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Abstract: Climate change is expected to alter vegetation and carbon cycle processes,

with implications for ecosystems. Notably, understanding the sensitivity of vegetation to

the anomalies of precipitation and temperature over different land cover classes and the

corresponding temporal response is essential for improved climate prediction. In this paper,

we analyze vegetation response to hydroclimatic forcings using the Fraction of Absorbed

Photosynthetically Active Radiation (FAPAR) derived from SeaWiFS (Sea-viewing Wide

Field-of-view Sensor) (1998–2002) and (Medium Resolution Imaging Spectrometer)

(2003–2011) satellite sensors at ∼1-km resolution. Based on land cover and pixel-wise

analysis, we quantify the extent of the dependence of the FAPAR and, ultimately, the

phenology on the anomalies of precipitation and temperature over Europe. Statistical

tests are performed to establish where this correlation may be regarded as statistically

significant. Furthermore, we assess a statistical link between the climate variables and

a set of phenological metrics defined from FAPAR measurement. Variation in the

phenological response to the unusual values of precipitation and temperature can be

interpreted as the result of the balanced opposite effects of water and temperature on

vegetation processes. Results suggest very different responses for different land cover classes

and seasons. Correlation analysis also indicates that European phenology may be quite

sensitive to perturbations in precipitation and temperature regimes, such as those induced

by climate change.
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1. Introduction

During the last decade, there has been an increasing interest in understanding the interactions between

land cover (particularly vegetation) and climate, in order to assess the impacts of climate change on the

carbon cycle [1–6]. Climate change can be expected to have an important impact on the water and

energy cycles (in both phase and amplitude), thereby significantly affecting vegetation [7]. Conversely,

vegetation plays a role in impacting the carbon cycle, thus completing a “feedback loop” with the

climate [8–11]. For this reason, the response of vegetation dynamics, for different land cover types,

to precipitation and temperature anomalies is a subject of current climate research [12–19], aimed at

understanding (and predicting) how the biosphere interacts with the atmosphere through the carbon,

water and energy cycles [20–23].

Work by Los et al. [24] and, more recently, Wang et al. [25] and Beer et al. [26] led to a better

understanding of vegetation response to climate signals. Forzieri et al. [27] explored the correlation

structures of vegetation dynamics and climate over the southwestern region of North America. Other

studies have focused on the vegetation response to events that deviate from the expected patterns by

two or more standard deviations (i.e., extreme climate events): Ciais et al. [28] and Gobron et al. [29],

for example, analyzed the Europe-wide reduction in primary productivity caused by the heat wave and

drought of 2003. Furthermore, Diffenbaugh [30] quantified the vegetation response of extreme climate

regimes in the western USA, while Lorenz et al. [31] found an important feedback between vegetation

phenology and climate extremes over Europe. Reichstein et al. [32] addressed the implication of climate

extremes on the global terrestrial carbon budget.

Other than local studies, which often focus on extreme climate events only, the sensitivity of

vegetation to climate variability has not yet been fully analyzed and understood at a European scale.

Europe is a region of particular interest, as it is likely to experience changes in the annual distribution

of hydroclimatic variables, such as precipitation and temperature [33]. The availability of information

on the spatio-temporal patterns of the response of vegetation phenology to precipitation and temperature

anomalies is extremely important. The higher the spatial resolution of the information, the more reliable

is the assessment of the phenology response to anomalous events, for different seasons and/or land

cover types.

This study characterizes the impacts of anomalies in hydroclimatic variables, such as

precipitation and temperature, on land vegetation across Europe (defined by geographic coordinates

33◦N–72◦N; 32◦W–55◦E). The Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), a

satellite-derived indicator of vegetation phenology, is used together with a spatially-distributed dataset

of precipitation and temperature values (see the Materials and Methods section) as the basis on which to

quantify the impacts of hydroclimatic anomalies on vegetation, for the period of 1998–2011, at a spatial

resolution of 1 km.
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Specifically, the objectives of the study are: (1) to identify statistically significant spatial patterns

of correlation between anomalies of FAPAR, precipitation and temperature; (2) to analyze the

corresponding temporal response patterns; and (3) to examine the dependence of these patterns on land

cover, determining whether different land cover types amplify or attenuate the effect of hydroclimatic

forcing factors on vegetation dynamics.

Considering both its wide geographic scope and high spatial resolution, the study represents an

important step towards the assessment of large-scale climate change impacts on vegetation.

2. Materials and Methods

In this study, the impact of hydroclimatic variables on vegetation over Europe is considered, based

on an analysis of precipitation, temperature and FAPAR anomalies during the period of 1998–2011, at

monthly and annual time steps. As outlined in more detail below, anomalies translate hydroclimatic

variables into simple indicators that can be used both for analyzing correlations and for relaying

information to a wider audience in a clear form. In order to assess the differential responsiveness of

land cover, the study area used corresponds to the region for which the CORINE (Co-ORdination of

INformation on the Environment) Land Cover 2006 database [34,35] is available.

