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SUMMARY 
 
 

This report describes the main algorithms implemented in ASTRA 3.x to analyse coherent and non-
coherent fault trees. ASTRA 3.x is fully based on the state-of-the-art of Binary Decision Diagrams 
(BDD) approach. In case of non-coherent fault trees ASTRA 3.x dynamically assigns to each node of 
the graph a label that identifies the type of the associated variable in order to drive the application of 
the most suitable analysis algorithms. The resulting BDD is referred to as Labelled BDD (LBDD). 
Exact values of the unavailability, expected number of failure and repair are calculated; the 
unreliability upper bound is automatically determined under given conditions. Several importance 
measures of basic events are also provided. From the LBDD a ZBDD embedding all MCS is obtained 
from which a subset of Significant Minimal Cut Sets (SMCS) is determined through the application of 
the cut-off techniques.  
An important issue is related to the analysis of safety related systems according to the IEC 61508 
international standard. In order to simplify the fault tree modelling and analysis a new component type 
has been defined allowing determining, for any configuration, the PFDavg and PFHavg values. The 
Staggered testing policy is also applicable besides the Sequential testing implicitly considered by the 
IEC standard. 
 
 
 
 





 
 
 
 
 

TABLE OF CONTENTS 
 
 
1. INTRODUCTION................................................................................................................................ 4 
 
2. OVERVIEW OF THE ASTRA 3.x ANALYSIS PROCEDURE ........................................................ 5 

2.1 Types of operators .......................................................................................................................... 5 
2.2 Analysable fault trees ..................................................................................................................... 6 
2.3 Fault tree analysis procedure.......................................................................................................... 7 

 
3. BDD-BASED LOGICAL ANALYSIS.............................................................................................. 10 

3.1 Classification of variables in non-coherent fault trees ................................................................. 10 
3.2 Construction of an LBDD - example ........................................................................................... 11 
3.3 Construction of the ZBDD from the LBDD................................................................................. 12 

 
4. BDD-BASED PROBABILISTIC ANALYSIS.................................................................................. 14 

4.1 Notation. ....................................................................................................................................... 14 
4.2 Probabilistic quantification of basic events.................................................................................. 15 
    4.2.1 Unavailability of basic events ............................................................................................... 15 
    4.2.2 Unconditional failure and repair frequencies of basic events .............................................. 19 
4.3 System Unavailability analysis .................................................................................................... 21 
4.4 Accident Frequency analysis........................................................................................................ 28 
4.5 Frequency analysis using the extended INH gate ........................................................................ 34 
4.6 Importance analysis...................................................................................................................... 37 
    4.6.1 Importance measures based on Unavailability ..................................................................... 37 
    4.6.2 Importance measures based on failure frequency (Unreliability analysis)) ......................... 39 
4.7 Probabilistic quantification of SMCS........................................................................................... 39 

 
5. CONCLUSIONS AND FURTHER DEVELOPMENTS .................................................................. 42 
 
REFERENCES....................................................................................................................................... 44 
 
ACKNOWLEDGEMENTS ................................................................................................................... 45 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 



1. INTRODUCTION 

Fault Tree Analysis (FTA) is the most popular methodology for RAMS studies of complex systems; it 
allows to systematically describe the system’s failure logic for each system failure state (Top event) 
and to quantify the corresponding occurrence probability / frequency. FTA is applied for system 
design review to prove that the system is reasonably safe and that it is well protected against both 
internal failures and external events.  
 
Fault trees containing AND, OR Boolean operators are referred to as Coherent, and are characterised 
by monotonic (non-decreasing) functions with respect to the logical state of all basic events. Non 
monotonic logical functions, due to the presence of the NOT operator, are also of interest in system 
analysis. They are referred to as not-coherent and are very helpful in modelling e.g. the following 
types of problems: 
- mutually exclusive events; 
- event-tree sequences; 
- top-events conditioned to the working state of one or more component / subsystem; 
- safe maintenance procedures. 
 
ASTRA-FTA allows the user to handle both coherent and non coherent fault trees.  
 
ASTRA-FTA is based on the state of the art approach of Binary Decision Diagrams (BDD). This 
approach was introduced in the reliability field in the early nineteen. Today a vast literature is 
available on this subject; see e.g. Ackers (1978), Bryant (1986), Brace et al. (1990), Couder-Madre 
(1994), Rauzy (1993), Sinnamon-Andrews (1996), Rauzy-Dutuit (1997).  
 
A BDD is a compact graph representation of Boolean functions. The main advantage of the BDD 
approach with respect to previous approaches is given by the possibility to obtain a compact graph 
embedding all system failure modes. On this graph it is possible to perform an exact probabilistic 
quantification. Then, from this graph, another graph can be derived embedding all Minimal Cut Sets 
(MCS), from which the Significant MCS can easily be extracted using the classical (probabilistic / 
logical) cut-off techniques. The greater efficiency of the BDD approach with respect to previous 
approaches is somewhat surprising. Trees analysed in the past with great difficulties have been 
analysed with the BDD approach in few seconds and without introducing any approximation. This is 
due to the compact representation of the fault tree and to the high efficiency of the algorithms working 
on the BDD. 
 
In the case of non-coherent fault trees ASTRA dynamically assigns to each node of the graph a label 
that identifies the “local” type of the associated variable. This is done in order to drive the application 
of the most suitable analysis algorithms, since the complexity of these algorithms depends on the type 
of variable. The resulting BDD is referred to as Labelled BDD (LBDD).  
 
This report describes the main calculation methods implemented in ASTRA for the logical and 
probabilistic analysis of coherent and non-coherent fault trees. After a brief description of the 
implemented fault tree analysis procedure, provided in the next section, the logical analysis methods, 
from the construction of the LBDD to the determination of the BDD embedding all MCS up to the 
extraction of the significant MCS are briefly described in section 3. Section 4 provides the equations 
for the quantification of the LBDD and of the Significant Minimal Cut Sets (SMCS).  
 



2. OVERVIEW OF THE ASTRA 3.X ANALYSIS PROCEDURE  

2.1 Types of operators  

ASTRA allows the user to analyse fault trees containing the following set of operators: AND, OR, 
K/N, NOT, XOR and INH. Other operators such as NAND and NOR can be easily represented 
respectively as NOT-AND and NOT-OR.  
Boundary Conditions (BC) can be assigned to basic events.  
The first three operators are well known and will not be discussed further, while some comments will 
be made for the others and for boundary conditions. 
 
The NOT operator allows the analyst to easily model complex failure logic, e.g.: 
- top-events conditioned to the good state of one or more components/subsystems; 
- sequences of event trees; 
- safe maintenance procedures. 
 
The XOR operator is used to model a relationship between n ≥ 2 events such that one occurs and n-1 
do not occur. Note that the representation of a mutually exclusive relationship using the XOR operator 
should not be confused with the mutual exclusivity of physically disjoint events, such as for instance 
the different failure states of a multistate component. Consider, for instance, two independent 
components connected in parallel. If we are interested in the probability of both components failed 
then we model the system using the AND operator. However, if we are interested in determining the 
probability of failure of only one component we use the XOR operator because components are 
independent. In other words both components, being independent, can also be both failed; however, we 
are not interested in this state, but rather in the probability that exactly one component is failed. 
 
For non-coherent fault trees, represented as non-monotonic logical functions the concept of minimal 
cut set has to be replaced with that of Prime Implicant (PI), i.e. a combination made up by negated and 
not negated primary events, which are not contained in any other implicant. Non-monotonic functions 
are more complex to analyse than the monotonic ones. 
However, by removing negated events from the set of PI and minimising the result, an approximated 
coherent form, expressed as a set of MCS, is obtained. This implicitly means to assign unit probability 
to negated events, which represents a condition frequently met in practice in safety applications. 
Hence, the probabilistic quantification gives accurate conservative results. 
It follows that the need to consider negated events may be limited to the logical analysis only in order 
to remove impossible combinations, in which an event is present in both forms, negated and not 
negated. The advantages of applying this simplified approach are twofold, namely: 
- Clearer interpretation of system failure modes; 
- Significant reduction of computation time and working memory space. 
 
ASTRA analyses non-coherent fault trees as follows: 

1) It performs the construction of the LBDD and performs the exact probabilistic analysis; 
2) It determines the BDD of the approximated coherent function; 
3) It determines the SMCS; 

 
The set of Significant MCS is calculated using the logical and/or probabilistic cut offs, i.e. in ASTRA 
prime implicants are not determined. 
 
The INHIBIT (INH) operator is useful to model situations in which the output event occurs when the 
input event occurs and a conditional event is already verified. This operator presents only two input 
variables: the initiating event and the enabler event. The INH gate is applied to correctly quantify the 
occurrence probability of a particular type of sequential events.  



