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Executive Summary 
 

In order to support the implementation of the Marine Strategy Framework Directive, DG 

Environment and the Joint Research Centre of the European Commissionjoined to carry out a 

study on the expected cumulative impact of existing EU environmental legislation on the quality 

of the marine environment, with specific reference to the case of aquatic discharges to European 

seas. The assessment, considering regional seas as final receiving water bodies, focused mainly 

on trends and options for reduction of inland-based emissions of nutrients and chemicals. 

Therefore, the results of this study are useful not only for the implementation of the Marine 

Strategy Framework Directive, but also to other policies developed by the EU to control 

emissions to water bodies from a variety of sources (e.g. the Water Framework Directive, the 

Nitrates Directive, the Urban Waste Water Treatment Directive).  

The results of some scenario analyses affecting emissions to the European regional seas up to the 

year 2020 are presented for convenience in two separate EU reports. The present one deals with 

the assessment of loads of Nitrogen and Phosphorus, and the other focuses on three chemicals 

taken as pilot substances - Lindane, Trifluralin and Perfluorooctane sulfonate (Marinov et al., 

2011). The scenarios were agreed with stakeholders at DG Environment following some 

preparatory meetings. They do not intend be exhaustive, but examples of what can be further 

achieved by making use of the modelling tools and databases developed during the different 

phases of the project.  

 

 Part I: Policy options and alternative measures to mitigate land based 
emission of nutrients (Nitrogen and Phosphorus) 
 
The study on nutrient loads was divided in three phases. The first one was focusing on data 

collection and model development. The second phase dealt with the retrospective assessment for 

the years 1985-2005, including the collection of all relevant data and a trend analysis for nutrient 

loads to pave the way for the scenario development and evaluation that was the focus of the third 

part of the study. The results of the previous two phases are reported elsewhere (Bouraoui et al., 

2009 and 2011). The present report summarizes the results of the third phase. First, a Business as 

Usual (BAU) scenario was defined and then three types of mitigation scenarios were developed 

and tested by addressing: 
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i) the collection and treatment of point sources (UWWD and PFREE scenarios), 

ii) a change in European human diet (WHO and WCRF scenarios) 

iii) the management of manure application in Europe (MANU scenario).  

Scenarios were run with the GREEN model, which uses input from anthropogenic activities 

(agriculture, industries, wastewater) to calculate the load of nitrogen (N) and phosphorus (P) for 

the whole Europe on a sub-catchment basis. The dual objective was to assess changes of land 

based nutrient loads to European regional seas providing at the same time an assessment of 

impacts of actions affecting inland based nutrient emission. 

All mitigation measures were assessed using as reference both the year 2005 and the  Business as 

Usual scenario (BAU) including change in population count and distribution and considering the 

status-quo in wastewater treatment for 2020. It also includes prospects for food production and 

prediction for crop requirements.  

The Results on the mitigation of nutrients emitted as point sources combined several parameters 

as the changes in population density, the increase of connection rate to the sewage network, the 

upgrading of wastewater treatment plants. The gap between EU-15 and new Members States is 

clearly evident. 

For EU 15, the implementation of the Directive 91/271/EEC (UWWD scenario) mostly results in 

the upgrading of existing treatment plants with basic treatment to more stringent treatment of 

nitrogen and phosphorus, leading to a significant decrease of point sources emission for nitrogen 

(from -7% for the Netherland up to -50% in Ireland). Results for phosphorus are also very 

significant (with a decrease up to 63% in Belgium) when combined with a ban of phosphates and 

other phosphorus compounds in household laundry detergents (PFREE scenario), as suggested by 

the Commission proposal COM (2010) 597 amending Regulation (EC) No 648/2004.  

For the new Member States, the full implementation of the UWW-Directive leads to an important 

transfer of nutrient sources from non-collected emission (scattered dwelling) to point-sources 

emission (connected to sewers). This transfer tends to limit the impact of the UWWD scenario 

and leads to a significant increase of point source, as for example for Romania (+54% N; +34% 

P) or for Slovenia (+73% N; +51% P) where a complete reduction (>90%) of scatter dwelling 

emissions is simulated. It is important to note in this context that scattered dwellings are a major 

source of groundwater contamination. 

Options to mitigate nutrient emissions as diffuse sources include the change in European human 

diet (WHO and WCRF scenarios) and the management of manure application in Europe (MANU 
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scenario). The WHO and WCRF scenarios, considering progressive decrease of beef and pork 

meat consumption and an increase of vegetal proteins in human diet, have a low impact on 

nitrogen and phosphorus diffuse sources. This is partially explained by the storylines of these two 

scenarios, which, according to the agri-economic prevision of the CAPRI (Common Agricultural 

Policy Regional Impact) model, consider a significant decrease in meat consumption in Europe, 

but at the same time an important increase of meat export outside Europe necessary for farms to 

be economically sustainable. In the more stringent WCRF scenario, the sum of anthropogenic 

diffuse emissions is decreased by 4 % for nitrogen and 3% for phosphorus at the scale of EU-27. 

This clearly highlights the necessity to consider simultaneously human meat intake and meat 

production in order to achieve significant decrease of nutrient emissions from animal breeding.  

While previous environmental assessments put emphasis on a change in food consumption as an 

efficient way to reduce nitrogen input to the environment in Europe, this report suggests that a 

more realistic scenario analysis should consider both agricultural production and trade. Indeed, it 

is shown that the production of meat in Europe will be essentially preserved even in the presence 

of a drastic decrease in European consumption of meat due to a large increase of meat export 

towards other countries. 

The third type of mitigation scenario tested in this study concerned an optimized distribution of 

animal manure. The MANU scenario leads to a further decrease of nitrogen diffuse sources, with 

even a shift in the nitrogen source apportionment for several basins in Europe. This scenario also 

emphasizes a significant decrease in the application of mineral nitrogen, with evident benefits 

also due to the continuously increasing price of nitrogen fertilisers.  

The assessment of nutrient loads to European seas made use of the GREEN model, which was 

previously shown to be appropriate for the estimation of nutrient fluxes based on a simplified 

representation of the processes involved in transport and retention. The following table 

summarizes the results of the scenarios implementation for each European sea for the year 2020 

(see next page): 
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Nitrogen loads Baltic North Sea Atlantic Black Sea Mediterranean 
(1000 tons of N/yr, min and 
max simulated) 

     

 REF 475 - 687 872 - 1420 707 - 1190 434 - 635 697 - 982 
 BAU 488 - 714 902 - 1469 733 - 1244 458 - 671 731 - 1011 
 UWWD 483 - 709 836 - 1403 691 - 1202 446 - 659 693 - 972 
 WHO 486 - 712 893 - 1454 729 - 1236 457 - 670 730 - 1008 
 WCRF 481 - 701 873 - 1419 717 - 1208 455 - 665 721 - 993 
 MANU 394 - 540 692 - 1059 591 - 932 400 - 554 616 - 805 
Phosphorus loads Baltic North Sea Atlantic Black Sea Mediterranean 
(1000 tons of P/yr, min and 
max simulated) 

     

 REF 27 - 35 46 - 64 37 - 48 31 - 38 61 - 83 
 BAU 27 - 35 47 - 66 38 - 50 33 - 40 64 - 86 
 UWWD 26 - 34 35 - 53 31 - 43 29 - 36 54 - 75 
 PFREE 22 - 30 28 - 47 27 - 39 25 - 33 49 - 70 
 WHO 27 - 35 47 - 65 38 - 49 33 - 40 64 - 85 
 WCRF 27 - 35 47 - 65 38 - 49 33 - 40 64 - 85 
 MANU 27 - 37 48 - 69 38 - 51 34 - 49 63 - 81 

 
(Nitrogen and phosphorus loads have been calculated for a range of 21 years hydrological 

conditions. Results are provided with a Min-Max loads simulated over the 21 years simulation 
period) 

 

In the horizon 2020, the BAU scenario simulated an increase of both nitrogen and phosphorus 

loads exported to European seas. This increase is more significant for nitrogen especially when 

combined with high hydrological conditions (high flow).  

When comparing the mitigation of nutrient inputs with the concomitant change in nutrient loads, 

it is clearly demonstrated that point source mitigation measures are the most effective option. 

Indeed, a change in point source emissions could be directly linked to a change in nutrients 

exported to European seas once aquatic retention is taken into account, while mitigation of 

diffuse nutrient inputs is submitted to both the terrestrial and aquatic attenuation. Beyond this first 

result, scenarios efficiency has to be considered with respect to the source apportionment of each 

nutrients (N and P), in order to estimate its capacity for mitigating nutrient emissions. Scenarios 

results differ for Nitrogen and Phosphorus.  

For phosphorus, the rate of removal in WWTPs has considerably improved during the last 

decades with about 90 % of P removal now achieved for the most advanced WWTPs. 

Considering that human emissions of phosphorus are now stabilized to a value close to 

physiological releases, additional mitigation could only come from a complete ban of phosphorus 

in laundry detergents (PFREE scenario), which will result in the most significant reduction of 

phosphorus export to European seas. 
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In the case of nitrogen, the source apportionment indicates that nitrogen flowing to European seas 

is widely dominated by agricultural (diffuse) sources. Consequently, while scenarios targeting 

nitrogen point-sources are more efficient they enable only a low reduction of the overall amount 

nitrogen loads. The most important decrease of nitrogen output is related to the optimization of 

animal manure application. 

The mitigation options to be selected might lead to very different effects on respectively nitrogen 

and phosphorus loads to European seas. The study showed the importance of a simultaneous 

assessment of both nitrogen and phosphorus emissions and exports. 

Part II: The assessment of priority chemicals - example of three pilot 
substances 
 

The scenario results of  a European-scale assessment of chemical loads to regional seas are 

reported in Marinov et al. (2011). For chemicals, a major difficulty comes from the limited 

availability of data on the location of sources and the extent of emissions. In this study, we have 

used statistical information from EUROSTAT plus data available from the European Monitoring 

and Evaluation Programme (EMEP) and a number of literature studies. However, the sources of 

information are in general limited, which represents the main obstacle for the evaluation of 

pollutant loads originating from the European continent. 

Due to the extraordinarily high number of chemical products on the market, which potentially 

could be discharged to the sea after being used or  released to the environment during  

manufacturing, the assessment was not intended to be exhaustive, but rather to develop  a 

methodology for the identification of hot-spots in Europe and its capability for the estimation of  

chemical loads to European  coastal waters under different scenarios.  

In order to perform prospective scenarios for Europe, the concentrations and loads of three test-

case chemicals were evaluated firstly for the following baseline years: 1995 and 2005 for the 

insecticide Lindane; 2003 for the herbicide Trifluralin; and 2007 for the industrial pollutant 

Perfluorooctane Sulfonate (PFOS). Then, a set of different scenarios was defined and the 

assessments made using either a “direct” or an “inverse” modelling approach.  

The “direct” method is based on a priori available information about chemical emissions and 

answers the question “Where do chemicals go after being emitted?”. In this study, the “direct” 

version of the spatially resolved Multimedia Assessment of Pollutant Pathways in the 
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Environment (MAPPE) screening model was applied in the scenario case-studies of  Lindane and 

Trifluralin, additionally supplemented by a simple non-spatial box model application.  

The “inverse” approach tries to answer the question “Where do pollutants come from?”. Inverse 

models can support large scale assessments of source apportionment by estimating emission 

factors at regional, river basin or continental scale in relation to the population density or other 

proxies. This approach was employed in the backward tracking of PFOS emissions from pan-

European riverine measurements. Then, on the basis of the estimated average emission factor for 

Europe, the spatial GIS analyses made possible to evaluate the scenarios for the annual load of 

PFOS to European seas. 

The scenarios for the three pilot chemicals considered are formulated to the time horizon of year 

2020 assuming different types of legislative measures (for example business as usual, ban, phase 

out, etc.) or aiming at specific targets (as per total and disaggregated load to European seas or 

possible “cleaning-up” of soil in Europe). Details about the scenarios are provided separately for 

each test case. 

The summary of the results for the scenarios developed in the study is given below. When 

considering the output of  the scenario analyses, it is important to take into account  that the 

project aimed at  testing the applicability of the modelling platform. Moreover, since limited data 

on emissions are available certain assumptions had to be made, thus restricting the use of the 

present scenario results only for screening purposes.  

 

1. Lindane (γ-HCH) 

Lindane is a relatively well known insecticide officially banned in the European Union since 

1995. Some Lindane emissions, however, are still occurring due to releases from stockpiles or 

other sources, which are difficult to quantify. Lindane was selected as a pilot  substance in this 

study because of the availability of data about past emissions and measured environmental 

concentrations.  

Air emissions of post-ban use of γ–HCH are quite difficult to be estimated although these sources 

may significantly affect the current environmental concentrations (Breivik et al., 2004). A 

European inventory of Prevedouros et al., (2004) suggests that ca. 135000 tons were applied over 

the period 1970–1996 with the major contributions originating from France, Spain and the 

Netherlands. Besides, other authors estimated that approximately 650 tons were emitted in 1998 

and the contribution of each European country was calculated (Breivik et al., 2004). However, at 
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present the only comprehensive and reliable source of emission data at European scale is the 

European Monitoring and Evaluation Programme (EMEP), providing  official data on  

atmospheric emissions by country (CEIP, 2009).  

The current study relies on Lindane air emissions estimated by EMEP (www.emep.int). 

Accordingly, the air emissions of γ-HCH in the Northern hemisphere were estimated to be 432 

tons in 2005 including 71 t in North America, 68 t in Central America, 200 t in Southeast Asia 

and 92 t in Europe. In addition, the European continent received an extra deposition of ca. 2% of 

emissions coming from sources originated in North America and China (Gusev et al., 2006). 

