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Study of Lipschitz regularity

Feature extraction on regular and irregular grids

C. Damerval

Abstract

In this paper we study the pointwise Lipschitz regularity, covering
several aspects: theoretical and practical, methods for its estimation
on regular and irregular grids. The relevance of this value of regularity
lies in its invariance properties to several transformations, and its fast
computation thanks to wavelets. We study the influence of scale on
wavelets transforms and show invariance properties this value of reg-
ularity. We also put forward an original technique for its estimation
on regular grids. We also address the issue of irregular grids, based on
the behavior of smoothing kernels with respect to scale. The obtained
results emphasize the usefulness of such features for the applications,
and motivate further work on this topic.
Keywords: Lipschitz regularity, wavelets, smoothing kernels, robust
feature extraction, regular and irregular grids.
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1 Introduction

The pointwise Lipschitz regularity is a feature which quantifies the regular-
ity a function, associated for instance to a time series. This value α ∈ R

allows to measure the sharpness of edges and the smoothness of variations.
Various works in signal processing studied its properties and applications
[1, 2, 3, 4]. Here we are interested in the pointwise Lipschitz regularity since
it makes a robust feature potentially useful in various applications, espe-
cially in EU policies to which the Joint Research Centre of the European
Commission contributes (for instance monitoring of trade, antifraud and
antimoney-laundering, financial time series, economic trends). Here the no-
tion of robustness means that the quantities computed are slightly affected
by transformations (linear or non-linear). The notion of feature is related to
the extraction of quantities that are characteristic of an interpretable entity.

This paper is organized as follows. We first recall the notion of regularity
and show some invariance properties. Since its classical computation is based
on wavelets, we recall the definition of the Continuous Wavelet Transform
and establish properties on its behavior with respect to scale. Then we
describe the classical computation of regularity based on wavelets, and we
present a new technique that distinguishes regular areas and irregular ones,
applicable on regular grids. Besides we address the context of irregular grids,
for which wavelets are no longer adapted. For this purpose we introduce an
approach based on smoothing kernels, which use their behavior with respect
to scale to compute a feature – using an algorithm similar to the computation
of Lipschitz regularity with wavelets. The values of this new feature are
then studied and compared with the theoretical one. Results show a certain
relevance of this approach that extends the estimation of regularity features
to more general settings (regular and irregular grids).
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t→ tα (0<α<1) t→ tα (α>1)

Dirac impulse δ Heavyside step H

(a) (b)

Figure 1: (a) Classical patterns in 1D, associated to different values of Lip-
schitz regularity (α = −1 for the Dirac, α = 0 for the step); (b) Classical
wavelets functions: first derivative of Gaussian ψ(t) = −te−t2/2, Sombrero
wavelet ψ(t) = −te−t2/2, Meyer wavelet.

2 Notion of regularity

2.1 Definition

Definition (Lipschitz regularity)
A function f : R −→ R is α-Lipschitz at t0 ∈ R

• for α ∈]0, 1[, if there exists a neighborhood V of t0 and A > 0 such
that

∀t ∈ V, |f(t)− f(t0)| ≤ A|t− t0|α (1)

• for α > 1 (α non integer), denoting n = ⌊α⌋, if there exists a neighbor-
hood V of t0, A > 0 and a polynomial Pn(t) of order n (n ≤ α < n+1,
Pn depending on t0) such that

∀t ∈ V, |f(t)− Pn(t)| ≤ A|t− t0|α (2)

• for α = n ∈ N
∗, if f is Cn at t0.

More generally, the Lipschitz regularity can be defined for α ≤ 0 using the
theory of distributions, see [5] for details.

Definition (Regularity α)
Let f : R −→ R and t0 ∈ R. The regularity α of f at t0 is defined as

α = inf{α0 ∈ R, f α0-Lipschitz at t0} (3)
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The point of studying the pointwise Lipschitz regularity is the detection
and identification of singularities [6], such as the patterns represented on
Figure 1(a). As an example, the real function t 7→

√
|t| is C∞ at any t 6= 0

(t ∈ R), and presents a singularity at t = 0, with an associated regularity
α = 1/2.

2.2 Invariance properties

Here we present invariance properties of the regularity α under different
transformations. Let us first present properties bearing on α-Lipschitz func-
tions, and then infer invariance properties of the regularity α (proofs are
detailed in appendix).

Proposition 1. Let t0 ∈ R and f, g : R → R related by g(t) = c(t)f(t)+d(t),
where c, d : R → R. Assuming c, d are C∞ and c is locally bounded,

∀α > 0, f α-Lipschitz at t0 ⇒ g α-Lipschitz at t0 (4)

Proposition 2. Let t0 ∈ R and f, g : R → R related by g(t) = f(u(t)) where
u : R → R. Assuming u is 1-Lipschitz,

∀α > 0, f α-Lipschitz at u(t0) ⇒ g α-Lipschitz at t0 (5)

Note that such transformations do not correspond to a smoothing or a
sharpening, which would alter the Lipschitz regularity.