2.1. FAPAR Data and Computation of Anomalies

FAPAR is a biophysical parameter that refers to the state and photosynthetic activity of the plant

canopy [36]. It is directly correlated with the primary productivity of vegetation and is recognized

as one of the 50 essential climate variables, defined by the UN’s Global Climate Observing System

(GCOS), that characterize the Earth’s climate [37,38]. The systematic observation of FAPAR is

suitable for monitoring the strength and location of terrestrial carbon pools and fluxes [39,40].

FAPAR datasets are used, for example, as part of the Carbon Cycle Data Assimilation System

(CCDAS) project, in order to improve terrestrial carbon simulations [41–43] or to estimate global

land evapotranspiration [44]. The contribution of FAPAR in the monitoring of harvests is summarized

by Rembold et al. [45], while its use for sugarcane yield forecasting and monitoring over São Paulo,

Brazil, is described by Duveiller et al. [46].

The FAPAR time series used in this study is derived from near-daily observations in the red,

near-infrared and blue spectral bands, captured by National Aeronautics and Space Administration’s

NASA-SeaWiFS (Sea-viewing Wide Field-of-view Sensor) and European Space Agency’s ESA-MERIS

(Medium Resolution Imaging Spectrometer) satellite sensors. The SeaWiFS data were for the period

of 1998–2004, and the MERIS data for 2002–2011 [47,48]. The nominal spatial resolutions were,

respectively, 1.5 km and 1.2 km.

A compositing algorithm [49,50] is applied to the SeaWIFS and MERIS products to generate decadal

estimates (i.e., sequences of nominally 10 consecutive days, starting from the first day of the month,

where the last period may contain from 8 to 11 days) from the original (quasi-daily) values. Specifically,

the actual FAPAR value, which is closest to the arithmetic mean for the period, is chosen as the most

representative. In order to build a spatially consistent time series, the FAPAR products are re-sampled
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to grids of ∼1 km (i.e., longitudinal sampling interval = 0.016◦, latitudinal sampling interval = 0.011◦)

using nearest-neighbor interpolation.

To obtain a consistent FAPAR measurement throughout the entire time period, the corresponding

observations from both sensors have been merged using a harmonization procedure, whereby

the products are: (a) corrected to remove remaining noise contamination; (b) gap-filled; and

(c) bias-corrected using two common years of observations (for further details, see [51]).

Due to the seasonal behavior of both the mean and standard deviation FAPAR (not shown here), the

dataset is transformed to become stationary up to the 2nd order. Anomalies of FAPAR (hereafter, called

“AFAPAR”) are computed using the Z-scores with a reference period of 14 years with Equation (1).

At =
Xt − X̄t

σt

(1)

where At is the resulting anomalies, Xt is the decadal (i.e., 10-day period) FAPAR, X̄t is the mean over

the period of reference for each decade, σt is the standard deviation for each decade and t is the decade.

To generate the monthly AFAPAR, decadal FAPAR time series are averaged.

2.2. Anomalies of Rainfall and Temperature

The data for precipitation and mean surface temperature are collected from the daily gridded datasets

(E-OBS) for surface climate variables [52] available via the European Commission’s 6th Framework

Programme project, ENSEMBLES [53], with a spatial resolution of 0.25◦.

The precipitation anomalies are calculated at monthly time scales through the Standardized

Precipitation Index (SPI) [54] and at annual time scales through the Z-scores. SPI, estimated by

transforming the observed rainfall distribution into a standardized normal distribution, is one of the

most widely used indices within drought and flood monitoring systems [55,56]. Positive values indicate

wet conditions and negative values dry conditions, with the more extreme values indicating the more

severe anomalies.

Since different water resources (e.g., soil moisture, streamflow and groundwater) respond to

precipitation deficits at different temporal scales, SPI may be calculated for different time frames (e.g., 1,

3, 6, 12 months). An exploratory analysis has been performed to determine the appropriate time frame

for computing SPI (not shown here). Results indicate that SPI generally has the strongest correlation

with vegetation response over Europe at time scales of three months. This observation is consistent with

the concept of lagged vegetation response to rainfall anomalies [16,57]. Thus, only the 3-month SPI

(hereafter called “SPI-3”) is used for subsequent analyses.

Annual anomalies of rainfall are calculated using the Z-scores, computing first the departures from the

average annual precipitation and then dividing by the standard deviation. To avoid considering processes

that are not strongly correlated with phenology, winter precipitation (i.e., December, January, February)

is excluded from the computation of the annual anomaly.