Then, based on the officially reported information for the amount and spatial pattern of the air  

emissions in Europe and trans-continental long range transport, the following atmospheric 

scenarios for Lindane were analyzed:  

• BAU – (Business as Usual) no change of air emissions; keeping 2005 level of emissions 

up to the time horizon of 2020 (about 92 tons are supposed to be emitted in 2005);  

• trend – a scenario continuing the emissions decline observed in the period 2000-2005, as 

a result of the regulation process started in 1995; accordingly, the emissions in 2020 

equal to 45.6 t/y (49.6% of 2005 level); 

• linear – a generic scenario which respects the regulations and assumes a gradual linear 

reduction of emissions starting in 2005 and ending in 2011 with 23 t/y (25% of the 2005 

level of emissions); the choices of 2011 as an end year of measures and the percentage of 

emission reduction were provisional; no change of emissions after  2011; 

• ban – a scenario  consistent with the regulation acts considering a fast exponential 

reduction of the European emissions in the period 2005-2011; emissions in 2011 are 

supposed to be equal to 5.4 t/y (the quantity arriving in Europe by the Long Range 

Atmospheric Transport according to 2005 data); as for the linear scenario, the selection of 

2011 as an end year of measures is provisional; from 2011 to 2020 no European 

emissions, but the scenario accounts 5.4 t/y  intercontinental atmospheric transport from 

North America and Southeast Asia using 2005 data as a background level (the last 

available data from EMEP (Gusev et al., 2006). 

After the description of possible scenarios for air emissions, the next step was to specify the 

corresponding emissions to the other environmental media. According to UNEP (Breivik and 

Wania, 2002), about 59% of the total amount of Lindane is used for soil treatment, while seed 

treatment, which presumably yields lower emissions to air, accounts for 34%. Furthermore, 
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Lindane is generally applied in liquid formulations (mostly wettable powders) and only a minor 

fraction is used in the solid state (dusts, powders, and granules). On this basis, a mode of division 

of total Lindane emissions of 17.5% to the atmosphere, 80% to the agricultural soil, and 2.5% to 

freshwater is assumed by Breivik and Wania, (2002) and Vizcaino and Pistocchi, (2010). 
Practically, the equivalent approach was used in the EMEP modeling applications for Lindane 

(www.emep.int). Therefore, the same fractioning of Lindane emissions was adopted up to the 

year 1999 and only atmospheric emissions from 2000 onwards since the ban of Lindane in EU for 

agriculture use.  

The results of the present scenario study on Lindane for EU27 plus Norway, Switzerland, Croatia, 

Serbia, the western Balkan countries and Turkey allowed us to conclude   following:  

• The comparison with the OSPAR data (OSPAR Commission, 2011) or with data used to 

force a 3D model of North Sea (Ilyina et al., 2008) showed that MAPPE model produced 

consistent results for the riverine load of gamma-HCH to European seas which eventually 

could differ from the other estimates by not more than a factor of two; 

• The model assessed European sea loads of 745 tons for 1995 (based on the official 

emission data provided by EMEP) appears to be reduced by  98.3% in 2005, ten years 

after the start of the EU regulations for γ-HCH; 

• In 2020, under the BAU scenario, a Lindane sea load of ca.12.5 tons per year would be 

expected;  

• The trend and ban scenarios support  a reduction of the load to the European seas in 2020 

by 74% and 95%, respectively, when compared to the BAU estimate; 

• The discharge of Lindane under BAU scenario is affecting mainly the European coast of 

the Atlantic Ocean (49 % of the total for Europe), Mediterranean (27 %) and Black seas 

(19 %), while in the case of the ban scenario the Black sea (43 %) is the main recipient, 

followed by Mediterranean (19 %) and Baltic (17%) seas and Atlantic Ocean (16%).  

 

2. Trifluralin 

Trifluralin (a priority substance under the Water Framework Directive) is an herbicide banned in 

EU countries since 2008. Presently, very little information on Trifluralin emissions is available at 

pan-European scale, and the only comprehensive dataset for the 25 EU Member States is 

provided by EUROSTAT with reference to the year 2003. Besides, this study assumed that the 

contribution of the long-range atmospheric transport and of UWWTP effluents is a negligible 
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source of Trifluralin pollution. Thus, the scenario study of Trifluralin sea load focuses only on the 

emissions to European soil. In order to assess the soil emissions of Trifluralin, the method of 

Pistocchi et al. (2009) was applied using EUROSTAT data (although this approach tends to 

overestimate the use of plant protection products).  This method assumes that when a certain class 

of pesticides is applied, then likely only a single substance from that class is used everywhere 

across Europe as a representative for this pesticide  class. Accordingly, the BAU scenario 

considers as input for Trifluralin the data on the entire class of dinitroaniline herbicides (8 

substances including Trifluralin) for which EUROSTAT reported 6174 tons applied to arable 

crop land in Europe during 2003 (average use of 1.56 kg/km2/y with a regional variability ranging 

from 0.01 to more than 20).  

Furthermore, the study investigated the potential impact of the complete ban of Trifluralin 

applications. In the ban scenario the emissions were assumed to drop, in the period 2004-2010, 

from the typical BAU application for 2003 to an amount of 0.005 kg/km2/y, taken as an 

approximation towards zero emissions from 2011 onwards for each of the EU25 countries.  

In addition, despite of the uncertainty of the data about Trifluralin applied to the soil, a specific 

partial effectiveness scenario was analysed aiming to assess how much the soil emissions should 

be reduced in order to ensure that the annual sea load remains lower than a given limit taken here 

as one third of the BAU estimate. 

The modelled scenario results for Trifluralin indicated that: 

• According to the BAU scenario based on EUROSTAT usage data, in 2020, the sea load 

of Trifluralin, considered as representative for the entire group of dinitroaniline 

herbicides, is estimated to be ca. 61.7 tons, the same as for the reference year 2003;  

• The complete ban scenario forecasts ca. 0.07 t/y sea load and in practice eliminates the  

concern about the discharge of Trifluralin to the European seas in a time-frame of one 

year due to degradation in soil; 

• Under the available data used in BAU scenario, the European coastal areas of the Atlantic 

ocean and North sea receive the higher fractions of the European sea load, 29.5% and 

22%., respectively, followed by the Baltic (19%) and Mediterranean (17.5%) seas. 

However, it is worth stressing again that these estimates are built on incomplete emission 

inventory considering only EU25 countries. 
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• In the partial effectiveness scenario the total sea load of Trifluralin is expected not to 

exceed one third of the BAU load when the application of dinitroaniline herbicides to soil 

is reduced at least by 66% for the EU25 countries across Europe. 

 

3. Perfluorooctane sulfonate - PFOS 

Perfluorinated compounds, including Perfluorooctane Sulfonate (PFOS), are chemicals produced 

for their non-stick and water repellent properties. They have been used during the last 50 years 

both in industry and as components of consumer products in the manufacture of coatings for 

cookware and clothing, stain resistant carpets, food packaging, fire-fighting foams, paints, and 

adhesives, with additional uses in the photo-, electronics-, and aerospace industries.  

Unlike Lindane and Trifluralin, which are multimedia chemicals, PFOS can be regarded as a 

single-medium molecule primarily related  to the water compartment. Actually, PFOS’s high 

solubility and its persistence make it a virtually conservative and instantly a water-transported 

substance. Since PFOS is environmentally persistent, bioaccumulative and potentially harmful, it 

was listed as chemical for regulation within the Stockholm Convention and was banned in the 

European Union in 2007.  

The study employed the approach of a backward tracking of PFOS emissions from riverine 

measurements as described by Loos et al. (2009) and Pistocchi and Loos (2009) who consider the 

atmospheric deposition of PFOS as a negligible diffuse source that could be disregarded. 
Accordingly, it was found that PFOS emissions correlate rather well with river basin population. 

Thus, for PFOS an average European emission factor of 27.4 µg/day per capita was estimated. 

The latter is fairly consistent with previously found estimates of 40 µg/day/inhabitant in Bayreuth 

(Germany) and 57 µg/day/person for Switzerland. Then, the average emission factor for Europe 

was used as a basis of a GIS model able to calculate European maps of PFOS river water 

concentrations and load to seas.  

In the study, the BAU scenario for PFOS is referring to 2007 as baseline year. Additionally, the 

sea load of PFOS was assessed by considering a scenario of 50% reduction of emissions and 

also answering the question by what percentage the emissions should be decreased in order to 

guarantee that the total sea load stays  below a given threshold, “a scenario targeting a sea load 

of 1 ton per year”. 

The scenario results allow concluding that: 
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• Based on the average emission factor of 27.4 µg/inhabitant/day and the map of 

population density in Europe, when BAU scenario was supposed the concentrations of 

PFOS in surface water vary from less than 0.001 to more than 10000 ng/L with a mean 

equals to 7.1 ng/L for Europe; 

• Under BAU scenario conditions the total sea load of PFOS from Europe is estimated to 

be, on average, 5.8 tons per year. Practically, the model foresees a half of this amount if a 

cut of emissions is assumed to take place as from the scenario of 50% reduction; 

• The highest load of PFOS to marine coastal waters according to BAU scenario comes 

from the Danube river (followed by the Rhine) exporting annually more than 1 ton. 

Accordingly, Black Sea receives  ca. 27.4% from the total load of PFOS to European 

seas;  

• The spatial analyses anticipate that the total annual load of PFOS to European seas will 

decrease below the target value of 1 t/y only when the current emissions across to 

European countries are diminished at least by 84%. 
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1. Introduction 
 

In order to support the implementation of the Marine Strategy Framework Directive (2008/56/EC), DG 

Environment and the Joint Research Centre joined to develop a study on the expected cumulative impact 

of existing EU environmental legislation on the quality of the marine environment, with specific reference 

to the case of aquatic discharges from inland-based sources. The study is divided in three phases.  

The first phase focused on data collection, database development and modelling-based assessment for the 

year 2000. 

The second phase (conducted in 2009) concerned the retrospective assessment for the years 1985-2005, 

including the collection of all relevant data and a trend analysis for nutrient loads.  The second report has 

demonstrated over the period 1985-2005 that the Urban Waste Water Directive has been successful in 

decreasing nitrogen and phosphorus emissions in most EU27 countries (Table 1). 

Table 1: Change in nutrient anthropogenic pressure for EU 27 (with the exception of Malta) between 
1990 and 2005 (in 1000 tons). 

 Point source N Manure N  Mineral N Point source P Manure P  Mineral P 
  1990 2005 1990 2005 1990 2005 1990 2005 1990 2005 1990 2005

AT 21 10 148 174 141 119 3 1 47 40 29 20 
BE 9 32 215 241 158 147 1 4 60 66 28 18 
BG 29 21 172 106 419 156 4 3 40 25 57 5 
CY 0 0 13 19 14 10 0 0 0 5 4 3 
CZ 36 15 239 160 460 352 6 2 57 38 107 29 
DE 191 114 1356 1371 1814 1778 22 9 345 310 283 149 
DK 16 7 260 344 374 224 3 1 53 57 36 15 
EE 6 2 54 18 55 20 1 0 15 5 13 2 
ES 99 221 754 1207 937 1190 17 30 167 444 202 266 
FI 4 4 55 54 195 172 0 0 24 31 46 16 
FR 164 131 1259 1444 2482 2271 32 18 369 350 548 305 
GR 24 28 262 214 580 263 5 5 63 62 106 43 
HU 22 21 230 181 391 365 4 3 57 38 61 29 
IE 12 15 462 424 388 346 2 2 84 81 68 42 
IT 229 218 636 758 748 748 30 26 156 178 235 148 
LT 14 7 168 80 136 132 2 1 43 20 13 16 
LU 1 2 11 10 14 10 0 0 4 3 2 1 
LV 4 3 93 37 88 38 0 0 24 8 7 3 
NL 55 23 453 476 387 282 6 2 124 96 33 22 
PL 53 48 550 574 864 848 9 8 146 146 177 132 
PT 26 26 140 146 143 89 5 4 44 41 32 19 
RO 49 45 370 342 639 274 7 7 86 77 125 35 
SE 10 10 141 160 214 201 1 1 35 33 25 18 
SI 1 5 63 44 75 33 0 1 24 10 21 7 
SK 11 9 96 54 124 84 1 1 20 9 42 8 
UK 183 207 1169 1031 1528 1104 40 34 222 179 159 113 
 

The anthropogenic input of nitrogen and phosphorus from agricultural sources shows great spatial 

variability. Most countries have seen a sharp drop in the amount of mineral fertilizer used. Most of the 
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countries having the largest share of manure production in Europe have increased the produced amout 

(except for the UK).  

It was estimated that between 1985 and 2005 the total nitrogen load entering the European seas varied 

between 3700 ktN/yr and 5300 ktN/yr with fluctuations following the water discharge. Agriculture 

represents the major source followed by point sources. Similarly, we estimated that during the period 

1985- 2005 the total phosphorus load into the European seas ranged between 215 kt P and 328 kt P with 

point sources contributing the most and agriculture and background losses accounting for the rest. 

Comparing the estimates for 2005 with those of 1990, at European scale the total nitrogen export has 

decreased by 9%, while the total phosphorus load has decreased by around 15%, mainly due to a decrease 

in point sources emission. The concentration of total nitrogen and total phosphorus for all European seas 

is displayed in Figure 1. From 1990 to 2005 the predicted concentration of total phosphorus decreased 

from 0.2 to 0.15 mg/l a drop of 25% while the concentration of nitrogen dropped by less than 7% (from 

3.2 to 2.96 mg/l). 

The second report (Bouraoui et al., 2011) has demonstrated that over the period 1985-2005, the Urban 

Waste Water Treatment Directive has been successful in decreasing nitrogen and phosphorus emissions. 

On the other hand the effectiveness of the Nitrates Directive is more limited, due in part to the delayed 

response of soils and aquifers to the implementation of mitigation measures. In continental Europe, 

including countries of EU15, there are still areas where nitrate concentrations in surface waters are still 

increasing despite stringent regulation aiming at controlling nitrate losses. A detailed analysis on the Elbe 

and Loire river basins performed by Bouraoui and Grizzetti (2011) has shown the importance to consider 

the impact of lag time when analyzing water quality time series. This is necessary in order to understand 

what type of measures are the most effective in controlling nitrate and phosphorus losses and the lag 

before the effects of these measures can be detected. 
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Figure 1: Change in nitrogen and phosphorus concentrations (freshwater) entering European seas from 

1985 to 2005. 
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The third phase of the FATE project aims at testing various scenarios related to the application of existing 

EU legislations, already adopted by Members states or with ongoing implementation.  