Proposition 3. (Invariance to multiplication and addition of C∞ func-
tions)
Let f, g : R → R, related by: ∀t ∈ R

g(t) = c(t) · f(t) + d(t), with c, d : R → R are C∞ and c 6= 0 (6)

Then, at any t0 ∈ R, f and g have the same regularity α (for α > 0).

Proposition 4. (Invariance to dilatation and translation)
Let f, g : R2 → R, related by: ∀x ∈ R

2

g(ct+ d) = f(t), with c, d ∈ R, c 6= 0 (7)

Then, at any t0 ∈ R, f and g have the same regularity α (for α > 0).
respectively at t0 and z0 = ct0 + d

α(f, t0) = α(g, ct0 + d) (8)
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Conclusions.

We established invariance properties of the regularity α: to constant trans-
lation and dilatation, and also to the multiplication by a C∞ function.

3 Properties of wavelet transforms

To estimate the regularity α, the wavelet framework shown its efficiency
[6, 7]: these multiscale methods allow to detect singularities and to estimate
α robustly. We first present results on the behavior of the wavelet transform
with respect to scale, when the function has a simple analytical expression.
Then we recall the known link between Lipschitz regularity and wavelets [4,
8], which provides the classical method to compute the regularity α. We
represent on Figure 1(b) examples of wavelet functions, and we now recall
definitions coming from wavelet theory [8].

Definition (Continuous Wavelet Transform)
Given a wavelet function ψ : R → R, i.e., verifying the admissibility condi-
tion ∫

R

|ψ̂(ω)|2
|ω| dw < +∞ (9)

the continuous wavelet transform (CWT) with normalization Lp (integer
p > 0) associated to a function f : R → R is defined as Wf : R× R

∗
+ → R,

∀u ∈ R, ∀s > 0

Wf(u, s) =
1

s1/p

∫

R

f(t)ψ

(
t− u

s

)
dt (10)

Remark: denoting ψs(u) =
1

s1/p
ψ
(
u
s

)
and ψs(u) =

1
s1/p

ψ
(
−u
s

)
, the CWT

can be expressed as the convolution product

Wf(u, s) = (f ∗ ψs)(u) (11)

We study the asymptotic behavior of the wavelet coefficients when the scale s
tends to infinity. In particular we obtain equivalents ofWf (when s→ +∞)
when we know an analytical expression of the f .
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3.1 Behavior of the CWT with respect to scale

Here we study the CWT, focusing on its behavior with respect to scale. We
show novel properties whose proofs are detailed in annex.

Proposition 5. (Boundedness of the CWT) Let q > 0 defined by 1
p +

1
q = 1.

Assuming f ∈ Lq and ψ ∈ Lp, there exist C > 0 so that

∀u ∈ R, ∀s > 0, Wf(u, s) ≤ C (12)

Proposition 6. (Behavior of the CWT when the scale tends to infinity)
Assuming ψ ∈ L1 ∩ L2 ∩ L∞,

||Wf(., s)||∞ −→ 0 when s→ +∞ (13)

in all cases when f ∈ L1, for p < 2 if f ∈ L2 and for p < 1 if f ∈ L∞.

Proposition 7. (Behavior of the CWT when the scale tends to zero)
Assuming ψ ∈ L1, the property

|Wf(u, s)| → 0 when s→ 0 (14)

holds provided one of the following conditions:
General case: when f ∈ L∞, provided p > 1
Particular case: when f is α-Lipschitz (with α > 0), provided p > 1

α+1

Proposition 8. (Asymptotic behavior of the CWT) We suppose that ψ(0) 6=
0 (which is the case for many wavelets, including derivatives of Gaussian).
At any fixed u ∈ R, when s→ +∞
(a) for the Dirac δ0

|Wδ0(u, s)| ∼
ψ(0)

s1/p
(s→ +∞) (15)

(b) for the function f : R → R defined by

f(t) =

{
1 for t ∈ [0, 1]
0 elsewhere

(16)

|Wf(u, s)| ∼ ψ(0)

s1/p
(s→ +∞) (17)

(c) for the function fα : R → R, with α > 0, defined by

fα(t) =

{
tα(1− tα) for t ∈ [0, 1]
0 elsewhere

(18)

Wfα(u, s) ∼
α

(α+ 1)(2α+ 1)

ψ(0)

s1/p
(s→ +∞) (19)

Remark: the function fα (with α > 0) is uniformly α-Lipschitz with compact
support.
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3.2 Link between Lipschitz regularity and wavelets

Here we present known results on wavelets, which makes up a basis for the
the classical method of regularity estimation – see [1, 9] for details.

