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1. Introduction 

The use of appropriate models for redistribution is an important added value for fuel 

performance codes for the description of the actinides transport and evolution across the fuel 

pellet. Actually, modelling of the plutonium radial distribution is a key issue for design 

purposes of FBR fuel pins, since Pu build-up in the central part of the fuel pellet during 

irradiation can impose significant constraints on the allowed maximum fuel temperature and 

therefore on the linear heat rating [1]. Plutonium evolves and migrates during irradiation 

mainly because of burn-up (fissions and transmutations) and temperature gradient (diffusion), 

respectively. The burn-up evolution is calculated in Transuranus by means of TUBRNP 

(recently extended for FBRs) for each different plutonium isotope according to neutronic 

features of the reactor. The PUREDI model calculates the diffusion of the total plutonium 

concentration, but the two models, TUBRNP and PUREDI, are not coupled. For this reason, 

we propose a revision of PUREDI so that, at the end of a time step, it returns the 

"redistributed" concentrations of the different isotopes to be used by TUBRNP during the next 

time step. We identified two possibilities to perform the above mentioned coupling: 1) the 

diffusion equation is solved separately for each different plutonium isotope; 2) the 

"redistributed" isotope concentrations are calculated from the total plutonium concentration 

by means of a simplified "splitting" formula. The two options are discussed in the report, and 

the second one is chosen for implementation, since it allows to safe computational time, 

while maintaining the same accuracy when experimental uncertainties are taken into 

account. 

The report is structured as follows: in the second section the description of the stand-alone 

PUREDI model and the assessment of the numerical solution will be outlined; in the third 

section the two coupling procedures with TUBRNP will be discussed; the fourth section gives 

some information about the coupling with the oxygen redistribution model (OXIRED); in the 

fifth section, the revised version of PUREDI is tested by means of either specific or integral 

tests; the last section draws some conclusions. 
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2. Overview of the PUREDI model 

Plutonium redistribution in nuclear fuel is important for the assessment of FBR rod 

performance since it can significantly affect fuel temperatures by changing the fuel thermal 

conductivity and the radial power profile. This effect is well known from post-irradiation 

examinations and out-of-pile experiments and is mainly caused by the following two 

mechanisms [1,2]: 

 

(a) Solid state thermal diffusion 

(b) Vapour transport by migrating pores and via cracks 

 

The transport of plutonium by vapour migration via cracks was recognized as negligible for 

long-term operation [3,4], since cracks heal relatively fast during irradiation due to the high 

temperature in FBR fuel. The importance of vapour transport via pores had been also 

discussed in the past with different opinions and ideas [1,4,5,6,7]. According to Olander [1] 

and Clement and Finnis [4], the transport via pores should be of less importance compared to 

solid state diffusion, mainly because pore migration occurs immediately, inducing 

restructuring and formation of the central void. Therefore, this can have an effect on 

plutonium only during the first hours of irradiation, while solid state diffusion is a long-term 

process which produces a continuously growing redistribution effect. Only mechanism (a) is 

therefore considered in the Transuranus code. 

On the basis of experimental radial profiles of plutonium in irradiated MOX fuels, Bober et al. 

[8] suggested the adoption of the standard equation of thermal diffusion: 

 

  (1) Pu
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where JPu is the vector flux of species per unit area and unit time; cPu and cU ( ≅ 1 − cPu ) are 

the molar fraction of plutonium and uranium oxides, respectively; R is the universal gas 

constant; T the absolute temperature; QU-Pu is the effective molar heat of transport; and DU-Pu 

is the chemical interdiffusion coefficient. 

Considering plutonium migration only along the radial direction (axial diffusion is neglected), 

Eqs. (1) and (2) can be rewritten in cylindrical coordinates as follows: 
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Since PUREDI deals only with redistribution (diffusion) of Pu, boundary conditions have to be 

chosen so as to ensure that no Pu is created or destroyed. This implies that the flux of Pu 

atoms at the inner (Ri) and outer (Ro) fuel surfaces is zero, as follows: 

 
 (5) 0JJ

oi RrPuRrPu ==
==

 

 

The solution of Eqs. (3) and (4) with boundary conditions (5) is obtained in the original 

PUREDI program according to the Lassmann's formulation of Bober's FBR redistribution 

model [9,10], which represents the starting point of the extension proposed in this report. The 

numerical solution is obtained by means of a finite difference scheme, which is summarized 

in Appendix A, under the following two assumptions: 

 

(i) Linearization of Eq. (4) by imposing: 

 
 (6) ( ) ( )n,Pu1n,PuPuPu c1cc1c −≈− +  

 

where n+1 indicates the actual and n the previous time step. In other words, the relative 

change of CU is assumed to be small compared to the relative change of CPu in a time step. 