Anomalies of temperature (hereafter, called “AT”) are calculated for the period of 1998–2011 through

the Z-scores both at the monthly and annual time scale. Again, winter temperature (i.e., December,

January, February) is excluded from the computation of the annual anomaly.
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In order to build coherent and consistent time-series, all of hydroclimatic dataset is re-sampled to

the spatial resolution of the FAPAR dataset of ∼1 km (i.e., longitudinal sampling interval = 0.016◦,

latitudinal sampling interval = 0.011◦).

2.3. Phenology Metrics

Following the method proposed in Jung et al. [40] and updated by Ceccherini et al. [58], four

phenology indicators are calculated for each calendar year from the 10-day FAPAR time series: mean

FAPAR, maximum FAPAR, growing season length (GSL) and cumulative FAPAR of the growing

season (CGS).

The growing season length (GSL) is calculated by assuming that the annual FAPAR record is shaped

like a semi-ellipse. The corresponding area is calculated as the sum of FAPAR values for the year,

following the subtraction of a “background” value. The latter is calculated as 20% of the maximum

value of the FAPAR time series for each pixel during one calendar year: FAPAR generally may not

decrease to zero, because of the vegetated background below the canopy; hence, this value is typical for

non-growing season conditions. Given the area and the major axis of the ellipse (i.e., annual maximum

FAPAR minus the “background”), the minor axis of the ellipse (i.e., GSL) can be retrieved.

Finally, the cumulative FAPAR of the growing season of a calendar year (CGS) is estimated as the

sum of FAPAR values of a year from the start to the end of the growing season. For further details on the

methodology, see [58]. Note that Jung et al. [40] used a background equal to the 10th percentile of the

annual FAPAR time series. The value of 20% of the maximum value of the FAPAR is used here, based

on the result of a sensitivity analysis for testing the effectiveness of the threshold values.

Figure 1. The spatial distribution of climatological averages for 1998–2011, for vegetation

metrics: (a) mean Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) (-);

(b) FAPAR max (-); (c) growing season length (GSL) (days); and (d) cumulative FAPAR of

the growing season (CGS) (-).

(a) (b)
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Figure 1. Cont.

(c) (d)

Phenological metrics are important because of the effect of phenology on the climate-biosphere

interaction, through the regulation of carbon, water and energy fluxes [20,23,59]. Maximum FAPAR is

associated with the peak of photosynthetic activity during the growing season, whereas CGS is a useful

indicator of net primary productivity [40,60]. Figure 1 depicts the spatial patterns of the phenology

indicators corresponding to climatological averages for the period of 1998–2011.

Anomalies of phenology metrics are calculated through the Z-scores at the annual time scale.

2.4. Land Cover

Information on land cover is taken from CORINE Land Cover ([34,35], version 16, April 2012)

(hereafter, CLC2006), available from the European Environment Agency (http://www.eea.europa.eu/).

The CLC2006 map discriminates 44 land cover classes at a spatial resolution of 100 m, with a high

level of accuracy (greater than 85%, according to EEA [35]). The original dataset is resampled to the

same spatial resolution of the FAPAR dataset. In this process, the CLC2006 class with the highest

occurrence is assigned to each pixel. Only the five major vegetated European land cover classes, namely

“broadleaved forest”, “coniferous forests”, “mixed forest”, “arable land” and “permanent crops”, are

analyzed. The class “heterogeneous agricultural areas” is excluded. Arable land includes many land

cover types, such as non-irrigated and permanent irrigated arable land and rice fields, while permanent

crops include vineyards, olive groves and fruit trees and berry plantations. In Figure 2, the five broad

land cover categories from CLC2006 are shown. Finally, these five land cover classes are merged into

two broad classes: “forest” and “agriculture”.

2.5. Correlation Analysis

Since anomalies in the water, energy and carbon cycles interact with each other, the impact of

hydroclimatic forcings on the phenological cycle can be amplified or dampened. In order to understand

the linkages between the components of the system, various correlation analysis techniques are used to

quantify the ecosystem response to precipitation and temperature anomalies.
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Firstly, the linkage between precipitation/temperature and FAPAR is analyzed at the pixel level and at

a monthly time scale, using cross-correlation at a significance level of 95% (p = 0.05). Cross-correlation

is a measure of the similarity of two signals as a function of the time-lag applied to one of them. To

consider the characteristic time-lag between climate forcings and vegetation response, the temperature

and the rainfall time series are shifted against the FAPAR time series before correlation. The time-lagged

correlation analysis is performed with four monthly lags (i.e., lag 0, lag −1, lag −2, lag −3); the

anomalies of FAPAR of one month are correlated with the anomalies of the precipitation/temperature

of the same month (lag 0), of the previous month (lag −1), and so on. Lags longer than 3 months

are excluded.

Figure 2. Map representing the five broad land cover categories used in the study from the

CORINE Land Cover 2006 (CLC2006) database [35]: permanent crop, arable land, mixed,

coniferous and broadleaved forest (azure- and gray- colored regions correspond to the other

CLC classes and outside coverage areas, respectively).

