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Superresolution Enhancement of Hyperspectral
CHRIS/Proba Images With a Thin-Plate

Spline Nonrigid Transform Model
Jonathan Cheung-Wai Chan, Jianglin Ma, Pieter Kempeneers, and Frank Canters

Abstract—Given the hyperspectral-oriented waveband config-
uration of multiangular CHRIS/Proba imagery, the scope of its
application could widen if the present 18-m resolution would be
improved. The multiangular images of CHRIS could be used as
input for superresolution (SR) image reconstruction. A critical
procedure in SR is an accurate registration of the low-resolution
images. Conventional methods based on affine transformation
may not be effective given the local geometric distortion in high
off-nadir angular images. This paper examines the use of a non-
rigid transform to improve the result of a nonuniform interpo-
lation and deconvolution SR method. A scale-invariant feature
transform is used to collect control points (CPs). To ensure the
quality of CPs, a rigorous screening procedure is designed: 1) an
ambiguity test; 2) the m-estimator sample consensus method;
and 3) an iterative method using statistical characteristics of the
distribution of random errors. A thin-plate spline (TPS) nonrigid
transform is then used for the registration. The proposed regis-
tration method is examined with a Delaunay triangulation-based
nonuniform interpolation and reconstruction SR method. Our
results show that the TPS nonrigid transform allows accurate
registration of angular images. SR results obtained from sim-
ulated LR images are evaluated using three quantitative mea-
sures, namely, relative mean-square error, structural similarity,
and edge stability. Compared to the SR methods that use an
affine transform, our proposed method performs better with all
three evaluation measures. With a higher level of spatial detail,
SR-enhanced CHRIS images might be more effective than the
original data in various applications.

Index Terms—CHRIS/Proba, hyperspectral images, multiangle
images, nonrigid transform, superresolution (SR) image recon-
struction, thin-plate spline (TPS).

I. INTRODUCTION

CHRIS/Proba, which stands for Compact High Resolution
Imaging Spectrometer onboard the Project for On-board

Autonomy, acquires multiple observations of the same scene at
five different angles (+55◦,+36◦, 0◦,−36◦,−55◦) with respect
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TABLE I
SPECTRAL BANDS OF CHRIS/PROBA (IN NANOMETERS)

to the fly-by positions. In mode 3 (land channel), CHRIS ac-
quires 18 bands between 0.4 and 1 μm. Table I lists the spectral
configuration of CHRIS acquisition in mode 3. The spatial reso-
lution of CHRIS at nadir reaches 18 m, which is the highest res-
olution as far as spaceborne hyperspectral data are concerned.
The multiangular property is useful for capturing landscape
features with spectral characteristics that vary with direction.
Angular spectral information has provided new insights in
various applications and has been demonstrated to be effec-
tive in physical parameter extraction and more generic land-
cover mapping tasks [1], [2]. Given the multiple observations
and hyperspectral-oriented configuration, CHRIS’s application
opportunities would increase even further if the present spatial
resolution could be improved. Superresolution (SR) image re-
construction is a technique which generates a high-resolution
(HR) image from several low-resolution (LR) images. Various
SR techniques have been tested and applied to remote sensing
images such as Landsat [3], [4], SPOT [5], Quickbird [4],
multiangular thermal data [6], and hyperspectral data [7]. In the
case of CHRIS, its multiviewing images can be treated as LR
input data for producing a HR image using SR methods.

Recent studies related to SR image reconstruction and multi-
viewing angular images seem to support this idea [6], [8]–
[10]. In [6], projection onto convex sets (POCS), a widely used
SR technique, was applied to simulated multiangle images.
Different aspects were investigated such as the influences of
angle, misregistration, noise, and the number of frames that
can be acquired in forward looking or back scanning positions.
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Their findings suggest that SR image enhancement is possible
with multiple off-nadir images, but it is reckoned that the
viewing angle cannot be too high (less than 48◦). It was also
concluded that SR is more effective with symmetric viewing
(e.g., θ = −15◦, 0◦, +15◦) than with asymmetric viewing (e.g.,
θ = 0◦, +15◦, +30◦). A registration accuracy of less than
0.2 pixels is recommended. In [8], mainstream SR techniques
were applied to multiangular CHRIS imagery. Initial assess-
ments suggest that spatial enhancement can be achieved. In
[9] and [10], SR-enhanced CHRIS images were further in-
vestigated on their usefulness for classification and unmixing
applications. Their results show that substantially more classi-
fication detail can be obtained with SR-enhanced imagery and
that fraction images are more accurate. Nevertheless, it was
also pointed out that motion estimation with high-angle off-
nadir CHRIS images is difficult and that SR implementation is
not straightforward with many parameters to tune. In addition,
computing time required by most SR algorithms is high.