In developing fault trees of, for instance, chemical installations, situations frequently encountered are 
those where the occurrence of an event (called initiating event) perturbs one or more system variables 
and places a demand for the protective system to intervene. The failure of the protection system allows 
the perturbation to further propagate in the plant which, eventually, may generate a dangerous situation 
or cause an accident. Obviously, a dangerous situation occurs only if the protective system is already 
failed when the initiating event occurs.  
Consider, for instance, a pressurised tank, and the event "tank rupture" due to: 1) overpressure and 2) 
the failure of the automatic relief system. The rupture of the tank can occur only if the relief system is 
already failed at the time the overpressure occurs; the opposite situation is a sequence that may lead to 
other undesired events, e.g. production loss, but certainly not to the tank rupture.  
Summarising: 
1. the correct modelling of these types of events requires to account for the sequence of events, since a 

simple AND gate would give conservative (sometimes even too conservative) results (Demichela 
et al. 2003); 

2. In ASTRA the initiating and enabling events are modelled by means of the INH gate; 
3. The two inputs can also be sub-trees not necessarily independent; common event are automatically 

identified and treated as initiators. 
4.  Each MCS must contain at least one initiating event. 
 
The INH gate as implemented in ASTRA is a particular type of sequential gate with two inputs in 
which the first to occur is characterised by its unavailability (enabler event) whereas the second 
(initiating event) by its unconditional failure frequency.  
 
BOUNDARY CONDITIONS (BC) can be assigned to a subset of basic events. A boundary condition 
can assume only two values: good / failed, corresponding respectively to states 0, 1. Hence the analysis 
of a fault tree with boundary conditions allows determining the Top event occurrence probability 
conditioned to the state of one or more basic events. Events with BC can also be used as “House” 
events. Events with BC do not appear in any MCS since their value is used to properly remove them 
before starting the BDD construction. 
 
2.2 Analysable fault trees 

ASTRA has been developed for the analysis of both coherent and non-coherent fault trees. A 
description of the possible uses of non-coherent fault trees for safety and security applications can be 
found in Contini et al. (2004 and 2008).  
In ASTRA basic events are classified as: 
− Positive or normal, representing the failed state of a binary component; 
− Negated or complemented, representing the working state of a binary component; 
− Double form, when an event is present in the fault tree in both forms, positive and negated. 
For instance, the function φ =⎯a b +⎯a c + b⎯c contains the negated variable a, the positive variable b 
and the double form variable c.  
This classification allows constructing a BDD, which is referred to as “Labelled BDD” (LBDD), in 
which all nodes are dynamically labelled with the variable type. This solution was adopted considering 
that the degree of complexity of the (logical and probabilistic) analysis algorithms depends on the type 
of variables.  
 
Basic events are associated with the failed state of components that may be:  
− Not repairable;  
− On-line maintained;  
− Tested/inspected; 
− characterised by a constant probability 
The distribution of time to failure and time to repair is exponential. 



The particular model implemented for tested components allows ASTRA to conform to the IEC 61508 
standard (2010 edition) for both low demand mode. 
 
2.3 Fault tree analysis procedure 

The analysis procedure implemented in ASTRA follows the main phases pictured in Figure 2.1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.1 Main phases of the analysis procedure implemented in ASTRA 

 
Initially a pre-analysis of the fault tree is performed. It consists of: 
- complete check of the input data, to avoid analysing a wrong input data set; 
- expansion of K/N and XOR gates into AND-OR-NOT equivalent expressions; 
- transformation of INH gates into AND gates and labelling of enabling events; 
- application of De Morgan rules. 
 
Moreover, if the fault tree is non-coherent and the selected analysis option is “Approximated”, then 
basic events that appear (one or more times and independently of their probability) in negated form 
only are removed from the fault tree, since they are not necessary for deleting impossible cut sets. 
Impossible cut sets may be generated because of the presence in the fault tree of events in both forms, 
positive and negated. This option is useful when dealing with complex fault trees of safety studies 
containing negated not repeated sub-trees. Indeed, removing unrepeated events allows reducing the 
fault tree dimension and the computational effort. The impact of such a simplification on the 
probabilistic results is negligible for safety applications, since negated events have probability very 
close to 1. Hence, from the probabilistic point of view the removal of unrepeated negated events is 
equivalent to set their probability to 1.  
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Then the input fault tree is modularised i.e. it is decomposed into a set of “Simple Modules, SM” and a 
“Top-module, TM”.  
A simple module is a sub-tree containing basic events that are not replicated in any other module; 
however, basic events can be replicated within a simple module. 
The Top-module is the module that contains the top event definition and generally is the most complex 
one; it contains simple modules as fictitious basic events. If the Top-module is non-coherent, all 
simple modules appear in positive form. 
 
All modules, being independent, are independently analysed. 
 
Simple modules are examined first. Each of them is stored in the form of LBDD. The basic concepts of 
the LBDD method are briefly described in the next section. The results of the probabilistic 
quantification of simple modules are used to quantify the Top-module, which is also stored as LBDD. 
The following parameters are determined for each simple module in its normal or positive form: 
Unavailability, and Birnbaum importance of basic events.  
 
The quantification of the LBDD of the Top-module allows obtaining the exact values of the Top-event 
Unavailability, Expected number of failure, characteristic times, and various importance measures of 
basic events for both coherent and non-coherent fault trees. Moreover the upper bound for the 
Unreliability and the mean time to first failure are determined when the “Time dependent analysis” 
option is selected. The equations applied are described in Section 4. 
 
The analysis proceeds with the independent determination of the ZBDD of simple modules and of the 
Top module. The ZBDD (Minato, 1990) is a compact graph embedding MCS or Prime Implicants (PI). 
For non coherent fault trees Prime Implicants (PI) should be determined due to the presence of negated 
events. Since generally a PI contains many negated events (representing working states) and few 
normal events (representing failed states), when the probability of negated events is very close to 1 it is 
more convenient to determine the MCS by removing negated events. 
In practice all negated events are removed from the LBDD; the resulting MCS are stored, after 
minimisation, as a ZBDD. At this stage the ZBDD contain simple modules as events.  
Given that the probabilistic analysis has already been performed on the LBDD, the determination of 
MCS can be limited to the most important ones, which in this report are referred to as Significant MCS 
(SMCS). The SMCS are determined for all simple modules and for the Top module by setting up the 
thresholds on the order and unavailability of MCS (cut-off values): 
− If the Logical cut-off nlim is applied a MCS is retained if its order m ≤ nlim ; 
− According to the Probabilistic cut-off Plim a MCS is retained if its probability Q ≥ Plim. 
 
As above mentioned simple modules are represented in the ZBDD as fictitious basic events; the 
significant minimum failure combination of the ZBDD, referred to as Macro MCS (MMCS) do not 
represent the SMCS of the input fault tree. A further step is necessary to determine the SMCS. 
For instance the j-th MMCS say Cj of the Top-module can be represented as: 
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where w and r are respectively the number of simple modules and basic events making up the j-th 
MMCS; BMi represents a generic simple module; BEk denotes a generic basic event. Depending on w 
and on the number of its failure combinations, Cj may indeed contain a large number of MCS. If mi is 
the number of combinations contained in the generic simple module BMi, then the number of MCS of 

the input tree embedded in Cj is equal to ∏
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An efficient algorithm has been implemented to extract the SMCS by setting up the threshold value 
Nmax. The cut off Nmax defines the maximum number of SMCS to be extracted from a single MMCS. 
The use of this cut-off, at the end of the analysis of each MMCS, implies the automatic modification of 
Plim to a value equal to the probability of the least important SMCS extracted. This new Plim value will 
then be used for the analysis of the next MMCS, and so on. The result is the set of the SMCS of the 
input tree: their number is generally close to Nmax.  
 
The final phase of the analysis is the determination of the probabilistic parameters of interest, i.e. 
unavailability, unconditional failure and repair frequencies, expected number of failures and repairs 
and unreliability for all SMCS.  
 
To summarise, the analysis procedure can be subdivided in two parts:  

1) Construction of the LBDD for all modules, exact probabilistic analysis performed on the 
LBDD and construction of the ZBDD;  

2) Use of the cut-off technique for the determination of the SMCS. 
 
ASTRA 3.x represents a significant improvement with respect to version 2, in which .the probabilistic 
analysis was performed on the set of SMCS.  
The software has been developed by G. de Cola from INFOCON under JRC contract. 
 
 



3. BDD-BASED LOGICAL ANALYSIS   

The aim of this section is to describe the concept of LBDD and how it is generated. A more detailed 
description can be found in Contini et al (2006) and Contini-Matuzas (2010).   
 
3.1 Classification of variables in non-coherent fault trees 

The Boolean function describing the logical relationships among events in fault trees can be monotonic 
or not monotonic, also commonly referred to as Coherent or Non-Coherent.  
 
The binary function Φ(x) of a non-coherent fault tree contains three different types of basic events or 
binary variables, namely:  

1. normal or positive, e.g. x; 
2. negated, e.g.⎯y; 
3. events appearing both in positive and negated forms, e.g. z,⎯z.  

 
In this report the following definitions are used. Variables of type 1 are referred to as Single form 
Positive variables (SP), variables of type 2 as Single form Negated variables (SN), whereas variables 
of the third type as Double Form variables (DF).  
 
For instance, in the function F = a⎯b +⎯a c, the variable a is of DF type, b is of SN type and c of SP 
type.  
 
Let us consider the following section of a BDD, where Y and Z are the two functions having the 
variables y and z as roots:  
 
 
 
 
 
 
 
 
This   partial   BDD   may   represent   different   logical   functions,   i.e.   X = x Y + Z,   or    
X = x Y +⎯x Z depending on the type of x. In the first function x is of SP type, whereas in the second it 
is of DF type. 
 