Secondly, the correlation between the yearly anomalies of the phenology metrics and hydroclimatic

variables is analyzed by means of the Pearson’s correlation at the same significance level (95%).

Pearson’s correlation is a measure of the linear correlation between two signals indicating how they

vary jointly.

Finally, the rank correlation, a measure of the strength of the associations between two variables,

is calculated using the Spearman’s rank correlation test [61]. The test is performed between monthly

anomalies of FAPAR, precipitation and temperature, for the 12 months of the year, at the pixel level.

Anomalies of phenology metrics are excluded from this analysis, and no time-lag between climate

and vegetation is considered. The Spearman’s rank correlation allows one to investigate the statistical

dependence of data without assuming any particular joint probability distribution of the two variables.

Furthermore, it is less prone to the influence of outliers in the dataset, as it is non-parametric. The

sign of the Spearman correlation indicates the direction of association between anomalies of FAPAR

and the anomalies of temperature and rainfall. If the value of AFAPAR increases (or decreases) when

AT (anomalies of temperature)/SPI-3 increases (or decreases), the Spearman correlation coefficient is
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positive. The Spearman correlation increases in magnitude as the two variables approach a perfect

monotonical relationship. FAPAR/hydroclimatic correlation results are both presented in a spatially

explicit way and spatially averaged per land cover category.

Figure 3. Monthly anomalies of surface temperature, precipitation and FAPAR for the two

contrasting wet and dry periods of August 2002 (left), and August 2003 (right). Anomalies

of FAPAR and surface temperature are normalized using Z-scores, i.e., the departure

from the climatological mean is divided by the standard deviation for the given month,

hereafter AFAPAR and AT, respectively. Anomalies of precipitation refer to Standardized

Precipitation Index (SPI)-3. Deficits and excesses in temperature are represented by shades

of red and blue, respectively, while deficits and excesses in precipitation are represented by

shades of blue and red. Areas of high and low photosynthetic activity are shown in shades

of green and red, respectively.
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3. Results

The need to characterize the spatial linkages and temporal dynamics of seasonal hydroclimatic

and terrestrial biophysical variables over Europe is highlighted in Figure 3. Monthly anomalies of

temperature, precipitation and FAPAR are shown for two contrasting wet and dry periods (August 2002,

and August 2003, respectively) over the western part of Europe [62,63]. Anomalies of temperature

and precipitation are consistently shown to have an important influence on the phenological cycle, but

separately do not explain all the FAPAR variability. Thus, both variables must be analyzed. Figure 3 also

shows that the great spatial variability of climate anomalies, underlining the importance of using remote

sensing datasets.

3.1. Cross-Correlation between FAPAR and Hydroclimatic Anomalies

Figure 4 shows the spatial patterns for the correlation coefficient (ρ) between anomalies of FAPAR and

anomalies of precipitation/temperature. Each point in the maps represents the maximum absolute value

of the cross-correlation over the same month or the previous ones (up to lag 3). Since signals may show a

negative correlation, we calculate the maximum absolute value of the cross-correlation coefficient during

the three-month period, to highlight the vegetation responses to rainfall/temperature perturbations that

persist for up to three months. Figure 4 indicates very distinct regional areas that present a positive (blue)

or negative (red) correlation. Only significant correlations are shown: the hypothesis test is rejected with

a significance level of 95% (p = 0.05).

The correlation values for SPI-3 and AT, shown respectively in Figure 4a,b, generally do not

follow a latitudinal gradient. A first examination shows that FAPAR anomalies have a significant

correlation with SPI-3 and AT for 43.60% and 19.14% of the study area. SPI-3 is the more influential

variable for phenological variability, with a generally positive correlation. Figure 4a indicates that

38.77% of the study area has a positive correlation, while 4.83% has a negative correlation. The

high degree of correlation between AFAPAR and SPI-3 indicates that the latter variable captures the

ecologically significant accumulated precipitation surplus or deficit, in accordance with the conclusion

of Rossi et al. [64] and Sepulcre-Canto et al. [16]. Results also indicate important latitudinal responses:

temperature anomalies are negatively correlated to FAPAR anomalies at a lower latitude and positively

correlated in the northern regions. Figure 4b suggests a smaller sensitivity of FAPAR to temperature

than to precipitation. Areas presenting a positive correlation (10.44%) are larger than those presenting

negative ones (8.70%).

By using the CLC2006 database, we are able to extend this analysis to examine the percentage of each

land cover class where the correlation is significant (Table 1). Table 1 also shows the spatial-average

of correlation coefficients (i.e., ρ) for positive and negative correlations separately. In Table 1, the

first two columns show the percentage of land cover classes where the correlation for rainfall (SPI-3)

and temperature (AT) anomalies is significant at the 95% level. The last four columns show the

spatial-average of the correlation coefficient—ρ—for SPI-3 and AT for positive (pos.) and negative

(neg.) values separately.
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Figure 4. Maximum (absolute) cross-correlation coefficient between anomalies of FAPAR

(AFAPAR) and (a) rainfall (SPI-3) and (b) temperature (AT). Only significant (p = 0.05)

correlations are shown.