Accurate registration of LR images is a prerequisite for the
success of any SR implementation. A registration procedure
can be divided into four steps: 1) feature detection; 2) feature
matching; 3) transform model estimation; and 4) image resam-
pling. Steps 1 and 2 are related to detection of correlated feature
pairs [control points (CPs)] in the source and the target images.
Once feature pairs have been identified, the target image can
be registered with either a linear or nonlinear transform model.
Global linear transform models (translation, rotation, and affine
scaling) may not be suitable in situations where local geometric
distortion is prevalent. In order to improve conventional SR
approaches for angular CHRIS imagery, we propose the use of
a nonrigid (plastic) transform function which is more effective
in dealing with local geometric deformation. For a nonrigid
transform model to work well, adequate ground CPs are needed.
An automatic feature detection and feature matching procedure
based on scale-invariant feature transform (SIFT) and multi-
criteria outlier detection is developed. The proposed feature
detection and nonrigid transform approach is tested with a
Delaunay triangulation (DT)-based nonuniform interpolation
and deconvolution SR method. The results are compared with
several SR methods based on an affine transform. The rest
of this paper is organized as follows. Section II provides the
conceptual background for SR image reconstruction and an
introduction to three popular approaches, namely, nonuniform
interpolation and deconvolution, iterative back projection and
projection on convex sets. Section III outlines our proposed
registration method which makes use of SIFT for feature detec-
tion and three methods for outlier detection: an ambiguity test,
the m-estimator sample consensus (MSAC), and an iterative
method based on the statistics of random errors derived from
a third-order polynomial fit. Section IV describes the method
of evaluation and data preparation. Results are discussed in
Section V, and conclusions are drawn in Section VI.

II. CONVENTIONAL REGISTRATION AND SR METHODS

A. Background

Closely related to the problem of image restoration, SR
can be considered as a second generation of image restoration
techniques that also change image dimension. Upscaling and
interpolation techniques can be used to increase the size of an

image. However, the quality of a single LR image is limited
and interpolation based on only one undersampled image does
not allow recovering of the lost high-frequency information.
Hence, multiple observations of the same scene are needed.
The idea of SR is to fuse a sequence of LR noisy blurred
images to produce a higher resolution image. The objective
is to achieve the best image quality possible from several LR
images. However, the application of SR algorithms is possible
only if aliasing exists, which means that there are subpixel shifts
between the LR images. SR techniques can be applied either in
the frequency domain or in the spatial domain. The idea of SR
for remote sensing images was first suggested in the frequency
domain [3] with its theory built upon Fourier transforms of
LR images. However, SR approaches based on the spatial
domain provide better flexibility for the modeling of noise
and degradation and are more suitable for our purposes [11].
Numerous SR approaches have been proposed. Conventional
methods include nonuniform interpolation and deconvolution,
regularization reconstruction, POCS, hybrid approaches, and
others [11]. SR can also be applied on a single-frame LR image
[12], which is more commonly referred to as image scaling,
interpolation, zooming, and enlargement.

An important step in SR is to model the relationship between
the expected HR image and a set of LR images of the same
scene. If X is the HR image, Y is the set of LR images, N
is the noise vector, and there are p LR images, then the rela-
tionship between the HR image and the LR image sets can be
formulated as

Y = HX + N (1)

where

Y =
[

y1

yp

]
H =

[
D1B1M1

DpBpMp

]
N =

[
n1

np

]
.

For 1 ≤ k ≤ p, yk stands for the kth LR image written in lex-
icographical notion as the vector yk = [yk,1, yk,2, . . . , yk,N ]T,
where N is the number of pixels in the image. X stands for
the HR image, Dk is the subsampling matrix, Bk represents
the blur matrix, Mk is a warp matrix, and nk is the image
noise. Fig. 1 shows this relationship between the LR images and
the desired HR image in a flowchart as described by (1). This
mathematical formulation of the SR problem is well suited for
the description of image degradation, i.e., blurring, noise and
subsampling.