 

(ii) Diffusion of Pu close to the outer fuel surface is low due to the low temperatures and 

low concentration gradient: 

 
 (7) 1m,Pum,Pu cc −≈  

 
where m indicates the last radial mesh point of the fuel. Hypothesis (ii) is adopted in order to 
avoid numerical oscillation in the solution caused by the boundary condition (5). 
The numerical scheme of PUREDI (see Appendix A) has been recently revised, rewritten and 
extensively tested on the basis of a Monte Carlo analysis consisting of about 106 different 
cases. The results are not reported here for brevity. 
The validity of the hypothesis (i) and (ii) has been verified by means of a code-to-code 
comparison with the finite element commercial software COMSOL Multiphysics [11]. The 
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solution provided by COMSOL does take into account the non-linearity of Eq. (4) and does 
not make use of the simplification given by Eq. (7). Figure 1 shows the comparison between 
PUREDI and COMSOL, as well as with the analytic solution provided by Clement [12]. As 
can be seen, both the above discussed hypotheses are valid, since PUREDI and COMSOL 
solutions are practically identical. The use of the analytic solution is only valid for very short 
times, because it has been derived by means of a first order integration of Eq. (3), and 
therefore cannot be used for the purposes of a fuel performance code. 
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Figure 1: Radial distribution of Pu at different times obtained by means of PUREDI, 

COMSOL and the analytic solution [12]. 
 



 7

3. Coupling PUREDI with TUBRNP 

This chapter presents the extension of the PUREDI programme discussed in chapter 2 in 
order to take into account plutonium evolution due to burnup. In principle, an additional 
source term in the diffusion equation (1) (which is in general different for each plutonium 
isotope and radial dependent) should be considered. This would require a reformulation of 
the TUBRNP program and PUREDI, as well as of the Transuranus structure, because 
TUBRNP should be included in the implicit loop [10]. However, we can assume that: i) 
redistribution occurs much faster than burnup evolution in a given time step; ii) in FBR 
conditions, plutonium build-up or depletion (given by TUBRNP) has a very small radial 
gradient. It follows that the source term can be disregarded and the coupling can be simply 
performed by changing the initial value of plutonium distribution for PUREDI at each time 
step coming from TUBRNP. In particular, assumptions i) and ii) allow to keep PUREDI and 
TUBRNP separated within the Transuranus structure, and to solve the diffusion equation 
without the source term. More precisely, if the source term S = const, the solution of the 
diffusion equation can be written as cPu = cPu_homo + S·t for small t, where cPu_homo is the 
solution of the homogeneous diffusion equation (i.e., Eq. (1)). S·t is a particular solution 
approximated at the first order (small t), and is considered in the present formulation as the 
initial value at each time step: cPu_in = cPu_homo (t − Δt) + S·ΔT. The influence of this 
approximation is discussed in Appendix C (Figure C.1), where the equation containing the 
source term is solved by means of COMSOL. 
In order to couple PUREDI with TUBRNP we also need to calculate the redistributed 
concentrations of the five different plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu and 242Pu) 
considered at each time step. We identified 2 different approaches to perform this task. 
Assuming that the transport phenomenon is the same for each plutonium isotope (the 
chemical behaviour is identical) and that neither DU-Pu nor QU-Pu depend on plutonium 
concentration [8], we assume that the diffusion equation (Eq. (3)) can be written for the single 
plutonium isotope, as follows: 
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 (10)  242Pu241Pu240Pu239Pu238Pu
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The total flux of plutonium atoms is given by the sum of the isotopic fluxes, so that Eqs. (3) 

and (4) are still satisfied: 
 

 (11)  ∑
=

=
5

1j
j,PuPu JJ  

 
The previous approach is discussed in Appendix B. 
Eqs. (8)-(11) consist in a non-linear system of five coupled partial differential equations, 

which would be difficult to solve. However, the non-linear term in Eq. (9) can be linearized in 
the same way as discussed in section 2: 
 

 (12)  ( ) ( )n,Pu1n,j,PuPuj,Pu

5

1j
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∑  

 

Thanks to Eq. (12), each equation is not only simplified (linear), but, in a given time step, is 
independent on the concentration of the other isotopes. As a result, we obtained 5 diffusion 
equations for the 5 plutonium isotopes, which can be solved by means of the algorithm 

discussed in section 2 and Appendix A. 
The main drawback of this approach is the computational time, which is increased at least by 
a factor of five compared to solving the diffusion equation for the total Pu. To improve 

