mitkov (eds.), (pp. 247-258).
Waldenfels, R. V. (2011). Recent Developments in Parasol: Breadth for Depth and Xslt Based Web Concordancing with Cwb. in 'Proceedings of Slovko 2011, (pp. 156-162). Modra, Slovakia.

[^0]: ${ }^{1}$ Directive 2003/98/EC of the European Parliament and of the Council on the re-use of public sector information: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELE X:32003L0098:EN:NOT
 ${ }^{2}$ See http://www.statmt.org/europarl/

[^1]: ${ }^{3} \mathrm{http}: / / \mathrm{www} . e u r o p a r l . e u r o p a . e \mathrm{e} /$

[^2]: 4 Example of file name: 16338845 _IM-PRESS_20050826-IPR-01421_EN

[^3]: 5 We are using the iso-639-1language code (http://www.iso.org/iso/language_codes).

[^4]: ${ }^{6}$ STTR $=$ TTR computed after each block of n words, here $\mathrm{n}=$ 1000, then we took the average of all blocks TTR. Tokens were strings separated by whitespaces, while types were unique strings of those.
 ${ }^{7} 0$ th percentile gives the length of the shortest document and the 100th the length of the longest document.