B. Affine Transform Registration

The main procedure of SR consists of three steps: registra-
tion, interpolation, and restoration. Registration is an important
step and a prerequisite for successful SR implementation. An
intensity-based approach which considers intensity variations
of the same location in LR image pairs is a popular choice for
conventional SR methods. The observed image data with a pair
of images f(x, y) and g(x, y) can be modeled as

f(x, y) = g(m1x + m2y + tx,m3x + m4y + ty). (2)
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Fig. 1. Flowchart showing the relationship between the desired HR image and the LR images.

The difference between f(.) and g(.) can be approximated
using a first-order truncated Taylor series expansion. Then,
the coefficients (mi) can be calculated directly with the min-
imum root mean square error method. The error function being
minimized, which is only an approximation, is usually further
improved by a Newton–Raphson style iterative scheme. How-
ever, the derivatives of the first-order Taylor series have finite
support thus limiting the motion flexibility of the estimation. To
alleviate this problem, a coarse-to-fine scheme can be adopted
to contend with large motions. For more details of the method,
the reader is referred to [13]. Motion estimation is the first step
of SR and the affine transform can be incorporated into different
SR approaches.

C. Conventional SR Methods

1) Nonuniform Interpolation and Deconvolution: Interpo-
lation and deconvolution methods treat SR as a resampling
problem where a HR image is generated by interpolating the
values of the LR pixels after their corresponding positions on
the HR image have been determined. As the relative shifts
between the LR images are arbitrary, it is natural that the
interpolation is nonuniform. The final step is deconvolution,
which is a deblurring process, to remove the effect of the point
spread function (PSF) [14].

The nonuniform interpolation and deconvolution SR ap-
proach is the most intuitive method. Compared to other tech-
niques, this method is cheap in computational costs and is easy
to implement. However, since the errors of the interpolation
process are not accounted for in the deconvolution phase, it
does not guarantee an optimal solution. The approach is also
restricted to cases where blur and noise effects are constant
over the lower resolution images. Hence, the use of degradation
models is limited.

2) Iterative Back Projection (IBP): First proposed in [15],
IBP is based on a similar idea as computer-aided tomography,
where a 2-D object is reconstructed from 1-D projections.
The method involves a registration procedure, an iterative re-
finement for displacement estimation, and a simulation of the
imaging process (the blurring effect) using a PSF.

The approach begins by guessing an initial HR image. The
initial HR image can be generated from one of the LR images
by decimating the pixels. The HR image is then down-sampled
to simulate the observed LR images. Subtractions are then made
between the simulated and the observed LR images. If the initial
HR image is the real observed HR image, then the simulated
LR images and the observed LR images will be identical and
their differences zero. In the case of nonzero, the computed

difference can be “back-projected” to improve the initial guess.
The back-projecting process is repeated iteratively to minimize
the difference between the simulated and the observed LR
images, and subsequently produces a better HR image. The
iterative procedure is described by

Xn+1 = Xn − GBP (HXn − Y ). (3)

In (3), GBP represents the back-projection filter, Xn+1 is the
improved HR image at the (n + 1)th iteration, and Xn is the
HR image at the nth iteration.

IBP is intuitive hence easy to understand. However, its ill-
posed nature means that there is no unique solution. The choice
of back-projection filter is arbitrary, and it is more difficult
to incorporate prior information compared with other SR ap-
proaches like regularization methods.

3) POCS: The POCS method for SR was first suggested in
[16] and has been examined for multilooking imagery in [6].
It is another iterative method that uses a priori knowledge to
impose constraints on a HR image. Every constraint must be
defined as a closed convex set C. The HR image is known
a priori to belong to the intersection Cs of m closed convex
sets C1, C2, . . . , Cm, and

Cs =
m⋂

α=1

Cα (4)

where Cs is found by iteratively computing projections onto the
convex sets

fn+1 = PmPm−1, . . . , P1fn. (5)

The projection operator Pi in (5) maps the current estimate f to
the closest point in the set Cα using f0 as an arbitrary starting
point. Two constraints are commonly used for the formulation
of POCS. The first constraint is defined as CD = {F : |r| < δ}
where the residual r is used to update the targeted HR image
[18]. This residual r is the difference between a LR pixel value
g(i, j) and a corresponding blurred region in the HR estimate.
It can be expressed as

r(i, j) = g(i, j) −
∑

k

∑
l

fn(k, l)h(i, j; k, l) (6)

where h is the PSF operator applied on the corresponding
location of the estimated HR image, and k and l are the
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locations of the PSF matrix in the HR image. The projection
of f onto the constraint set CD is then

fn+1 =PDfn =

⎧⎨
⎩

fn + h(r − δ)/
∑

k

∑
l h

2, if r > δ
fn, if −δ≤r≤δ
fn + h(r + δ)/

∑
k

∑
l h

2, if r < δ.
(7)

The parameter δ is the threshold used for the residual r which
is considered large enough to cause an update (or change) to the
estimated HR image.