Scenario development represents a powerful tool to help stakeholders and policymakers managing the 

various, highly complex and uncertain predictions of how future environment will evolve. By essence, it 

integrates multiple assumptions (storylines) to explore potential consequences of different plausible or 

unrealistic futures.  

Consequently, the first part of this report introduces the relevance of the FATE-approach as a support to 

European policy and formulates the storylines of the proposed scenarios. 

The second part is devoted to scenarios building. Indeed, the construction of scenarios is intimately 

related to the nature of the information collected and structured with respect to the formalism of the 

chosen modelling approach. While the two first phases of the FATE project have provided material and 

methods to implement the GREEN model at the EU-scale using existing data, the third part of the study 

focused on the changes and adjustments to be performed for implementing the selected set of scenarios 

with a sufficient accuracy.  

Finally, the last part of the report details the results which are organized with respect to the distinction 

between “point sources” and “non-point (diffuse)-sources” of nutrients. Efficiencies of scenarios 

implemented are discussed in terms of capacities to mitigate land based emissions of nutrients, and also 

according to their impacts on the loads of nutrients exported to European coastal areas based on the 

simulations provided by the GREEN model. 
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2. Story line of scenarios to be implemented 
 
The development of a consistent set of scenarios raises the issue of the scale of the analysis. Worldwide 

dynamics controlling economic and demographic trends call for global scale assessments, although they 

are not able to represent regional processes and are not relevant to support national or European policies. 

On the contrary, local scale analyses are generally more reliable, but are unable to take into account 

regional dynamics and cannot be transposed to a broader regional context. 

The first two phases of the study have provided a consistent overview (estimation) of nutrient loads into 

European seas. This uniform modelling approach is based on wide harmonized databases, precise enough 

to support the assessment of the impact of implementation of EU environmental legislation, starting from 

the specificities of each Member State (MS) and associated administrative regions and sub-watersheds to 

a pan-European implementation. The area covered by the FATE project includes EU-27 and other regions 

which territory drains totally or partially into one of the major European Seas (Mediterranean, North, 

Baltic, Black Seas and Atlantic Ocean). These additional regions include Albania, Bosnia Herzegovina, 

Serbia, Montenegro, Croatia, Norway, FYROM, and Turkey. The overall area will be referred to as either 

“study area” or “continental Europe” across this report. 

2.1 List of scenarios 
 
An overview of all scenarios implemented is listed in Table 4. The PAST scenario uses 1985 as the early 

starting point simulated. The current level of anthropogenic pressure is set by the REF scenario and refers 

to the year 2004-2005.Assessments of prospective changes in nutrient emission systematically refer to the 

BAU scenario that forms the baseline situation at the horizon 2020. UWWD and PFREE scenarios mimic 

the full implementation of ongoing legislation on point sources emission. It was assumed that the scenario 

PFREE will represent a step further in the mitigation of phosphorus point source. For this reason it will be 

consider as an addition to the UWWD scenario.  

Three scenarios WCRF, WHO and MANU deal with the mitigation of nutrient diffuse sources of 

agricultural origin. 
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Table 4: List of scenarios to be implemented 

Acronym Main feature 
 

Time 
line 

Assumption 

PAST Past reference 1985 Past reconstruction 
REF Current level of anthropogenic pressure 2005 Current state 
BAU Business as usual 2020 No nutrient mitigation measure 

UWWD Urban Waste Water Directive 91/271/EEC 2020 Full implementation of the 
directive 

PFREE UWWD  + Regulation on detergent 
648/2004/EEC 

2020 UWWD  + P-free laundry 
detergent 

WCRF WCRF recommendation 2020 Diet with less meat intake 
WHO WHO recommendation 2020 Healthy Diet 

MANU Optimised Use of Available Manure 
 

2020 Adjustment to nutrient crop 
demand 

2.2 Reference situations 
 
Past situation: 1985 reference (PAST scenario) - Long term evaluation of scenario effectiveness needs to 

be drawn in parallel with past trajectories, and trends obtained for the last twenty years (1985-2005) will 

be highly relevant to understand the prospective simulations performed for the next twenty years. It also 

worth mentioning that the OSPAR Convention (2005) refers directly to such an earlier state, with an 

objective of a 50% reduction of N and P sources compared to the level of 1985. 

 

Current state: 2005 reference (REF scenario) - Current statue has been described up to the year 2005 by 

the second phase of the FATE-Project. This specific year was selected as representative of present 

conditions as it is the year for which the most complete input data was available. It characterized the most 

current level of pressures and was thus considered as a starting point for scenario building. This reference 

is used for comparative assessments as it represents the most recent situation reported for Europe.  

All prospective scenarios were built for the timeline 2020, and they integrate intrinsically a common 

progression of anthropogenic pressures from 2005 to 2020 described in the BAU scenario (next 

paragraph). When the assessment of nutrient mitigation measures refers to REF scenario, it has to 

be kept in mind that the predicted impact is a combined response to implementing mitigation 

measures and compensation or side effects resulting from the basic changes assumed to take place 

from 2005 to 2020 and integrated in the BAU scenario. 

 

Future baseline: Business As Usual reference (BAU scenario) - This reference is built as a generic 

scenario. It aims at propagating the current trend of anthropogenic pressures but considers the status-quo 

in the mitigation of land based nutrient emissions. It includes changes in population count and 
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distribution, prospects for food production and consumption and associated change in land distribution. 

Such long term prospective (2020) is required for a realistic implementation of the scenarios. This is 

especially true for non-point source scenarios, as they incorporate some inertia (e.g. delayed response of 

groundwater) and might required several decades to enable a full assessment of their impact. The BAU 

reference is used to assess i) how future nutrient pressure will evolve if nothing is undertaken and 

ii) the efficiency of various nutrient mitigation measures at the horizon 2020.  

2.3 Ongoing legislation on point sources emissions 
 
It has been demonstrated that the mitigation of point sources is an efficient way to reduce the amount of 

nutrients transferred to the aquatic system, especially for phosphorus (Bouraoui et al. 2009). And despite 

their recent improvement, European wastewater treatment plants do no fully comply with European 

requirements. Consequently, two scenarios are considered with respect to the Directive 91/271/EEC and 

the Regulation 648/2004/EEC. 

 

Urban Waste Water Directive - The first scenario mimics the full implementation of the 91/271/EEC 

Directive concerning urban wastewater treatment, dealing with impacts of urban wastewater emissions on 

surface and ground-water quality. This directive requires all Member States to implement efficient 

wastewater treatment infrastructures. It defines a set of conditions and contingencies, including the size of 

municipalities and the sensitivity of receiving area (Fig. 2), and requires wastewater discharged to 

undergo appropriate treatments (Table 2). 

 

Phosphate free detergent - The second scenario is based on the Commission proposal COM (2010) 597 

amending Regulation (EC) No 648/2004 concerning the use of phosphates and other phosphorus 

compounds in household laundry detergents (PFREE scenario). The  scenario simulates the ban of 

phosphates and others phosphorus compounds in household laundry detergent to reduce the contribution 

of phosphates from detergents to eutrophication in EU waters and to reduce the cost of phosphorus 

removal in wastewater treatment plants. Per capita P emission has been estimated in the 2nd FATE report 

(Bouraoui et al, 2009) and the annual P emission used in laundry represents on average 24 % of the total 

per capita emission (Fig. 3). 
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Figure 2: Sensitivity of receiving area reported in Europe for the year 2004, following the Urban Waste 
Water legislation, Directive 91/271/EEC 

 

 

 

Table 2: Summary of requirements and deadlines for implementation of articles 3, 4, 5 and 7 of the 
Directive 91/271/EEC. 

 
(p.e) 0 -2000 2000-10,000 10,000-

15,000 
15,000-
150,000 

>150,000 

If collection, 31.12.2005 If collection, 31.12.1998 
Sensitive area appropriate 

treatment 
secondary 
treatment 

more 
advanced 
treatment 

more 
advanced 
treatment 

more 
advanced 
treatment 

If collection, 31.12.2005 If collection, 31.12.2000 
Normal area appropriate 

treatment 
secondary 
treatment 

secondary 
treatment 

secondary 
treatment 

Secondary 
treatment 

If collection, 31.12.2005 If collection, 31.12.2000 
Less sensitive 

areas appropriate 
treatment 

appropriate 
treatment 

primary or 
secondary 
treatment 

primary or 
secondary 
treatment 

primary or 
secondary 
treatment 
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Figure 3: Per capita emission of phosphorus (in kgP/capita/year) for regions included in the study area 

according to Bouraoui (2011) 

 

2.4 Environmental friendly diets 
 
It is now accepted that meat products, in particular beef and pork have to be consumed in low quantity in 

order to prevent diseases as diabetes, obesity. The World Health Organization clearly states the 

importance to integrate fruit, vegetables and high carbohydrate in human daily diet (WHO, 2003). 

Transcribing such a change in the population lifestyle raises the issue of the adaption of agricultural 

production and the respective change in land use. The third group of scenario includes prospective 

changes in human food consumption following the recommendations made by international organisations 

for a healthier diet. They go beyond the strict framework of the ongoing changes planned by European 

policy, and offer an outlook on the potential effect of worldwide health recommendation, their impact in 

terms of agricultural production and change in land use. These two scenarios are summarized in Table 3. 

 

Recommendations of the Word Health Organization – This scenario considers adaptation of agricultural 

land to support a human diet with slightly less meat, more fruit and vegetables. It basically integrates 

WHO dietary recommendation for an optimal diet from a nutritional perspective. 

 

Recommendation of the World Cancer Research Fund – This scenario goes a step further with a stronger 

reduction of meat intake (World Cancer Research Fund, 2007).  
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Table 3: Consumption changes simulated per food commodity (% change to 2020 baseline diets in 
Europe). (The main objective of the project CAPRI (Common Agricultural Policy Regional Impact) was 
the development of an EU-wide economic modelling system able to analyse the regional impacts of the 

Common Agricultural Policy) (see Britz, 2004 for more detail) 

Food category (as in CAPRI) Diet 
WHO

Diet 
WRCF

Wheat -1.4% -12.5%
Rye and meslim -1.6% -13.4%
Barley -2.3% -16.0%
Oats -2.5% -16.9%
Maize -2.3% -16.2%
Other cereals -2.5% -16.9%
Rapeseed 3.9% 2.7%
Sunflower seed 3.9% 2.7%
Soya 3.9% 2.7%
Rapeseed oil 14.4% 16.0%
Sunflower oil 14.4% 16.0%
Soy oil 14.4% 16.0%
Olive oil 14.4% 16.0%
Rapeseed cakes 5.0% 5.0%
Sunflower cakes 5.0% 5.0%
Soy cakes 2.7% 0.0%
Pulses -1.6% -5.6%
Potatoes -1.5% -5.4%
Tomatoes 13.0% 12.7%
Other vegetables 13.0% 12.7%
Apples 10.3% 9.9%
Table grapes 10.3% 9.9%
Citrus fruits 10.3% 9.9%
Other fruits 10.3% 9.9%
Table olives -1.0% 83.5%
Table wine 0.0% 0.0%
Beef -6.8% -42.1%
Pork meat -5.6% -43.0%
Sheep and goat meat 3.9% -26.8%
Poultry meat -0.2% 13.5%
Eggs -0.2% 13.5%
Butter -1.1% -1.5%
Skimmed milk powder -1.1% -1.5%
Cheese -1.1% -1.5%
Fresh milk products -1.1% -1.5%
Cream -1.1% -1.5%
Concentrated milk -1.1% -1.5%
Whole milk powder -1.1% -1.5%
Rice 1.5% -1.1%
Sugar -3.6% -4.1%  
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2.5 Optimized reuse of animal manure 
 
By putting emphasis on limiting the amount of nitrogen applied as manure, the Nitrates Directive leaves 

flexibility in the amount of applied mineral fertilizer (Bouraoui et al 2011). By doing so the total 

combined application may result in an agronomical imbalance with a clear excess of nutrient supply. 

While mineral application can be adjusted according to crop demand for both nitrogen and phosphorus, 

animal manure is used with a determined N:P ratio, directly related to the type of breeding activities. 

However, there is a general imbalance between the manure nutrient supply and the crop nutrient demand 

in many regions of Europe. In terms of quality, the excess of phosphorus present in animal manure might 

result in a systematic over fertilisation if applications attempt to cover the demand for nitrogen (Fig. 4) 

(Eghball an Power 1999). 

 

Thus, this scenario intends to improve nutrient supply in Europe based on an optimal reuse of organic 

manure and the adjustment of minimized mineral inputs. It emphasizes the possibility of redistributing the 

manure locally produced, according to the demand for both N and P in surrounding areas. 

 

 
Figure 4: Phosphorus units brought by one unit of nitrogen manure (P:N ratio) for all regions included in 

the study area. Light blue indicated the exceeding phosphorus units (over fertilisation)  

 



Story line of scenarios to be implemented 
 

29 
 

2.6 GREEN model description 
 

The quantification of nitrogen and phosphorus fluxes is hampered by many constraining factors including 

the availability of detailed water quality and quantity measurement in Europe, and the lack of high 

resolution nutrient pressure from anthropogenic activities. Indeed these limitations seriously limited the 

possibility to use detailed physically based model within the time frame of the FATE scenarios project. 

Statistical tools have shown to be robust (Grizzetti et al., 2008, 2005) to perform large continental scale 

nutrient pressure assessment with limited data requirements. Such statistical approaches are not only valid 

as screening tools, but also can provide detailed analysis that could be readily used by local, regional and 

national authorities (Grizzetti et al., 2011) for developing appropriate management strategies. 