(a)

(b)

Positive and negative correlations represent very different ecosystem responses to climate anomalies,

and they are associated with very different mechanisms. While a positive value of the correlation

points out that hydroclimatic anomalies may support the photosynthetic activity of vegetation, a negative

correlation may indicate a negative feedback. Regarding the anomalies of precipitation, ρ is always

higher for positive rather than for negative correlation, in accordance with the results in Figure 4.

For anomalies of temperature over forest classes, ρ is higher for negative than for positive correlation,

while the opposite applies for agricultural classes, indicating a differential responsiveness of land cover.

FAPAR for arable land and permanent crop shows the highest correlation with precipitation. For
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broadleaved forest, the correlation coefficient with both precipitation and temperature is higher than

for coniferous and mixed forest. Generally, ρ is higher for precipitation than for temperature for both

positive and negative correlations. The spatial standard deviation (not shown here) ranges from 0.01 of

temperature to 0.02 of precipitation.

Table 1. Distribution of correlation over different land cover classes between FAPAR

anomalies (AFAPAR) and rainfall (SPI-3) and temperature (AT) anomalies. neg., negative;

pos., positive.

Land Cover CLC2006 SPI-3 (%) AT (%) ρ Pos. SPI-3 ρ Neg. SPI-3 ρ Pos. AT ρ Neg. AT

Broadleaved forest 38.37 20.48 0.33 0.23 0.23 0.28

Coniferous forest 28.57 14.22 0.29 0.23 0.21 0.23

Mixed forest 28.38 17.53 0.31 0.22 0.21 0.24

Arable 64.35 25.02 0.33 0.23 0.26 0.26

Permanent crop 73.07 18.80 0.36 0.21 0.32 0.25

Figure 5a,b shows which lag gives the maximum of the correlation for each pixel for both SPI-3 and

AT, respectively, while Table 2 reports the distribution of the time-lag for the five main CLC2006 land

cover categories. The analysis performed with the three-month lag (i.e., lag −3) shows no significant

correlation for either SPI-3 or AT. Analysis of the two-month lag indicates a steep fall-off in the spatial

extent of the correlation for all the land cover classes, for both SPI-3 and AT.

Table 2. Percentage of land cover classes where the cross-correlation between anomalies of

FAPAR, SPI-3 and AT is significant at different lags.

Land Cover CLC2006 SPI-3 (%) AT (%)

Lag 0 Lag 1 Lag 2 Lag 3 Lag 0 Lag 1 Lag 2 Lag 3

Broadleaved forest 59.38 27.09 13.54 0 80.25 10.83 8.92 0

Coniferous forest 68.17 18.51 13.31 0 71.69 11.59 16.72 0

Mixed forest 65.50 21.38 13.12 0 73.00 10.93 16.08 0

Arable 47.91 33.82 18.27 0 80.14 13.00 6.85 0

Permanent crop 48.90 37.72 13.39 0 78.19 10.40 11.41 0

Regarding SPI-3, the maximum correlation is almost instantaneous (i.e., within one month), even

if SPI-3 continues influencing AFAPAR also after 1 month. Figure 5a indicates a strong effect also

with a lag equal to 1 and 2. Agriculture (i.e., arable land and permanent crop) is the land use type

with the greatest response to rainfall, which persists up to two months. Spatial responses in forests are

also significant, but less persistent, indicating that these land cover categories are less dependent on

water availability than agricultural classes. Delayed reaction patterns to precipitation have been reported

for estuarine areas (e.g., Po, Danube). This shows that anomalous vegetation conditions may be more

related to the precipitation accumulated in the basin over a period of time than to the instantaneous and
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local one. As with SPI-3, the most noticeable result for AT is the predominant decrease of correlation

from lag 0 to lag 1 across Europe, but spatial patterns generally differ from SPI-3. Temperature

perturbations propagate rapidly (0-month lag), with a significant low-persistence (2-month lag) for the

FAPAR response. Temperature effects on coniferous and mixed forest are the most persistent (up to

two months).

Figure 5. Lag (month) showing the highest correlation (i.e., argmax, the argument of

the maximum) between anomalies of FAPAR (AFAPAR) and (a) rainfall (SPI-3) and

(b) temperature (AT).

(a)

(b)

3.2. Correlation between Phenology Metrics and Hydroclimatic Anomalies

Figure 6 summarizes the sensitivity of vegetation metrics to perturbations in precipitation and

temperature regimes.
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Figure 6. Pearson’s correlation coefficient between the four phenology metrics and

anomalies of rainfall (left) and temperature (right). Only significant (p = 0.05) correlations

are shown.
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Since the anomalies have been calculated with only 14 values (i.e., annual values for the period

of 1998–2011), the annual rainfall and temperature anomalies used correspond with the time scale

of vegetation metrics. For temperature, the areas presenting negative correlation are larger than those

presenting positive correlation, whereas the opposite behavior is seen for precipitation.