The second constraint is called the energy consistent con-
straint [17] which can be defined as CE = {F : 0 < f < 1}.
The projection of f onto the constraint set CE is then

fn+1 = PEfn =

{ 1, if f > 1
f, if 1 ≥ f ≥ 0
0, if f < 0.

(8)

III. PROPOSED REGISTRATION AND SR METHOD

An accurate registration of all the LR images is critical for
the success of SR enhancement. All SR methods described
in Section II require a step of motion estimation—the shift
between the reference image (nadir image) and the image to be
registered (off-nadir images). Typically, either a feature-based
or an area-based method is used to detect possible common
feature points from the image pairs [18]. Then, an affine
transform or a projective transform is used for registration.
However, as most linear transform models are global in nature,
they are not ideal for modeling local deformations expected in
angular CHRIS images. An interesting alternative would be a
nonrigid transform. However, since nonrigid transforms are not
consistent, they are not readily applicable for all SR methods. A
nonrigid transform is more suitable for interpolation-based SR
methods. For popular SR methods such as IBP and POCS which
are iterative in nature, a transform model with a reversibility
property, like an affine transform, is more suitable.

A successful nonrigid transform relies on an adequate num-
ber of high-quality CPs. Both area-based and feature-based
methods can be used to search for CPs. While previous ex-
periences have shown that area-based methods produce higher
accuracies than feature-based methods [19], the latter are more
effective for multiangular imagery because image features are
more robust to variation in viewing angle [20]. Therefore, we
have chosen the SIFT, a promising feature-based method, for
feature detection. A rigorous selection procedure consisting
of different stages of CP selection and refinement has been
designed to guarantee the quality of CPs (Fig. 2). Once the CPs
have been defined, a thin-plate spline (TPS) nonrigid model is
used for registration.

A. SIFT CPs Selection

SIFT is a feature-based method that maintains detection sta-
bility in situations of noisy input [21]. SIFT-based descriptors
are considered as robust in blurring environments [22]. The
detected CPs are also associated with a qualitative descriptor

Fig. 2. Flowchart showing the processing chain for image registration.

which can be further utilized for point matching. The SIFT
algorithm consists of four steps: scale-space extrema detection,
keypoint localization, orientation assignment, and keypoint de-
scriptor assignment. A detailed description of SIFT can be
found in [21].

After keypoints have been identified and each keypoint de-
scriptor has been calculated, keypoints are matched by the
minimum distance method. As some of the matched keypoints
are of poor quality or could be outliers, two criteria are used to
filter them out. The first criterion is an ambiguity indicator

Tambiguity =
d1

d2
. (9)

In (9), d1 is the Euclidean distance, calculated from the feature
space spanned by keypoint descriptors, between a keypoint
identified in the reference image and the nearest matching
keypoint in the target image; d2 represents the Euclidean
distance between the same keypoint and the second nearest
matching keypoint. If the values of d1 and d2 are similar,
Tambiguity will be close to one indicating a high ambiguity.
It means that for a certain keypoint in the input image, SIFT
has detected two possible matching keypoints in the reference
image. The matched pair will be deleted if Tambiguity > 0.75.
The CPs that pass the first screening are tested based on a
second criterion.

The second criterion is MSAC, an improved version of the
random sample consensus algorithm which has been widely
used for rejecting outliers on matching points [23]. It is a spatial
constraint that first estimates a projective model by using four
randomly chosen points. A projective model is used because
it is capable of modeling major geometric differences between
multiviewing images. Then, the transform model is evaluated
with regard to a fitting cost function

K =
∑

i

ρ(ei) (10)

where i is the number of matched keypoint pairs and ρ is the
error term defined as

ρ(e) =
{

e if e < Tm

Tm if e ≥ Tm

}
. (11)
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In (11), Tm is the threshold measured in pixels beyond which
the keypoint pairs are considered outliers for the transform
model. For a matched keypoint pair (xi, yi) ↔ (x′

i, y
′
i) with

the calculated point position (xi, yi) and (x′
i, y

′
i), the observed

error function based on the transform model is defined as e =
(xi − xi)2 + (yi − yi)2 + (x′

i − x′
i)