 

The GREEN model is a statistical model developed to estimate nutrient fluxes to surface water in large 

river basins GREEN contains a simplified representation of the processes of nutrient transport and 

retention in the river basin and a spatial representation of the various nutrient sources and physical 

characteristics that influence the nutrient transformations and losses. To apply the model, an area on 

interest is divided into a number of sub-basins that are connected according to the river network structure. 

GREEN considers diffuse sources that include mineral fertilizers, manure applications, atmospheric 

deposition (only for nitrogen), crop fixation (only for nitrogen), and scattered dwellings, and point 

sources that consist of industrial and wastewater treatment discharges. For each sub-basin the model 

considers the input of nutrient diffuse sources, point sources and loads coming from upstream and 

estimates the nutrient fraction retained during the transport from land to surface water (Basin Retention) 

for the diffuse sources and the nutrient fraction retained in the river segment (River Retention) for the 

point sources and the fraction of diffuse sources reaching the river. In the model the nutrient retention is 

computed on annual basis and includes permanent and temporal removal. 
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3. Scenarios building  

3.1 Population count and distribution 
 
Many databases are able to provide a geospatially explicit population data. For example, future population 

projections are provided by IIASA (International Institute for Applied Systems Analysis) with the GPW 

(Gridded Population in the World, CIESIN, 2005) or the LandScan database developed by Oak Ridge 

National Laboratory. Among them, the HYDE (History Database of the Global Environment, Klein et al 

2006) database offers a useful resource at 5’ resolution that separates urban and rural fraction at the time 

line 2020. The HYDE database also includes global historical population and has supported the 

retrospective population estimates performed in the second phase of the FATE project. The HYDE 

database was also used to estimate population count and distribution change for the time frame of 2020.  

 

From 1985 to 2020 HYDE predicts an overall increase of population densities in Europe, with a 

progressive decline of rural population and a concomitant increase of urban densities. When looking in 

more details (Fig. 5), from 2005 to 2020 the population of EU15 (except Germany) follows this trend 

with an increase of urban population by 11% (on average) and a rapid decrease of rural population (-20% 

on average). The relatively low contribution of rural population to the total population (less than 28% in 

mean) leads to an overall increase of EU15 population (+5% on average). Countries with a slower 

increase of urban population experience a slight decrease of their total population. This is the case of 

Romania (-7%), Hungary (-5%), Germany (-1.5%), Czech Republic (-1%) and Slovak Republic (-0.5%). 

Both urban and rural populations decrease in Estonia (-13%), Bulgaria (-11%), Latvia (-8%), Lithuania (-

7%), Poland (-3%) and Slovenia (-1%), while they impressively increase in Cyprus (31%) and 

Luxembourg (16%). 
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Figure 5: Change in rural (light grey) and urban (dark grey) populations densities as simulated by the 
HYDE model (Klein Goldewijk and Van Drecht, 2006) from 1980 to 2030 
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Figure 5 (continued): Change in rural (light grey) and urban (dark grey) populations densities as 
simulated by the HYDE model (Klein Goldewijk and Van Drecht, 2006) from 1980 to 2030 
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3.2 Wastewater collection and treatment  
Point source emissions are estimated starting from the collection of household and industrial effluents. In 

the two previous phases of the FATE project, the percentage of population connected to sewerage system 

was defined at the country scale, preventing a detailed assessment of the Urban Waste Water Directive 

implementation.  

For this reason, the analysis has been refined at the basin scale and integrates now for all agglomerations 

a detailed and spatially explicit census of wastewater collection, connection to sewers and treatment as 

reported by most of the EU-27 Member States (Waterbase, EEA 2010). The overall formula to calculate 

the net nutrient emission discharging to surface water is as follows: 

PS N, P  = POPurb, rur  E N, P  Csewage  (1 – R N, P) 

where PS N, P are the point source emissions of nitrogen (N) or phosphorus (P). POPurb, rur is the 

population density (either urban or rural inhabitant) retrieved from the HYDE database (see previous 

section), Csewage is the faction of the population connected to sewage network, R N,,P is nitrogen or 

phosphorus removed after collection of wastewater effluent and E N, P is the per capita emission of 

nutrient. 

 Csewage values are first processed using the information available for all individual agglomerations (EEA 

2010) and then aggregated as a single average value calculated at the basin scale. Csewage distinguishes 

between urban and rural population, by confronting the HYDE population values with the reported 

cumulated loads for each basin. Then a simple allocation rule has been used to prioritize the connection of 

urban population. 

R N,,P is calculated by basin according to the identification of wastewater treatment plants for all releases 

and the corresponding N and P removal faction defined according to previous work of Van Drecht et al 

(2009). 

E N, P is calculated independently at the Member State level for both nitrogen and phosphorus: 

 

E N = E N-Hum + E N-Indus, 

with E N-Hum = 0.11 TFPintake and E N-Indus = E N-Hum f Indus 

 

E P = E P-Hum + E P-Laudry + E P-Dishwash + E P-Indus 

with E P-Hum = 0.01 (TFPintakeVGPintake) and E P-Indus = E P-Hum f Indus 

 

where E N-Hum and E P-Hum are the raw daily emissions from human excretions, calculated according to 

Jonsson and Vinneras (2004), using total food (TFPintake) and vegetable (VGPintake) proteins intakes (in 
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g/yr/person) retrieved from FAO database (2009). E P-Laudry and E P-Det are the per capita emission from P-

based detergents used for laundry and dishwasher, respectively.  

EN-Indus and EP-Indus are indirect industrial emissions connected to sewage system basically included in the 

wastewater loads as reported by the Waterbase (EEA 2010). For the areas not covered by the Waterbase, 

a census of all agglomerations larger the 2,000 inhabitants (Geoname database) was used, assuming an 

additional mean contribution of industrial releases (fIndus) (see Table 4). Information related to the raw per 

capita emissions of nutrient (E N, E P) is calculated at the country level, and then downscaled to the basin 

scale. 

The fraction of households emission collected through septic tank or other individual collecting systems 

not connected to sewage network (1 - Csewage) is considered as a scattered dwelling source and is 

calculated similarly, assuming non industrial emission (E N-Indus = 0 and E P-Indus = 0) and an average 50% 

of retention (R N = R  P = 0.5) before reaching surface water. 

With respect to the Commission proposal COM (2010)597 on the use of phosphates and other phosphorus 

compounds in household, laundry detergents E P-Laudry is set to zero in the scenario PFREE. Other types of 

detergents such as dishwasher detergents (EPdishwash) were not considered as no technically and 

economically viable alternatives have been found yet. 

Table 5 provides an estimation of yearly per capita emission of N and P in EU-27, and contribution of 

industrial releases (FIndus), and average rate of wastewater collected through sewage network.  
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Table 5: Estimation of N and P per-capita emissions in EU-27. Contribution of industrial releases (FIndus) 
and average rate of wastewater collected to sewage network. (Csewage* includes collection with or 

without treatment) 

 
 E N-Hum E P-Hum E P-Laudry E P-Dishwash f Indus Csewage* 
 kgN/cap/yr kgP/cap/yr kgP/cap/yr kgP/cap/yr % Avg % 

AT 4.42 0.55 >0.01 0.09 40.00 98.75 

BE 4.18 0.51 >0.01 0.08 40.00 97.45 

BG 3.61 0.49 0.12 >0.01 40.00 92.48 

CY 4.18 0.51 0.51 0.04 40.00 70.41 

CZ 3.77 0.49 0.27 0.01 40.00 79.00 

DE 4.02 0.51 >0.01 0.11 39.00 98.66 

DK 4.34 0.54 0.07 0.10 46.00 100.00 

EE 3.53 0.46 0.17 >0.01 40.00 88.80 

ES 4.54 0.56 0.33 0.05 60.00 98.65 

FI 4.10 0.51 0.03 0.10 27.00 98.97 

FR 4.70 0.58 0.28 0.09 40.00 100.00 

GR 4.70 0.62 0.25 0.06 25.00 68.00 

HU 3.81 0.51 0.22 0.01 40.00 79.79 

IE 4.70 0.58 >0.01 0.06 40.00 100.00 

IT 4.54 0.60 >0.01 0.06 51.00 91.73 

LT 4.46 0.59 0.18 0.01 40.00 92.75 

LU 4.18 0.51 >0.01 0.09 33.00 97.78 

LV 3.33 0.44 0.20 >0.01 40.00 100.00 

MT 4.86 0.64 0.37 0.01 40.00 100.00 

NL 4.18 0.53 >0.01 0.08 38.00 100.00 

PL 3.97 0.54 0.52 0.01 40.00 81.93 

PT 4.70 0.60 0.35 0.06 43.00 95.49 

RO 4.50 0.60 0.09 >0.01 40.00 79.93 

SE 4.34 0.52 0.04 0.11 40.00 100.00 

SI 4.02 0.51 0.06 0.05 40.00 76.56 

SK 3.05 0.42 0.15 0.01 40.00 79.48 

UK 4.22 0.55 0.25 0.06 40.00 99.18 
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3.3 Land use development 
 
The land coverage and the use of agricultural land for specific purpose like cropping and breeding 

activities are central for the estimation of nutrient diffuse sources. The regionalized economic model for 

agriculture CAPRI (Britz, 2004) was used to obtain information on the crop share per NUTS2 

administrative regions in EU27. The downscaling of agricultural statistic was realized according to the 

methodology proposed by Bouraoui et al. (2009) combining several global databases including the HYDE 

3 database (Goldewijk and Van Drecht, 2006) and the GLC (Global Land Cover: Bartholomé and 

Belward, 2005). Although the spatially explicit downscaling of the crop share has been developed with a 

conservative methodology it also includes a random assignation of specific crop type shares within 

general crop classes regionalized at a finer scale. Consequently, the regionalization to 1 km grid cell of 

cropland and grassland within the 10 km grid-cell defined by the combined HYDE and GLC databases is 

preserved across the different scenarios. Only the distribution of crops types and pastures (CAPRI 

classes) is affected during scenario building. 

 

The REF Land use – is based on CAPRI results for the base year 2004. A weighted average over the 

calendar years 2003-2005 has been considered to smooth out effects of weather impacts on crop yields 

 

The BAU scenario Land use – represents the base line 2020 which was built on a medium term outlook 

published in 2009 from AGLINK and FAPRI (Food and Agriculture Policy Research Institute). The 

baseline incorporates moderate yield increases for crops in Europe and some input technical saving 

progress, so that fertilizer application at unchanged yields would drop. Table 6 indicates CAPRI estimates 

for Land use changes between 2004 and 2020. In the 2020 base line scenario (BAU) both extensive and 

intensive grassland decrease (-5% in area), while industrial crop (+43%) or soya (+116%) greatly 

increase. It captures the impact of the recent CAP reform steps, the end of obligatory set-aside (-100%) to 

the favor of voluntary set-aside (+30%). 

 

The WHO and WRCF Land use – Total area devoted either to cropland or grassland is not greatly 

impacted by a hypothetical change in diet. Thus, it strengthens the assumption made to build these Land 

use layers (preserving the current regionalization of cropland and pasture). These two scenarios assume a 

lower per capita consumption of meat and a higher consumption of proteins and fats through vegetable 

oils (+3.5%) and to a lesser extent fruits (+2%)  and vegetables (+4.5%). Also, extensification of 

grassland is more obvious in the WRCF scenario where 12% of pastures are concerned while only 3% of 

them are turned from intensive to extensive in the WHO scenario. A more extensive use of grassland also 
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leads to a decrease of fodder crops (- 3% to -7.5%) production (Table 6). It is important to note here that 

large part of the animal production is now exported outside Europe, as the internal consumption has 

dropped. There is no direct relationship thus between the decrease of consumption and the decrease of 

production. This is done in CAPRI to preserve some income for agricultural holdings with livestock (4.8 

million holdings in 2005 for EU27 according to EUROSTAT) 

Table 6: change in Land use across REF scenario (2005), and BAU, WHO, WCRF scenarios (2020) 
  REF BAU WHO WCRF BAU WHO WCRF 

General classes 1000 ha Changes expressed as a % of REF 1000 ha Changes expressed as a % of BAU 
 Cropland 125635 -4.6 -4.6 -5.2 119809 0.03 -0.60 
 Grassland 65786 -5.0 -5.3 -5.6 62516 -0.33 -0.70 
 Utilised Agricultural Area 191422 -4.8 -4.8 -5.4 182325 -0.10 -0.63 
Detailed classes        
  Apples Pears and Peaches 1010 -13.1 -12.6 -12.7 878 0.54 0.49 
  Barley 13883 -1.5 -1.8 -2.4 13670 -0.23 -0.85 
  Citrus Fruits 576 11.0 11.8 11.6 639 0.65 0.54 
  Durum wheat 3887 -8.7 -9.4 -9.5 3548 -0.72 -0.83 
  Fallow land 8649 7.7 7.8 11.7 9319 0.08 3.66 
  Flowers 88 12.6 12.6 12.6 99 0.00 0.00 
  Gras and grazings extensive 32210 -2.6 0.2 8.2 31367 2.94 11.12 
  Gras and grazings intensive 33576 -7.2 -10.6 -18.9 31149 -3.62 -12.60 
  Set-aside obligatory, used as grass land 44 -100.0 -100.0 -100.0 0   
  Set-aside obligatory, idling 2354 -100.0 -100.0 -100.0 0   
  Fodder maize 4934 -12.3 -12.4 -12.6 4326 -0.09 -0.27 
  Grain Maize 9351 3.9 3.4 0.7 9713 -0.49 -3.00 
  Nurseries 104 8.1 8.1 8.1 113 0.00 0.00 
  Oats 4481 -7.7 -7.8 -6.7 4138 -0.12 0.99 
  Other cereals 2787 -17.9 -17.7 -16.3 2288 0.27 1.91 
  Other crops 1288 42.1 42.1 42.1 1831 0.00 0.00 
  Fodder other on arable land 13839 -19.4 -20.1 -22.3 11161 -0.88 -3.61 
  Other Fruits 2102 -4.8 -3.9 -3.8 2001 0.98 1.02 
  Other industrial crops 286 43.3 43.3 43.3 410 0.00 0.00 
  Olives for oil 4519 15.7 19.6 20.0 5229 3.37 3.69 
  Other oils 378 -3.8 -3.8 -3.8 364 0.00 0.00 
  Other Vegetables 2140 -9.0 -5.3 -5.5 1948 4.01 3.88 
  Paddy rice 448 -25.6 -25.5 -25.3 333 0.11 0.36 
  Potatoes 2411 -35.2 -35.6 -36.8 1563 -0.67 -2.47 
  Pulses 1958 -15.3 -14.7 -16.2 1658 0.73 -1.03 
  Rape 4484 52.9 53.3 54.4 6856 0.29 1.00 
  Fodder root crops 293 -65.8 -66.7 -68.2 100 -2.48 -7.10 
  Rye and Meslin 2705 -8.4 -8.3 -7.6 2479 0.09 0.88 
  Soya 413 116.6 115.4 113.9 894 -0.51 -1.24 
  Sugar Beet 2256 -32.1 -32.5 -32.0 1532 -0.61 0.14 
  Sunflower 3766 3.9 4.7 3.7 3912 0.75 -0.15 
  Soft wheat 22086 -7.7 -8.1 -10.9 20386 -0.48 -3.43 
  Table Olives 312 0.1 0.3 10.4 313 0.16 10.29 
  Table Grapes 205 -26.8 -26.3 -26.4 150 0.75 0.62 
  Flax and hemp 599 6.3 6.3 6.4 636 0.00 0.09 
  Tobacco 184 -20.2 -20.2 -20.1 147 0.01 0.03 
  Tomatoes 331 -2.1 -1.5 -1.5 324 0.64 0.61 
  Set-aside obligatory, tree cover 94 -100.0 -100.0 -100.0 0   
  Wine 3561 -11.4 -11.4 -11.4 3156 0.00 0.02 
  Set-aside voluntary 2829 30.7 30.8 32.8 3697 0.12 1.61 
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3.4 Animal breeding activities 
 