Figure 6 indicates the spatial effect of the anomalies of precipitation and temperature on the main

phenology metrics. Results generally reflect a lower sensitivity of the vegetation metrics to temperature

than to precipitation. For rainfall, mean FAPAR shows the highest percentage of covered area with a

positive correlation. In contrast, a more moderate spatial extent of correlation is obtained for temperature

than for precipitation. Furthermore, AT generally shows a high negative correlation. FAPAR max

and CGS have lower correlations with rainfall or temperature than mean FAPAR, although still being

highly significant (p = 0.05). These results indicate that mean FAPAR is the most sensitive metric,

while GSL is the least sensitive. FAPAR max presents some patterns similar to mean FAPAR, with less

area involved. The geographical distribution of Pearson’s correlation coefficient between AT and CGS

suggests a negative correlation over the Carpathian region (i.e., 45◦N, 20◦E).

Maps in Figure 6 are complemented by spatial statistics for each phenology metrics summarized in

Table 3, which details the percentage of the study area where the correlation between the anomalies of

phenology metrics and the hydroclimatic variables are significant.

Table 3. Percentage of the study area where the correlation between the annual anomalies

of vegetation metrics, temperature and rainfall is significant for positive (pos.) and negative

(neg.) correlations separately.

Metrics Rain Pos. (%) Rain Neg. (%) Temperature Pos. (%) Temperature Neg. (%)

Mean FAPAR 26.8 0.1 1.5 11.6

Maximum FAPAR 10.8 1.9 1.3 8.1

GSL 7.3 2.9 4.7 3.5

CGS 17.0 1.9 3.0 7.8

As is evident in Figure 6, phenology metrics reflect a smaller sensitivity to temperature than to

precipitation anomalies. The spatial extent of positive correlation between phenology metrics and SPI-3

ranges from 7.3% of GSL and 26.8% of mean FAPAR, whereas areas of negative correlation are always

below 3%. Regarding temperature, phenology metrics exhibit the opposite behavior: mean FAPAR,

maximum FAPAR and CGS show a predominance of negative correlation, and vice versa for GSL.

The dominance of positive (for precipitation) and negative (for temperature) spatial patterns suggests

corresponding positive and negative feedback between precipitation and temperature anomalies and

phenology metrics. The spatial extent of the sum of positive and negative correlation with temperature

is generally around 8%–13% and 10%–27% for SPI-3.

Figure 7 presents histograms showing the percentage of the study area where the correlation is

significant for each land cover class, shown separately for positive and negative correlations. Regarding

the positively correlated rainfall anomaly, forest classes show a smaller area than agricultural ones. Mean

FAPAR exhibits the highest spatial extent of correlation and GSL the lowest. A common feature obtained
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for all phenology metrics except GSL is that permanent crop exhibits a greater area than arable land. A

moderate spatial extent of correlation is obtained for negative precipitation anomalies: generally, the

spatial extent decreases by roughly a factor of four between positive and negative correlation. Regarding

both positively and negatively correlated temperature anomalies, the spatial extent of correlations ranges

from 2% to 20% of CLC classes, far less than the positive rainfall correlation. Generally, vegetation

metrics present higher spatial correlation with negative than with positive temperature anomalies, with

the exception of the forest classes of GSL. Among the forest classes, broadleaved forest shows the

highest spatial extent of correlation, whereas coniferous forest appears less sensitive, for both positive

and negative correlation and for both rainfall and temperature anomalies.

Figure 7. Percentage of the study area where the correlation is significant for

anomalies of rainfall and temperature, shown separately for positive (left) and negative

correlations (right).
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3.3. Rank Correlation

Figures 8 and 9 present the spatial-averaged monthly rank correlation (i.e., a measure of monotone

association) and the corresponding spatial-averaged standard deviation between anomalies of FAPAR

and SPI-3/AT for different CLC2006 land cover types. The smaller the spatial-averaged standard

deviation, the more consistent are the correlations for a land cover type.

Firstly, we focus on AFAPAR-SPI-3 rank correlation. For agricultural class, the highest positive

correlation occurs in the period ranging from June (when the development of the summer crop begins) to

October (when crop senescence is almost complete). Conversely, the lowest correlations occur in May

and November. The drop of rank correlation during May is observed for all analyzed land cover types,

except broadleaved forest. Thus, higher rainfall appears counter-productive for the phenological cycle
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during May, even if the high spatial variability (the error bar) lends less confidence to this interpretation.