2 + (y′
i − y′

i)
2. The error

term ρ(e) is set to e when the error is lower than that of the
threshold Tm. Every inlier has a different error value depending
on how well it fits the estimated transform model. The threshold
value Tm is defined to avoid extreme errors that could make
some outliers to be regarded as inliers. The default setting for
Tm is 64 pixels. The aforementioned procedure is repeated
a certain number of times (default 500 times), and the best
transform model, i.e., the one with the lowest fitting cost
function value C, is identified. The CPs with values above Tm

are removed. Finally, a new projective transform is estimated
using all the keypoint pairs whose observed error function e
values are lower than Tm.

B. CPs Refining

The CPs collected so far are potential CPs for TPS model
estimation. A last step of refinement is to prune the points with
large random errors. This is done by utilizing the statistical
characteristics of the CPs. We first estimate a third-order poly-
nomial transform model using all the CPs. A polynomial trans-
form of third order is often used to deal with serious geometrical
distortion. The residual stochastic characteristics of the third-
order polynomial transform are well studied [24] and make the
function suitable for prefitting. Using the residual distribution
of CPs with respect to the polynomial transform, we imple-
mented an iterative pruning with two constraints: a) CP pairs
with residual errors larger than three standard deviations are
discarded and b) pruning is halted when the three standard de-
viation threshold falls below 1 pixel on each side of the sample
mean value.

This last refining routine can be summarized as follows.

1) Set up a third-order polynomial transform model using
the least-squares method with all the CPs.

2) Calculate the noise-free point position, and obtain the
model residual dx and dy in the horizontal and ver-
tical direction, respectively. Compute the means and
standard deviations of dx and dy. Eliminate the points
whose dx and/or dy values are above three standard
deviations.

3) Repeat the aforementioned procedure until either of the
following conditions is fulfilled: The residuals in both
directions are within three standard deviations for all
remaining points, or the residuals fall below the −1- to
1-pixel threshold.

C. Image Warping

TPS is an interpolation function with a one-to-one mapping
relationship between corresponding CPs. It is also the only
spline model that can be cleanly decomposed into a global
affine and a local nonaffine warping component. Thus, it can
account for the local deformation caused by optical effects,

Fig. 3. Flowchart showing the validation procedure.

TABLE II
TYPE OF SR APPROACHES USED AND THE

RELATED REGISTRATION METHODS

relief change, and so on [25]. The TPS interpolation function
can be expressed as

(
f(x, y)
g(x, y)

)
=

(
h11 h12

h21 h22

) (
x
y

)
+

(
h13

h23

)

+

⎛
⎜⎜⎝

N∑
i=1

Fir
2
i Inr2

i

N∑
i=1

Gir
2
i Inr2

i

⎞
⎟⎟⎠ =

(
x′

y′

)
(12)

where (x, y) represents the coordinate of the input image and
(f(x, y), g(x, y)) that of the reference image. The coordi-
nate (xi, yi) represents the detected CP position in the input
image. The matrix h11, . . . , h23 defines the affine transform.
r2
i = (x − xi)2 + (y − yi)2 is the distance between (x, y) and

(xi, yi), and Fi and Gi are the weights of the nonlinear radial
interpolation function.

To solve (12) with N pairs of CPs, the following equilibrium
constraints are imposed:

⎧⎪⎪⎨
⎪⎪⎩

N∑
i=1

Fi =
N∑

i=1

Fixi =
N∑

i=1

Fiyi = 0

N∑
i=1

Gi =
N∑

i=1

Gixi =
N∑

i=1

Giyi = 0.

(13)

With N pairs of CPs and the six equations in (13), we can solve
the 2N + 6 unknown parameters in the TPS model. A more
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Fig. 4. Histogram matching of the off-nadir images to the nadir images.
An example for band 18.

compact formulation for determining the unknown parameters
can be expressed as

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 · · · 1
0 0 0 u1 u2 · · · un

0 0 0 v1 v2 · · · vn

1 u1 v1 0 r2
12Inr12 · · · r2

1nInr1n

1 u2 v2 r2
21Inr21 0 · · · r2

2nInr2n

· · · · · · · · · · · · · · · · · · · · ·
1 un vn r2

n1Inrn1 r2
n2Inrn2 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h13 h23

h11 h21

h12 h22

F1 G1

F2 G2

· · · · · ·
Fn Gn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
x1 y1

x2 y2

· · · · · ·
xn yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

After the parameters have been estimated, the TPS-based
warping is performed with a bilinear sampling function.