Despite a significant decrease of beef (-6.8% to -42.1%) and pork (-5.6% to -43.0%) consumption in 

human diet assumed in the WHO and WCRF scenarios (Table 3), the overall European production is not 

as much impacted (see Table 7). Indeed, these two scenarios are affecting European diet while European 

production of meat supports international trades, and changes in meat production according to WHO and 

WCRF are less significant (respectively -7.6% and -21.5% for beef and pork). 

 

Table 7: Change in beef (suckler cows + adult cattle for fattening) and pork production in the WHO and 
WCRF scenario compared to the REF 2005 and BAU 2020 baselines. 

 
  REF BAU WHO WCRF BAU WHO WCRF 
  [1000 hd] Changes expressed as a % of REF [1000 hd] Changes expressed as a % of BAU 
beef herd        
 EU15 26833 9.2 10.6 16.2 24360 -1.5 -7.7 
 10 New MS 1662 19.1 20.8 28.6 1345 -2.1 -11.7 
 EU27 29578 9.5 10.8 16.3 26776 -1.5 -7.6 
         
Pigs        
 EU15 195460 -7.2 -3.6 16.2 209476 -3.3 -21.8 
 10 New MS 37280 2.0 5.2 22.0 36525 -3.2 -20.4 
 EU27 239641 -4.4 -0.9 18.1 250067 -3.3 -21.5 

 

Detail information on the WHO and WCRF scenarios regarding changes in market balances per EU 

Member State, or income and supply details for major product are given in annex 1. It clearly indicates 

that a decrease of the European demand for beef and pork meats is not followed by a similar decrease of 

production at the EU-scale. Indeed, a high degree of realism is required and in order to ensure the 

economical sustainability of agricultural activities in WHO and WCRF scenarios, the decrease in the 

demand for meat product is concomitant with an increase in meat export over Europe. As a consequence, 

the net trade for European beef products is increased from -276 103 tons in BAU to +51 103tons of beef in 

WHO scenario and up to 2050 103 tons in the WRCF scenario (see annexe 1). It means that the global 

market balance of EU Member States is reverse and Europe will be considered as a net exporter of beef in 

WHO and WCRF. For pigs, EU27 has already a positive balance (2203 103tons) but this latter increased 

to 2468 103 tons in WHO and 5252 103tons in WCRF (see annex 1).  
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3.5 Nutrient input to agricultural land 
 
Fertilizers application – they were obtained from CAPRI (Britz, 2004) for both references (REF) and 

prospective scenarios (BAU, WHO and WCRF). For the whole Europe, manure application decreases 

progressively from REF to BAU (-2%) in agreement with the lower consumption of meet assumed from 

2005 to 2020 (Table 8). A further decrease is simulated from BAU to WHO (-1%) and WCRF (-7%) 

under a stringent change human diet (Table 8). Mineral applications of N continue to increase (+4.7%), 

while they slightly decrease for phosphorus (-5.2%) from REF to BAU. Change in diet leads to a decrease 

of application by 3% for nitrogen and 1% for phosphorus under the scenario WCRF (Table 8). 

 

Biological N2 fixation – fixation by Pulses and Soya crops is based on agricultural yield provided by 

CAPRI, and assuming an average N content of 35 gN/kg. The corresponding amount of N in harvest 

products is multiplied by two to account for N residue below ground plant parts (Moisier et al. 1998). For 

paddy rice 25 kgN/ha is assumed for biological N2 fixation (Bouwman et al 2009). Fixation for non-

leguminous crops and grassland is then deduced with respect to the value provide at the NUTS2 level (3.6 

kgN/ha in average) by the CAPRI model.  

 

Downscaling of atmospheric deposition – Deposition values provided by CAPRI are downscaled 

following the spatial distribution of EMEP (EMEP, 2001) deposition data for 2005 overlaid with Land 

use allocation. For phosphorus, no fixation-deposition were calculated. 

 

Nutrient balance – Nutrient supply and balance are provided in table 8. From REF to BAU nitrogen 

surplus at the soil level decreases by 4 % while for phosphorus an impressive decrease of 21% is 

simulated by the CAPRI model. The more stringent scenario (WCRF) adds a further decrease of 5.4% and 

6% for nitrogen and phosphorus surplus, respectively. For the spatial distribution of nutrient balances, 

maps of nitrogen and phosphorus surplus are produced in annexe 2 of this report.  
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Table 8: Changes in nutrient supply and balance as calculated by CAPRI model from 2005 to 2020 
scenarios. 

 
  REF BAU who wcrf BAU who wcrf 

Nitrogen 1000t N changes expressed as a % of REF 1000t N changes expressed as a % of BAU 

 Atmospheric deposition 2222 1.5 1.6 2.1 2189 0.1 0.7 

 Biological fixation 1079 -0.6 0.2 3.1 1085 0.7 3.7 

 Gaseous loss 3937 0.2 1.4 6.7 3928 1.2 6.5 

 Import by crop residues 5553 -13.5 -12.6 -9.9 6301 0.8 3.2 

 Import by manure 9501 2.9 4.0 9.6 9226 1.1 6.9 

 Import by mineral fertilizer 10963 -4.7 -3.9 -1.6 11480 0.8 3.0 

 Nutrient retention by crops 17634 -8.1 -7.3 -4.5 19063 0.7 3.3 

 Surplus total 11684 4.0 5.0 9.1 11219 1.1 5.4 

         

Phosphorus 1000t P changes expressed as a % of REF 1000t P changes expressed as a % of BAU 

 Import by crop residues 1140 -13.5 -12.7 -10.2 1294 0.7 2.9 

 Import by manure 2144 1.7 2.7 7.5 2108 1.0 5.9 

 Import by mineral fertilizer 1435 5.2 5.5 6.0 1360 0.3 0.9 

 Nutrient retention by crops 3433 -9.4 -8.7 -6.1 3756 0.6 3.0 

 Surplus total 1285 21.8 22.5 26.5 1006 1.0 6.0 
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3.6 Optimization of manure application in Europe 
 
MANU Scenario- In this scenario, an optimization of the amount of animal manure locally produced is 

considered. In this optimization procedure, the available amount of manure is first applied on grassland 

area and the remaining part is then used as crop fertilizer. In both case, supplies of phosphorus manure 

(Porg) and nitrogen manure (Norg ) cannot exceed the net demand of the plant (either grass or crop). 

This net demand is calculated according to the crop export, after substituting the inputs corresponding to 

nitrogen deposition, fixation and nitrogen crop residues. The net demand has to be covered by a suitable 

application of organic fertilizer (manure application after gaseous losses and with a certain N:P ratio) and 

complemented by  mineral input adjusted according to the remaining plant demand for both nitrogen 

and/or phosphorus.  

 

Example of N-deficient manure – If N:Pmanure <  N:Pplant demand manure is considered as N-deficient. In this 

case the P supply is first calculated based on the available phosphorus manure (Pman) with the constraint 

that P demand could not be run over. In case of a shortage of manure, this application is adjusted with 

adequate mineral input (Pmin). As N:Pmanure < N:Pplant demand, the nitrogen demand could not be covered by 

the amount of manure supplied. For this reason, a mineral nitrogen supply (Nmin) is calculated to satisfy 

the crop and grass needs (calculated in turns).  

Inversely, if N:Pmanure >  N:Pplant then the priority is given to the satisfaction of the N demand first, and a 

mineral P adjustment is systematically calculated. 

 

Management of residual manure – MANU scenario will result in a null nutrient balance as nutrient 

supply is optimized according to the demand of both N and P. However, in some case, a residual amount 

of manure - that could not be applied without exceeding the demand for N or P - is calculated. This latter 

is not locally applied and might be considered as an exportable supply able to support deficient area. The 

sub-basin was selected as an elementary unit to optimize the application of locally produced manure, and 

the basin as a further unit to redistribute the excess of manure as detailed below: 

- Manure application is optimized within all EU sub basins following the procedure detailed above.  

- Residual (not applied) manure is cumulated at the basin scale (with an average quality N:Pmanure), 

and redistributed to sub-basin candidates according to their residual demand for both nitrogen and 

phosphorus (N:Pplant demand). By doing so, residual manure application prioritizes sub-basins with a 

need similar to quality of manure potentially exportable at the basin scale. 
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- In case all manure could not be redistributed (without exceeding the crop and grass demand for N 

and/or P), the cumulated residual manure is proportionally distributed to all sub basins according 

to their size, and weighted with respect to their initial excess of manure.  

-  Mineral application is finally calculated to cover the residual demand for N and/or P for each 

individual sub basin. 

 

The total amount of manure applied at the scale of European river basins is preserved across BAU and 

MANU scenarios, only its distribution at the sub-basin scale is affected. However, the impact on mineral 

supply is important. For phosphorus, increase or decrease in mineral application is simulated across 

Europe. Localization of these changes (either increase or decrease) integrates the heterogeneity of 

agricultural practices within a river basin and the concomitant possibility for the manure locally produced 

to be redistributed to other sub basin. An increase in mineral input may be observed in regions holding a 

negative surplus (see Annexe 2), but it may also include areas with a positive surplus resulting from 

cumulated non-distributed manure at the basin scale. For nitrogen, as mineral applications are widely 

exceeding the plant demand a general decrease is observed under an optimized manure management 

scenario (Fig. 6). 
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Figure 6: Change in mineral application of phosphorus (left) and nitrogen (right) under the MANU 

scenario. 

3.7 Hydrological conditions 
 
In these scenarios, future changes in hydrological conditions are not taken into account. Indeed 2020 is 

considered too short term for including possible climate change. In order thus to avoid the introduction of 

additional source of variability, no potential climate change was used to perturb the actual hydrology. 

Impact of hydrological condition greatly impacts the contribution of diffuse sources of nutrient. For this 

reason, it has been decided to run our simulations for a wide range of hydrological conditions. By doing 

so, our simulations integrate the variability of climatic conditions. The time series 1985-2005 has been 

used as a common hydrological dataset to run all scenarios, and the calculation of nutrient fluxes are 

systematically computed as an average of all the simulation performed over these 21 years. 
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Figure 7: Modelled water discharge entering European seas from 1985 to 2005
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4. Results and discussion 
 
Sections 4.1 and 4.2 describe the impact of the selected scenarios on the land base emissions of point and 

diffuse nutrients sources. First, the changes assumed from 2005 and 2020 are provided as the basis for the 

comparison of all other scenarios simulated for the timeline 2020. Indeed, each scenario (UWWD, 

PFREE, WHO, WCRF and MANU) is considered as the combination of the BAU and a specific nutrient 

mitigation measure. Part 4.3 details the GREEN model results and the assessment of scenarios impact on 

nutrients loads to European seas. 

4.1 Impact on nutrients emitted as point sources 
 
It can be seen that a full implementation of the Directive 91/271 will result in significant differences 

between EU-15 and new Member’s State. In the former, collection and basic (primary and secondary) 

treatments are already in place for both N and P. Most of the changes are due to the upgrading of 

wastewater treatment plant from secondary to tertiary treatments (65% of upgraded Inhabitant Equivalent 

I.E.). For new Members state (EU 10+2), only a small percentage is upgraded from secondary to tertiary 

treatment (10% of upgraded I.E.). However the proportion of uncollected or untreated release was much 

more important in 2005 (REF scenario) with 5% of total I.E. for EU-15, and 45% for new Member States. 

For these latter, a full implementation of the UWWD basically results in an increase of point-source 

emissions (resulting from the transfer of scattered dwelling emissions to point sources). Figure 7 shows 

the emissions of N and P point sources and scattered dwelling emissions resulting from the 

implementation of the Directive 91/271/EEC (scenario UWWD) and the Regulation 648/2004/EEC 

(scenario PFREE).  

 

From 2005 (REF) to 2020 (BAU) changes in point source and scattered dwelling are intimately related to 

the changes in population count and distribution described in section 3.1. In Europe-27, scattered 

dwelling emissions evolved similarly for both N and P with a generalised decrease supported by the 

progressive change in population structure (the proportion of rural population in EU is decreasing from 

2005 to 2020). The concomitant increase of inhabitant connected to sewage network and wastewater 

treatment plants (increase of the urban fraction of the population) leads to a slight increase of point-

sources emissions. This latter is particularly important for Cyprus (+39% of N and +41% of P); Ireland 

(+17% of N and +16% of P) and the Luxembourg (+16% of N and + +16% of P) at the horizon 2020. 