A particularly low sensitivity to May rainfall was also found for arable land classes. This may be due

to the fact that for permanent irrigated arable land and rice fields (both belonging to the arable land

category), water availability is almost completely uncoupled from rainfall. Maximum correlation with

rainfall occurs in July for broadleaved and mixed forest and in August for coniferous. The phenology

of coniferous forest (except for August) appears to be less sensitive to precipitation, particularly during

September. A common result for the five land cover types is a low rank correlation during November

and December.

Figure 8. Spatial-averaged rank correlation (µ) and the corresponding spatial standard

deviation (σ) between anomalies of FAPAR and SPI-3 for: (a) forest; and (b) agriculture

land cover classes.
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Secondly, the AFAPAR-AT rank correlation is analyzed. The highest positive correlation occurs in

March, while the highest negative correlation occurs in August (except for permanent crop, when it is

June). Interestingly, in September, the agricultural class appears more sensitive to temperature than the

forest class even if the latter’s large spatial standard deviation lends less confidence to this comparison.

Mixed forests exhibit an intermediate behavior between coniferous and broadleaved.

Figure 9. Spatial-averaged rank correlation (µ) and the corresponding spatial standard

deviation (σ) between anomalies of FAPAR and AT for: (a) forest; and (b) agriculture land

cover classes.
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An especially remarkable result is the high variability occurring for forests, except for March and

August. For the five land cover types and associated ecosystems, the inter-annual variations of the early

spring (i.e., March) AFAPAR are shown to be mainly driven by temperature anomalies. Strong rank
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correlations and low spatial variability suggests that AFAPAR in March is most sensitive to temperature

variability.

Averaging rank correlation values for a land cover over a broad area requires careful consideration.

To address this, Figure 10 shows the spatial patterns of the rank correlation for different months. Maps

on the left display the rank correlation between anomalies of rainfall and FAPAR, whereas maps on the

right display the rank correlation between the anomalies of temperature and FAPAR.

Figure 10. Rank correlation between anomalies of FAPAR, rainfall (SPI-3) and temperature

(AT) for different months. Only significant (p = 0.05) correlations are shown. Captions of

sub-figures (a–f) are: rank correlation between SPI-3 and anomalies of FAPAR for May (a),

July (c), August (e); rank correlation between AT and anomalies of FAPAR for March (b),

June (d), August (f).

(a) (b)

(c) (d)

(e) (f)
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Figure 10a displays the rank correlation between SPI-3 and anomalies of FAPAR for May. The

positive correlation generally highlights arid and semi-arid climate regions, whereas the negative

correlation mainly refers to the northern and mountain areas. In July, the spatial extent of positive

correlation between AFAPAR and SPI-3 increases (Figure 10c), reaching its highest level during August

(Figure 10e).

Phenology is affected in a different way by temperature. Figure 10b suggests that temperature is

a dominant factor for photosynthetic activity at the very beginning of spring. Generally, temperature

fosters photosynthetic activity across Europe, with the exception of Spain (the center and the

Mediterranean coast), Sweden and Finland. Note that such a high spatial variability of AT correlation

in March does not appear in the error-bar of Figure 9, because regions characterized by a negative

correlation do not belong to the five main land cover categories. The spatial patterns of AT for June

(Figure 10d) indicate a north-south discontinuity at around 55◦N. An opposing behavior of AT for

June may indicate that at low latitudes, where the vegetation is fully developed, heat waves cut off

the phenological cycle, while at high latitudes, where the growing season is delayed, a warmer than

usual temperature leads to a higher than usual FAPAR. Finally, during August (Figure 10f), AT displays

a generally negative influence on FAPAR.

Another significant result is the moderate correlation for both SPI-3 and AT observed over the Iberian

Peninsula (Spain and Portugal) through August, compared with other months and with the Mediterranean

regions. One explanation for this behavior may be that this area, representative of a dry climate [65], is

already dried out at the end of summer, so the feedback that enhances (due to intense rainfall) or cuts off

(due to droughts or heat waves) photosynthetic activity is not active there. Furthermore, rank correlation

is high during August, when a combination of the opposite signs of SPI-3 and AT can be observed. This

behavior may be easily explained, because the effects of precipitation and temperature on vegetation are

larger, corresponding with the seasonal deficit in water availability. These results may explain FAPAR’s

collapse during dry summers, and reflect the different and complementary information provided by both

precipitation and temperature.

4. Discussion

Both AT and SPI show significant and strong correlations with FAPAR anomalies, but SPI is shown to

have the dominant effect. On the basis of the results, water plays a key role in determining photosynthetic

activity in Europe. Important latitudinal responses are also indicated: temperature anomalies are

negatively correlated to FAPAR anomalies at a lower latitude and positively correlated in the northern

regions. Positive and negative correlation for different land cover types also highlights other differential

responsiveness. Anomalies of FAPAR for arable land and permanent crops show the highest correlation

with precipitation and temperature anomalies; also, the correlation from broadleaved forests is high,

whereas coniferous forests are revealed to be less sensitive.