TABLE III
NUMBER OF CPS OBTAINED AFTER EACH STEP OF REFINEMENT

Fig. 5. Example of the random error distribution for band 18 estimated by
a third-order polynomial fit. The distribution resembles a (in red) normal
distribution; the red circles indicate the threshold of three standard deviations.
CPs with errors above the threshold value are not used.

D. DT-Based Nonuniform Interpolation and Deconvolution

DT-based interpolation has proven to be an effective inter-
polation technique when the spatial density and distribution
of the projected data points is irregular [30]. The basic idea
is to use triangular patches to locally fit the projected data.
DT-based interpolation has the advantage of low complexity
and stability due to its simplicity and the convexity of triangles
[30]. We have chosen DT-based interpolation as part of our
proposed SR method. To remove the effect of the PSF after
interpolation, we adopted the Wiener deconvolution, one of
the most popular deconvolution techniques. It makes minimum
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Fig. 6. Yellow markers represent the final CPs used for the nonrigid transform. Red markers represent the CPs eliminated after applying the first matching
criterion—the ambiguity indicator (Tambiguity). Green markers indicate the CPs eliminated after the MSAC test. Blue markers represent the CPs eliminated after
the last iterative refining.

assumptions about image content and is robust to the impact of
noise at frequencies with poor signal-to-noise ratios.

Fundamental limitations do exist for SR image enhancement.
It has been shown that the number of linear systems and the
volume of solutions grows fast with increments of the magni-
fication factor; therefore, high magnification factors will result
in overly smoothed solutions [31]. In the case of presence of
noise and inadequate registration accuracy, the practical limit
for an effective magnification factor is 1.6 according to [31].
To achieve an intended magnification factor (m), one study
estimates the sufficient number of LR images as 4m2 [31].
Given the small number of input images available from angular
CHRIS and the technical difficulty of implementing fractions of
a scaling factor [D in (1)], we have chosen the decimation factor
to be two in all our experiments, which is a popular choice for
many SR studies using remote sensing data.

Usually, a PSF is used as an estimate for deblurring and
convolution processes [B in (1)]. However, unless the blurring
factor is known a priori, it is difficult to have an exact approx-
imate as the real blurring tends to be spectrally and spatially
variant. In [6], a 2-D circular Gaussian function was initially
chosen to approximate the system PSF at the nadir position,
assuming no distortion in the optics. Then, the PSFs of all off-
nadir images were estimated with an affine transform function.
It is common to assume a space-invariant blurring function to
obtain an efficient and stable estimation [26].

In order to keep the comparison of several SR methods
manageable, in this paper, the same PSF is used invariantly

for all the bands. We make the same assumption of no optical
distortion so that the blurring is invariant within an image. The
PSF chosen is a 2-D Gaussian filter (7 by 7 pixels) with a
variance of 1.6 pixels.

IV. EVALUATION METRICS AND DATA

To evaluate the SR methods, we first simulate a set of
LR images from the original CHRIS images. This is done
with a convolution procedure followed by a downsampling
with a factor of two (Fig. 3). Initial experiments show that
incorporation of the high off-nadir images at ±55◦ does not
improve the SR results. Consequently, only the nadir and the
±36◦ images are used. Hence, three LR images are generated.
SR methods are then applied to the simulated LR images. Since
the same convolution filter is used in the downscaling step of the
simulation, the SR methods are assumed to have the “correct”
blurring estimates in the reversing process.

SR can be applied on a single-frame LR image [12]. In order
to give a critical assessment of the use of multiframe SR, we
provide also the results obtained from single-frame SR using
bicubic resampling. The single-frame SR is performed on the
nadir images. The resulting SR images will be evaluated against
the nadir images as well as the projected ±36◦ images using the
following quantitative measures suggested in [6] and [12].

1) Relative Mean Square Error (rmse): The rmse is the ratio
of the mse of the single-frame bicubic image to that of the SR
image. If xi is the observed HR ground truth image of band
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Fig. 7. Overlay of band 18 images taken from three viewing angles after
registration with the TPS nonrigid transform. Results show the high quality
of registration.

i = 1, . . . , n, x̂i is the SR image, and s is the bicubic interpo-
lated image, then the rmse can be expressed as

10 log

⎛
⎜⎜⎝

n∑
i=1

[xi − s]2

n∑
i=1

[xi − x̂i]2

⎞
⎟⎟⎠ . (15)

High rmse values represent improvement in image quality
using multiframe SR methods as compared to the single-frame
bicubic resampling SR.