In 2020, the implementation of the UWW-Directive leads to an increasing rate of connection to sewer, 

combined with an upgrading of waste treatment plants. Consequently, important decreases  of point 
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source (from BAU to UWWD) are calculated in Belgium (-47% N; -64%P); Bulgaria (-35% N; -50%P); 

Spain (-31% N; -35%P); France (-29% N; -42%P); Ireland (-50% N; -61%P); Italy (-12%N; -32%P), 

Portugal (-23%N; -27%P)  and United-Kingdoms (-26% N; -24%P). 

The decrease of point source emissions is less significant for Luxembourg (-5%N; -9%P); Latvia (-6%N; 

-13%P); Netherland (-7%N; -17%P) and Sweden (-35%N; -2%P) where a significant difference between 

N and P treatments was observed. 

For other Member States, point sources slightly increase, as in Germany (+4%N; -9%P) or Finland 

(+3%N; +7%P) reflecting an increase of population with an already high connection rate and treatment 

level. However drastic increases are simulated for Romania (+54%N; +35%P); Slovenia (+74%N; 

+51%P); Slovakia (+49%N; +30%P) accompanied with complete reduction (>90%) of scatter dwelling 

emissions (from BAU to UWWD).  

For phosphorus, the PFREE scenario adds a further reduction of both point-source and scattered dwelling 

emissions (-20% in average compared to the single implementation of the UWWD). For countries with a 

large proportion of P- laundry emissions (see Figure 3) the impact of the PFREE scenario is particularly 

important, including Cyprus (-48% of P-point sources compared to UWWD), Poland (-46%), Portugal (-

35%) and Estonia (-35%). 

Maps of point sources emissions are given for nitrogen (Fig. 8) and phosphorus (Fig. 9) according to the 

four scenarios: REF, BAU, UWWD and PFREE 
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Figure 7: mitigation of N and P point sources and scatter dwelling emissions by the Directive 91/271/EEC 
(scenario UWWD) and the Regulation 648/2004/EEC (scenario PFREE) 
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Figure 7(continued): mitigation of N and P point sources and scatter dwelling emissions by the Directive 
91/271/EEC (scenario UWWD) and the Regulation 648/2004/EEC (scenario PFREE) 
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Figure 7(continued): mitigation of N and P point sources and scatter dwelling emissions by the Directive 
91/271/EEC (scenario UWWD) and the Regulation 648/2004/EEC (scenario PFREE) 
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Figure 8: Map of point source emission of phosphorus (ton P) per sub-basin for REF, BAU, UWWD and 

PFREE scenarios 
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Figure 9: Map of point source emission of nitrogen (ton N) per sub-basin for REF, BAU and UWWD 
scenarios 
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4.2 Impact on nutrients emitted as diffuse sources 
 
From 2005 to 2020, the BAU scenario indicates that nitrogen diffuse inputs may decrease significantly in 

Greece (-22%); Bulgaria (-17%); Portugal (-13%); Denmark (-10%); the Netherlands (-9%); the United 

Kingdom (-7%) and Cyprus (-4%) due to a decrease in mineral inputs. For other Member States diffuse 

sources of nitrogen continue to increase despite the decrease of organic inputs c (Czech Republic; Serbia; 

Estonia; Latvia, Lithuania, Luxembourg and Slovakia). 

A change in human diet (WHO and WCRF) appears as a low efficient option at the horizon 2020, while 

redistribution of manure (MANU) leads to a significant decrease of total nitrogen diffuse sources (Fig. 

10). Reduction of nitrogen by the WHO scenario does not exceed 1% but can reach 8% according to the 

WCRF scenario. In this latter  both mineral and organic nitrogen inputs are decreased, but most of the 

change is driven by a reduction in manure application, with the exception of United Kingdom where an 

important decrease in mineral nitrogen fertilizers is also simulated (-18%). It is important again to 

remember that there is a drastic decrease in human in human consumption of meat but with much less 

marked decrease of beef and pork production. Annexe 3 provides a detailed summary of diffuse emissions 

values (for both N and P) by countries (the MANU scenario is not included as it provides results at the 

basin scale). The impact of the MANU scenario on mineral application of nitrogen is shown in Figure 6. 

For phosphorus the BAU scenario simulates from 2005 to 2020 a significant decrease in Ireland (-14%); 

United Kingdom (-8%); Czech Republic (-9%) and Greece (-12%). However Figure 11 indicates that 

such changes are highly regionalized according to the intensity of breeding within each country (e.g. 

Brittany; Western France, Eastern Spain, southern parts of Ireland and England). There is also a 

significant increase simulated in Estonia (+39%); Hungary (+20%); Spain (+20%); Lithuania (+13%) and 

Belgium (+11%). 

There is no major impact of a change in human diet on phosphorus diffuse emission and a maximum 

reduction of 6% is simulated following the recommendations of WRCF. In this scenario phosphorus 

manure (and nitrogen manure) decreases, and despite a significant increase in P-mineral application in 

Denmark and the Netherlands, the overall phosphorus supply decreases for all European countries. 

The MANU scenario does not consider a change in the amount of manure applied at the basin scale, and 

changes in diffuse sources are directly related to the mineral supply calculated to meet the crop 

requirement in each sub-basin (Fig. 6). These changes in P-diffuse sources are explained by i) the balance 

of P surplus at the sub-basin scale (see Annexe 2) and ii) the inadequacy between the quality of the 

manure locally produced and the nature of the crop demand at the basin scale. Furthermore, in our 

approach we do not allow crops to be subject to a phosphorus (or nitrogen) deficit as it is the case in many 

areas in Europe. 
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Figure 10: Map of diffuse source of nitrogen (ton N) per sub-basin for REF, BAU, WCRF and MANU 
scenarios 
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Figure 11: Map of diffuse source of phosphorus (ton P) per sub-basin for REF, BAU, WCRF and MANU 
scenarios 
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4.3 Impact on modelled nutrients export to sea  
 

4.3.1 Nutrients sources apportionment 
The GREEN model was used to quantify the load of nutrients exported to European Seas and to assess the 

contribution of diffuse and point sources to the total load exported to the sea.  

In the case of nitrogen, the highest losses tend to occur in agricultural areas where river basins supporting 

intensive agricultural activities have a major contribution of diffuse emissions. On the opposite, river 

basins holding a high population density have their exports of nitrogen dominated by point sources 

emissions (see Fig. 12). This is typically the case of small coastal watersheds where an important part of 

the European population is concentrated. 

For phosphorus the source apportionment does not allow such a clear distinction. The contribution of 

point sources emission to the total phosphorus loads entering European Seas is clearly significant. The 

contribution of diffuse sources is lower for phosphorus than nitrogen (Fig. 13). Areas with important 

contribution of point sources for nitrogen are similar with those having the highest point sources 

contribution for phosphorus. This indicates the consistency of wastewater treatment level for both 

nitrogen and phosphorus whatever the rate of connection to sewage. 

 

Improvement of wastewater collection and treatment in areas presenting a lack of connection to sewage 

network results in an increase of point sources contribution, due essentially to a transfer of scattered 

dwelling emission (considered as diffuse sources) to point sources emissions. In countries already having 

the major part of their population connected to sewage, the implementation of the Urban Waste Water 

Directive (UWWD) greatly reduces the contribution of point sources for both nitrogen and phosphorus, 

and the substitution of phosphorus in laundry detergent (PFREE) adds a further reduction. However, for 

river basins where water treatment was already at a high level, the combined UWWD + PFREE scenarios 

have no significant impact, as in the case of the Rhine river basin. 

 

Scenarios impacting agricultural activities (WHO, WCRF, MANU) result systematically in a decrease of 

diffuse sources contribution for nitrogen. Except for some specific river basins (in Spain, Turkey and 

United Kingdom, see Fig. 12) agricultural practices remain the dominant sources contributing to nitrogen 

flowing to European Seas. Concerning phosphorus the impacts of WCRF and MANU scenarios on 

phosphorus diffuse emissions are mixed. T he sources apportionment (Fig. 13) is consistent with the map 

of the diffuse P sources for these respective scenarios (Fig. 11). 
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Figure 12: Contribution of diffuse sources to total nitrogen load into the sea per basin. The green colour 
indicates a predominance of diffuse sources (agricultural sources), while the red colour signifies a higher 

contribution from point sources (wastewater discharges)  
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Figure 13: Contribution of diffuse sources to total phosphorus load into the sea per basin. The green 

colour indicates a predominance of diffuse sources (agricultural sources), while the red colour signifies a 
higher contribution from point sources (wastewater discharges) 
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4.3.2 Nutrients loads to European sea 
 

According to the BAU storyline, both nitrogen and phosphorus loads to European sea will increase in a 

similar way from 2005 (REF) to 2020 (BAU): Baltic Sea +1.6%; the North Sea +3.0%; Atlantic Sea 

+3.1%; Black Sea +5.8% and the Mediterranean Sea +3.6%. 

 

Impact of the UWWD on point sources loads (fraction of the loads entering the sea and originating from 

households and industrial emissions) is very significant for the North Sea with a 33% reduction for 

nitrogen and 40% for phosphorus (Fig. 16). In the Mediterranean and Atlantic Seas, the decrease of 

nitrogen point source is around 15 %, and up to 25% for phosphorus from point source (Fig. 14 and Fig. 

15). Implementation of the UWW-Directive increases (mostly due to the new Member States) both N and 

P point sources contribution by +4.5% for N and +9.5 % for P for the Baltic and +25% N and +10 % P for 

the Black Sea (Fig. 17 and Fig. 18). The contribution of scattered dwelling emissions decreases for all 

seas, but this decrease is highly significant for the Baltic Sea and the Black sea (-20% N and -40 %P). 

This concomitant increase in point source and decrease in scattered dwelling emission is obvious for 

regions having an initial low connection rate to sewers and wastewater treatment plants.  

The effect of adding phosphorus prohibition in detergents, leads to an additional decrease of point source 

(from -7 to -57 %P) and scattered dwelling emissions (from -13 to -46 %P). 

 

In the case of nitrogen, point sources represent a minor contribution (Fig. 12), and the overall impact of 

the UWWD is less significant when the reduction of point sources loads is reported to the total nitrogen 

loads to the sea. The corresponding nitrogen reduction are of 0.8% for the Baltic sea, 2.1% for the Black 

sea, , 4.2% for the Atlantic sea, 4.6% for the Mediterranean sea and 5.6% for the North sea. 

 

The impact of a change in diet needs to be considered with respect to the WCRF scenario, as impact of 

the World Health Organization (scenario WHO) does not significantly affect the nitrogen and phosphorus 

entering European seas (<1% for N and P). When comparing WCRF to the BAU situation for 2020, 

nitrogen diffuse emissions (diffuse sources exported to the sea) are reduced by 2.1% for Black sea (Fig. 

18), 3% for Mediterranean Sea (Fig. 15), 3.1% for the Baltic Sea (Fig. 17), 4.4% for Atlantic Sea (Fig. 

14) and 5% for the North Sea (Fig. 16). 

 

Impact on diffuse emissions of phosphorus (diffuse sources exported to the sea) is in the same range: 

Black sea -1.4%, Mediterranean Sea -2.8%, the Baltic Sea -2.4%, Atlantic sea -4.5% and North Sea -

3.2%.  
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The MANU scenario greatly impacts nitrogen export to European seas with reductions ranging from 36% 

to 41%.  However, because of the assumptions made in the MANU scenario (accumulation of P in 

European soils is not taken into account) there is a substantial increase in diffuse emissions of  P in 

Atlantic sea (8%), the Baltic sea (11%) and the North Sea (12%). For the Mediterranean Sea diffuse 

sources of P are reduced by 11 %. Figure 6 allows a better understanding of the regional differences and 

changes in mineral application under the MANU scenario.  



Results and discussion 
 

60 
 

 
Figure 14: Estimated yearly mean total nitrogen (left) and phosphorus (right) per source entering the 
Atlantic sea. Error bars indicate the change in diffuse sources contribution (minimum and maximum) 

according to range of hydrological conditions from 1985 to 2005.  

 
Figure 15: Estimated yearly mean total nitrogen (left) and phosphorus (right) per source entering the 

Mediterranean sea. Error bars indicate the change in diffuse sources contribution (minimum and 
maximum) according to range of hydrological conditions from 1985 to 2005.  
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Figure 16: Estimated yearly mean total nitrogen (left) and phosphorus (right) per source entering the 
North Sea. Error bars indicate the change in diffuse sources contribution (minimum and maximum) 

according to range of hydrological conditions from 1985 to 2005.  

 

 
Figure 17: Estimated yearly mean total nitrogen (left) and phosphorus (right) per source entering the 
Baltic Sea. Error bars indicate the change in diffuse sources contribution (minimum and maximum) 

according to range of hydrological conditions from 1985 to 2005.  
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Figure 18: Estimated yearly mean total nitrogen (left) and phosphorus (right) per source entering the 
Black Sea. Error bars indicate the change in diffuse sources contribution (minimum and maximum) 

according to range of hydrological conditions from 1985 to 2005. 
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4.3.3 Scenarios effectiveness 
By considering a set of common nutrients mitigation measures applied for the whole Europe, the 

underlying aim of the study is to assess the effectiveness of each individual scenario. In this exercise, 

scenarios need to be compared with a similar timeline (here 2020) in order to avoid any compensation or 

magnifying effects supported by the assumptions made between 2005 (REF) and 2020 (BAU).  Figure 19 

illustrates a change in nutrient sources and the corresponding change in nutrient exports between the BAU 

baseline and different mitigation measures. To ensure the readability of these analysis, only MANU, 

WCRF and UWWD (+PFree) scenarios are presented (the WHO scenario is not included, as impact of 

this scenario is relatively low). In this figure, specific fluxes of nutrients normalized by the watershed area 

have been calculated for both inputs and exports in order to support the comparison between all European 

basins independently of their size. 