Different types of variables require different algorithms of analysis. Indeed, on nodes with DF 
variables the determination of the Prime Implicants (PI) and of the failure and repair frequencies 
require the logical intersection between the left and right descending functions, whereas this is not 
needed for the other two types (SP, SN) of variables.  
Three different types of variables require the labelling of two out of them. In ASTRA variables of SN 
type are labelled with the symbol $; variables of DF type are labelled with the symbol &.   
 
The information about the type of variables can easily be extracted from the input fault tree and 
associated to the nodes on the BDD. We shall call this method as “Static Labelling”, since the 
association node-variable with the variable-type is made after the construction of the BDD. Odeh-
Limnios (1996) applied this technique.  
 
However, we can observe that in a BDD a DF variable may be associated with two or more nodes in 
which it behaves as a positive (SP) or as a negative (SN) variable, the analysis of which require 
simpler algorithms. 

y z 

x Y Z 

X 

~ ~ ~ ~



 
Consider for instance the function F = a⎯b +⎯a c. Using the ordering a<b<c we get the LBDD in 
Figure 3.1.a in which “a” is represented as a DF variable. Using the inverse ordering c < b < a we get 
another LBDD in which “a” is represented once as SP and once as SN. 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1 Labelled BDD of the function F = a⎯b +⎯a c with two different ordering 
 
According to Figure 3.1.a F can be written, in terms of labelled variables, as ca&b$aF += , from 
which the following equivalencies can be derived: &a = a,⎯&a =⎯a,  $b =⎯b. 
 
The labelling technique applied during the construction of the BDD can be used to characterise each 
node with the type of the associated variable.  
 
3.2 Construction of an LBDD - example 

This example is taken from Liu-Pan (1990). Let φ(x) = x2 (x1 +⎯x3 +⎯x4) + x3 (⎯x1 +⎯x2 x4) be the non 
monotonic function, containing four variables of DF type. Considering the ordering x2 < x1 < x3 < x4 
the LBDD is represented in Figure 3.3, which has been obtained as follows.  
First of all negated variables are labelled with $, giving:  
 
φ(x) = [x2 (x1 + $x3 + $x4)] + [x3 ($x1 + $x2 x4)]. 
 
The LBDD for the two functions are as follows: 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.2 LBDD of the two terms of φ(x): a) F = x2 (x1 + $x3 + $x4); b) G = x3 ($x1 + $x2 x4) 

 
 
In Contini-Matuzas (2010) the steps for combining these two LBDD are described. The resulting 
LBDD is represented in Figure 3.3. 
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  Figure 2.3 LBDD representation of Top = x2 (x1 +⎯x3 +⎯x4) + x3 (⎯x1 +⎯x2 x4) 
 
Comparing the LBDD with the BDD the following considerations can be drawn: 
 
-   Dynamic labelling and static labelling have the same number of nodes; 
 
− The representation of the negated⎯x variables as $x allows applying the same algorithms to nodes 

with SP and SN variable types. Hence we may call SP and SN variables as coherent (i.e. x as 
monotonic not decreasing; $x as monotonic not increasing) and DF as non-coherent.  

  
− Variables x2, x3 and x4 are represented in the LBDD as SP variables and only x1 is represented as 

SN variable. Therefore, in spite of the fact that all variables in the fault tree are of DF type, none of 
them is represented as such in the LBDD. The number of nodes with DF variables depends on the 
variable’s ordering;  
 

− The determination of the prime implicants for the BDD requires, for each node, the intersection 
between the left and right descendants, whereas this is not necessary on the LBDD in Figure 3.3. 
The same consideration can be applied for the determination of the unconditional failure and repair 
frequencies. 

 
− The absence of DF variables in Figure 3.3 assures that all implicants are embedded in the LBDD. 

This can easily be explained by observing that the Consensus operation, i.e. x y +⎯x z = y z is 
never applied. The Prime Implicants set is found as if the BDD was coherent, i.e. {PI} = {(x2) ($x1 

x3) (x3 x4)}, which is equivalent to )}.xx()xx()x{(}PI{ 43312=   
 
On the LBDD so obtained the probabilistic analysis is performed. The implemented equations are 
described in Section 4. 
 
3.3 Construction of the ZBDD from the LBDD 

After the quantification of the LBDD the next step of the analysis is the determination of Minimal Cut 
Sets (MCS). If the fault tree is not coherent then the negated events must be properly removed from 
the LBDD giving a new BDD containing all MCSs. This new data structure is referred to as ZBDD. 
The removal of negated events is justified by observing that negated variables, in many applications of 
non-coherent fault trees, e.g. safety analysis, represent the working state of components, having 
success probability very close to 1.  
In practice the reliability analyst is interested in failed components, i.e. in MCS also in the case of non 
coherent trees.  
 
Using the LBDD the ZBDD can be obtained by: 
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− Removing the & labels (&x → x); 
− Deleting SN variables ($ labelled) by performing the logical OR between the two descending 

functions.  
 
The elimination of the “$” labels has been implemented as follows.  
Let ite($x, F, G) be the node under examination, F = ite(z, F1, F0) its left descendant and G = ite(w, G1, 
G0) its right descendant. The following relationships are applied: 
 
  if z < w then ite($x, F, G) = ite(z, F1, F0 ∨ G)      

  if z > w then ite($x, F, G) = ite(w, G1,G0 ∨F)     

  if z = w then ite($x, F, G) = ite(z, F1∨ G1, F0∨ G0)   

These operations are then followed by the reduction and minimisation rules typical of monotonic 
functions. The result is a ZBDD embedding all minimal MCS. 
 
As an example consider again the LBDD in Figure 3.3. To obtain the ZBDD embedding all MCS it is 
sufficient to remove the $x1 node. 
In this case (z = x3; w = x3) we have: F1 = 1; F0 = 0; G1 = ite(x4, 1, 0) and G0 = 0. 
Since both descending nodes have the same variable x3, i.e. z = w, then: 
  
ite(x3, F1∨ G1, F0∨ G0) = ite(x3, 1∨ ite(x4,1,0), 0∨ 0) = ite(x3, 1, 0).  
 
The resulting ZBDD is represented in Figure 3.4, in which the MCS are {(x2) (x3)}.  
 
 
 
 
 
 
 
 
 
 
Figure 2.4. Results of the transformation of the LBDD of Figure 3.3 into the BDD embedding all MCS 
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4. BDD-BASED PROBABILISTIC ANALYSIS  

The quantification of the LBDD allows obtaining the exact values of Unavailability, Expected number 
of failures and repair and components’ importance measures. Moreover the Unreliability upper bound 
and the MTTFF can be calculated when the unconditional Top-event frequency is not constant. This 
section provides information about the equations used together with some simple clarification 
examples. Other examples of application of the probabilistic analysis methods implemented in ASTRA 
3.0 are described in the test case report (Contini-Matuzas, 2009). In this section the probabilistic 
equations will be described for basic event, for the Top event and for minimal cut sets.  
 
4.1 Notation. 

λ    Failure rate (constant) 
μ    Repair rate (constant) 
τ    Repair time (τ = 1 / μ) 
θ    Time between tests 
θ0    First time to test 
td    Test duration 
ω(t)    Unconditional failure frequency 
υ(t)    Unconditional repair frequency 
q(t)    Basic event unavailability at time t 
q(0)    Basic event unavailability at time t=0 
ΛT(t)    Top event conditional failure frequency 
QT(t)     Top event Unavailability at time t 
QT(0)    Top event Unavailability at t=0 
WT(t)     Top event Expected number of failures in 0-t 
VS(t)    Top event Expected number of repair in 0-t 
FT(t)     Top event Unreliability in 0- t 
QCj(t)     Top event Unavailability at time t for the j-th MCS 
QCj(0)    Unavailability at t=0 for the j-th MCS 
WCj(t)     Expected number of failures in 0-t for the j-th MCS 
FCj(t)     Unreliability in 0- t for the j-th MCS 
DC     Detection Coverage 
PTC    Proof Test Coverage 
EUC    Equipment Under  Control 
MTBF     Mean Time Between failures  
MTTR    Mean Time To Repair  
MTTF     Mean Time To failure  
MTTFF  Mean Time To First Failure 
BE    Basic event 
MCS    Minimal Cut Set 
SMCS    Significant MCS 
Ne    Number of basic events of the fault tree 
n    Number of basic events in an MCS/SMCS  
T    Mission time 
pf

x(t)    Probability of failure critical state for the generic event x 
pr

x(t)    Probability of repair critical state for generic event x 
ICx(t)    Criticality index at of event x time t 
RAWx(t) Risk Achievement Worth of event x at time t 
RRWx(t) Risk Reduction Worth of event x at time t 
ISx     Structural criticality of event x 
 



4.2 Probabilistic quantification of basic events 

A basic event (BE) represents the failure mode of a component. The terms “basic event” and 
“component failure” are synonymous. BEs are binary and statistically independent, e.g. the failure or 
repair of a component does not have any influence on the failure probability of any other component; 
the unique exception to the independence is the sequence of events that is considered in the INH gate.  
 