2) Structural Similarity (SSIM): SSIM calculates the sim-
ilarity in a linked local window by combining differences in
mean, variance, and correlation [24]. The use of SSIM is
recommended because when compared to mse, it has a higher
correlation with visual degradation. SSIM is formulated as
follows:

SSIM =
(2mzmẑ + c1)(2δẑz + c2)

(m2
ẑ + m2

z + c1) (δ2
ẑ + δ2

z + c2)
. (16)

δz and δẑ are the variances within the image windows z and
ẑ, respectively. δẑz is the covariance between z and ẑ, and mz

and mẑ are the respective means. The two constants c1 and c2

are included to avoid zeros in the denominator. The window
size is set at 11 by 11 pixels, and the parameters c1 and c2 are
0.01 and 0.03, respectively. The local similarity measures are
then averaged over all possible window offsets and all channels
to obtain the mean structural similarity (MSSIM) for the whole
image. The values of MSSIM range between 0 and 1. A high
value means a high SSIM and hence better image quality.

3) Edge Stability (ES): Since blurring distortion is the most
common distortion in SR, ES, which is most sensitive to
blurring, is very suitable as an evaluation criterion [27]. ES is
formulated as follows:

ES =
1
n

n∑
i=1

(eẑi − ezi)2. (17)

In (17), ez is the original (HR) consecutive edge map, eẑ
(SR) is the compared consecutive edge map, and n is the

Fig. 8. Simulated SR results for four multiframe methods as compared to the
single-frame bicubic resampling method.

number of edges that are detected in at least one of these two
edge maps. ES measurement uses five canny edge detectors
with different blur deviations to obtain an ordered set of five
edge maps. The blur deviations used in this paper are 1.19, 1.44,
1.68, 2.0, and 2.38. Low ES values represent high image quality.

A CHRIS image set of Ginkelse Heide (The Netherlands)
was acquired on October 20, 2007. In mode 3, the images have
18 bands between 0.4 and 1 μm. The image set is cloud free and
has excellent quality. The spatial resolution of the nadir images
is 18 m. The CHRIS images are first preprocessed to filter
out noise and then calibrated to reflectance using algorithms
described in [28] and [29]. LR images are then simulated
from the atmospherically corrected original images using the
procedure described in Section IV. A total of five SR meth-
ods are implemented and tested: the single-frame bicubic SR,
three conventional SR approaches with affine transform, and
the proposed method with nonuniform interpolation using the
TPS transform (Table II).

V. RESULTS AND DISCUSSION

While CHRIS/Proba provides five acquisitions at angles
±55◦, ±36◦, and nadir, our initial experiments show that a
better performance is obtained by using only three images:
images acquired at ±36◦ and nadir. This is echoed by the
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TABLE IV
RESULTS OF THE QUANTITATIVE EVALUATION. FOR RMSE AND MSSIM, THE HIGHER THE VALUES THE BETTER; FOR ES, THE LOWER THE BETTER

simulated results in [6]. To eliminate the bias caused by dif-
ferent viewing angles, the off-nadir images are “corrected” by
histogram matching (Fig. 4).

The SIFT method initially found 6805, 4499, and 6611 points
on the nadir (reference) image, the +36◦ image and the −36◦
images, respectively. Table III lists the evolution of the number
of CPs in each step. After the first screening based on the
ambiguity test (Tambiguity), 1921 matched points remain for
the +36◦ image, and 2270 for the −36◦ image. The second
screening with MSAC further eliminates 14% (+36◦ image)
and 16% (−36◦ image) of the matched points. The last iterative
method eliminates CPs based on the distribution of random
errors when applying a third-order polynomial fit. Fig. 5 shows
the error distribution of the CPs for band 18. In the end, 1577
and 1768 CPs remain for the +36◦ image and the −36◦ image,
respectively. Fig. 6 shows the geographical distribution of the
CPs and their evolution through each step of the refinement.
The final registration based on the TPS nonrigid transform is
shown in Fig. 7. Visual inspection confirms that the registration
is accurate.