PUREDI performance, we propose an alternative way to calculate the redistributed 
concentrations for each plutonium isotope. We simply assume that the concentrations of the 
different isotopes after redistribution can be obtained on the basis of their concentration 

calculated by TUBRNP in the same time step (i.e., before redistribution) as follows: 
 

 (13)  ( ) ( )
( ) ( ) ( ) ( )rcrrc
rc
rc

rc PujPuBR
Pu

BR
j,Pu

j,Pu ⋅α=⋅=  

 

where 
 

 (14)  ( ) 1r
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1j
j =α∑

=

  for all r 
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where BR stands for "before redistribution". This approximation is discussed in Appendix C, 
where it is shown that Eqs. (3) and (4) are still fulfilled because of Eq. (14). On the contrary, 

the diffusion equation for each isotope (Eq. (8)) is not valid because an additional term 
depending on αj(r) appears in the flux Jj. This term comes from the additional non-linearity 
introduced by Eq. (13) and does not assure mass conservation and boundary conditions for 

each plutonium isotope. 
However, if the radial gradient of cj is small compared to the second term of the right-hand 
side of Eq. (9), the two approaches are almost identical. 

Both approaches1 have been extensively tested as stand-alone programs, in which an 
additional depletion term (that modifies the initial plutonium concentration at each time step) 
is also introduced to simulate the TUBRNP effect. For the sake of brevity, only a part of this 

comparison will be shown. 
Figure 2 shows the total plutonium concentration after 10000 hours with a constant depletion 
of 5·10-3 %/hour for the different approaches. As expected the solutions are identical, 

because Eq. (3) is valid for both approaches. 
An interesting comparison is shown in Figure 3, where different initial concentrations are 
adopted for the different plutonium isotopes (uniform depletion rate). Even if it cannot be 

seen in the graph, there are very small differences between the two approaches introduced 
by the term αj(r). Actually, each isotope redistributes with a different importance having a 
different initial amount. 

In order to visualize significant differences between the two approaches we have to introduce 
large radial gradients, for example by using a non-uniform depletion rate like in a LWR. As 
shown in Appendix C, this would cause a distortion in the plutonium radial profile which is of 

course non-physical. 
However, the encountered discrepancies are always within the uncertainty associated to the 
measurements. Therefore, we consider for the implementation in Transuranus the simplified 

approach given by Eq. (13), so that the diffusion equation in PUREDI is solved only for the 
total plutonium concentration. This represents a good compromise between accuracy and 
computational costs. 

 

                                                 
1 In the following, the solution labelled as "splitting" is the one obtained by solving five diffusion equations for the 
five Pu isotopes, while the solution labelled as "approximation" is obtained by means of Eq. (13). 
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Figure 2: Comparison between COMSOL solution and the two different approaches 

proposed for PUREDI: total Plutonium concentration. 
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Figure 3: Comparison between the two different approaches proposed for PUREDI. 

Different initial concentrations for cj and constant and uniform depletion rate. 
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4. Coupling PUREDI with OXIRED 

The Transuranus oxygen redistribution programme (OXIRED) calculates the steady-state 
and transient radial oxygen-to-metal ratio (O/M) in a fuel rod [13]. The programme is based 
on the work of Sari and Schumacher [14] and predicts the O/M evolution according to the 

thermal diffusion equation: 
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where ci,v is the concentration of oxygen vacancies/interstitials, Q* is the oxygen heat of 

transport and DO is the diffusion coefficient.  
The coupling with the plutonium redistribution in the fuel (q is the Pu molar fraction) is given 
by the dependence of the different parameters of Eq. (15): 

 
a) the heat of transport (for oxygen vacancies for hypostoichiometric fuels) depends  on 

the plutonium valence VPu in the fuel according to the following correlation [14]: 

 
 (16) 2

Pu
4

Pu
55* V105.8V1066.51045.9Q ⋅−⋅+⋅−=  

 

 where 
 

 (17) ( )
q

2M/O24VPu
−+=  

 
b) the diffusion coefficient depends on the Plutonium content and the correlation 
 adopted for DO has been recently updated [15]. 
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5. Tests of the PUREDI model 

The revised PUREDI model of the Transuranus code has been extensively tested by means 
of specific tests concerning the stand-alone version of PUREDI and by means of integral 
tests concerning fuel pins irradiated in fast reactor. Besides the modifications concerning the 

coupling with TUBRNP (discussed in this report), also the plutonium interdiffusion coefficient 
has been revised. A proposal for DU-Pu was made in Ref. [15], in order to take into account 
the dependence of the diffusion mechanism on the oxygen-to-metal ratio. The results of the 

integral test will be shown with the new correlation for the diffusion coefficient. 