Proposition 9. (Jaffard) Let f : R → R, f ∈ L2. We consider its contin-
uous wavelet transform Wf , defined as: ∀s > 0, ∀u ∈ R

Wf(u, s) =
1

s

∫

R

f(t)ψ

(
t− u

s

)
dt (20)

where ψ : R → R is a wavelet function with n vanishing moments. If
f is α-Lipschitz (with α ≤ n) at t0 then there exists A > 0 such that:
∀u ∈ R, ∀s > 0,

|Wf(u, s)| ≤ Asα
(
1 +

∣∣∣∣
u− t0
s

∣∣∣∣
α)

(21)

Conversely, if α < n is not an integer and there exist A > 0 and α′ < α
such that: ∀u ∈ R, ∀s > 0,

|Wf(u, s)| ≤ Asα

(
1 +

∣∣∣∣
u− t0
s

∣∣∣∣
α′
)

(22)

then f is α-Lipschitz at x0.

3.3 Classical estimation of the regularity α

Let us recall a classical method providing a fast computation of the regularity
α. Starting from eq.(21) we get |Wf(u, s)| ≤ Asα and then log |Wf(u, s)| ≤
logA+ α log s. Now, this latter inequality becomes a quasi-equality at fine
scales [6]. So the regularity α can be estimated by performing a regression
based on the formula

log |Wf(u, s)| = α log s+ C (23)

More precisely α and C are computed by a regression of log |Wf(u, s)| over
log s at fine scales (generally three scales are sufficient for an accurate esti-
mation). When dealing with numerical data, a basic approach consists on
applying the formula (23), for instance on scales s = 1, 2, 3. This gives one
value of regularity at each data location. A more precise approach con-
cerning regularity consists on computing values of regularity at pointwise
singularities. These can be defined as modulus maxima (MM), i.e., locations
where the modulus of the continuous wavelet transform is locally maximum.
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Figure 2: (a) Data: sum of two Dirac impulses; (b) Continuous Wavelet
Transform of these data; (c) Structure of wavelet maxima lines, using the
first derivative of Gaussian as wavelet; (d) idem, using the second derivative
of Gaussian as wavelet.

Using an appropriate wavelet such as a n-th derivative of Gaussian, these
MM are connected in the scale-space domain and make up wavelet maxima
lines. The computation of the regularity α is done by using the formula (23),
along these wavelet maxima lines. From an algorithmic point of view, de-
noting N the size of the data, this can be performed in O(N) operations
thanks to fast wavelet algorithms.

The relevance the wavelet maxima lines comes from the fact they al-
low to track singularities through scales [10, 11]. Let us see illustrations of
the structure of these wavelet maxima lines, which depend on the signal and
also on the wavelet. For illustration purposes, we represent on Figure 2 their
structure in the case of a simple pattern: the sum of two Dirac impulses,
see Fig.2(a). After the computation of the Continuous Wavelet Transform
(CWT) (see Fig.2(b)), it is possible to construct numerically wavelet max-
ima lines. We represent them using two different wavelets: using the first
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derivative of Gaussian, on Fig.2(c); using the second derivative of Gaussian,
on Fig.2(d). Let us emphasize an essential principle: if a feature bears the-
oretical invariance properties, then it should present a certain robustness
in practice. We present here a methodology that allows to quantify the
robustness of a feature to various transformations.

4 New estimation of the regularity α

We present here a novel approach for the computation of the regularity α.
We recall that previous works proposed to focus on singularities, the reg-
ularity α being estimated on these singularities. and also to estimate the
regularity α at each location (treating data as a whole set). Taking advan-
tage of these two techniques, we propose here an original approach which
agrees with the idea of regularity areas between singularities. Assuming
ψ is compactly supported on [−C,C] (C > 0), let us split the scale-space
(u, s) ∈ R × R

∗
+ into two sets. On the one hand, the cones of influence of

the detected singularities

C =
{
(u, s) ∈ R× R

∗
+, |u− u0| ≤ Cs

}
(24)

where u0 is the location of a singularity, corresponding to MM at the finest
scale. On the other hand, the remaining area of the scale-space, outside the
cones of influence

O = R× R
∗
+\ C =

{
(u, s) ∈ R× R

∗
+, u0 + Cs ≤ u ≤ u1 + Cs

}
(25)

where u0 and u1 are locations of two successive singularities. Now, let
us describe how to estimate the regularity α within these two sets. As
mentioned in the preceding section, using three fine scales, we perform a
linear regression based on the formula

logWf(u, s) = α log s+K (26)
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Estimation in C: so as to estimate the regularity α at one pointwise sin-
gularity located at u0, we propose a technique based on wavelet coefficients.
We define the set