Failure and repair times are exponentially distributed, i.e. failure and repair rate are constant. 
− Since λ is constant, then the mean time to failure MTTF = 1 / λ. 
− Since μ is constant, then the mean time to repair MTTR = 1 / μ. 
− The repair makes the component as good as new. 
 
ASTRA allows the use of different types of basic events, whose parameters are given in Table 4.1. 
 

Table 4.1 Basic events and associated parameters 
 

Event type λ τ q θ θ0 PTC DC notes 
Not repairable •  •      

On-line maintained • • •      
Acting on demand   •      
Periodically tested • •  • • • • 0 ≤ DC < 1 

0 ≤ PTC ≤ 1 
 

 
Parameters DC and PTC are requested for modelling components according to the IEC 61508 
standard.  
The parameter DC (Detection Coverage) represents the probability that the failure is on-line detected. 
DC<1 means that the diagnostic system is not able to reveal all failures; consequently the component 
must also to be tested to identify undetected failures.  
The parameter PTC (Proof Test Coverage) represents the probability that the test is able to reveal all 
failures. PTC<1 means that the test is not complete, i.e. it does not reveal all failures; hence (1-PTC) 
represents the probability of undetected failures, which will remain hidden until the end of the mission 
time.   
 

4.2.1 Unavailability of basic events 

The time specific unavailability Q(t) of an item (component, subsystem, system) is the probability that 
the item is failed at time t.  
 

I. Not repairable components.  

These are components that, in case of failure, cannot be repaired in the mission time interval either 
because their failure cannot be revealed or because they are not accessible during the mission. 

These components are characterized by their failure rate λ.  

The failure rate is defined as the “probability that the component fails in the time interval t-t+dt given 
that it never occurred from 0 to t”. 

The unavailability of the component at time t=0 may also be different from 0.  
tt e)0(qe1)t(q λ−λ− +−=          (1) 

The following plot, produced by the ASTRA chart capability, represents the unavailability of three non 
repairable components with different failure rate. 



 λ = 1.e-4 

λ = 1.e-5 

λ = 1.e-6 

With constant failure rate it can be proved that MTTF = 1 / λ. 

  

 

 

 

 

 

 

 

 
Figure 4.1 Unavailability of a non-repairable component for different failure rates 

 

II. On-line maintained components 

The basic hypotheses are that: 

− the failure is revealed with probability 1; and  

− the repair process immediately starts as soon as the component fails.  

The repair, which is preformed during the mission time, i.e. while the system works, makes the 
component as good as new. The required parameters are λ and τ (MTTR). The unavailability of the 
component at time t = 0 may also be different from 0.  

t)(-t)(-
D e)0(q)e-1()t(q μ+λμ+λ +

μ+λ
λ

=      (2) 

The following plot represents the unavailability of a repairable component with λ = 1.e-5 and for 
different values of the mean repair time τ. 

Equation 2 tends to the steady-state value 
μλ

λ
q

+
=∞  after about 4 times the value τ. 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.2 Unavailability of a repairable component for different repair times 
 

III. Periodically tested components 

In these types of components the failure is not revealed. These are the typical components of safety 
systems whose failure can be revealed only through test/inspections.   

τ = 500 h

τ = 100 h

τ = 1000 h



The required parameters are λ and θ (inspection interval), θ0 (first inspection time), and τ (mean 
repair time). 
The hypothesis adopted in this model is that the test does not fail the component and that the 
unavailability due to test is negligible compared with the unavailability between tests. 

In ASTRA this model has been enriched with the addition of two parameters to consider the 
analysis of a safety system according to the standard IEC 61508: 
− Detection Coverage DC; and 
− Proof Test Coverage PTC. 
 
Moreover, according to the standard, the failure of a component can be “safe” or “dangerous”. The 
total failure rate is therefore λ = λD + λS, where the subscripts D means detected and U undetected. 

The dangerous failure rate  λD is further subdivided into  λDD and λDU,  

− Dangerous Undetected λDU =  λD (1-DC)  

− Dangerous Detected λDD = λD DC. 

Hence the unavailability of a tested component in which the test is perfect and able to reveal all 
failures is given by: 

)t(q)t(q)t(q DU +=  
where qD(t) and qU(t) are the contributions to unavailability respectively due to undetected and 
detected failures 
 
To account for the fact that the test does not reveal all failures the IEC 61508 standard introduced 
the Proof Test Coverage (PTC) parameter. PTC < 1 means that the proof test does not allow 
revealing all failures; hence (1-PTC) represents the fraction of failures that remain hidden until the 
end of the mission.  

Therefore, the unavailability of a tested component is given by: 

)t(q+)t(q+)t(q=)t(q NDU        (3) 

where qN(t) is the contribution to unavailability due to failures that remain hidden due to non-
complete test.  

The different unavailability equations implemented in ASTRA are described below. 

 

Determination of qU(t). 

 In this model λ =  λD (1-DC) PTC 

The applied unavailability equation depends on the value of the repair time τ compared to the 
test interval θ. 

 1) The repair time τ is negligible, i.e. τ < 10-3 θ  and θ0 ≠ θ   

 
0        θ0        θ0 + kθ  θ0 + (k+1) θ  

 
 

 
for 0 ≤ t < θ0  then te1)t(q λ−−=       (4)   

 



 for θ0 + kθ ≤ t < θ0 + (k+1) θ  and k = 0,1,2,…       
 )θkθ-t(λ-

U
0e-1)t(q +=        (5) 

 
 2) The repair time τ is not negligible, i.e. τ ≥ 10-3 θ  

When the test reveals that the component is failed, the basic hypothesis in this case is that the 
repair starts immediately after the test and lasts for τ time units. The repair makes the 
component as good as new.   

      
θ0 + kθ + τ 

 
 

             0                            θ0 + kθ         θ0 + (k+1)θ   
 
 The unavailability is given by: 

 
for 0 ≤ t < θ0  then t

U e-1)t(q λ−=      
 

 for θk
* ≤ t < θk

* + τ   then )e-1())θ(q-1()θ(q)t(q )θ-t(λ-
U

*

+=   (6) 

        with θλ−=θ -e1)(q  
 
 for θk

* + τ  ≤ t < θk+1
*   then  ))(-t(-

U
*
ke1)t(q τ+θλ−=    (7) 

 
where θk

* = θ0 + kθ and  θk+1
* = θ0 + (k+1)ϑ  with k = 0,1,2,… 

 
The following plot shows the unavailability of a tested component with λ = 1.e-4, DC = 0, test 
interval of 250 h, and with negligible – not negligible repair time τ.  

 
Figure 4.3 Unavailability of a tested component for different repair times 

 

Determination of qD(t). 

In this model λ =  λD DC 

 
The model is the same as the on-line maintained with q(0) = 0, i.e.: 

)e-1()t(q t)(
D

μ+λ−

μ+λ
λ

=        (8) 

τ = 10 h 

τ negligible 



 
Determination of qN(t). 
In this model λ =  λD (1-DC) (1-PTC) 
 
The model is the same as the one for non-repairable component with q(0) = 0, i.e: 

t-
P e-1)t(q λ=          (9) 

 
Finally, the PFDavg of a single component (1oo1) is given by the mean value of the unavailability q(t): 
 

dt)]t(q+)t(q+)t(q[
T
1

=PFD NDU

T

0
avg ∫      (10) 

 
As an example the following table compares the content of Table B.2 of the standard (Vol. 6, page 36) 
with the results of ASTRA.  
The small difference between IEC and ASTRA is due to numerical approximations and to the different  
equations used: ASTRA applies exact equations whereas IEC uses simplified conservative equations. 
 
Table 4.2 Comparison of ASTRA with IEC 61508: PFDavg for a single channel in low demand 
mode 
 

Architecture DC IEC 61508 
λD = 0.5e-05 

ASTRA 
λD = 0.5e-05 

0% 1.1e02 1.09e-2  
60% 4.4e-3 4.39e-3 
90% 1.1e-3 1.13e-3 

1oo1 

99% 1.5e-4 1.49e-4 
Note 1: the test period considered is six months (4380 h).  
Note 2: the mission time considered is equal to 10 times the proof test interval 
Note 3: PTC is assumed equal to 1. 

 
 
IV. Components acting on demand  
The unavailability is given by q(t) = q(0) = const.         
 
4.2.2 Unconditional failure and repair frequencies of basic events  

The time specific unconditional failure frequency ω(t) dt is defined as:  
the probability that the component fails in (t,t+dt) given that it was working at time 0. 
 
It is important not to confuse the unconditional failure frequency with the failure rate. In the case of 
ω(t) the component was good at t=0 and may have failed before t, whereas λ(t) requires that the 
component has never failed between 0 and t.  
In the exponential case it can be proved that the following equation holds (Kumamoto-Henley): 
 

λ−=ω )]t(q1[)t(          
where q(t) is the component unavailability and λ the constant failure rate.  
 
The time specific unconditional repair frequency ν(t) is defined as:   
the probability that the item is repaired in (t,t+dt)  given that it was working at time 0. 
In the exponential case (λ, μ constants) it can be proved that the following equation holds: 



 
μ=ν )t(q)t(           

 
where q(t) is the component unavailability and μ the repair rate (h-1).  
 