5.1 Specific tests 

Specific tests consisted in the analysis of the stand-alone model of PUREDI. This has been 

carried out by means of a Monte Carlo Test. The program runs 100 cases with more than 
200.000 calls to PUREDI and PUIMPL (see Appendix A). This test was performed to check: 
1) if the revised and the old version of PUIMPL give the same results; 2) the performance of 

the revised PUREDI package. The comparison between both versions shows only few minor 
differences due to round off errors. As concerns the performance of the new PUREDI 
package an increase in the computational time of a factor of 3 has been found probably due 

to the implementation of the new diffusion coefficient. 

5.2 Application of the revised PUREDI model to irradiations 

Two cases from the SUPERFACT experiment have been analysed. They consist in two fuel 

rods with MOX fuel containing few percents of minor actinides irradiated in the fast reactor of 
Phenix. They are labelled as SF-2%Np and SF-2%Am. The first one experienced higher 
plutonium redistribution due to the high power level and temperatures reached during 

irradiation. EPMA measurements were carried out at the ITU. The comparison between 
Transuranus with the revised PUREDI model and the experimental data is shown in Figures 
4 and 5. A good agreement has been found and the discrepancies are within the 

uncertainties of the measurements. 
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Figure 4: Comparison between Transuranus and EPMA measurements of Plutonium 

redistribution for the fuel pin SF-2%Np. 
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Figure 5: Comparison between Transuranus and EPMA measurements of Plutonium 
redistribution for the fuel pin SF-2%Am. 
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5.3 Incompatibility of the PUREDI model with LWR conditions 

It is important to note that the hypothesis (ii) discussed in section 2 (required by equation (5)) 

is obviously not applicable to large gradients of the local Pu concentration at the periphery of 
the fuel. Figure 6 illustrates the situation for the OSIRIS H09 rod of the FUMEX-III project 
(irradiation in PWR, radially averaged burn-up in the mid-rod axial position: 44 MWd/kgHM): 

The assumption cPu.m ≈ cPu,m-1 (Figure 6a) results in a distortion of the local burn-up (Figure 
6b). Furthermore, due to the formation of the high burn-up structure (HBS) at the periphery of 
the fuel, the modified local burn-up has a significant impact on the resulting local Xe 

concentration (Figure 6c). Tests have shown that this problem can not be solved by 
increasing the number of radial nodes, because the gradient of the Pu concentration is 
increasing towards the surface of the fuel.  

As such a situation occurs for any UO2 or MOX fuel irradiated in a thermal-neutron 
environment - typically at intermediate burn-up - the PUREDI model should in general not be 
applied for simulating irradiations in light-water reactors (LWR). The extension of the 

Transuranus code in this case foresees an automatic switch off of the PUREDI model 
(IPURE=0, and a warning message is given to the user). 
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Figure 6: Comparison of simulated local Pu concentration, the local burn-up and the 
local Xe concentration for a priority case the FUMEX-III project. 
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6. Conclusions and perspectives 

In this report the revised version of the PUREDI programme for the calculation of the 
Plutonium redistribution in fast reactor fuels has been discussed. The programme has been 
completely rewritten for the fortran 95 version of the code. The numerical structure has been 

revised and extensively tested by means of a Monte Carlo test program. 
In the context of calculating plutonium redistribution for fast reactor fuel rods simulations, the 
new PUREDI version has been coupled with TUBRNP by means of a simplified approach 

which preserves computational time maintaining the same accuracy. In particular, the 
concentrations of the different plutonium isotopes are calculated starting from the total 
plutonium concentration (calculated by PUREDI) on the basis of the isotopic ratio obtained 

from TUBRNP in the same time step but before redistribution. The limitations of this 
approach have also been discussed. Finally, the programme has been verified on the basis 
of integral tests (two rods of the SUPERFACT experiment) showing a good agreement with 

the experimental data. 
The revised version of PUREDI presented in this report can be easily extended for the 
calculation of actinides redistribution (Am, Np, etc.) once their transport behaviour in UO2 

matrix will be assessed. PUREDI represents a reliable program to deal also with minor 
actinides fuels, which are foreseen to be adopted in the future in order to reduce the 
inventory and radiotoxicity of fuel cycle waste. 
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Appendix A: Implementation of the Transuranus PUREDI model 
 
In this Appendix the finite difference algorithm adopted to solve the diffusion equation is 
described. The algorithm was developed in [9,10] according to Lassmann's approach to 
Bober's redistribution model and the equations are herein rewritten in a better 

understandable form. A small modification to original Lassmann's algorithm is proposed (i.e., 
for the last equation) in order to avoid oscillations in the numerical solution when diffusion is 
important at the outer fuel surface. 