∀s > 0, C(s) = {u ∈ R, u0 − Cs < u < u0 + Cs} (27)

and the quantity

∀s > 0, H(s) = sup
u∈C(s)

|Wf(u, s)| (28)

so that at each scale s, we take the highest wavelet coefficients (in absolute
value) within the cone of influence of u0. Then, we perform a regression on
fine scales, using the formula

logH(s) = α log s+K (29)

This gives an estimation of the pointwise regularity α at the location u0.
Estimation in O: so as to estimate the regularity α between two successive
singularities, we propose a technique based on wavelet coefficients located
outside the cones of influence of these singularities. Given two successive
singularities located at u0 and u1, we define the set

∀s > 0, O(s) = {u ∈ R, u0 + Cs < u < u1 − Cs} (30)

and define the quantity

∀s > 0, L(s) = inf
u∈O(s)

|Wf(u, s)| (31)

so that we consider the lowest wavelet coefficients within D(s) (at one fixed
scale s). Then, we perform a regression on fine scales using on the formula

logL(s) = α log s+K (32)

This gives an estimation of the regularity α over the interval ]u0, u1[.
Note: the regularity α is computed through two different manners: point-
wise estimations at singularities (estimation in C) and local estimations be-
tween successive singularities (estimation in O). This approach assumes
that the data is made of discontinuities separated by smooth variations, as
opposed to multifractal structures presenting singularities at all scales. As
a consequence this approach can turn as relevant for data known to be quite
stable (economic indicator, agricultural), less for very chaotic data (seismic
activity, financial time series).
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Figure 3: Given two singularities located at S1 and S2, the scale-space can
be divided into two domains: areas corresponding to cones of influence of
these singularities, and the remaining neutral areas.

Algorithm. We consider data made of real values (xi)i=1..N given on inte-
ger locations ti = 1..N . The wavelet coefficients can be efficiently computed
through a spectral method, whose computational cost is O(N logN) – this
assumes the Fourier transform of the wavelet is known analytically. Com-
pared to the well-known algorithm Fast Wavelet Transform put forward by
S. Mallat and implemented by filterbanks, this allows a high flexibility since
any scale s > 0 can be considered (thus scales are not necessarily dyadic).
For the determination of the singularities, we consider the modulus maxima
at the finest scale, using the condition

|Wf(u, s)| > |Wf(u+ h, s)| ∀h ∈ {−H, , ..., H} with H ∈ N
∗ (33)

so that for each location u, we compare the modulus |Wf(u, s)| at u to its
value at the nearest neighbors in space (using a window of size 2H + 1).
This allows to partition the data into two sets: C associated to pointwise
singularities and O associated to a certain local regularity.

Concerning the practical estimation of α in C, we select at each scale the
highest coefficient within the cone of influence. Concerning the practical
estimation in O, we consider at each scale the mean of coefficient in the
neutral area between two cones of influence. This allows to estimate the
regularity α by the aforementioned regression at fine scales.
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5 Generalization to non-regular grids

Here we generalize the preceding tools known on regular grids. We present
here an original approach for regularity estimation on non-regular grids. In
the following we consider data observations (ti, xi)1≤i≤N with ti ∈ [−1, 1]
and xi ∈ R.

5.1 Decompositions using smoothing kernels

Here we define a decomposition based on smoothing kernels, which can be
integrated into the lifting scheme framework (also known as second genera-
tion wavelets). This multiscale decomposition presents some flexibility, since
the kernel and the scale parameters can be chosen. Let us first recall the
notion of smoothing kernels, along with their classical application in non-
parametric statistics [12] . A smoothing kernel is a function K : R → R+,
with bounded support or fast decaying, 0 <

∫
R
K < +∞. The kernel esti-

mator associated to the data (ti, xi)1≤i≤N is defined as

f̂h(t) =

N∑
i=1

K
(
t−ti
h

)
xi

N∑
i=1

K
(
t−ti
h

) (34)

where h > 0 is a bandwidth parameter. Typically, a cross-validation method
allows to compute an appropriate value of h. Assuming that data are sam-
pled from a probability density f , this gives a robust estimation of f by
a smooth function f̂h, see Fig.4(a). Here we use smoothing kernels differ-
ently, using a multiscale version, see Fig.4(b). Given different scales sj > 0
(j = 1..J), we define at each level j (j = 1..J) the function Pj : R → R as

Pj(t) =

N∑
i=1

K
(
t−ti
sj

)
xi

N∑
i=1

K
(
t−ti
sj

) (35)
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Figure 4: Smoothing data using a Gaussian kernel. (a) Estimator f̂h∗ with
h∗ computed by cross-validation; (b) Multiscale version Pj(t) at different
scales sj (c) 3D view of (ti, sj , Pj(t)).