For non-repairable components ν(t) = 0 since μ = 0. Also events characterised by means of a constant 
unavailability value have ω(t) = 0 and ν(t) = 0. 
 
For tested components ω(t) ≅ λ and ν(t) ≅ λ. 
 
The following figure shows the failure and repair frequencies of a repairable component.  
 

 
 

Figure 4.4 Unconditional failure and repair frequencies of a generic repairable component 
 
 
The failure frequency decreases and the repair frequency increases following the variation of the 

unavailability with time. They tend to the constant value 
μ+λ

μλ
=ν=ω ∞∞ when the unavailability 

reaches the steady state condition.  
 
The  standard  IEC 61508  considers,  in  the  case of high  demand  or  continuous  mode  of 
operation, the Probability of Failure per Hour PFHavg. This is the unconditional failure frequency ω(t) 
previously defined.  
PFHavg is given by: 
 

T
)T(Wdt)t(

T
1PFH ∫

T

0
avgavg =ω=ω=       (11) 

 
where: 

)t(ω)PTC-1()t(ωPTC)t(ω NU +=        (12) 
ωU(t) =  (1-qU(t)) λD (1- DC)  
ωP(t) =  (1-qN(t)) λD (1- DC) 
W(T) is the expected number of failures at the mission time  T 
 
In equation (12) the failure frequency due to revealed failures is zero since the hypothesis adopted in 
IEC 61508 (Vol. 6, Appendix B page 43) states that the revealed faults put the system in a safe 

ω(t)    

ν(t) 



condition. Hence the unrevealed dangerous failure of a safety system may occur between tests only; 
however, if PTC < 1, there is a probability that the failure remains hidden until the end of the mission.  
 
For a single component (1oo1) Table 4.3 shows that the ASTRA results are equivalent to those of the 
standard.  
   
 
Table 4.3 Comparison of ASTRA with IEC 61508: PFHavg for a single channel in high demand 
mode 
 

Architecture DC IEC 61508  λD = 5.0e-6 ASTRA frequency=
T

)T(W  

0% 5.0e-06 4.94e-06 
60% 2.0e-06 1.98e-06 
90% 5.0e-07 4.94e-07 

1oo1 

99% 5.0e-08 4.94e-08 
Note 1: the test period considered is six months (8760 h). MTTR = 8 h. β = 10% 
Note 2: the mission time considered was 10 times the proof test interval. 
Note 3: PTC is assumed equal to 1. 

 
 
4.3 System Unavailability analysis  

The quantification of the Top-event is articulated in the following steps: 
 
Analysis of all basic events by means of the equations previously described  
Analysis of simple modules 
Analysis of the Top-module 
 
In this section the equations for unavailability analysis are described together with simple examples. 
The analysis methods are applied first to all simple modules and then to the Top-module, all 
represented as LBDD.  
 
The following figure represents the generic node of an LBDD; the associated variable x can be of any 
type (SP, SN, DF).  
          
            
 
 
 
 
 
Independently of the variable type the exact value of the unavailability QUx(t) is given by: 
 

)t(Q)]t(q1[)t(Q)t(q)y(Q x0xx1xUx −+=       (13) 
Q1x(t) and Q0x(t) are respectively the unavailability of the left and right branches of the node and qx(t) 
is the unavailability of the event x.  
Equation (13) is recursively applied to all nodes of the LBDDs of all simple modules and of the Top-
module by visiting them according to the Depth-first mode (Bottom-up approach).  
For terminal nodes: 
Node 1: Q1(t)  = 1; 
Node 0: Q0(t)  = 0. 

QUx(t) 

Q0x(t) Q1x(t) 

x 



NOTES:  
The unavailability Q(t) is calculated as a function of time due to the need to correctly take into account 
the discontinuities of the unavailability function due to the presence of tested components. 
Calculating Q(t) simply means that equation (13) is applied to all LBDD nodes at least as many times 
as the number of time points in which the unavailability function has discontinuities.  
If all components have unavailability at t = 0 different from zero, then the top event unavailability Q(0) 
> 0. 
The mean value of the unavailability is important when the system unavailability function contains 
discontinuities due to the presence of tested components. In these cases in fact the unavailability at the 
mission time T can be misleading (value higher or lower than the mean). Hence, if tested events are 
present ASTRA calculates, esides the unavailability at mission time T, i.e. QTop(t) for 0 ≤ t ≤ T, also 

the mean value ∫
T

0
TopTmean d)(Q

T
1Q ττ=  and the peak value QTmax.  

 
Example 1 
 
As an example of the application of the above equations consider the determination of the 
unavailability of the following function, Top = [x2 ( x1 +⎯x3 +⎯x4 )] + [x3 (⎯x1 +⎯x2  x4 )],  containing 
all variables of DF type. For this system the prime implicants are: (x2), (⎯x1  x3), (x3  x4).  
Basic events’ data are shown in Table 4.4 and their plot vs. time is given in Figure 4.6. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5 LBDD of the function Top = [x2 (x1 +⎯x3 +⎯x4 )] + [x3 (⎯x1 +⎯x2  x4 )] 
 
 
 
Table 4.4 Data characterising the basic events of the LBDD represented in Figure 4.5. 
 

Var Type λ τ q 
x1 Not repairable 1.e-5   
x2 On-line maintained 1.e-6 200  
x3 On-line maintained 1.e-4 20  
x4 On demand    0.001 

 
 
The expressions of the unavailability for the different nodes of the BDD are given in Table 4.5 (bottom 
up visit). The first column contains the number of the node represented in figure 4.5; the sequence 
from the first row to the last row represents the LBDD visiting order. The last column of the last node 
contains the expression of the Top event unavailability. 
Figure 4.7 represents the unavailability of the function in fig. 4.5. 
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Figure 4.6 Components’ unavailability for the example in Figure 5.1 
 
 
 
Table 4.5 Nodes- unavailability expression for the BDD in Figure 5.1 
 

Node Var qx Q1x Q0x Qtot = qx Q1x + px  Q0x 
3 x3 q3 1 0 q3 
5 x4 q4 1 0 q4 
4 x3 q3 q4 0 q3 q4 
2 $x1 p1 q3 q3 q4 p1 q3+ q1 q3 q4 
1 x2 q2 1 p1 q3 + q1q3 q4   q2+ p2 (p1 q3 + q1q3 q4) 

 
 
 

 
 

Figure 4.7 Top event Unavailability for the example in Figure 5.1. 
 
 
Example 2  
 
The second example deals with the determination of the unavailability of a 2 out of 3 system made up 
by equal components: Top = a b + a c + b c.   
Components are characterized by the data provided in Table 4.6. 
 



 
Table 4.6  Data of basic events in Top = a b + a c + b c. 

 
Event λ τ q θ θ0 PTC DC 
a 1.e-4 /h 0.6h 0 300h 0 0 0 
b 1.e-4 /h 0.6h 0 300h 100h 0 0 
c 1.e-4 /h 0.6h 0 300h 200h 0 0 

 
Components are tested one after the other at regular intervals of time (staggered testing policy). 
If  θ  is the test interval, then the first component is tested at t = 0   (first test at θ0 = 0),    the second at 

t = θ / 3 (θ0 = 100) and finally the third at t = 2 θ /3 (θ0 = 200). 
 

The unavailability of the three components is represented in Figure 4.8, whereas the system 
unavailability and its mean value are provided in Figure 4.9. 

 

 
Figure 4.8 Components’ unavailability for staggered testing 

 
 
The mean value is given by: 

∫=
t

0
mean dx)x(Q

t
1Q           (14) 

For the example under consideration the mean value of the system unavailability is equal to Qmean = 
5.14e-4. 

 
Figure 4.9 Time dependent and mean system unavailability for staggered testing of 2/3 
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Example 3 
 
Some of the redundant configurations considered in the IEC 61508 standard are shown in Table 4.7, 
represented in terms of both functional block diagrams and fault trees. In this table the configurations 
refer to working conditions, i.e. 1oo2 means that one channel (a component or a series of components) 
is sufficient to perform the safety function; hence both channels must be failed to lead to system 
failure. Analogously 2oo2 means that both channels are necessary, i.e. that the failure of one channel is 
sufficient to lead the system to a failed condition.  
 
In order to avoid confusions we use the notation 2oo2:G meaning that the working state is determined 
by the working state of two components out of two. Consequently 1oo2:F means that the failure of one 
component determines the system failure. 
 
In Table 4.7 each channel is described as a tested event with DC > 0 and PTC = 0. 
 
For each configuration ASTRA calculates the PFDavg (Mean Probability of Failure on Demand) by 
integrating the time dependent unavailability function of the involved components as defined by 
equation (3). The integration is applied to the BDD representation of the fault tree. Hence exact results 
are obtained. For instance for the 1oo2:G and 2002:G, the PFDavg equations are respectively: 
 

∫
T

0
21avg dt)t(q-)t(q

T
1

PFD =        (15) 

 

∫
T

0
2121avg dt)]t(q)t(q-)t(q)t(q[

T
1PFD +=      (16) 

 
where q1(t) and q2(t) are determined by means of the equation (3).  
 