The PUREDI model implemented in Transuranus consists of 3 subroutines according to the 
following scheme: 
PUREDI  PUIMPL  FDIAG 

where PUREDI is the driver, PUIMPL includes the finite difference scheme and FDIAG 
solves a pentadiagonal system of equations. This role was played in the previous PUREDI 
model by 3 subroutines (i.e., FDIAG, FDIAGL and FDIAGZ) which have been now 

incorporated into a single routine, that is FDIAG. 
The finite difference approach and the relative equations are derived below. The 
discretization in time will take the index n in the following (n + 1 indicates the current time 

step). The fuel is divided into m radial zones which need not to be equidistant. In the 
following, a superscript (i) indicates a radial zone whereas a subscript indicates the value at 
the node ri (see Figure A.1). For simplicity, the subscript Pu in the definition of the physical 

quantities in section 2 is omitted (i.e., c = cPu, D = DPu, J = JPu, etc.). 
 

 
 
Figure A.1:  Discretization scheme of PUREDI model. 



 17

 
For each zone the balance equation is written: 
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where w is an area weighting factor defined as: 
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and the time derivative of plutonium concentration is discretized as follows: 
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The equation system to be solved consist of m − 1 equations for m unknowns, so that an 
additional equation is needed. To close the system, we adopt the hypothesis discussed in 

section 2, namely cm = cm-1. 
Concerning the term Ji, defined by Eq. (4), its discretization requires the definition of the 
radial derivative of c:  
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The subscript n is omitted since ci are taken at time n+1 (i.e. are unknown). This is a fully 
implicit formulation. A comparison between an implicit and an explicit scheme was also 

performed showing a perfect agreement. However, since the explicit solution did not result in 
significant reductions of the computational costs, only the fully implicit treatment was 
incorporated into the Transuranus code. 

Now, we can define: 
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and obtain: 
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According to the linearization of Eq.(6) in section 2 we define: 
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where all values are known, since they are defined at the previous time step and taken at r = 
ri. So, we can rewrite the term Ji as follows according to Eqs. (A.6)-(A.9): 
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In addition, we define the following terms: 
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Now, we can rewrite Eqs. (A.1) and (A.2) making use of the previous definitions. Starting 

from Zone 1: 
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In a similar way, we proceed for Zone 2…m − 2: 
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As far as the equation for the last zone is concerned, the original Lassmann's algorithm starts 

from Eq. (A.3) and applies the hypothesis discussed in section 2 (cm-1 = cm). As shown in 
Figure A.2, this approach can lead to oscillation in the solution if diffusion is important at the 
outer fuel surface, because Eq. (A.3) has been derived assuming Jm = 0, which is not 

consistent with the hypothesis cm-1 = cm. 
To overcome this problem we propose to start from Eq. (A.13) also for the last zone. To 
proceed, we need to redefine the concentration gradient at the outer fuel surface: 
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where 
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Hence, the equation for the last zone is: 
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The final equation is represented by  the hypothesis discussed in section 2: cm = cm-1. 
The equation system given by Eqs. (A.12)-(A.16) is implemented in the subroutine PUIMPL 
and is solved by the FDIAG subroutine. A comparison between the two algorithms is given in 

Figure A.2. 
Since the fully implicit scheme guarantees numerical stability even for extremely large time 
steps, the time step length, which controls the plutonium redistribution, has to be limited 

because of the linearization adopted in Eq. (6). Numerous tests proved that the time step 
criterion 
 
 (A.16)  { }n,i1n,i ccmax01.0t −⋅≤Δ +  

 
is a good compromise between accuracy and computational cost. 
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Figure A.2: Comparison between Lassmann's algorithm and the present one proposed 

for PUREDI. The diffusion coefficient derived in [15] is used for the 
comparison. This correlation returns higher values of DU-Pu (even a factor of 
15 at low temperatures according to the oxygen to metal ratio) with respect to 

that suggested in Ref. [8]. 
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Appendix B: Validity of the diffusion equation for each plutonium isotope 
 