The scales (sj)j=1..J are similar to the bandwidth h seen in eq.(34).
Large bandwidths imply coarse scale while small bandwidths imply fine
scales; however, in contrast with the kernel estimation method, where cross-
validation leads to an intermediate value of h, we use here small scales so
as to analyze the local regularity. Now, starting from eq.(35), we define
approximation and detail coefficients for each level j = 1..J and each k =
1..N

ajk = Pj(tk) (36)

djk = Pj+1(tk)− Pj(tk) (37)

Classically these details dj. correspond to differences between two successive
approximations aj+1. and aj.. Note there is no upsampling here, since co-
efficients are known at each data location (these being indexed by k). This
contrasts with multiresolution analysis and presents some similarity with
the continuous wavelet transform: the coefficients djk play the role of the
wavelet coefficientsWf(u, s). Eventually the main point of this transforma-
tion is to define detail coefficients on any type of grid (regular or irregular)
with a view to use them for regularity estimation.
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Figure 5: Evolution with respect to scale of approximation and detail co-
efficients: (a1, a2) Approximation coef. (b1, b2) Detail coef. (c1, c2) Detail
coef. in logarithm representation; for the function t 7→ t2 (a1, b1, c1) and for
a Dirac impulse in (a2, b2, c2).

5.2 Evolution of coefficients with respect to scale

Let us study the evolution with respect to scale of the decomposition coef-
ficients, in the context of regular grids. With a view to show the difference
between regular and irregular patterns, we consider the smooth function
f : t 7→ t2 and the Dirac impulse δ. Starting from sampled data (100 sam-
ples in our experiments), we compute approximation and detail coefficients
by using the proposed decomposition (using a fine range of scales to ana-
lyze their behavior). Now, we represent the evolution of approximation and
detail coefficients with respect to scale on Figure 5: on top for the smooth
function t 7→ t2 (at t = 0), at bottom for the Dirac impulse. Concern-
ing approximation coefficients, these are increasing steadily for the smooth
function f (see Fig.5(a1)) whereas they are decreasing sharply for the Dirac
impulse (see Figure 5(a2)). Concerning detail coefficients, these are increas-
ing steadily for the smooth function f (see Fig.5(b1)) while they behave in a
more complex manner for the Dirac impulse (see Fig.5(b2)); more precisely,
as the scale increases, the detail coefficients increase sharply until a scale
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s0 > 0, and decrease sharply after s0. This appears clearly in log represen-
tation, see Fig.5(c2). Let us give an interpretation of this behavior: since
the scales can be freely chosen in the decomposition, the use of very fine
scales leads to frequencies under the sampling rate, so that only one sample
(ti, xi) will be taken into account in the formula (35). This is valid until
the above-mentioned scale s0 is reached, which will be very small for a high
sampling rate. Then, for fine and intermediate scales, more samples will
be taken into account in the formula (35), which will result in a different
behavior: a decay related to the irregularity of the Dirac impulse. This is
very similar to the behavior of wavelet coefficients seen in section 3. For
properties of the kernel estimator with respect to scale, see appendix B.

5.3 Comparison with wavelets.

Considering the two former patterns f : t 7→ t2 and δ, let us write their
wavelet transforms (using L1 normalization)

Wf(u, s) =
1

s

∫

R

t2ψ

(
t− u

s

)
dt =

∫

R

(sv + u)2ψ(v)dv (38)

Wf(u, s) = s2
∫

R

v2ψ(v)dv + 2s

∫

R

vψ(v)dv (39)

Wδ(u, s) =
1

s
ψ(−u/s) (40)

In particular, at t = 0 we have

Wf(0, s) = s2
∫

R
v2ψ(v)dv + 2s

∫

R

vψ(v)dv (41)

Wδ(0, s) = s−1ψ(0) (42)

These behaviors are similar to the ones of detail coefficients of the original
decomposition based on smoothing kernels: an increase of the response with
scale for a regular pattern (regularity α > 0), and decrease of the response
with scale for an irregular pattern (regularity α < 0). As we saw earlier,
using a wavelet transform appropriately normalized, the evolution of the
wavelet coefficients with scales is related to the regularity. This decomposi-
tion being similar to wavelets, we observe similar properties. However, it is
important to note that the more general context of irregular grids leads to
a more complex behavior with respect to scale.
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5.4 Estimation of regularity features

We explain here how it is possible to compute features in the general context
of data given on a non-necessarily regular grid. As seen in section 3, the
wavelet framework provides an estimation of pointwise regularity, thanks
to the link between the regularity and the decay of wavelet coefficients at
fine scales. Here we use the estimation technique known in the context of
wavelets, so as to obtain features at every location. This original approach
can be applied to any distribution of points. We perform the following
algorithm:

1. Input: data observations (ti, xi)i=1..N

2. Perform the multiscale decomposition previously defined, using fine
scales (sj)j=1..J . We recommend linear scales: sj = j · P/N (N : size
of the data, P ∈ N

∗: a parameter ensuring that on average, we take
into account P points among the (ti)i=1..N at the finest scale).