 
Table 4.7 Different redundant configuration considered in IEC 61508 
 

Configuration Functional Block Diagram Fault tree representation 

1oo2:G 
(equivalent to  
2002:F) 

 

2oo2:G 
(equivalent to  
1002:F) 

 

 

2oo3:G 
(equivalent to  
2003:F) 

 
 

CCF 

CCF 



 
Notes: 
The dangerous failure rate λD of channels must be multiplied by (1- β). 
The dangerous failure rate λD of the CCF element must be multiplied by β. 
In the IEC 61508 standard the beta factor to account for common cause failures has the value β for 
undetected failures and βD = β/2 for detected failures; in ASTRA it is conservatively assumed that βD 
= β. The numerical approximation is good for all configurations.  
The standard does not deal with staggered testing (as a measure to reduce the PFDavg) for redundant 
tested components, whereas ASTRA does. The staggered testing policy reduces the PFDavg by a factor 
of 2. 
 
Table 4.8 contains the results provided by ASTRA for a set of cases considered by the standard.  
 
Note that in Table 4.8: 
the test period considered is six months (4380 h); 
the repair time is 8 h;  
the mission time considered was 10 times the proof test interval. 
 
The content of the table shows the correct results determined by ASTRA. The highest difference is in 
the case with DC = 99%. This difference (about 14%) is due to the hypothesis on β, i.e. that βD = βU.  
The values between brackets in the last column refer to the calculation using the staggered testing 
policy, something that cannot be found in the IEC standard in which only the sequential testing is 
considered. The staggered testing could be used to nearly half the mean unavailability value.  
 

Table 4.8 Comparison of results of ASTRA applied to the basic configurations 
 

Architecture DC IEC 61508 
λD = 5.0e-06   
β= 10%; βD=5% 

ASTRA 
λD = 5.0e-6   
βD= β= 10% 

0% 1.1e02 1.08e-2  
60% 4.4e-3 4.40e-3 
90% 1.1e-3 1.13e-3 

1oo1 

99% 1.5e-4 1.49e-4 
0% 1.2e-3 1.19e-3    (6.30e-4) 
60% 4.6e-4 4.63e-4     (2.36e-4) 
90% 1.1e-4 1.15e-4     (5.96e-5) 

1oo2 
with CCF 

99% 1.3e-5 1.48e-5     (9.49e-6) 
0% 2.2e-2 2.16e-2 
60% 8.8e-3 8.78e-3 
90% 2.3e-3 2.26e-3 

2oo2 

99% 3.0e-4 2.98e-4 
0% 1.5e-3 1.48e-3 
60% 5.1e-4 5.05e-4 
90% 1.2e-4 1.17e-4 

2oo3 
with CCF 

99% 1.3e-5 1.48e-5 
 
 
Example 4 
 
As a second example of application of the IEC 61508 equations let us consider the following 2003 
system (Dutuit et al, 2006). 



Given a Protection System configured as 2oo3 logic with two actuators the aim is to determine the 
Probability of Failure on Demand (PFDavg) considering both random failures and Common Cause 
Failures. In this case it is assumed that DC = 0 and PTC = 0.  
 

 
 
Figure 4.10 Simplified pressure protection system 
 
The fault tree and the basic events data are as follows: 
 

 
Figure 4.11 Fault tree representation of the system in Figure 4.10 

 
 

Table 4.9 Fault tree and data for the simple system in Figure 4.10 
 
Event λ τ q θ θ0 PTC DC β 
E001 7.0e-07   720    0.9 
E002 7.0e-07   720 1   0.9 
E003 7.0e-07   720 2   0.9 
E004 3.5e-08   720 720   0.1 
E006 1.3e-06   1440     
E007 1.3e-06   1440 1    
E008 2.1e-06   2160     
E009 2.1e-06   2160 1    
E010 1.0e-06 10       

(missing values mean 0) 



 
These authors determined, for a mission time of 23,800h the value PFDavg = 6.374 x 10-3 
corresponding to a SIL 2 level.   
The analysis of the same fault tree with ASTRA gives the same result: PFDavg = 6.370 x 10-3, together 
with the PFDmax = 1.276 x 10-2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.12 Plot of the unavailability function for the simple system in Figure 4.10 
 
As pointed out by Dutuit et al., the mean value of the PFDavg is not sufficient to state that the 
protective system presents a given SIL level. Indeed, the unavailability function has the classical saw-
tooth behaviour with peaks that may enter into a worst SIL level region, as can be seen in Figure 4.12. 
For the present example the peak value of the unavailability on demand was greater that 10-2, 
corresponding to SIL1, for about 12% of the mission time, corresponding to 2865 h, a value that 
cannot be considered negligible.  
 
 
4.4 Accident Frequency analysis  

If the Top-event describes a catastrophic situation, then the parameter of interest is the Reliability R(t), 
i.e. the probability that the system works from 0 to the mission time T without failure. In fault tree 
analysis we work on failure events, so the parameter of interest becomes the Unreliability F(t).  
Whereas the unreliability of systems with not repairable components is equal, by definition, to the 
unavailability, the unreliability of systems with repairable components cannot be exactly determined 
using the fault tree methodology (see e.g. Clarotti, 1981). However, several bounds giving 
conservative values of system unreliability can be found in literature.  
 
In ASTRA the following two bounds have been implemented: 
Expected Number of Failures (ENF);  
Vesely equation. 
 
The application of these bounds requires the determination of the unconditional failure and repair 
frequencies.  
 
It can be shown that the unconditional failure frequency of a fault tree containing events in different 
form (SP, SN, DF) is given by: 
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where: 
pf

x(t) and pr
x(t) are respectively the probability of critical states for the failure and repair of x. 

ωx(t) and νx(t) are respectively the unconditional failure and repair frequencies of the event x. 
 
The term pf

x(t) represents the probability that the failure of the generic event x ∈ x is critical, i.e. the 
Top-event is verified (Top=1) if x = 1 and it is not verified (Top=0) if x = 0. For positive events pf

x(t) 
is nothing but the Birnbaum importance index, which is given by: 
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The term pr

x(t) represents the probability that the repair of the generic event x ∈ x is critical, i.e. the 
Top-event is not verified (Top=0) if x = 1 and is verified (Top=1) if x = 0. For negated events pr

x(t) is 
given by: 
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Therefore, according to equation (17), the Top-event is verified in the time interval t-t+dt if it is in a 
critical state for the failure of x (represented by pf

x(t)) and fails in t+dt (represented by ωx(t)) plus the 
probability that the Top-event is in a critical state for the repair of x (represented by pr

x(t)) and is 
repaired in t+dt (represented by νx(t)).  
 
Equation (17) is of general character and is applicable to events in DF form. It can be simplified for 
events of type SP and SN.  Indeed: 
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 since pf
x(t) = 0 

 
Finally it remains to determine pf

x(t) and pr
x(t) for basic events in simple modules in order to obtain 

their contribution to the Top-event frequency.  
 
In ASTRA a module contains only events of SP type. Therefore pr

x(t) = 0. Moreover it can be shown 
that:  
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This equation states that the probability that x is critical with respect to the Top-event is given by the 
product of two terms: 1) the probability that x is critical with respect to the module M; and 2) the 
probability that M is critical with respect to the Top-event. 
 
Analogously the unconditional repair frequency is given by equation (21) with obvious meaning of the 
symbols: 
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Top event Expected number of failures WT(t) 



 
The Expected Number of Failures WT (t) is obtained as: 
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The ENF is also a good upper bound for the unreliability FT(t) provided that its value is less than 0.1.  
 

If ωT(t) ≈ constant then 
)t(

1MTBF
T

T ω
= ;       (23) 

 
 if QT(t) ≈ constant then MTTRT = QTmean * MTBFT     (24) 
 
 
Top event Expected number of repairs VT(t) 
 
If the fault tree does not contain INH gates nor tested events then also the Expected Number of Repair 
VT(t) is calculated as:  

 ττν= ∫ d)()t(V T

t
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Top event Unreliability upper bound FT(t) 
 
For safety applications the Expected number of failure is generally a very good upper bound for the 
top-event unreliability FT(t). ASTRA does not calculate the MTBF if the failure frequency is not 
constant. In these cases the time dependent option of ASTRA allows calculating the Vesely bound for 
F(t), which is better than W(t), but more time consuming. 
 
To this purpose the conditional failure frequency ΛT at Top level is determined on the basis of the 
unconditional failure frequency ωT(t) and unavailability QT(t), (Vesely, 1970) i.e.: 
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Mean time to first failure is calculated, according to its definition, as:   
 

∫
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In practice, to save time, it is more convenient to determine W(t) and then to pass to F(t) if deemed 
necessary. 
F(t) is calculated by activating the time dependent option when the ENF is greater than the threshold 
(e.g. 0.1) defined by the user. 



 
NOTE: Due to the time consuming operation used to calculate equations (27) and (28) the Vesely 
equation is applied only when the time dependent analysis option is selected. 
 

Mean  Probability of Failure per Hour according to IEC 61508 
 
In  the  case of high  demand  or  continuous  mode  of operation of the safety system the  standard  
IEC 61508  requires the determination of the average value of the Probability of Failure per Hour PFHavg  
which is given by: 
 

T
)T(WPFHavg =        

 
where W(T) is the expected number of failures at the mission time T. 
 