In this appendix, the problems given by Eq. (8) and (9) will be discussed. For the sake of 

simplicity, we rewrite again Eqs. (3) and (4) omitting the subscript Pu: 
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The total plutonium concentration is given by the sum of the concentrations of the different 

isotopes: 
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=

=
5
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Since the non-linear term is simplified (as shown in section 2) to get the solution in the 

PUREDI model, it can be considered as known. This approximation has been extensively 
tested for the PUREDI model, and is consistent as far as the time step is small. It follows that 
Eq. (B.1) is a linear differential equation. Thanks to this property, we can define a linear 

operator L (γ), which associates to a function γ the diffusion equation, as follows: 
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From Eq. (B.3), we can write: 
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Since cj must have the same properties as c (mass balance and boundary conditions – see 
below), it is reasonable to assume that the concentration of each plutonium isotope satisfies 
the diffusion equation: 

 
 

 (B.6)  ( ) ( )( ) 0crJ
rr

1
t
c

cL j
j

j =
∂
∂−

∂
∂

=  



 22

 
Now, some features of this approach will be discussed. Substituting Eq. (B.3) into (B.2) and 

then in (B.1), we get: 
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So, we obtain: 
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and hence: 
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We can now define Jj as the flux of the j plutonium isotope: 
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and hence 
 

 (B.11)  ( ) 0rJ
rr

1
t
c5

1j
j

j =
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂−

∂
∂

∑
=

 

 
Eq. (B.11) is the same as Eq. (B.5), and represents the verification of the linearity of the 
diffusion equation under consideration. 
Now, we multiply both sides of Eq. (B.11) by r and integrate between Ri and Ro (inner and 
outer fuel radius, respectively). Since the integral is a linear operator, we can write: 
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The integral in the first term of Eq. (B.12) represents the mass of each plutonium isotope. 
Since mass conservation must be assured for each isotope, we write: 
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The same argument can be applied to the second term, which represents the boundary 
conditions. Since no flux of atoms can occur at boundaries the second term is equal to zero 
for each j: 
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Appendix C: Alternative approach to couple PUREDI with TUBRNP 
 

The alternative approach (indicated as "approximation" in the following) proposed for the 
coupling between PUREDI and TUBRNP consists in splitting the total redistributed plutonium 
concentration on the basis of the values given by TUBRNP in the same time step, but before 
redistribution (the subscript Pu is omitted): 
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We now verify that this approach assures the same total flux of atoms. Substituting Eqs. 
(C.1) and (C.2) into Eq. (B.10) and omitting the time index subscript, we get: 
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Expanding the radial derivative, we can write: 
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From Eq. (11) and Eq. (14), we can easily verify that the total flux of atoms is given by the 
sum of the different fluxes: 
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For this reason, the calculated total plutonium concentration is the same between the two 
approaches. The same cannot be said for the concentrations of the different isotopes. In fact, 
if we look at Eq. (C.4), we can identify an additional term proportional to the gradient of αj(r) 
which comes directly from the non-linearity introduced by Eq. (C.1). Because of this term, the 
boundary conditions (see Eq. (B.14)) are not satisfied because this term is generally different 
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from zero at boundaries. The same is valid for the mass balance. However, the gradient of 
αj(r) is very small compared to the temperature gradient, and to see some differences 
between the 2 approaches, strong gradient concentrations must be artificially introduced. For 
example, two cases with non-uniform depletion rate will be shown: 1) same initial 
concentration of cj with different depletion rate non-uniform along r; 2) different initial 
concentration of cj with strong gradient in the depletion radial profile. 
The results are shown in Figures C.1 and C.2. In the first case, some discrepancies can be 
identified near the pellet centre, where the overestimation of the concentration for the first 
isotope is counterbalanced by the underestimation of the others.  
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Figure C.1: Comparison between the two different approaches proposed for PUREDI and 
the numerical solution obtained by means of COMSOL. Same initial 
concentration of cj but different depletion rate. 

 
In this picture, also the COMSOL solution is given in order to assess the importance of the 
assumption related to the source term (see chapter 3). As can be seen, the effect of 

disregarding the source term is negligible compared to the error introduced by the gradient of 
αj(r). The second case shows the distortion in the radial profile introduced by the additional 
term in Eq. (C.4), which is non-physical. 
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Figure C.2: Comparison between the two different approaches proposed for PUREDI. 

Different initial concentration of cj with strong radial gradient in the depletion 

rate. 
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