3. Given the detail coefficients {djk, 1 ≤ j ≤ J, 1 ≤ k ≤ N} apply a lin-
ear regression based on the formula

log |djk| = β log sj + C (43)

at fine scales (sj)j=1..J , for each index k.

4. Output: regularity features (βi)i=1..N , βi ∈ R being related to the
local regularity around xi.

Note: it is appropriate to choose fine scales, and necessary to avoid too small
values (see the discussion on the behavior at very fine scales in section 5.2).
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5.5 Analysis of computed values.

Now, we investigate how the computed values βi are related to the regularity
α. For this purpose we consider simple patterns where the regularity is
known a priori, see Fig.6(a): irregular patterns such as a Dirac impulse δ
(regularity α = −1) and a Heaviside step H (regularity α = 0); regular
patterns such as the real function t 7→ |t|α with α > 0 (focusing at t = 0),
for α = 1/2, α = 1 and α = 2. Considering these five patterns, we apply the
preceding algorithm to compute one value β (corresponding to the location
t = 0). Then we represent on Figure 6(b-f) the evolution of the computed
value β with the sample size N . Generally the computed value decreases as
the sample size increases. Concerning the irregular patterns (Dirac impulse
and Heaviside step), we note a significant influence of the sampling, even
for high values. Concerning the more regular patterns (t 7→ |t|α with α >
0), we note a convergence to a limit value from n = 200. Having noted
that a certain density of points is desirable for the meaningfulness of the
estimated values, let us address the link between the computed value β with
the theoretical value α, using fixed values of sampling. In this regard let
us first choose n = 1000 and consider the patterns t 7→ tα for numerous
values of α > 0. We then represent on Figure 5.5(a) the evolution of the
computed value β with respect to the theoretical regularity α. This smooth
curve shows there are strong link between these two quantities. Considering
now several values of n, we can compute values βni associated with values
αi > 0 and several values of n ∈ N. With a view to explain statistically
these values βni with αi and independent of n, let us consider the regression
model

β = a(
√
α− 1) + b with a, b ∈ R (44)

Results are reported in Fig. 5.5(b). The high value of the determination
coefficient in all cases emphasizes the link between β and α. Heuristically,
this can be summarized as

β ≈ 3.8(
√
α− 1) (45)
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Figure 6: (a) Patterns associated with a specific regularity α; (b-f) Evolution
of the computed value β with respect to the sample size, for the patterns.
(b): Dirac (spike), (c): Heaviside (level-shift), (d): t 7→

√
t, (e): t 7→ |t|, (f):

t 7→ t2.
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Figure 7: (a) Evolution of computed values (βi) with respect to theoretical
values (αi) for n = 1000; (b) Results of the regression of computed values
(βi) against theoretical values (αi), using the model β = a

√
α+b, for different

values of n (size of the data).
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6 Conclusions, perspectives and applications

In this paper we studied properties of the Lipschitz regularity from theo-
retical and practical point of view. On the theoretical side we established
several properties concerning the behavior of the continuous wavelet trans-
form and the invariance of the Lipschitz regularity. On the practical side,
we addressed the issue of the regularity estimation on regular and irregular
grids. Concerning regular grids we put forward an original technique that
distinguishes regular areas and irregular ones – the robustness of this tech-
nique should be further explored. Concerning irregular grids we defined a
novel feature using a multiscale method based on smoothing kernels. Al-
though this method is different from the wavelet estimation, it shares an
important element: it is based on the behavior of coefficients with respect
to scale. We assessed in particular how this computed feature is influenced
by the theoretical regularity. Results show strong links between this original
feature and the Lipschitz regularity. This encourages new developments on
the estimation of regularity on irregular grids. In terms of applications, let
us mention the extraction of robust features from time series, either regu-
larly sampled or irregularly. This would be all the more relevant that in the
applications real datasets present many missing observations. Using appro-
priate methodologies, these features would then allow to define indicators of
how regular (or irregular) are datasets. This would be absolutely relevant
for issues relevant for EU policy such as antifraud, antimoney-laundering
and detection of abnormal behavior in trade data, areas to which the Joint
Research Centre of the European Commission contributes.
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A Study of the CWT with respect to scale

Proof. (concerning prop.5)
According to Young’s inequalities on convolution products [13], we can write
∀u ∈ R, ∀s > 0,

|Wf(u, s)| = |f ∗ ψs| ≤ ||f ||q||ψs||p (46)

≤ ||f ||q
(∫

R

∣∣∣∣
1

s1/p
ψ(−x/s)

∣∣∣∣
p

dx

)1/p

(47)

≤ ||f ||q
(∫

R

|ψ(y)|p dy
)1/p

(48)

|Wf(u, s)| ≤ ||f ||q||ψ||p (49)

ensuring that the CWT is bounded on R× R
∗
+

Proof. (concerning prop.6)
First, we can write

||ψs||∞ =
1

s1/p
||ψ(− .