The following Table contains the results provided by ASTRA for a set of cases considered by the 
standard, in which the test period considered is six months (4380 h), mean repair time  of 8h and 
mission time equal to 10 times the proof test interval.  
 
The content of the table shows the correct results determined by ASTRA.  
 

Architecture DC IEC 61508 
λD = 5.0e-06   

β= 10%; βD=5% 

ASTRA 
λD = 5.0e-6   
βD= β= 10% 

0% 5.9E-7 5.86E-7 
60% 2.1E-7 2.14E-7 
90% 5.1E-8 5.09E-8 

1oo2 
with CCF 

99% 5.0E-9 5.01E-9 
0% 1.0E-5 9.78E-6 

60% 4.0E-6 3.96E-6 
90% 1.0E-6 9.97E-7 

2oo2 

99% 1.0E-7 9.99E-8 
0% 7.7E-7 7.56E-7 

60% 2.4E-7 2.42E-7 
90% 5.3E-8 5.27E-8 

2oo3 
with CCF 

99% 5.0E-9 5.03E-9 
 
 

Example 1. 

Let us consider the bridge network represented in terms of reliability block diagram and fault tree in 
Figure 4.13. The coherent fault tree describes the events leading to the top-event “no output signal”. 
The analysis is performed considering λ  = 0.01 and μ = 0.1 for all events.  
The results of the analysis are graphically represented in Figure 4.14 and Figure 4.15. 
 
At the mission time T = 50 h the results are: 
 
− Unavailability QT(50)    = 1.755459 e-2 
− Unconditional Failure frequency ωT(50) = 3.612036e -3 
− Unconditional Repair frequency νT(50) = 3.595805e -3 
− Expected Number of Failures WT(50)  = 0.1490059  
− Expected Number of Repair VT(50)  = 0.1314516  



− Unreliability FT(50)    = 0.1403110 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.13 Bridge network of repairable components and associated fault tree 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.14 Unavailability, failure and repair frequencies for the bridge system 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 4.15 Expected number of failures, Expected number of repair and  
Unreliability upper bound for the bridge system 
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Example 2 
 
This example concerns the analysis of a non-coherent fault tree. 
Let us consider again the function Top = [x2 ( x1 +⎯x3 +⎯x4 )] + [x3 (⎯x1 +⎯x2  x4 )] previously 
considered for the determination of the unavailability.  
Basic events data are as follows: 

 
Tabella 4.10 Data of basic events for Top = [x2 ( x1 +⎯x3 +⎯x4 )] + [x3 (⎯x1 +⎯x2  x4 )] 

 
Var Type λ τ q 

x1 Not repairable 1.e-5   
x2 On-line maintained 1.e-6 200  
x3 On-line maintained 1.e-4 20  
x4 On demand    0.001 

 
The frequency analysis results are plotted in Figure 4.16 for a mission time of 10,000 h. 
It can be seen that the unavailability reaches the steady state condition very rapidly and consequently 
Ws(t) and Vs(t) are very close each other.  
 
At T = 10,000 h the following values have been calculated by ASTRA: 
 
− Qs(T) = 2.005851E-03 
− ωs(t) = 9.129257E-05 
− νs(t) = 9.131060E-05 
− Ws(t) = 9.595718E-01 
− Vs(t) = 9.575631E-01 
− Fs(t) = 6.177130E-01 
− MTBF  = 10953h 
− MTTR  = 21.97h 
− MTTF  = 19951h 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.16 Unavailability, Expected number of failures and unreliability for the LBDD in Figure 3.3 
 
The non coherent function can also be approximated to a coherent function by setting all negated 
events to 1. In our example the coherent tree is represented in Figure 3.4. 
The results of the analysis of the coherent tree, performed considering the mission tome T = 10000h 
are as follows: 

WT(t) 
FT(t)

QT(t) 



 
Qs(T) = 2.195569E-03 ωs(t) = 1.007782E-04 νs(t) = 1.007782E-04 
Ws(t) = 1.007852  Vs(t) = 9.762612E-01 Fs(t) = 6.35781E-01 
MTBF = 9922.7h  MTTR = 21.787h  MTTF = 9901h 
 
Note that all results are conservative, as expected. 
 
 
4.5 Frequency analysis using the extended INH gate  

In the analysis of catastrophic Top-events it is important to model situations in which a failure occurs 
only if the direct causes occur in a given sequence. Consider for instance the following example. The 
overpressure in a tank triggers the intervention of a shut-down system; if this system does not operate 
then the tank rupture occurs. Hence the event "tank rupture” is due to the occurrence of the initiating 
events I “overpressure” and the enabling event E “shut-down does not intervene”.  However, the tank 
rupture can occur only if E occurs before I or at the same time. If E occurs after I there would be 
simply a trip of the plant. 
The simple AND of the two input variables I and E cannot represent this situation, since the sequence 
of occurrence is not taken into consideration.  
 
These situations can be modelled in ASTRA using the Inhibit (INH) gate as shown in Figure 4.18.  
This extended definition of the INH gate is based on the distinction between initiating and enabling 
events.  
An Initiating event is an event whose occurrence triggers the intervention of the Enabler event.   
The output is true when, at the time the input is true, the condition defined by the enabler event is 
already true.  
The method implemented in ASTRA identifies the events as either initiator or enabler depending on 
the sub-tree they belong to. Common events are flagged as initiators.  
The differentiation of the type of events has an impact on the calculation of W(t), since initiating 
events are characterised by their failure frequency ω(t), whereas enabler events, associated with 
components of the protective system, are characterised by their on-demand unavailability q(t).  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.18 The INH gate used for modelling the relationship between initiator and enabler events 
 
The failure and repair frequencies of the output event are given by: 

)t(q)t()t( EIO ω=ω          (29) 
))t(q)t()t( EIO ν=ν          (30) 

I and E can be  
sub-trees containing  
common events 

 

Safety system
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Output event 
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Process failure



Therefore in ASTRA when the parameter of interest is the frequency of the catastrophic Top event 
modelled by means of the INH gate, enabler events are characterised by their on-demand 
unavailability qx(t) only, i.e. their unconditional failure and repair frequencies are set to zero.  
 
Example  
 
A system is comprised of two components: A monitors the operation of the component B. System 
failure occurs if both fail, but only if A fails before B. 
Data about components are as follows. 
 
A : λA =  1.e-6  μA = 0 
B : λB =  1.e-7  μB = 0 
 
The system is not repairable. Table 4.12 shows the comparison of the unavailability values Q(t) 
obtained using a Markovian approach (Ericson, 2005) with those calculated using the ASTRA method 
above described for different mission times. As can be seen the agreement is very good at all values of 
the mission time. 

 
Let us consider now the same problem with the following parameters: 
 
A : λA =  1.e-4  μA = 1.e-2 
B : λB =  1.e-5  μB = 1.e-2 
 
The Markov state diagram and the fault tree are as shown in Figure 4.19.  
 

 
Table 4.12 Comparison between Markov analysis and ASTRA 3.x on sequential events  

(non-repairable case) 
 

Mission time (h) Markov ASTRA 
100 4.99980E-10 4.99980E-10 

1,000 4.99800E-8 4.99800E-8 

10,000 4.98006E-6 4.98005E-6 

100,000 4.80542E-4 4.80542E-4 

1,000,000 3.45145E-2 3.45144E-2 

10,000,000 5.41213E-1 5.41208E-1 
 
 
Table 4.13 contains the results of the analysis for a mission time T = 1,000 h. 
 
The comparison of the results between the two programs XSMKA (De Cola, 2005) and ASTRA shows 
good agreement. 
 
In practice it is common to deal with a cascade of INH operators as shown in Figure 4.20a), in which 
the previously considered tank is supposed to have two levels of protection. In this case two INH gates 
are used to model the pressure increase. We can notice that in this case there is no need to consider the 
sequence of intervention of the safety devices, since both must be failed to produce the tank rupture. 
Therefore the cascade of INH gates is equivalent to a single INH gate in which all enabling functions 
are grouped under an AND gate of the enabler branch as shown Figure 4.20b). 
These considerations are applicable to the cascade of any number of INH gates. 



Table 4.13   Results of the analysis of the system represented in Figure 5.13 
 

Parameter  XSMKA  ASTRA 
Unreliability 8.901275E-05 8.911964E-05 

Unavailability 4.940146E-06 4.96708E-06 

ENF – Expected Number of Failures  8.904747E-05 8.912281E-05 

ENR – Expected Number of Repairs  8.407051E-05 8.415573E-05 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 4.19 Markov state diagram and fault tree for sequential repairable events 
 

This extended implementation of the INH gate should not be confused with the sequential AND gate 
that may have more than two inputs. In the cascade of INH gates the grouped enabler events are 
independent. In the latter we may have more than two events which must fail according to a given 
sequence.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.20 a) Cascade of INH gates; b) equivalent fault tree representation 

A, B components’ names; 
Subscripts:  
W = Working  
F = Failed; 
N = state number from which the transition comes from. 
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4.6 Importance analysis 

Components’ importance measures play a very important role in system reliability analysis. They are 
used to identify the weakest parts of the system for design improvement, failure diagnosis and 
maintenance. 
In ASTRA the importance analysis module allows to get the ranking of components’ importance based 
on both unavailability and expected number of failures.  
Importance measures can be determined either at a specific time (generally at the mission time) or as 
time dependent. 
 