Implementation of conventional SR methods described in
Section II-C requires specific parameter settings. For all ap-
proaches, we use the bicubic image generated from the nadir
image as the initial high-resolution image. To model the image
formation process, image wrapping is used for motion estima-
tion, a PSF is used to model the system blurring, and subsam-
pling is fixed at 2. While image wrapping and PSF settings
are the same for all SR methods, there are parameters specific
to each method which require separate tuning and are defined
empirically. For the IBP algorithm, the back-projection filter
is the blurring kernel itself. The iteration process is continued
until the change between two consecutive SR outputs is less
than a threshold of 0.001 or until the maximum number of
iterations (50 times) has been reached. For POCS, the parameter
δ (a threshold for residual r) is set at 0.01.

SR methods are applied to simulated LR multiangle images
to produce a HR image. The SR results of the simulation are
shown in Fig. 8. The SR images show a clear increase in
image detail. In general, image objects are better delineated.
In terms of clarity and contrast, the multiframe SR methods are
better than the single-frame bicubic resampling method. This
confirms the results illustrated in [6], where a bilateral single-
frame SR method was compared with the POCS method.

Three quantitative measures, namely, rmse, MSSIM, and
ES, are calculated to assess image quality of the SR images
(Table IV). The measures are calculated based on a compar-

Fig. 9. Quantitative measures of image quality for different SR approaches
and spectral bands.

ison between the SR image and each of the three original
angular images. Each cell in Table IV represents averaged
values over all the bands for each SR method. Higher rmse and
MSSIM values represent higher quality, while for ES, lower
values represent higher quality. Our results show that the
proposed method consistently outperforms other SR methods
which are based on an affine transform. The fact that the
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Fig. 10. SR results obtained with real data using three angular CHRIS image sets. True color composites using bands 11, 5, and 2. The left column represents
fragments of the original nadir image at 18-m resolution. The middle column shows the results obtained with the single-frame bicubic method. The right column
corresponds to the SR results (9 m) obtained with the proposed method.

method scores best on all three quantitative measures gives a
good indication that the SR images obtained with the proposed
method are superior in quality. Multiframe SR methods also
yield higher scores than single-frame SR on all three measures.
Both qualitative visual inspection and quantitative assessment
suggest that the use of multiframe SR is preferable to single-
frame SR.

Fig. 9 shows the performance of different SR methods in
terms of quality measures for each band. For each measure, the
average value obtained for the three angular images is shown.
For each of the SR methods that have been tested, the results
indicate that the proposed method is superior for all bands.
Multiframe SR methods also generate better results than the
single-frame SR method for every band. It should be noted that
the rmse results for band 1 are not better with the multiframe
methods. This could be attributed to the systematic noise within
the first few bands [30], [31].

In a last experiment, the proposed approach is applied on the
original “real” CHRIS images (Fig. 10). For this experiment,
the variance of the PSF is varied between 1.2 to 1.6 pixels to
achieve the best results. Since we use a scaling factor of two, the
dimensions of the image are doubled, with the number of pixels
quadrupled. Apparent improvement in image quality is found
with substantial increase in the amount of detail present in the
HR image. Compared with the single-frame bicubic result, the
HR image obtained from multiframe SR shows better contrast
in terms of object boundary delineation and texture.

VI. CONCLUSION

Accurate registration is a prerequisite for successful SR
image reconstruction. Multiviewing angular images pose par-
ticular difficulties for image registration due to substantial geo-
metric distortion. To improve the performance of SR methods
on angular CHRIS imagery, we proposed the use of a nonrigid
transform function and a rigorous CP selection procedure to en-

sure accurate registration of multiangular imagery. Our results
show that the proposed method improves the performance of
a DT-based nonuniform interpolation applied in combination
with a standard affine transform. The method also outperforms
three other mainstream SR methods that make use of affine
image registration. The SIFT-based CP selection procedure
produces enough CP pairs to apply a TPS nonrigid transform.
The outlier detection procedure guarantees a proper selection
of CPs and a high-quality registration of off-nadir images.

Given the multiviewing and hyperspectral-oriented config-
uration of CHRIS/Proba, a higher spatial resolution will def-
initely broaden the scope of application of CHRIS data. Our
results have shown that it is possible to enhance CHRIS
imagery using SR methods. In this paper, we have used a
spectral and spatial invariant PSF. In future efforts, it might be
interesting to investigate the actual benefits of using a variant
PSF. In addition, semiautomating the parameter tuning process
would certainly increase the ease of use of some SR methods.
For specific applications such as land-cover classification or
spectral unmixing, more experiments are needed to understand
the benefits of using SR-enhanced CHRIS imagery.
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