s
)||∞ =

1

s1/p
||ψ||∞ (50)

||ψs||2 =
1

s1/p
||ψ(− .

s
)||2 =

1

s1/p

√∫

R

ψ2 (−x/s) dx =
1

s1/p

√∫

R

ψ2(y) s dy(51)

||ψs||2 =
1

s(1/p)−1/2
||ψ||2 (52)

||ψs||1 =
1

s1/p
||ψ(− .

s
)||1 =

1

s1/p

∫

R

|ψ (−x/s) |dx =
1

s1/p

∫

R

|ψ(y)|s dy(53)

||ψs||1 =
1

s(1/p)−1
||ψ||1 (54)

leading to the following properties when s −→ +∞:





||ψs||∞ −→ 0

||ψs||2 −→ 0 provided p < 2

||ψs||1 −→ 0 provided p < 1

Now, assuming f ∈ L1, or f ∈ L2 or alternatively f ∈ L∞, since ψ ∈
L1 ∩ L2 ∩ L∞, the inequalities of Young concerning convolution products
[13] hold:
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||f ∗ ψs||∞ ≤ ||f ||1||ψs||∞ (55)

||f ∗ ψs||∞ ≤ ||f ||2||ψs||2 (56)

||f ∗ ψs||∞ ≤ ||f ||∞||ψs||1 (57)

So that, for f ∈ L1 and p < 1, or f ∈ L2 and p < 2, or alternatively f ∈ L∞

and any p > 0:
||Wf ||∞ −→ 0 when s→ +∞ (58)

Proof. (concerning prop.7)
Let us distinguish the general case and the particular one.
General case. Since

||f ∗ ψs||∞ ≤ ||f ||∞||ψs||1 ≤
1

s(1/p)−1
||f ||∞||ψ||1 (59)

|Wf(u, s)| ≤ s1−1/p||f ||∞||ψ||1 (60)

assuming f ∈ L∞ and ψ ∈ L1, and provided p > 1

|Wf(u, s)| → 0 when s→ 0 (61)

Particular case. Assuming f is α-Lipschitz, then there exists A > 0 such
that: ∀u ∈ R, ∀s > 0,

|Wf(u, s)| ≤ Asα+(1−1/p) (62)

So that, provided p > 1
α+1

|Wf(u, s)| → 0 when s→ 0 (63)

Proof. (concerning prop.8)
Let us distinguish the different cases (a), (b) and (c).
(a) The CWT associated to the Dirac δ0 is

Wf(u, s) = δ ∗ ψs = ψs(0) =
1

s1/p
ψ

(−u
s

)

Since ψ(0) 6= 0, for any fixed u ∈ R,

|Wf(u, s)| ∼ ψ(0)

s1/p
when s→ +∞ (64)
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(b) The CWT associated to the function f is

Wf(u, s) = f ∗ ψs =

∫ 1

0

1

s1/p
ψ

(
t− u

s

)
dt

=
1

s1/p

[
1

s

∫ (1−u)/s

−u/s
ψ(z)dz

]

We recall that the distribution Ts defined by

< Ts, ψ >=
1

s

∫ (1−u)/s

−u/s
ψ(z)dz (65)

converges in the sense of distribution to the Dirac δ0 when s tends to infinity.
Since ψ(0) 6= 0, for any fixed u ∈ R,

|Wf(u, s)| ∼ ψ(0)

s1/p
when s→ +∞ (66)

(c) The CWT associated to fα is

Wf(u, s) = f ∗ ψs

=
1

s1/p

∫ 1

0
tα(1− tα)ψ

(
t− u

s

)
dt

Moreover we define the quantity Kα as

Kα =

∫ 1

0
tα(1− tα)dt =

∫ 1

0
tα − t2αdt

=

[
tα+1

α+ 1
− t2α+1

2α+ 1

]t=1

t=0

=
1

α+ 1
− 1

2α+ 1

Kα =
α

(α+ 1)(2α+ 1)

Since Kα > 0 (α > 0) and ψ(0) 6= 0, general theorems on limits of integrals
ensure that

Wf(u, s) ∼ Kα
ψ(0)

s1/p
when s→ +∞ (67)
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B Properties of the kernel estimator

Let us consider data (ti, xi)i=1..N and fixed t ∈ [0, 1]. We define the function
Q :]0,+∞[→ R as

Q(s) =

∑
i pi(s)xi∑
i pi(s)

with pi(s) = K

(
t− ti
s

)
(68)

The link between this function and the coefficients is straightforward

ajk = Pj(tk) = Q(sj)|t=tk
(69)

djk = Pj+1(t)− Pj(t) = Q(sj+1)|t=tk
−Q(sj)|t=tk

(70)

Let us study the function s 7→ Q(s), assuming (ti)i=1..N are distinct values
and considering a Gaussian kernel K(t) = exp(t2/2) (∀t ∈ R).