For each importance measure (IM) two contributions, positive and negative, are determined for non-
coherent variables.  
 
Besides the probabilistic IM, ASTRA also calculates the Structural importance index ISx, which is a 
measure based only on how events are located in the set of MCS. The Structural importance is 
determined by applying the equation pf

x(t) and pr
x(t) in which all events have probability 0.5 (Lambert 

1975). 
 
All equations described below for importance analysis are applied as function of time. They are listed 
without any proof or justification. Interested readers can refer to Contini et al. (2008), and to Van der 
Borst-Shoonaker (2001) for details and further references. 
 
 

4.6.1 Importance measures based on Unavailability  

We have seen that a modularized fault tree contains: 
- one or more independent simple modules; 
- the Top-module (module containing the top event). 
 
A generic basic event x can be in one of the simple modules or in the top module.   
A simple module contains only events in positive form; also a simple module in the Top-module can 
appear only in positive form. Consequently, events of type $ (SN) or & (DF) can appear only in the 
Top-module. 
 
Probability of critical states pf

x(t) and pr
x(t) 

 
For basic events of a monotonic function Φ(x) (AND-OR fault trees) the first importance measure was 
proposed by Birnbaum. The Birnbaum importance of a generic component x is defined as follows:  
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where P{Φ,t} is the unavailability of Φ(x) at time t and P{x,t} the unavailability of x at time t. 
 
The partial derivative of P{Φ,t} with respect to P{x,t} means that the Birnbaum measure can be 
interpreted as the probability that the Top-event is critical with respect to the failure of x, i.e. the Top-
event is verified as soon as x fails.  
 
The Birnbaum index does not depend on the failure probability of component x. However, it is 
important in that: 
− It gives the maximum variation of the Top-event unavailability when the component changes its 

state from perfectly working to failed; 
− It is useful when used in connection with other indexes; 
− Other indexes can be expressed as a function of it as e.g. Criticality, Risk Achievement Worth, 

Risk Reduction Worth; 



− It is used for determining the system unconditional failure frequency. 
 
For non-coherent variables the Birnbaum index as defined above loses its meaning, since it can 
assume negative values.  
The generalization of the Birnbaum index for non-coherent variables can be expressed as: 
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for the positive contribution, and   
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for the negative contribution. 
 
These two values are used to determine other importance indexes. 
 
The generic event x considered can be part of a module. Its Birnbaum importance with respect to the 
Top-event is determined by multiplying the importance of x with respect to the Module with the 
importance of the module with respect to the Top-event, i.e.: 
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In order to simplify the notation in the following we will represent P{Φ,t} as QT(t) and P{x,t} as qx(t). 
 
Criticality importance measure, ICx   
 
The criticality index represents the probability that the event x is critical and its occurrence leads to 
system failure.  
This index can also be interpreted as the relative variation of the Top-event occurrence probability vs. 
the relative variation of the occurrence probability of the basic event x, i.e.: 
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For negated variables: 
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Risk Achievement Worth, RAWx  
 
The RAW is defined as a measure of the increase of the system failure probability when x is supposed 
failed or removed e.g. for test/maintenance operations. In calculating the RAW it is important to 
consider all other components that are dependent by the failure / removal of x. According to the 
definition it is proved that:  
 

)t(Q
)t(q1)t(p1)t(RAW

T

xf
xx

−
+=+         (36) 

 
For negated variables: 
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Risk Reduction Worth RRWx  
  
The RRW is defined as a measure of the decrease of the system failure probability when x is supposed 
to be perfectly working: 
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For negated variables: 
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4.6.2 Importance measures based on failure frequency (Unreliability analysis)) 

In case of unreliability analysis it is necessary to subdivide events as initiators and enablers because 
they have different role in the system and consequently they are treated differently. These events have 
already been defined in section 4.5. 
Moreover: 
− Initiating events are characterised by their failure frequency; 
− Enabling events are characterised by their on-demand unavailability; 
− Initiating events may cause system failure if the system is in a critical state for the initiating event;  
− Enabling events contribute to system failure but do not cause it. 
 
An initiating event that is in a MCS with other initiating events has an enabling contribution. 
Let (A B) be a system failure combination, i.e. a minimal cut set of a fault tree.  
The unconditional failure frequency Ω(A B) that the combination (A B) occurs (enter into the failed 
state A=1, B=1) in the time interval dt is given by the probability that A occurs in t-t+dt (represented 
by ωA(t) dt) with B already failed at t (represented by qB(t)) or that B occurs in t-t+dt with A already 
failed at t, i.e.: 
Ω(A B) = qB(t)  ωA (t) + qA(t) ωB(t)           
Now, consider for instance event A. In the first term of the right hand side A behaves as initiator 
because it is characterised by ωA(t), whereas in the second term - as enabler, characterised by qA(t).  
 
In order to determine the importance of a basic event it is necessary to consider its type: initiator or 
enabler. It is proved in Contini-Matuzas (2011) a method for determining such importance measures. 
Their implementation in ASTRA 3.x is planned for the next release.  
 
 
4.7 Probabilistic quantification of SMCS 

The determination of the generic SMCS is followed by the probabilistic quantification of each of them 
for the determination of: Unavailability, Unconditional failure frequency, Expected number of failures, 
and Unreliability.  A MCS of order n is the parallel failure configuration of n basic events.  
 
 



Unavailability of a MCS 
 
The unavailability of a generic minimal cut set Cj of order n is the probability that all n events are 
verified at time t. Since events are independent then: 
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Expected number of failures of a MCS 
 
The ENF of a MCS is obtained by integrating, over the mission time interval, the unconditional failure 
frequency of the SMCS given by:  
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The above equation expresses the concept that the SMCS occurs in a time interval t, t+dt if: 

• n-1 events already occurred at t, given by )t(qk
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• the last one occurs in dt, expressed as dt)t(iω  
The last event to occur may be the first, the second, and so on, that’s why the use of the summation. 
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Unreliability upper bound of a MCS 
 
As for the Top event, the unreliability of a MCS is calculated by means of the conditional failure 
frequency of the MCS `determined from )t(Tω and QT(t). 
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If the number of MCS is very high the integration operation, necessary to determine the Expected 
number of failures and the Unreliability, becomes time consuming. Moreover, the above equations are 
applied to determine the importance ranking of MCS, since the quantification has already been 
performed on the LBDD. Therefore it is interesting to give the user the possibility to apply simplified 
equations which do not require any integration.  
The following equation gives an approximated result of the Expected number of failures: 
 



t)]t(Q
rh

[)t(W Cj

nj

jk
1k

i
nj

1i
Cj ∏∑

≠
== +

λ
=        (44) 

 
where: 
    1 if λi is the failure rate of an on-line maintained or tested component 
r  
    0 if λi is the failure rate of a not repairable component 
 
k  is the number of not repairable components belonging to the MCS. 
If the MCSs contains tested component, the product in (5.13) is multiplied by the coefficient Cn given 
in table 5.1. 
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where z is the number of tested events in the MCS under consideration. 
 
The Gz equation is valid for components in a MCS which are tested in sequential mode and have equal 
test interval.   



5. CONCLUSIONS AND FURTHER DEVELOPMENTS  

In this report we have described the main algorithms implemented in ASTRA 3.x for performing the 
analysis of both coherent and non-coherent fault trees. More detailed information is given in the 
referenced documentation.   
Since non-coherent fault trees contain different types of variables (SP, SN, and DF) for which 
algorithm of different cost (in terms of computational resources) are required, an algorithm for 
dynamically labelling each BDD node with the variables’ type was implemented. The experimental 
results showed the advantage of the dynamic labelling operation. The reduction of the number of nodes 
with DF variables implies a reduction of the working memory due to the consequent reduction of 
computational effort for determining the failure and repair frequencies.  
From the LBDD the ZBDD embedding all MCS is obtained from which the SMCS are finally 
extracted. 
 
The probabilistic analysis of the fault tree is performed on the LBDD.  Besides the Unavailability, the 
unconditional failure and repair frequencies, the Expected Number of Failures and the Vesely equation 
for the unreliability, ASTRA performs the importance analysis of basic events; equations used depend 
on the type of analysis: unavailability or unreliability. In the second case the calculations are based on 
a set of new equations that will be implemented in the next version. 
 
Another important implementation refers to the analysis of safety systems performed according to the 
methods defined in the standard IEC 61508 for the low and high demand modes.  
In order to analyse configurations containing multiple channels the application of the fault tree requires 
representing each “basic event” as three events descending from the same OR gate. This is due to the 
fact that the standard considers the component failure rate λD (D stands for dangerous) as given by the 
Detected part (λDD) and by the Undetected part (λDU).  The first accounts for failures that can be on-
line detected and repaired whereas the second by those that can be detected only at test time intervals.  
Moreover, the standard considers also the Proof Test Coverage (PTC) parameters to take into account 
non-complete tests. Hence, PTC < 1 means that there may be non-tested and non revealed failures 
which remain hidden during the whole mission time interval.  
To simplify the fault tree construction a solution has been implemented in ASTRA which avoids the 
triple-event representation by defining a new tested event having DC and PTC as additional 
parameters.  
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