 

Mitigation of nutrients point sources by improving wastewater treatment is generally presented as an end-

of-pipe option, but it is clearly the most effective way to decrease both nitrogen and phosphorus exported 

to the sea. For most of European river basins, effectiveness of UWWD scenario ranges between 50-100 % 

(line 1/1 and line 1/2 Fig. 19). Conceptually the GREEN model considers that nutrient emitted as point 

sources are only subject to in-stream retention (within the river bed) and the retention coefficients 

calibrated by the GREEN model are not affected by the implementation of scenarios. 

 

Mitigation of diffuse sources presents a greater variability especially the MANU scenario. In the case of 

nitrogen, the effectiveness of the MANU scenario remains lower than 50% and most of the river basins 

are under 25%. This lower effectiveness is explained by the fact that diffuse sources are subject to both 

terrestrial and in-stream retention processes. The efficiency of the WCRF scenario fluctuates in the same 

range of values (from 10% to 50%). However, it presents a lower capacity to reduce nutrients sources 

compared to MANU scenario that is considered as a more drastic option. 

 

In the case of phosphorus, the effectiveness of agricultural scenarios (MANU and WCRF) is very low, 

less than 10%, due to the high level of terrestrial retention of phosphorus. For some river basins positive 

values of change in P-inputs can be observed (Fig. 19). Such an increase is particularly significant for the 

MANU scenario, resulting in an increase of calculated P exports. 

 

These results have to be discussed together with the sources apportionments results. While scenarios on 

point sources appear as the most effective way to reduce nitrogen sources, they also represent a 
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marginal/minor contribution in the total nitrogen loads exported to the coastal seas. On the other hand, 

agricultural scenarios (agro-environmental measure), despite their lower effectiveness, offer a greater 

potential for obviating the problems caused by nitrogen in Europe. 

 

 

 
 

Figure 19: Comparison of changes in nutrients exports by European basin according to changes in 
nutrients input. Both N and P fluxes are normalized by the total area of the river basin to enable the 

comparison between all EU-basins. The line 1/1 indicates that for a given change in nitrogen or 
phosphorus input, a similar increase/decrease in exported fluxe is simulated for the basin. 
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4.3.4 Nutrients concentrations to European seas 
Figures 20 to 25 show the changes of nutrients concentrations calculated for each European sea for the 

time lines: 1985 (PAST scenario), 2005 (REF scenario) and 2020 (BAU, UWWD, WHO, PFREE, 

WCRF, MANU scenarios). As each individual scenario has been simulated with a wide range of 

hydrological conditions (21 years of real hydrology), the extremes (minimum and maximum) and average 

concentrations are provided to represent the variability of the simulation results.  

 

For all European seas the range of in-stream concentrations  is clearly increasing from REF to BAU for 

nitrogen (+ 3.8% to +6.7%) and phosphorus (+ 0.5% to +7.0%). The most important changes over this 

period are simulated for the Mediterranean and the Black Seas. The Baltic Sea exhibits the less important 

changes especially for phosphorus concentrations. 

 

Impact of the UWWD is highly significant for phosphorus especially when this latter is combined with a 

PFREE option. The decrease of nitrogen concentrations from BAU to UWWD allowed to recover the 

range of concentrations simulated for the REF situation, thus preventing the worsening a nitrogen 

contamination in 2020. 

 

The environmental impact of a change in human diet it rather low, and slight impacts are observed on 

nitrogen and phosphorus concentrations. The WCRF scenario seems to have the capacity to prevent the 

increase of nitrogen concentrations simulated under the BAU scenario, but does not offer a significant 

improvement compared to the present (REF) situation. Again, it is important to remind here that the large 

decrease of meat consumption was not accompanied for economical reasons by a similar decrease of 

animal production. 

 

The MANU scenario is the most efficient scenario and allows reducing nitrogen concentrations down to 

4mg/l in the river flowing to Atlantic sea (Fig. 20) and down to 3 mg/l for the Mediterranean (Fig. 21) 

and the North (Figure 22) Seas. This scenario has no significant effect on phosphorus concentrations for 

the North and the Baltic Seas (Fig. 22 and 23), a negative impact on the Atlantic and Black Seas (Figure 

20 and 24) and a positive impact (decrease) on the Mediterranean Sea. 

 

The proposed approach estimated the impact of prospective scenarios considering a time frame analysis 

of twenty years (from 2005: REF to 2020: BAU). Figures 20 to 25 represent the linear interpolation of the 

simulation between 1985: PAST and 2005: REF, either 20-year of anthropogenic pressures changes in 

European watersheds. When overlaying the simulations performed by the GREEN model considering the 
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specific nutrients inputs and hydrological conditions for each of the years between PAST and REF, it 

clearly appears that a wide range of variations is expected within a time frame of 20 years. Hydrology 

appears as an important factor controlling the variability of the simulation results, however fast changes in 

anthropogenic pressures as the rapid improvement of P wastewater treatment in Europe or the progressive 

saturation of soil need to be considered with a finer time step. 

 

 
 

 
Figures 20 and 21: Change in Nitrogen and Phosphorus concentrations exported to Atlantic sea (top, 

Fig.20) and Mediterranean sea (bottom, Fig.21). Colour (green and blue) lines indicated the 
reconstruction of past trends simulated with their respective hydrological conditions from 1985 to 2005. 
For all scenarios (PAST, REF, BAU, UWWD, Pfree, WHO, WCRF and MANU) simulation results are 

provided as minimum (lower bar), maximum (upper bar) and average (middle point) concentrations 
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calculated over the hydrological periods1985-2005. An additional red dotted line indicates the average 
BAU concentrations for 2020 

 

 
 

 
Figures 22 and 23: Change in Nitrogen and Phosphorus concentrations exported to North sea (top, Fig. 
22) and Baltic sea (bottom, Fig. 23). Colour (green and blue) lines indicated the reconstruction of past 

trends simulated with their respective hydrological conditions from 1985 to 2005. For all scenarios 
(PAST, REF, BAU, UWWD, Pfree, WHO, WCRF and MANU) simulation results are provided as 

minimum (lower bar), maximum (upper bar) and average (middle point) concentrations calculated over 
the hydrological periods1985-2005. An additional red dotted line indicates the average BAU 

concentrations for 2020 
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Figure 24: Change in Nitrogen and Phosphorus concentrations exported to Black sea. Colour (green and 

blue) lines indicated the reconstruction of past trends simulated with their respective hydrological 
conditions from 1985 to 2005. For all scenarios (PAST, REF, BAU, UWWD, Pfree, WHO, WCRF and 

MANU) simulation results are provided as minimum (lower bar), maximum (upper bar) and average 
(middle point) concentrations calculated over the hydrological periods1985-2005. An additional red 

dotted line indicates the average BAU concentrations for 2020 
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5.  Conclusion and perspectives 
In this study, an increase of both nitrogen and phosphorus land based emissions is estimated in 

2020 for the whole Europe following a business as usual scenario (see Figures 7 to 9 for point 

sources and Figures 10-11 for diffuse sources). 

For EU27, total nitrogen inputs will increase from 22,900 kt/yr to 24,350 kt/yr, while changes in 

phosphorus inputs are less important with an increase from 3,500 kt/yr to 3,650 kt/yr for EU27. 

 

Three categories of nutrients mitigation measures were addressed: i) the collection and treatment 

of point sources (UWWD and PFREE scenarios), ii) a change in European human diet (WHO and 

WCRF scenarios) and iii) the management of manure application in Europe. 

 

The mitigation of nutrients point sources – This is the most effective option to reduce both 

nitrogen and phosphorus loads to regional seas. Indeed, it is considered (GREEN model) that 

point source are only subject aquatic retention, consequently a change in point sources emission 

is directly followed by a change in nutrients exported to sea. However three characteristics may 

attenuate the efficiency of this option: 

- The location of urban areas in an upstream to downstream gradient. Efficiency of a 

change in point sources to reduce nutrients is obviously higher when the most important 

sources are released in the downstream part of the drainage network (as the effect of the 

measure is not attenuated by the cumulative nutrient retention from the upstream to the 

downstream parts of the drainage network). 

-  The importance of scattered dwelling emissions. The benefits of a progressive 

improvement in WWTPs removal could be compensated by an important transfer of 

nutrient loads from scatter-dwelling emission (uncollected) to point source (collected). 

For this reason a full implementation of the UWWD leads to a contrasted assessment in 

Europe. It is also important to note that the reduction of scattered dwellings greatly 

reduces the risk of groundwater contamination. 

- The technologies already in place to treat wastewater effluents. A clear difference 

appears between EU15 and new Members States. In EU15, implementation of the UWW 

Directive mostly results in the upgrading of existing treatment plants with basic treatment 

to more stringent treatment of N and P. For new Members States, the upgrading of 

existing plant is comparatively less important, but the increase of connection rate has a 

greater impact on point sources emissions. 
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The source apportionment indicates that point sources of nitrogen represent a minor part of the 

nitrogen exported to sea. Moreover, no additional nitrogen removal processes could be considered 

as economically sustainable to be generalized (advanced denitrification using ethanol being a 

very expensive option). In the case of phosphorus, point sources remain the dominant 

contribution to phosphorus loads exported to sea. Nevertheless, per capita emissions of 

phosphorus have already been drastically reduced during the last two decades and are now 

stabilized to a value close to physiological releases. The rate of P removal in WWTP has reached 

90 %. Moreover, if a ban of phosphorus used in laundry detergent is clearly expected in Europe 

for 2020, a similar prohibition or ban is not considered for dishwasher detergent as Sodium tri-

Polyphosphate substitutes cannot be used.  

The mitigation of point sources of nutrients is the most effective option to reduce nutrients 

export to European seas. However, feasibility of this latter is relatively low and further 

reduction of nutrient emitted as point sources will involve important costs. 

 

Change in European human diet – The scenarios WHO and WCRF support similar story lines 

with a gradient of intensity (a progressive decrease of beef and pork meat consumption and an 

increase of vegetal proteins in human diet). The lower efficiency of these two scenarios is directly 

related to their economic realism and their scale of implementation. By limiting the change in diet 

to European scale, the agri-economic analysis based on the CAPRI model simulated a decrease in 

meat consumption, but an also an important increase of meat export in order for farms to be 

economically sustainable. The decrease in the European demand for beef and pork meat is not 

followed by a similar decrease in meat production in Europe. For this reason, the benefit 

(assessed with respect to the BAU situation) of implementing such change in human diet appears 

very low, and the sums of anthropogenic diffuse emissions are only decreased by 4 % for 

nitrogen and 3% for phosphorus at the scale of EU-27. Following the cascade of nutrient retention 

in watersheds, the impact on nutrients exported to European seas range from -2.1% to -4.4% for 

nitrogen and from -1.4% to 4.5% for phosphorus. The potential of a change in human diet for 

mitigating nitrogen exports is very high considering the importance of diffuse source in the 

nitrogen source apportionment to all European seas. However, these changes need to be 

accompanied by a drastic reduction of breeding activities in European watersheds. 

A change in European diet can significantly impact nutrients loads to European seas, but 

there is a need to upscale this analysis and enable a better representation of the link 

between a decrease in meat consumption (demand) and a decrease in breeding activities at 

the global scale. 
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Optimization of manure application in Europe – This scenario represents the ideal option to 

significantly reduce nitrogen exports to European seas (-36% to -41% of nitrogen loads compared 

to BAU situation). As it was designed, this scenario preserves agricultural activities and tries to 

promote the use of nutrient inputs locally produced. It considers the basin scale as a coherent unit 

to manage manure availability and crop demand for both nitrogen and phosphorus. However, at 

this stage impact on phosphorus fluxes is not fully satisfactory and might be improved with a 

better assessment of phosphorus accumulation in European soils. An important decrease of 

mineral nitrogen fertilizers is estimated in this scenario and might have a significant impact on 

the economic assessment of the cost associated to this scenario for the whole Europe. 

Without forecasting drastic changes in human consumption and agricultural practices, the 

MANU scenario suggests that a better re-use of manure produced at the basin scale is the 

most efficient option tested and probably the least costly.  

 

A full implementation of existing policies that aim at mitigating point sources appears efficient, 

but offers a low feasibility for a further decrease of nutrients loads to European seas (especially 

for nitrogen). Additional decreases are possible by limiting nutrients losses by diffuse sources. An 

efficient option is proposed by the redistribution of animal manure. It enables to limit the 

circulation of nitrogen at the basin scale and the concomitant nutrients losses from terrestrial to 

aquatic systems. Other options involving a change in life style, e.g. in human diet, have also a 

significant impact on nutrients loads to regional seas, but such analysis calls for a global 

assessment to be fully efficient. The use of empirical regression models (such as GREEN) is 

highly relevant for that purpose, as they enable to integrate the local impact of human activities in 

watersheds and also the societal and economic drivers acting at a higher scale (from continental 

to global scales). 