Proposition 10. (Behavior of Q)
(i) Behavior at infinity:

lim
s→+∞

Q(s) =
1

N

∑

i

ti (71)

(ii) Behavior at zero: depending on the value of t, there exists either one
or two indexes associated to a minimum of (|t− ti|)i=1..N . In particular, if
t = tk for one k ∈ {1..N}, this index k corresponds to the only minimum of
(|t− ti|)i=1..N .
In the case of one index k

lim
s→0

Q(s) = xk (72)

In the case of two indexes k1 and k2

lim
s→0

Q(s) =
xk1 + xk2

2
(73)

(iii) Majoration over ]0,+∞[: there exists C1 > 0 so that

|Q(s)| ≤ C1 ∀s > 0 (74)
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Proof. (i) Behavior at infinity

For all i = 1..N, pi(s) −→ pi(0) = K(0) > 0 when s→ +∞. Therefore

lim
s→+∞

Q(s) =

∑
iK(0)ti∑
iK(0)

=
1

N

∑

i

ti (75)

(ii) Behavior at zero: let us distinguish between two cases.
First case: t ∈ {ti, i = 1..N}. There exists k ∈ {1..N} so that t = tk.
Thus pk(s) = K(0), and for i 6= k, pi(s) −→ 0 when s → 0. This allows
to write lims→0

∑
i pi(s)xi = K(0)xk and lims→0

∑
i pi(s) = K(0). Since

Q(s) =
∑

i pi(s)xi∑
i pi(s)

lim
s→0

Q(s) = xk (76)

Second case: t /∈ {ti, i = 1..N}. We can write Q(s) =
∑

iAixi with

Ai =
K( t−ti

s )
∑

iK( t−ti
s )

=
exp(− (t−ti)

2

2s2
)

∑
k exp(−

(t−tk)2

2s2

(77)

Denoting λi = (t− ti)
2/2 and u = 1/s2,

Ai =
exp(−λiu)∑
k exp(−λku)

=
1∑

k exp(−(λk − λi)u)
(78)

Let us point out that when s→ 0 (s > 0), u→ +∞ and so

if λk − λi > 0, exp(−(λk − λi)u) −→ 0 (79)

if λk − λi = 0, exp(−(λk − λi)u) = 1 (80)

if λk − λi < 0, exp(−(λk − λi)u) −→ +∞ (81)

Considering the sum
∑

k exp(−(λk − λi)u) at the denominator of Ai, let us
note that this sum never tends to zero since λk − λi = 0 for k = i. This
sum tends to infinity provided there exists one k so that λk < λi. This is
always the case except when the index i corresponds to the minimum of(
(t− tl)

2/2
)
l=1..N

, also corresponds to the minimum of (|t− tl|)l=1..N .
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Now let us define the set

I∗ = {i∗, |t− ti∗ | ≤ |t− tl| ∀l = 1..N} (82)

This set is never empty. Since the (ti)i=1..N are distinct, this set contains
at most two values. It contains exactly two values when t = (ti∗

1
+ ti∗

2
)/2 for

some indexes i∗1 and i∗2. In this case, when s→ 0,

Ai −→
{

1
2 if i ∈ {i∗1, i∗2}
0 if i /∈ {i∗1, i∗2}

(83)

This set contains exactly one value in all other cases: I∗ = {i∗}. In this
case, when s→ 0,

Ai −→
{

1 if i = i∗

0 if i 6= i∗
(84)

Since Q(s) =
∑

iAixi,

lim
s→0

Q(s) =

{
xi∗ if I∗ = i∗
xi∗

1

+xi∗
2

2 if I∗ = {i∗1, i∗2}
(85)

(iii) Majoration over ]0,+∞[: as seen earlier, denoting λi = (t − ti)
2/2

and u = 1/s2,

0 ≤ Ai =
exp(−λiu)∑
k exp(−λku)

≤ exp(−λiu)
exp(−λiu)

= 1 (86)

Since Q(s) =
∑

iAi(s)xi,

|Q(s)| ≤
∑

i

|Ai(s)| · |xi| ≤
∑

i

|xi| ≤ C1 (87)
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Abstract 
 

In this paper we study the pointwise Lipschitz regularity, covering several aspects: theoretical and practical, methods for its 

estimation on regular and irregular grids. The relevance of this value of regularity lies in its invariance properties to several 

transformations, and its fast computation thanks to wavelets. We study the influence of scale on wavelets transforms and show 

invariance properties this value of regularity. We also put forward an original technique for its estimation on regular grids. We 

also address the issue of irregular grids, based on the behaviour of smoothing kernels with respect to scale. The obtained results 

emphasize the usefulness of such features for the applications, and motivate further work on this topic. 
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