Assuming that anomalies of FAPAR may be related to the anomalies of plant productivity, the strong

positive correlation between AFAPAR-AT for broadleaved forests could be explained by a sensitivity

to temperature of high gross primary productivity [66] stronger than for other forest classes (e.g.,

Richardson et al. [59]). In particular, the anomalies of springtime temperature might lead to anomalies
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of productivity during this season, which is considered a critical period that controls the inter-annual

variability of forest productivity in Europe (e.g., Le Maire et al. [67]). However, we must exercise

caution: correlation does not imply causality. Further, if the relation between the hydroclimatic forcing

and photosynthetic activity is nonlinear and time-dependent, then the meaning of the correlation can be

erroneous. Another mistake may arise by neglecting causal input/output relations. For example, it is

likely that other factors, such as soil fertility, may induce a variation in photosynthetic activity, but these

variables have not been included in the study.

Results also stress the convenience of using a set of phenology metrics, such as mean FAPAR,

maximum FAPAR, growing season length and the cumulative FAPAR of the growing season, for a

correct analysis of climate change impacts on carbon pools and fluxes. Positive and negative correlations

between anomalies of phenology metrics and hydroclimatic variables represent very different ecosystem

responses to climate anomalies, and they are associated with very different mechanisms. While a

positive value of the correlation points out that hydroclimatic anomalies may foster the photosynthetic

activity or the growing season of vegetation, a negative correlation may indicate a negative feedback.

For temperature, the areas presenting negative correlation are larger than those presenting positive

correlation, whereas the opposite behavior is seen for precipitation. Furthermore, phenology metrics

reflect a smaller sensitivity to temperature than to precipitation anomalies. The level of confidence in

the results is naturally influenced by the level of uncertainty of the underlying methodologies. Some

uncertainty is associated with the fact that FAPAR-derived phenology, rainfall and temperature are

temporally averaged, overlooking fine-scale processes (i.e., a time-scale of weeks [68,69]), which may

be critical for the phenological response.

Rank correlation analysis indicates that vegetation is sensitive to temperature in spring and to

rainfall in summer. Rank correlation analysis also shows how the FAPAR of permanent crops and

broadleaved forest is generally more sensitive to rainfall than that of arable land and coniferous forest.

The highest positive rank correlation between FAPAR and temperature occurs in March, while the

highest negative one occurs in August. Interestingly, the map of rank correlation also indicates at

high latitudes a “negative” effect of precipitation during May on FAPAR; a negative correlation implies

that above-normal SPI at this stage does not support spring leaf development. A potential explanation

could be that heavy rainfall and, hence, surplus surface run-off make vegetation germinate prematurely

and die immediately. This negative feedback on early vegetation due to excess soil moisture or

direct flooding, explained in Rosenzweig et al. [70], is also reported in the bulletin Crop Monitoring

in Europe [71]. Another possible explanation relates to sunlight: above-normal SPI-3 may imply

shorter sunlight duration, which in some case exerts more influence on phenology and productivity

than rainfall, as pointed out by Huete et al. [72] for different latitudes. This result also agrees

with Caldararu et al. [73], who shows how leaf phenology at high latitudes is limited by light availability.

5. Conclusion

Heavy rainfalls, droughts, heat-waves and cold snaps have significant impacts and are among the most

serious challenges to society in terms of coping with a changing climate. In this study, we quantify the

sensitivity of the anomalies of the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR),
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a satellite-derived indicator of vegetation phenology, to rainfall and temperature anomalies and the

temporal response patterns. The analysis is performed over Europe from 1998 to 2011 for different

land cover types.

The Standard Precipitation Index (SPI), representing the seasonal precipitation anomaly, and the

standardized anomalies of surface temperature (AT) are used to assess the impact of hydroclimatic

anomalies on FAPAR anomalies (AFAPAR). The analysis of the time series highlights how these

indicators are correlated and how vegetation reacts to anomalies of climate forcing factors. Correlation

between phenology and hydroclimatic anomalies is time dependent and specific to land cover type.

This latitudinal- and land cover-dependent behavior may enable an early, integrated assessment of

successive phenology responses to anomalous events. Further work should be done in order to evaluate

the robustness of the observed relationships, through a local-scale analysis of extreme climate events.

In summary, the work described in this paper clarifies how anomalies of hydroclimatic forcing factors

influence phenology and, ultimately, the carbon cycle, at European scale. As the analysis has been

performed for relatively short time periods, further studies should focus on: (a) the extension of the

time series length by including FAPAR derived from the future Ocean and Land Color Instrument

(OLCI) sensor on-board the Sentinel-3 satellite [74], and from the Advanced Very High Resolution

Radiometer (AVHRR) (using the same Joint Research Centre radiative transfer schemes for the retrieval

of FAPAR); and (b) a comparison of results with in situ measurements of carbon fluxes from the

FLUXNET network [75].
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