 

However, attention has to be paid to the definition of the scenarios storylines. While current 

environmental assessments put this emphasis on a change in food consumption as an efficient 

way to reduce nitrogen input to the environment, this report suggests that more effort have to be 

devoted on re-thinking agricultural production. The simulations provided by the economically 

based CAPRI model (and used in the report) demonstrate that the production of meat in Europe 

will be essentially preserved even if a drastic decrease in European consumption of meat is taking 

place due to a large increase of meat export outside Europe).  
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7. Annex 1: CAPRI model inputs for WHO and WCRF 
scenarios 

 
Table 10: Changes in market balances per EU Member State for beef production in the WHO scenario 

compared to the 2020 baseline 
Reference year (2020) Scenario WHO (2020)

Beef* herd Production Demand Net trade Beef* herd Production Demand Net trade
[1000 hd] [1000 t] [1000 t] [1000 t] [% to REF] [% to REF] [% to REF] [Δ to REF]

Austria 532 180 128 53 -2.0% -1.4% -6.2% 5.41 
Belgium-Lux. 690 276 209 67 -2.5% -1.6% -6.3% 8.86 
Denmark 328 110 212 -101 0.8% 0.7% -5.9% 13.22 
Finland 228 78 113 -35 -1.0% -0.8% -6.4% 6.68 
France 6346 1696 1667 28 -2.2% -1.8% -6.2% 73.95 
Germany 1603 917 566 351 -1.3% -0.4% -6.0% 30.12 
Greece 325 46 150 -104 -2.2% -2.1% -4.3% 5.54 
Ireland 2599 636 108 527 -1.6% -1.6% -5.8% -3.73 
Italy 2600 940 1241 -301 -2.5% -2.2% -5.9% 53.45 
Netherlands 62 334 358 -24 -2.4% -0.9% -5.5% 16.76 
Portugal 665 129 216 -86 -1.7% -2.2% -5.7% 9.49 
Spain 4494 741 766 -25 -2.2% -1.8% -4.1% 18.51 
Sweden 354 127 294 -168 -1.6% -1.2% -6.2% 16.65 
United Kingdom 3533 797 1339 -543 1.7% 0.2% -5.5% 74.92 
EU15 24360 7007 7369 -361 -1.5% -1.3% -5.7% 329.83 
Cyprus 20 6 9 -4 -3.0% -2.3% -6.0% 0.41 
Czech Republic 116 57 36 21 -2.2% -1.9% -2.3% -0.28 
Estonia 22 12 4 8 -0.1% 0.5% 0.9% 0.02 
Hungary 52 33 42 -9 -3.0% -1.5% 0.8% -0.84 
Latvia 69 21 23 -2 1.9% 2.0% -3.7% 1.27 
Lithuania 59 31 9 22 -0.4% 1.2% -5.0% 0.82 
Malta 3 1 9 -8 -3.6% -3.1% -6.1% 0.53 
Poland 845 357 224 132 -2.3% -1.8% -3.7% 1.96 
Slovac Republic 35 34 38 -4 -4.5% -2.8% -0.7% -0.68 
Slovenia 123 54 70 -16 -2.5% -3.0% -3.6% 0.84 
10 New MS 1345 605 464 141 -2.1% -1.6% -3.0% 4.05 
Bulgaria 216 61 89 -28 -0.2% -0.2% 3.2% -3.01 
Romania 854 199 226 -28 0.0% 0.0% 1.7% -3.87 
Bulgaria/Romania 1071 260 316 -56 -0.1% -0.1% 2.1% -6.88 
EU27 26776 7873 8148 -276 -1.5% -1.3% -5.3% 327.00 
* 'Beef herd' = suckler cows + adult cattle for fattening in this table.  
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Table 11: Changes in market balances per EU Member State for beef production in the WRCF scenario 
compared to the 2020 baseline 

Reference year (2020) Scenario WRCF (2020)
Beef* herd Production Demand Net trade Beef* herd Production Demand Net trade
[1000 hd] [1000 t] [1000 t] [1000 t] [% to REF] [% to REF] [% to REF] [Δ to REF]

Austria 532 180 128 53 -9.2% -6.0% -38.5% 38.34 
Belgium-Lux. 690 276 209 67 -11.4% -6.8% -40.2% 65.40 
Denmark 328 110 212 -101 6.6% 5.0% -37.2% 84.20 
Finland 228 78 113 -35 -3.8% -2.7% -39.9% 43.01 
France 6346 1696 1667 28 -9.7% -7.6% -38.6% 515.94 
Germany 1603 917 566 351 -5.0% -1.0% -39.1% 212.21 
Greece 325 46 150 -104 -9.9% -9.1% -31.3% 42.70 
Ireland 2599 636 108 527 -6.3% -6.6% -37.4% -1.25 
Italy 2600 940 1241 -301 -11.4% -9.4% -37.5% 377.16 
Netherlands 62 334 358 -24 -11.0% -2.8% -35.9% 119.02 
Portugal 665 129 216 -86 -7.0% -9.9% -36.6% 66.15 
Spain 4494 741 766 -25 -8.8% -6.9% -31.6% 191.31 
Sweden 354 127 294 -168 -6.7% -5.0% -38.4% 106.66 
United Kingdom 3533 797 1339 -543 -2.9% -3.9% -35.0% 438.27 
EU15 24360 7007 7369 -361 -7.7% -5.8% -36.7% 2299.12 
Cyprus 20 6 9 -4 -15.9% -12.6% -36.9% 2.64 
Czech Republic 116 57 36 21 -11.4% -9.7% -18.1% 0.94 
Estonia 22 12 4 8 2.1% 4.6% -1.4% 0.62 
Hungary 52 33 42 -9 -15.2% -7.4% 0.8% -2.78 
Latvia 69 21 23 -2 1.5% 2.7% -27.0% 6.85 
Lithuania 59 31 9 22 -0.1% 8.3% -34.2% 5.72 
Malta 3 1 9 -8 -20.4% -14.8% -37.2% 3.28 
Poland 845 357 224 132 -12.4% -9.2% -27.7% 29.21 
Slovac Republic 35 34 38 -4 -24.3% -14.6% -8.0% -1.88 
Slovenia 123 54 70 -16 -16.1% -17.1% -23.5% 7.15 
10 New MS 1345 605 464 141 -11.7% -8.6% -22.4% 51.75 
Bulgaria 216 61 89 -28 -0.3% -0.4% 9.8% -8.96 
Romania 854 199 226 -28 0.6% 0.4% 5.4% -11.30 
Bulgaria/Romania 1071 260 316 -56 0.4% 0.2% 6.6% -20.26 
EU27 26776 7873 8148 -276 -7.6% -5.8% -34.3% 2330.61 
* 'Beef herd' = suckler cows + adult cattle for fattening in this table.  
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Table 12: Changes in market balances per EU Member State for pork production in the WHO scenario 
compared to the 2020 baseline 

Reference year (2020) Scenario WHO (2020)
Pigs Production Demand Net trade Pigs Production Demand Net trade

[Mio hd] [Mio t] [1000 t] [1000 t] [% to REF] [% to REF] [% to REF] [Δ to REF]
Austria 4537 489 477 12 -3.7% -3.7% -5.1% 6.12 
Belgium-Lux. 12030 1224 571 654 -3.2% -3.2% -5.4% -7.53 
Denmark 24592 1903 249 1654 -3.3% -3.3% -5.3% -49.55 
Finland 1933 188 198 -10 -3.4% -3.4% -5.4% 4.24 
France 28775 2674 2310 364 -3.3% -3.3% -5.3% 34.32 
Germany 47337 4929 4441 487 -3.3% -3.3% -5.2% 63.97 
Greece 1350 86 368 -282 -3.8% -3.7% -5.2% 15.86 
Ireland 2319 203 212 -9 -3.7% -3.6% -5.2% 3.71 
Italy 13406 1653 2872 -1218 -3.7% -3.7% -5.5% 97.00 
Netherlands 15125 1480 555 925 -3.5% -3.5% -5.4% -21.46 
Portugal 4762 304 568 -265 -3.2% -3.2% -5.1% 19.40 
Spain 43105 4036 2857 1178 -3.6% -3.6% -5.4% 9.53 
Sweden 2724 274 334 -60 -3.3% -3.3% -5.3% 8.79 
United Kingdom 7481 666 1416 -750 -0.7% -0.7% -4.8% 63.22 
EU15 209476 20110 17429 2681 -3.3% -3.3% -5.3% 247.62 
Cyprus 794 67 84 -16 -3.6% -3.6% -4.3% 1.17 
Czech Republic 3434 410 542 -132 -3.0% -3.0% -3.3% 5.21 
Estonia 469 47 61 -14 -3.4% -3.3% -4.5% 1.22 
Hungary 3774 459 482 -23 -3.4% -3.3% -4.7% 7.36 
Latvia 324 27 34 -7 -1.3% -0.8% -4.7% 1.41 
Lithuania 1284 112 167 -55 -3.5% -3.5% -4.9% 4.18 
Malta 106 9 15 -6 -3.9% -3.9% -5.1% 0.43 
Poland 25113 2501 2180 321 -3.2% -3.2% -4.6% 19.50 
Slovac Republic 960 74 152 -77 -3.8% -3.8% -2.0% 0.18 
Slovenia 266 29 58 -30 -4.0% -3.8% -0.5% -0.79 
10 New MS 36525 3735 3775 -40 -3.2% -3.2% -4.3% 39.87 
Bulgaria 227 25 75 -50 -2.5% -2.5% 2.2% -2.28 
Romania 3839 405 794 -389 -2.3% -2.3% 1.3% -19.35 
Bulgaria/Romania 4066 431 869 -438 -2.3% -2.3% 1.4% -21.63 
EU27 250067 24275 22073 2203 -3.3% -3.3% -4.8% 265.86  
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Table 13: Changes in market balances per EU Member State for pork production in the WRCF scenario 
compared to the 2020 baseline 

Reference year (2020) Scenario WRCF (2020)
Pigs Production Demand Net trade Pigs Production Demand Net trade

[Mio hd] [Mio t] [1000 t] [1000 t] [% to REF] [% to REF] [% to REF] [Δ to REF]
Austria 4537 489 477 12 -23.6% -23.5% -38.9% 70.36 
Belgium-Lux. 12030 1224 571 654 -19.4% -19.4% -42.1% 2.66 
Denmark 24592 1903 249 1654 -21.1% -21.1% -40.5% -301.25 
Finland 1933 188 198 -10 -22.2% -22.2% -41.5% 40.42 
France 28775 2674 2310 364 -21.6% -21.6% -41.2% 373.39 
Germany 47337 4929 4441 487 -21.4% -21.4% -40.1% 725.71 
Greece 1350 86 368 -282 -23.9% -23.6% -37.5% 117.67 
Ireland 2319 203 212 -9 -23.5% -23.5% -40.7% 38.49 
Italy 13406 1653 2872 -1218 -23.7% -23.6% -41.5% 802.41 
Netherlands 15125 1480 555 925 -22.4% -22.4% -41.4% -101.41 
Portugal 4762 304 568 -265 -21.2% -21.0% -39.1% 158.17 
Spain 43105 4036 2857 1178 -22.9% -22.9% -40.0% 216.83 
Sweden 2724 274 334 -60 -20.7% -20.7% -40.7% 79.19 
United Kingdom 7481 666 1416 -750 -18.9% -18.7% -38.7% 423.71 
EU15 209476 20110 17429 2681 -21.8% -21.8% -40.4% 2646.35 
Cyprus 794 67 84 -16 -22.1% -22.1% -34.6% 13.97 
Czech Republic 3434 410 542 -132 -17.7% -17.9% -28.5% 81.12 
Estonia 469 47 61 -14 -19.9% -19.8% -36.2% 12.90 
Hungary 3774 459 482 -23 -19.8% -19.7% -37.4% 89.78 
Latvia 324 27 34 -7 -18.8% -17.4% -40.4% 9.21 
Lithuania 1284 112 167 -55 -21.6% -21.5% -38.7% 40.35 
Malta 106 9 15 -6 -23.8% -23.5% -39.6% 4.00 
Poland 25113 2501 2180 321 -20.6% -20.6% -36.5% 280.62 
Slovac Republic 960 74 152 -77 -22.9% -22.7% -20.5% 14.15 
Slovenia 266 29 58 -30 -25.8% -24.7% -14.3% 1.27 
10 New MS 36525 3735 3775 -40 -20.4% -20.3% -34.6% 547.37 
Bulgaria 227 25 75 -50 -17.6% -17.4% 15.2% -15.82 
Romania 3839 405 794 -389 -15.7% -15.7% 8.2% -128.71 
Bulgaria/Romania 4066 431 869 -438 -15.8% -15.8% 8.8% -144.53 
EU27 250067 24275 22073 2203 -21.5% -21.5% -37.5% 3049.19  
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8. Annex 2: Possible changes in nutrient surplus from 2004 
to 2020  

Figure 16:  Map of nitrogen surplus (kg N/ha of total area) per sub-basin for the REF scenario (2004) and 
the three 2020 scenarios (BAU, WCRF and MANU)  
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Figure 17:  Map of phosphorus surplus (kg P/ha of total area) per sub-basin for the REF scenario (2004) 
and the three 2020 scenarios (BAU, WCRF and MANU)  
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9. Annex 3: Nutrient emitted as diffuse sources across 
the FATE scenario  

 

 N diffuse sources, 1000 tons  P diffuse sources, 1000 tons 
 2000 BAU WCRF WHO  2000 BAU WCRF WHO 
AT 209 219 272 283  55 61 59 61 
BE 316 346 423 446  74 83 79 82 
BG 181 150 187 189  23 24 23 24 
CS 252 274 317 322  44 46 46 46 
CY 16 15 20 22  4 4 4 4 
CZ 417 439 496 510  60 55 54 55 
DE 2241 2755 3210 3307  378 420 409 418 
DK 419 378 464 489  67 70 69 70 
EE 42 60 67 68  8 12 11 11 
ES 1715 1945 2377 2489  500 602 580 599 
FI 153 177 185 190  28 28 27 28 
FR 3051 3344 3828 3897  603 632 620 628 
GR 430 335 374 381  115 101 99 101 
HU 400 501 559 577  58 69 67 69 
IE 608 631 718 751  124 106 100 105 
IT 1099 1020 1355 1398  354 321 311 319 
LT 157 192 213 218  30 34 33 34 
LU 17 20 23 24  5 5 5 5 
LV 59 63 75 78  12 11 11 11 
NL 587 532 633 656  119 115 111 114 
NO 158 161 160 162  26 25 24 25 
PL 1194 1300 1534 1582  293 313 304 312 
PT 173 151 197 204  54 50 48 50 
RO 432 470 628 635  109 113 114 113 
SE 258 268 318 326  42 39 39 39 
SI 63 65 76 78  13 12 12 12 
SK 107 117 134 136  20 21 21 21 
TR 1594 2047 2032 2045  343 391 390 391 
UK 1755 1634 1821 1926  322 298 281 292 

 

Table 16:  Nitrogen and phosphorpous diffuse sources in 1000 tons for the reference year 2000 
and the three (BAU, WCRF and WHO)  
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